1
|
Dutt S, Bachman SL, Dahl MJ, Li Y, Yew B, Jang JY, Ho JK, Nashiro K, Min J, Yoo HJ, Gaubert A, Nguyen A, Blanken AE, Sible IJ, Marshall AJ, Kapoor A, Alitin JPM, Hoang K, Rouanet J, Sordo L, Head E, Shao X, Wang DJJ, Mather M, Nation DA. Locus coeruleus MRI contrast, cerebral perfusion, and plasma Alzheimer's disease biomarkers in older adults. Neurobiol Aging 2025; 147:12-21. [PMID: 39637519 PMCID: PMC11781958 DOI: 10.1016/j.neurobiolaging.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
The locus coeruleus (LC) is among the first brain structures impacted by Alzheimer's disease (AD), and noradrenergic denervation may contribute to early neurovascular dysfunction in AD. Mechanistic links between the LC and cerebral perfusion have been demonstrated in rodents, but there have been no similar studies in aging humans. Community-dwelling older adults with no history of stroke or dementia (N=66) underwent structural (T1-MPRAGE; T1-FSE) and perfusion (resting pCASL) MRI. Plasma AD biomarkers levels were evaluated for Aβ42/40 ratio (n=56) and pTau181 (n=60). Higher rostral LC structural MRI contrast was associated with lower perfusion in entorhinal and limbic regions but higher perfusion in lateral and medial orbitofrontal cortices. Relationships between LC structure and regional cerebral perfusion were attenuated in older adults with higher plasma pTau levels and lower plasma Aβ42/40 ratios. Previously unstudied links between LC structure and cerebral perfusion are detectible in older adults using MRI and are attenuated in those showing greater AD pathophysiologic change, suggesting an uncoupling of LC-cerebral perfusion relationships in older adults with aggregating AD-related pathophysiology.
Collapse
Affiliation(s)
- Shubir Dutt
- Department of Psychology, University of Southern California, Los Angeles, CA, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA; Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Shelby L Bachman
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Martin J Dahl
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA; Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Yanrong Li
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Belinda Yew
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jung Yun Jang
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Jean K Ho
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Kaoru Nashiro
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Jungwon Min
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Hyun Joo Yoo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Aimée Gaubert
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Amy Nguyen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Anna E Blanken
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA; San Francisco Veterans Affairs Health Care System, CA, USA
| | - Isabel J Sible
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Anisa J Marshall
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Arunima Kapoor
- Department of Psychological Science, University of California, Irvine, CA, USA
| | - John Paul M Alitin
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Kim Hoang
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Jeremy Rouanet
- Department of Pathology & Laboratory Medicine, University of California, Irvine, CA, USA
| | - Lorena Sordo
- Department of Pathology & Laboratory Medicine, University of California, Irvine, CA, USA
| | - Elizabeth Head
- Department of Pathology & Laboratory Medicine, University of California, Irvine, CA, USA
| | - Xingfeng Shao
- Laboratory of FMRI Technology, Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, CA, Los Angeles, USA
| | - Danny J J Wang
- Laboratory of FMRI Technology, Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, CA, Los Angeles, USA
| | - Mara Mather
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Daniel A Nation
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA; Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, CA, Los Angeles, USA.
| |
Collapse
|
2
|
Jellinger KA. Pathomechanisms of neuropsychiatric disturbances in atypical parkinsonian disorders: a current view. J Neural Transm (Vienna) 2025:10.1007/s00702-025-02890-7. [PMID: 39954076 DOI: 10.1007/s00702-025-02890-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/28/2025] [Indexed: 02/17/2025]
Abstract
Multiple system atrophy (MSA), corticobasal degeneration (CBD) and progressive supranuclear palsy (PSP) are the most common atypical parkinsonisms. These adult-onset and lethal neurodegenerative disorders of unknown etiology are clinically characterized by varying combinations of autonomic, levodopa-poorly responsive parkinsonsm, motor, non-motor, cerebellar syndromes, behavioral, cognitive and other neuropsychiatric disorders. Although their pathological hallmarks are different-MSA α-synucleinopathy, CBD and PSP 4-repeat (4R) tauopathies-their neuropsychiatric disturbances include anxiety, depression, agitations, attention-executive dysfunctions, less often compulsive and REM sleep behavior disorders (RBD), which may contribute to disease progression and reduced quality of life (QoL) of patients and caregivers. The present paper reviews the prevalence and type of neuropsychiatric profile in these atypical parkinsonian syndromes, their neuroimaging, and pathogenic backgrounds based on extensive literature research. MSA patients show anxiety, apathy (depression), initial RBD, attentional and executive dysfunction; PSP patients present with apathy, depression, disinhibition, and to a lesser extent, anxiety and agitation; CBD patients are featured by executive and visuospatial dysfunctions, irritability, alien limb phenomena, sleep and language disorders. Neuropsychiatric disorders in these syndromes are often similar, due to disruption of prefronto-subcortical (limbic) and striato-thalamo-cortical circuitries or default mode and attention network disorder. This supports the concept that they are brain network disorders due to complex pathogenic mechanisms related to the basic proteinopathies that are still poorly understood. Psychotic symptoms, hallucinations and delusions are rare. Neuropsychiatric changes in these disorders are often premature and anticipate motor dysfunctions; their assessment and further elucidation of their pathogenesis are warranted as a basis for early diagnosis and adequate treatment of these debilitating comorbidities.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
3
|
Pasquini J, Sigurdsson HP, Firbank M, Best L, Foster V, Galley D, Maxwell R, Silani V, Ceravolo R, Petrides G, Brooks DJ, Pavese N. Locus coeruleus neuromelanin, cognitive dysfunction, and brain metabolism in multiple system atrophy. J Neurol 2025; 272:195. [PMID: 39932591 DOI: 10.1007/s00415-025-12932-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 02/14/2025]
Abstract
BACKGROUND Cognitive dysfunction is increasingly recognized in multiple system atrophy (MSA). Locus coeruleus (LC) integrity is associated with cognitive performance both in healthy controls (HC) and neurodegenerative conditions such as Parkinson's disease (PD). Furthermore, cortical glucose hypometabolism is associated with impaired cognitive performance in MSA. However, knowledge about LC sub-regional degeneration and its association with cognitive dysfunction and cortical glucose metabolism is lacking. OBJECTIVE To investigate LC sub-regional involvement and its association with cognitive impairment and brain metabolism in MSA. METHODS Eleven MSA, eighteen PD, and eighteen HC participants were included in the study. Neuromelanin-sensitive MRI was used to determine rostral, middle and caudal LC neuromelanin signals. Brain glucose metabolism was investigated with [18F]Fluorodeoxyglucose PET (FDG-PET). The Montreal Cognitive Assessment (MoCA) was used as a measure of global cognition. RESULTS Middle LC neuromelanin signal was significantly reduced in MSA [t(43) = 3.70, corrected-p = 0.004] and PD [t(43) = 2.63, corrected-p = 0.041] compared to HC, while caudal LC was only reduced in MSA [t(43) = 2.82, corrected-p = 0.030]. In MSA, decreased rostral LC neuromelanin was associated with lower MoCA scores (ρ = 0.760, p = 0.006) which, in turn, were associated with lower frontal cortex glucose metabolism. An association between rostral LC neuromelanin signal and frontal cortex glucose metabolism was found in exploratory analyses. CONCLUSION Loss of LC neuromelanin signal was found in MSA, the middle and caudal parts being targeted. Rostral LC neuromelanin signal loss was associated with both frontal cortex hypometabolism and lower MoCA scores. This pathophysiological link should be further investigated as the noradrenergic system transmission is amenable to pharmacological manipulation.
Collapse
Affiliation(s)
- Jacopo Pasquini
- Clinical Ageing Research Unit, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Westgate Road, Newcastle Upon Tyne, NE4 5PL, UK
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Hilmar P Sigurdsson
- Clinical Ageing Research Unit, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Westgate Road, Newcastle Upon Tyne, NE4 5PL, UK
| | - Michael Firbank
- Clinical Ageing Research Unit, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Westgate Road, Newcastle Upon Tyne, NE4 5PL, UK
| | - Laura Best
- Regional Neurosciences Centre, Royal Victoria Hospital, Belfast, UK
| | - Victoria Foster
- Clinical Ageing Research Unit, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Westgate Road, Newcastle Upon Tyne, NE4 5PL, UK
| | - Debra Galley
- Clinical Ageing Research Unit, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Westgate Road, Newcastle Upon Tyne, NE4 5PL, UK
| | - Ross Maxwell
- Clinical Ageing Research Unit, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Westgate Road, Newcastle Upon Tyne, NE4 5PL, UK
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milan, Italy
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università degli Studi di Milano, Milan, Italy
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Neurodegenerative Diseases Center, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - George Petrides
- Nuclear Medicine Department, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - David J Brooks
- Clinical Ageing Research Unit, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Westgate Road, Newcastle Upon Tyne, NE4 5PL, UK
- Department of Nuclear Medicine and PET Centre, Institute of Clinical Medicine, Aarhus University, 8200, Aarhus, Denmark
| | - Nicola Pavese
- Clinical Ageing Research Unit, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Campus for Ageing and Vitality, Westgate Road, Newcastle Upon Tyne, NE4 5PL, UK.
- Department of Nuclear Medicine and PET Centre, Institute of Clinical Medicine, Aarhus University, 8200, Aarhus, Denmark.
| |
Collapse
|
4
|
Spiegel C, Marotta C, Bertram K, Vivash L, Harding IH. Brainstem and cerebellar radiological findings in progressive supranuclear palsy. Brain Commun 2025; 7:fcaf051. [PMID: 39958262 PMCID: PMC11829206 DOI: 10.1093/braincomms/fcaf051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/02/2024] [Accepted: 02/03/2025] [Indexed: 02/18/2025] Open
Abstract
Progressive supranuclear palsy is a sporadic neurodegenerative 4-repeat tauopathy associated with significant morbidity. Heterogeneity of symptom expression among this group is increasingly recognized, reflecting variable tau spread and neurodegeneration. Clinical manifestations consist of debilitating and rapidly progressive motor, oculomotor, speech, cognitive and affective impairments. Core pathological changes are noted with a predominance in the midbrain and basal ganglia; however, spread to the more caudal brainstem and cerebellar regions is reported at various stages. Accordingly, whilst midbrain atrophy is the best recognized supportive imaging finding, quantitative neuroimaging studies using MRI and PET approaches have revealed a wider profile of brain abnormalities in cohorts of individuals with progressive supranuclear palsy. This expanded neurobiological scope of disease may account for individual heterogeneity and may highlight additional biological markers that are relevant to diagnosing and tracking the illness. Additionally, there is increasing understanding of the diverse cognitive, affective and speech functions of the cerebellum, which may be implicated in progressive supranuclear palsy beyond current recognition. In this review, we undertake a systematic literature search and summary of in vivo structural and functional neuroimaging findings in the brainstem and cerebellum in progressive supranuclear palsy to date. Novel and multimodal imaging techniques have emerged over recent years, which reveal several infratentorial alterations beyond midbrain atrophy in progressive supranuclear palsy. Most saliently, there is evidence for volume loss and microstructural damage in the pons, middle cerebellar peduncles and cerebellar cortex and deep nuclei, reported alongside recognized midbrain and superior cerebellar peduncle changes. Whilst the literature supporting the presence of these features is not unanimous, the evidence base is compelling, including correlations with disease progression, severity or variant differences. A smaller number of studies report on abnormalities in MRI measures of iron deposition, neuromelanin, viscoelasticity and the glymphatic system involving the infratentorial regions. Molecular imaging studies have also shown increased uptake of tau tracer in the midbrain and cerebellar dentate nucleus, although concern remains regarding possible off-target binding. Imaging of other molecular targets has been sparse, but reports of neurotransmitter, inflammatory and synaptic density alterations in cerebellar and brainstem regions are available. Taken together, there is an established evidence base of in vivo imaging alterations in the brainstem and cerebellum which highlights that midbrain atrophy is often accompanied by other infratentorial alterations in people with progressive supranuclear palsy. Further research examining the contribution of these features to clinical morbidity and inter-individual variability in symptom expression is warranted.
Collapse
Affiliation(s)
- Chloe Spiegel
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne 3004, Australia
- Department of Neurology, Alfred Health, Melbourne 3004, Australia
| | - Cassandra Marotta
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne 3004, Australia
| | - Kelly Bertram
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne 3004, Australia
- Department of Neurology, Alfred Health, Melbourne 3004, Australia
| | - Lucy Vivash
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne 3004, Australia
| | - Ian H Harding
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne 3004, Australia
- QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia
| |
Collapse
|
5
|
Železníková Ž, Nováková L, Vojtíšek L, Brabenec L, Mitterová K, Morávková I, Rektorová I. Early Changes in the Locus Coeruleus in Mild Cognitive Impairment with Lewy Bodies. Mov Disord 2025; 40:276-284. [PMID: 39535454 PMCID: PMC11832806 DOI: 10.1002/mds.30058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/12/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Although neuromelanin-sensitive magnetic resonance imaging (NM-MRI) has been used to evaluate early neurodegeneration in Parkinson's disease, studies concentrating on the locus coeruleus (LC) in pre-dementia stages of dementia with Lewy bodies (DLB) are lacking. OBJECTIVES The aims were to evaluate NM-MRI signal changes in the LC in patients with mild cognitive impairment with Lewy bodies (MCI-LB) compared to healthy controls (HC) and to identify the cognitive correlates of the changes. We also aimed to test the hypothesis of a caudal-rostral α-synuclein pathology spread using NM-MRI of the different LC subparts. METHODS A total of 38 MCI-LB patients and 59 HCs underwent clinical and cognitive testing and NM-MRI of the LC. We calculated the contrast ratio of NM-MRI signal (LC-CR) in the whole LC as well as in its caudal, middle, and rostral MRI slices, and we compared the LC-CR values between the MCI-LB and HC groups. Linear regression analyses were performed to assess the relationship between the LC-CR and cognitive outcomes. RESULTS The MCI-LB group exhibited a significant reduction in the right LC-CR compared to HCs (P = 0.021). The right LC-CR decrease was associated with impaired visuospatial memory in the MCI-LB group. Only the caudal part of the LC exhibited significant LC-CR decreases in MCI-LB patients compared to HCs on both sides (P < 0.0001). CONCLUSIONS This is the first study that focuses on LC-CRs in MCI-LB patients and analyzes the LC subparts, offering new insights into the LC integrity alterations in the initial stages of DLB and their clinical correlates. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Žaneta Železníková
- Applied Neuroscience Research Group, Central European Institute of Technology, CEITECMasaryk UniversityBrnoCzech Republic
| | - L'ubomíra Nováková
- Applied Neuroscience Research Group, Central European Institute of Technology, CEITECMasaryk UniversityBrnoCzech Republic
- International Clinical Research Center, ICRCFaculty of Medicine and St. Anne's University Hospital, Masaryk UniversityBrnoCzech Republic
| | - Lubomír Vojtíšek
- Multimodal and Functional Neuroimaging Research Group, Central European Institute of Technology, CEITECMasaryk UniversityBrnoCzech Republic
| | - Luboš Brabenec
- Applied Neuroscience Research Group, Central European Institute of Technology, CEITECMasaryk UniversityBrnoCzech Republic
- International Clinical Research Center, ICRCFaculty of Medicine and St. Anne's University Hospital, Masaryk UniversityBrnoCzech Republic
| | - Kristína Mitterová
- Applied Neuroscience Research Group, Central European Institute of Technology, CEITECMasaryk UniversityBrnoCzech Republic
- International Clinical Research Center, ICRCFaculty of Medicine and St. Anne's University Hospital, Masaryk UniversityBrnoCzech Republic
| | - Ivona Morávková
- Applied Neuroscience Research Group, Central European Institute of Technology, CEITECMasaryk UniversityBrnoCzech Republic
- First Department of NeurologyFaculty of Medicine and St. Anne's University Hospital, Masaryk UniversityBrnoCzech Republic
| | - Irena Rektorová
- Applied Neuroscience Research Group, Central European Institute of Technology, CEITECMasaryk UniversityBrnoCzech Republic
- International Clinical Research Center, ICRCFaculty of Medicine and St. Anne's University Hospital, Masaryk UniversityBrnoCzech Republic
- First Department of NeurologyFaculty of Medicine and St. Anne's University Hospital, Masaryk UniversityBrnoCzech Republic
| |
Collapse
|
6
|
Trujillo P, O'Rourke KR, Roman OC, Song AK, Hett K, Cooper A, Black BK, Donahue MJ, Shibao CA, Biaggioni I, Claassen DO. Central Involvement in Pure Autonomic Failure: Insights from Neuromelanin-Sensitive Magnetic Resonance Imaging and 18F-Fluorodopa-Positron Emission Tomography. Mov Disord 2025. [PMID: 39825743 DOI: 10.1002/mds.30119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/16/2024] [Accepted: 01/02/2025] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND Central synucleinopathies, including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), involve alpha-synuclein accumulation and dopaminergic cell loss in the substantia nigra (SN) and locus coeruleus (LC). Pure autonomic failure (PAF), a peripheral synucleinopathy, often precedes central synucleinopathies. OBJECTIVES To assess early brain involvement in PAF using neuromelanin-sensitive magnetic resonance imaging (NM-MRI) and fluorodopa-positron emission tomography (FDOPA-PET), and to determine whether PAF patients with a high likelihood ratio (LR) for conversion to a central synucleinopathy exhibit reduced NM-MRI contrast in the LC and SN compared with controls and low-LR patients. METHODS Participants with PAF (n = 23) were categorized as high-LR (n = 13) or low-LR (n = 10) for conversion to central synucleinopathy. Additional participants included PD (n = 22), DLB (n = 8), and age- and sex-matched healthy controls (n = 23). NM-MRI at 3 T was used to quantify contrast ratios in the LC and SN, while FDOPA-PET measured presynaptic dopamine synthesis. Linear regression analyses, adjusted for age and sex, were used to compare NM-MRI contrast across groups. RESULTS High-LR PAF patients showed reduced contrast in the LC and SN compared with controls and low-LR PAF patients, with values similar to PD and DLB. The NM-MRI contrast in the SN correlated with dopamine uptake in the striatum. Longitudinal imaging in PAF patients (n = 6) demonstrated reduced NM-MRI and PET values in individuals who developed central synucleinopathies. CONCLUSIONS NM-MRI and FDOPA-PET may serve as potential biomarkers for early brain involvement and predicting progression to central synucleinopathies in PAF and could help identify patients for early intervention. © 2025 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Paula Trujillo
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kaitlyn R O'Rourke
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Olivia C Roman
- Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Alexander K Song
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kilian Hett
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Amy Cooper
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Bonnie K Black
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Manus J Donahue
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Cyndya A Shibao
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Italo Biaggioni
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Daniel O Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
7
|
Downs AM, Kmiec G, Catavero CM, McElligott ZA. Loss of excitatory inputs and decreased tonic and evoked activity of locus coeruleus neurons in aged P301S mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633373. [PMID: 39868303 PMCID: PMC11761406 DOI: 10.1101/2025.01.17.633373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Tau pathology in the locus coeruleus (LC) is associated with several neurodegenerative conditions including Alzheimer's disease and frontotemporal dementia. Phosphorylated tau accumulates in the LC and results in inflammation, synaptic loss, and eventually cell death as the disease progresses. Loss of LC neurons and noradrenergic innervation is thought to contribute to the symptoms of cognitive decline later in disease. While loss and degeneration of LC neurons has been well studied, less is known about changes in LC physiology at advanced stages of tau pathology that precedes neurodegeneration. In this study, we investigated the ex vivo electrophysiological properties of LC neurons in male and female mice from the P301S mouse model of tauopathy at 9 months of age, a time-point when significant tau accumulation, cell death, and cognitive impairments are observed. We found a reduction in excitatory inputs and changes in excitatory post-synaptic current kinetics in male and female P301S. There was also a decrease in spontaneous discharge of LC neurons and an increase in AP threshold in P301S mice of both sexes. Finally, we observed a decrease in excitability and increase in rheobase current in P301S mice. Despite the decrease in LC activity in slice, we did not identify differences in total tissue norepinephrine (NE) or NE metabolites in prefrontal cortex or hippocampus. Together these findings demonstrate reductions in the activity and excitability of LC neurons at late stages of tau accumulation. However, compensatory mechanisms may maintain normal NE levels in LC projection regions in vivo.
Collapse
Affiliation(s)
- Anthony M. Downs
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Gracianne Kmiec
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Christina M. Catavero
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Zoé A. McElligott
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
8
|
Attaallah B, Toniolo S, Maio MR, Husain M. Apathy and effort-based decision-making in Alzheimer's disease and subjective cognitive impairment. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e70013. [PMID: 39416486 PMCID: PMC11480904 DOI: 10.1002/dad2.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 10/19/2024]
Abstract
INTRODUCTION Apathy is a significant feature in Alzheimer's disease (AD) and subjective cognitive impairment (SCI), though its mechanisms are not well established. METHODS An effort-based decision-making (EBDM) framework was applied to investigate apathy in 30 AD patients, 41 SCI participants, and 55 healthy controls (HC). Data were analyzed using a drift-diffusion model (DDM) to uncover latent psychological processes. RESULTS SCI participants reported higher apathy than AD patients and HC. However, informant reports of apathy in AD patients were higher than self-reports and indicated significant apathy compared to HC. Both the AD and SCI groups showed reduced sensitivity to effort changes, linked to executive dysfunction in AD and apathy in SCI. Increased resting functional cortical connectivity with the nucleus accumbens (NA) was associated with higher apathy in SCI. DISCUSSION These results highlight a similar disruption of EBDM in AD and SCI, differentially related to executive functioning in AD and apathy in SCI. Highlights This is the first study investigating apathy using an effort-based decision-making (EBDM) framework in Alzheimer's disease (AD) and subjective cognitive impairment (SCI).Self-reports underestimate apathy in AD patients when compared to informant reports and healthy controls (HC). SCI participants, in whom self and informant reports were more concordant, also showed higher degrees of apathy.Both AD and SCI groups showed reduced sensitivity to effort.Reduced sensitivity to effort correlates with executive dysfunction in AD and apathy, but not depression, in SCI.Increased nucleus accumbens (ventral striatum) connectivity with the frontoparietal network was associated with higher apathy scores in SCI.The results thus suggest that while AD and SCI can have similar deficits in EBDM, these deficits correlate with distinct clinical manifestations: executive dysfunction in AD and apathy in SCI.
Collapse
Affiliation(s)
- Bahaaeddin Attaallah
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Centre for Preventive NeurologyQueen Mary University of LondonLondonUK
| | - Sofia Toniolo
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Maria Raquel Maio
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Masud Husain
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Department of Experimental PsychologyUniversity of OxfordOxfordUK
| |
Collapse
|
9
|
Orlando IF, Hezemans FH, Ye R, Murley AG, Holland N, Regenthal R, Barker RA, Williams-Gray CH, Passamonti L, Robbins TW, Rowe JB, O’Callaghan C. Noradrenergic modulation of saccades in Parkinson's disease. Brain Commun 2024; 6:fcae297. [PMID: 39464213 PMCID: PMC11503952 DOI: 10.1093/braincomms/fcae297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/25/2024] [Accepted: 08/29/2024] [Indexed: 10/29/2024] Open
Abstract
Noradrenaline is a powerful modulator of cognitive processes, including action decisions underlying saccadic control. Changes in saccadic eye movements are common across neurodegenerative diseases of ageing, including Parkinson's disease. With growing interest in noradrenergic treatment potential for non-motor symptoms in Parkinson's disease, the temporal precision of oculomotor function is advantageous to assess the effects of this modulation. Here, we studied the effect of 40 mg atomoxetine, a noradrenaline reuptake inhibitor, in 19 people with idiopathic Parkinson's disease using a single dose, randomized double-blind, crossover, placebo-controlled design. Twenty-five healthy adult participants completed the assessments to provide normative data. Participants performed prosaccade and antisaccade tasks. The latency, velocity and accuracy of saccades, and resting pupil diameter, were measured. Increased pupil diameter on the drug confirmed its expected effect on the locus coeruleus ascending arousal system. Atomoxetine altered key aspects of saccade performance: prosaccade latencies were faster and the saccadic main sequence was normalized. These changes were accompanied by increased antisaccade error rates on the drug. Together, these findings suggest a shift in the speed-accuracy trade-off for visuomotor decisions in response to noradrenergic treatment. Our results provide new evidence to substantiate a role for noradrenergic modulation of saccades, and based on known circuitry, we advance the hypothesis that this reflects modulation at the level of the locus coeruleus-superior colliculus pathway. Given the potential for noradrenergic treatment of non-motor symptoms of Parkinson's disease and related conditions, the oculomotor system can support the assessment of cognitive effects without limb-motor confounds on task performance.
Collapse
Affiliation(s)
- Isabella F Orlando
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
| | - Frank H Hezemans
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Rong Ye
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Alexander G Murley
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Negin Holland
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Ralf Regenthal
- Division of Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig 69978, Germany
| | - Roger A Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
- Wellcome Trust—Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Caroline H Williams-Gray
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Luca Passamonti
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Trevor W Robbins
- Department of Psychology, University of CambridgeCB2 3EA, CambridgeUK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EA, UK
| | - James B Rowe
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Claire O’Callaghan
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
| |
Collapse
|
10
|
Wang Q, Zheng S, Jing B, Sun Y, Qian W, Zhao Z, Zhao H. The activities of daily living partially mediate the relationship between rapid eye movement sleep behavior disorder and depressive symptoms in Parkinson's disease. Front Neurol 2024; 15:1357721. [PMID: 39131055 PMCID: PMC11311782 DOI: 10.3389/fneur.2024.1357721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/08/2024] [Indexed: 08/13/2024] Open
Abstract
Objective A longitudinal study was conducted to investigate whether rapid eye movement sleep behavior disorder affect depression in patients with Parkinson's disease through activities of daily living. Methods A total of 387 Parkinson's disease patients' six-year follow-up data (one follow-up per year) were obtained from the Parkinson's Progression Markers Initiative. To allow causal effects to manifest, this study increased the lag period and divided the data from the six follow-ups into two groups: wave 1 (wave refers to time points), wave 3, and wave 5 as one group, and wave 2, wave 4, and wave6 as the other group. The time interval between two time points in each group was two years. To comprehensively and deeply analyze the dynamic relationships between variables, accurately infer causal relationships, control for individual differences, and detect the stability of these relationships, this study constructed the fixed effects cross-lagged panel model (CLPM), the random effects CLPM (RE-CLPM) model, and the Equating CLPM and Equating RE-CLPM models with applied restriction conditions. Additionally, a reverse path was added to verify the reverse prediction effect. The most suitable data analysis model was selected to explore the relationships between the study variables. Furthermore, the longitudinal mediating effect of daily living activities between rapid eye movement sleep behavior disorder and depression was investigated. Results In the models, Equating cross-lagged panel model was the best. The lag effect was positive and significant. In wave 1, 3, 5, activities of daily living mediated 11.82% on the path from rapid eye movement sleep behavior disorder to depression; in wave 2, 4, 6, it mediated 13.13%. Therefore, attention should be paid to the treatment of activities of daily living. Conclusion Longitudinal changes in activities of daily living have indirect effects on the relationship between rapid eye movement sleep behavior disorder and depression, which highlights the importance of changes in activities of daily living ability in Parkinson's disease patients with rapid eye movement sleep behavior disorder.
Collapse
Affiliation(s)
- QiuShuang Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - ShuangShuang Zheng
- Department of Rehabilitation Medicine, The 334 Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bian Jing
- Department of Medical Records, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wei Qian
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - ZiXuan Zhao
- School of Health Economics and Management, Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - HuaShuo Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
11
|
Ghafari T, Mazzetti C, Garner K, Gutteling T, Jensen O. Modulation of alpha oscillations by attention is predicted by hemispheric asymmetry of subcortical regions. eLife 2024; 12:RP91650. [PMID: 39017666 PMCID: PMC11254381 DOI: 10.7554/elife.91650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
Evidence suggests that subcortical structures play a role in high-level cognitive functions such as the allocation of spatial attention. While there is abundant evidence in humans for posterior alpha band oscillations being modulated by spatial attention, little is known about how subcortical regions contribute to these oscillatory modulations, particularly under varying conditions of cognitive challenge. In this study, we combined MEG and structural MRI data to investigate the role of subcortical structures in controlling the allocation of attentional resources by employing a cued spatial attention paradigm with varying levels of perceptual load. We asked whether hemispheric lateralization of volumetric measures of the thalamus and basal ganglia predicted the hemispheric modulation of alpha-band power. Lateral asymmetry of the globus pallidus, caudate nucleus, and thalamus predicted attention-related modulations of posterior alpha oscillations. When the perceptual load was applied to the target and the distractor was salient caudate nucleus asymmetry predicted alpha-band modulations. Globus pallidus was predictive of alpha-band modulations when either the target had a high load, or the distractor was salient, but not both. Finally, the asymmetry of the thalamus predicted alpha band modulation when neither component of the task was perceptually demanding. In addition to delivering new insight into the subcortical circuity controlling alpha oscillations with spatial attention, our finding might also have clinical applications. We provide a framework that could be followed for detecting how structural changes in subcortical regions that are associated with neurological disorders can be reflected in the modulation of oscillatory brain activity.
Collapse
Affiliation(s)
- Tara Ghafari
- Centre for Human Brain Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
| | - Cecilia Mazzetti
- Centre for Human Brain Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
| | - Kelly Garner
- School of Psychology, University of New South WalesKensingtonAustralia
| | - Tjerk Gutteling
- Centre for Human Brain Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
- CERMEP-Imagerie du Vivant, MEG DepartmentLyonFrance
| | - Ole Jensen
- Centre for Human Brain Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
| |
Collapse
|
12
|
Zarkali A, Thomas GEC, Zetterberg H, Weil RS. Neuroimaging and fluid biomarkers in Parkinson's disease in an era of targeted interventions. Nat Commun 2024; 15:5661. [PMID: 38969680 PMCID: PMC11226684 DOI: 10.1038/s41467-024-49949-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 06/19/2024] [Indexed: 07/07/2024] Open
Abstract
A major challenge in Parkinson's disease is the variability in symptoms and rates of progression, underpinned by heterogeneity of pathological processes. Biomarkers are urgently needed for accurate diagnosis, patient stratification, monitoring disease progression and precise treatment. These were previously lacking, but recently, novel imaging and fluid biomarkers have been developed. Here, we consider new imaging approaches showing sensitivity to brain tissue composition, and examine novel fluid biomarkers showing specificity for pathological processes, including seed amplification assays and extracellular vesicles. We reflect on these biomarkers in the context of new biological staging systems, and on emerging techniques currently in development.
Collapse
Affiliation(s)
- Angeliki Zarkali
- Dementia Research Centre, Institute of Neurology, UCL, London, UK.
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Rimona S Weil
- Dementia Research Centre, Institute of Neurology, UCL, London, UK
- Department of Advanced Neuroimaging, UCL, London, UK
- Movement Disorders Centre, UCL, London, UK
| |
Collapse
|
13
|
Yan Y, Zhang M, Ren W, Zheng X, Chang Y. Neuromelanin-sensitive magnetic resonance imaging: Possibilities and promises as an imaging biomarker for Parkinson's disease. Eur J Neurosci 2024; 59:2616-2627. [PMID: 38441250 DOI: 10.1111/ejn.16296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 05/22/2024]
Abstract
Parkinson's disease (PD) is an age-related progressive neurodegenerative disorder characterized by both motor and non-motor symptoms resulting from the death of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and noradrenergic neurons in the locus coeruleus (LC). The current diagnosis of PD primarily relies on motor symptoms, often leading to diagnoses in advanced stages, where a significant portion of SNpc dopamine neurons has already succumbed. Therefore, the identification of imaging biomarkers for early-stage PD diagnosis and disease progression monitoring is imperative. Recent studies propose that neuromelanin-sensitive magnetic resonance imaging (NM-MRI) holds promise as an imaging biomarker. In this review, we summarize the latest findings concerning NM-MRI characteristics at various stages in patients with PD and those with atypical parkinsonism. In conclusion, alterations in neuromelanin within the LC are associated with non-motor symptoms and prove to be a reliable imaging biomarker in the prodromal phase of PD. Furthermore, NM-MRI demonstrates efficacy in differentiating progressive supranuclear palsy (PSP) from PD and multiple system atrophy with predominant parkinsonism. The spatial patterns of changes in the SNpc can be indicative of PD progression and aid in distinguishing between PSP and synucleinopathies. We recommend that patients with PD and individuals at risk for PD undergo regular NM-MRI examinations. This technology holds the potential for widespread use in PD diagnosis.
Collapse
Affiliation(s)
- Yayun Yan
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Mengchao Zhang
- Department of Radiology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Wenhua Ren
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Xiaoqi Zheng
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Ying Chang
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
14
|
Gilmour W, Mackenzie G, Feile M, Tayler-Grint L, Suveges S, Macfarlane JA, Macleod AD, Marshall V, Grunwald IQ, Steele JD, Gilbertson T. Impaired value-based decision-making in Parkinson's disease apathy. Brain 2024; 147:1362-1376. [PMID: 38305691 PMCID: PMC10994558 DOI: 10.1093/brain/awae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/07/2023] [Accepted: 01/13/2024] [Indexed: 02/03/2024] Open
Abstract
Apathy is a common and disabling complication of Parkinson's disease characterized by reduced goal-directed behaviour. Several studies have reported dysfunction within prefrontal cortical regions and projections from brainstem nuclei whose neuromodulators include dopamine, serotonin and noradrenaline. Work in animal and human neuroscience have confirmed contributions of these neuromodulators on aspects of motivated decision-making. Specifically, these neuromodulators have overlapping contributions to encoding the value of decisions, and influence whether to explore alternative courses of action or persist in an existing strategy to achieve a rewarding goal. Building upon this work, we hypothesized that apathy in Parkinson's disease should be associated with an impairment in value-based learning. Using a four-armed restless bandit reinforcement learning task, we studied decision-making in 75 volunteers; 53 patients with Parkinson's disease, with and without clinical apathy, and 22 age-matched healthy control subjects. Patients with apathy exhibited impaired ability to choose the highest value bandit. Task performance predicted an individual patient's apathy severity measured using the Lille Apathy Rating Scale (R = -0.46, P < 0.001). Computational modelling of the patient's choices confirmed the apathy group made decisions that were indifferent to the learnt value of the options, consistent with previous reports of reward insensitivity. Further analysis demonstrated a shift away from exploiting the highest value option and a reduction in perseveration, which also correlated with apathy scores (R = -0.5, P < 0.001). We went on to acquire functional MRI in 59 volunteers; a group of 19 patients with and 20 without apathy and 20 age-matched controls performing the Restless Bandit Task. Analysis of the functional MRI signal at the point of reward feedback confirmed diminished signal within ventromedial prefrontal cortex in Parkinson's disease, which was more marked in apathy, but not predictive of their individual apathy severity. Using a model-based categorization of choice type, decisions to explore lower value bandits in the apathy group activated prefrontal cortex to a similar degree to the age-matched controls. In contrast, Parkinson's patients without apathy demonstrated significantly increased activation across a distributed thalamo-cortical network. Enhanced activity in the thalamus predicted individual apathy severity across both patient groups and exhibited functional connectivity with dorsal anterior cingulate cortex and anterior insula. Given that task performance in patients without apathy was no different to the age-matched control subjects, we interpret the recruitment of this network as a possible compensatory mechanism, which compensates against symptomatic manifestation of apathy in Parkinson's disease.
Collapse
Affiliation(s)
- William Gilmour
- Division of Imaging Science and Technology, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
- Department of Neurology, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Graeme Mackenzie
- Division of Imaging Science and Technology, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
- Department of Neurology, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Mathias Feile
- Rehabilitation Psychiatry, Murray Royal Hospital, Perth PH2 7BH, UK
| | | | - Szabolcs Suveges
- Division of Imaging Science and Technology, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Jennifer A Macfarlane
- Division of Imaging Science and Technology, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
- Medical Physics, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
- SINAPSE, University of Glasgow, Imaging Centre of Excellence, Level 2, Queen Elizabeth University Hospital, Glasgow G51 4TF, Scotland, UK
| | - Angus D Macleod
- Institute of Applied Health Sciences, School of Medicine, University of Aberdeen, Foresterhill, Aberdeen AB24 2ZD, UK
- Department of Neurology, Aberdeen Royal Infirmary, Foresterhill, Aberdeen AB24 2ZD, UK
| | - Vicky Marshall
- Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Iris Q Grunwald
- Division of Imaging Science and Technology, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - J Douglas Steele
- Division of Imaging Science and Technology, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Tom Gilbertson
- Division of Imaging Science and Technology, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
- Department of Neurology, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| |
Collapse
|
15
|
Laurencin C, Lancelot S, Brosse S, Mérida I, Redouté J, Greusard E, Lamberet L, Liotier V, Le Bars D, Costes N, Thobois S, Boulinguez P, Ballanger B. Noradrenergic alterations in Parkinson's disease: a combined 11C-yohimbine PET/neuromelanin MRI study. Brain 2024; 147:1377-1388. [PMID: 37787503 PMCID: PMC10994534 DOI: 10.1093/brain/awad338] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023] Open
Abstract
Degeneration of the noradrenergic system is now considered a pathological hallmark of Parkinson's disease, but little is known about its consequences in terms of parkinsonian manifestations. Here, we evaluated two aspects of the noradrenergic system using multimodal in vivo imaging in patients with Parkinson's disease and healthy controls: the pigmented cell bodies of the locus coeruleus with neuromelanin sensitive MRI; and the density of α2-adrenergic receptors (ARs) with PET using 11C-yohimbine. Thirty patients with Parkinson's disease and 30 age- and sex-matched healthy control subjects were included. The characteristics of the patients' symptoms were assessed using the Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS). Patients showed reduced neuromelanin signal intensity in the locus coeruleus compared with controls and diminished 11C-yohimbine binding in widespread cortical regions, including the motor cortex, as well as in the insula, thalamus and putamen. Clinically, locus coeruleus neuronal loss was correlated with motor (bradykinesia, motor fluctuations, tremor) and non-motor (fatigue, apathy, constipation) symptoms. A reduction of α2-AR availability in the thalamus was associated with tremor, while a reduction in the putamen, the insula and the superior temporal gyrus was associated with anxiety. These results highlight a multifaceted alteration of the noradrenergic system in Parkinson's disease since locus coeruleus and α2-AR degeneration were found to be partly uncoupled. These findings raise important issues about noradrenergic dysfunction that may encourage the search for new drugs targeting this system, including α2-ARs, for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Chloé Laurencin
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, University Lyon 1, F-69000 Lyon, France
- Department of Neurology C, Expert Parkinson Centre, Hospices Civils de Lyon, Pierre Wertheimer Neurological Hospital, NS-Park/F-CRIN, 69500 Bron, France
| | - Sophie Lancelot
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, University Lyon 1, F-69000 Lyon, France
- CERMEP-Imagerie du Vivant, PET-MRI Department, 69500 Bron, France
| | - Sarah Brosse
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, University Lyon 1, F-69000 Lyon, France
| | - Inés Mérida
- CERMEP-Imagerie du Vivant, PET-MRI Department, 69500 Bron, France
| | - Jérôme Redouté
- CERMEP-Imagerie du Vivant, PET-MRI Department, 69500 Bron, France
| | - Elise Greusard
- CERMEP-Imagerie du Vivant, PET-MRI Department, 69500 Bron, France
| | - Ludovic Lamberet
- CERMEP-Imagerie du Vivant, PET-MRI Department, 69500 Bron, France
| | | | - Didier Le Bars
- CERMEP-Imagerie du Vivant, PET-MRI Department, 69500 Bron, France
| | - Nicolas Costes
- CERMEP-Imagerie du Vivant, PET-MRI Department, 69500 Bron, France
| | - Stéphane Thobois
- Department of Neurology C, Expert Parkinson Centre, Hospices Civils de Lyon, Pierre Wertheimer Neurological Hospital, NS-Park/F-CRIN, 69500 Bron, France
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, CNRS, 69500 Bron, France
| | - Philippe Boulinguez
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, University Lyon 1, F-69000 Lyon, France
| | - Bénédicte Ballanger
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, University Lyon 1, F-69000 Lyon, France
| |
Collapse
|
16
|
Palermo G, Galgani A, Bellini G, Lombardo F, Martini N, Morganti R, Paoli D, De Cori S, Frijia F, Siciliano G, Ceravolo R, Giorgi FS. Neurogenic orthostatic hypotension in Parkinson's disease: is there a role for locus coeruleus magnetic resonance imaging? J Neural Transm (Vienna) 2024; 131:157-164. [PMID: 38032367 PMCID: PMC10791951 DOI: 10.1007/s00702-023-02721-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/05/2023] [Indexed: 12/01/2023]
Abstract
Locus coeruleus (LC) is the main noradrenergic nucleus of the brain, and degenerates early in Parkinson's disease (PD). The objective of this study is to test whether degeneration of the LC is associated with orthostatic hypotension (OH) in PD. A total of 22 cognitively intact PD patients and 52 age-matched healthy volunteers underwent 3 T magnetic resonance (MRI) with neuromelanin-sensitive T1-weighted sequences (LC-MRI). For each subject, a template space-based LC-MRI was used to calculate LC signal intensity (LC contrast ratio-LCCR) and the estimated number of voxels (LCVOX) belonging to LC. Then, we compared the LC-MRI parameters in PD patients with OH (PDOH+) versus without OH (PDOH-) (matched for sex, age, and disease duration) using one-way analysis of variance followed by multiple comparison tests. We also tested for correlations between subject's LC-MRI features and orthostatic drop in systolic blood pressure (SBP). PDOH- and PDOH+ did not differ significantly (p > 0.05) based on demographics and clinical characteristics, except for blood pressure measurements and SCOPA-AUT cardiovascular domain (p < 0.05). LCCR and LCVOX measures were significantly lower in PD compared to HC, while no differences were observed between PDOH- and PDOH+. Additionally, no correlation was found between the LC-MRI parameters and the orthostatic drop in SBP or the clinical severity of autonomic symptoms (p > 0.05). Conversely, RBD symptom severity negatively correlated with several LC-MRI parameters. Our results failed to indicate a link between the LC-MRI features and the presence of OH in PD but confirmed a marked alteration of LC signal in PD patients.
Collapse
Affiliation(s)
- Giovanni Palermo
- Center for Neurodegenerative diseases-Parkinson's disease and Movement disorders, Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alessandro Galgani
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Gabriele Bellini
- Center for Neurodegenerative diseases-Parkinson's disease and Movement disorders, Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Nicola Martini
- Deep Health Unit, Fondazione Monasterio/CNR, Pisa, Italy
| | | | - Davide Paoli
- Center for Neurodegenerative diseases-Parkinson's disease and Movement disorders, Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Sara De Cori
- Department of Radiology, Fondazione Monasterio/CNR, Pisa, Italy
| | - Francesca Frijia
- Deep Health Unit, Fondazione Monasterio/CNR, Pisa, Italy
- Bioengineering Unit, Fondazione Monasterio/CNR, Pisa, Italy
| | - Gabriele Siciliano
- Center for Neurodegenerative diseases-Parkinson's disease and Movement disorders, Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Center for Neurodegenerative diseases-Parkinson's disease and Movement disorders, Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Filippo Sean Giorgi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy.
| |
Collapse
|
17
|
Béreau M, Kibleur A, Servant M, Clément G, Dujardin K, Rolland AS, Wirth T, Lagha-Boukbiza O, Voirin J, Santin MDN, Hainque E, Grabli D, Comte A, Drapier S, Durif F, Marques A, Eusebio A, Azulay JP, Giordana C, Houeto JL, Jarraya B, Maltete D, Rascol O, Rouaud T, Tir M, Moreau C, Danaila T, Prange S, Tatu L, Tranchant C, Corvol JC, Devos D, Thobois S, Desmarets M, Anheim M. Motivational and cognitive predictors of apathy after subthalamic nucleus stimulation in Parkinson's disease. Brain 2024; 147:472-485. [PMID: 37787488 DOI: 10.1093/brain/awad324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/13/2023] [Accepted: 08/21/2023] [Indexed: 10/04/2023] Open
Abstract
Postoperative apathy is a frequent symptom in Parkinson's disease patients who have undergone bilateral deep brain stimulation of the subthalamic nucleus. Two main hypotheses for postoperative apathy have been suggested: (i) dopaminergic withdrawal syndrome relative to postoperative dopaminergic drug tapering; and (ii) direct effect of chronic stimulation of the subthalamic nucleus. The primary objective of our study was to describe preoperative and 1-year postoperative apathy in Parkinson's disease patients who underwent chronic bilateral deep brain stimulation of the subthalamic nucleus. We also aimed to identify factors associated with 1-year postoperative apathy considering: (i) preoperative clinical phenotype; (ii) dopaminergic drug management; and (iii) volume of tissue activated within the subthalamic nucleus and the surrounding structures. We investigated a prospective clinical cohort of 367 patients before and 1 year after chronic bilateral deep brain stimulation of the subthalamic nucleus. We assessed apathy using the Lille Apathy Rating Scale and carried out a systematic evaluation of motor, cognitive and behavioural signs. We modelled the volume of tissue activated in 161 patients using the Lead-DBS toolbox and analysed overlaps within motor, cognitive and limbic parts of the subthalamic nucleus. Of the 367 patients, 94 (25.6%) exhibited 1-year postoperative apathy: 67 (18.2%) with 'de novo apathy' and 27 (7.4%) with 'sustained apathy'. We observed disappearance of preoperative apathy in 22 (6.0%) patients, who were classified as having 'reversed apathy'. Lastly, 251 (68.4%) patients had neither preoperative nor postoperative apathy and were classified as having 'no apathy'. We identified preoperative apathy score [odds ratio (OR) 1.16; 95% confidence interval (CI) 1.10, 1.22; P < 0.001], preoperative episodic memory free recall score (OR 0.93; 95% CI 0.88, 0.97; P = 0.003) and 1-year postoperative motor responsiveness (OR 0.98; 95% CI 0.96, 0.99; P = 0.009) as the main factors associated with postoperative apathy. We showed that neither dopaminergic dose reduction nor subthalamic stimulation were associated with postoperative apathy. Patients with 'sustained apathy' had poorer preoperative fronto-striatal cognitive status and a higher preoperative action initiation apathy subscore. In these patients, apathy score and cognitive status worsened postoperatively despite significantly lower reduction in dopamine agonists (P = 0.023), suggesting cognitive dopa-resistant apathy. Patients with 'reversed apathy' benefited from the psychostimulant effect of chronic stimulation of the limbic part of the left subthalamic nucleus (P = 0.043), suggesting motivational apathy. Our results highlight the need for careful preoperative assessment of motivational and cognitive components of apathy as well as executive functions in order to better prevent or manage postoperative apathy.
Collapse
Affiliation(s)
- Matthieu Béreau
- Department of Neurology, NS-PARK/F-CRIN network, University Hospital of Besançon, 25030 Besançon Cedex, France
- UR LINC 481, Université de Franche-Comté, F-2500 Besançon, France
| | - Astrid Kibleur
- LIP/PC2S, Université Grenoble Alpes, Université Savoie Mont Blanc, 38040 Grenoble Cedex 9, France
| | - Mathieu Servant
- UR LINC 481, Université de Franche-Comté, F-2500 Besançon, France
| | - Gautier Clément
- Department of Neurology, NS-PARK/F-CRIN network, University Hospital of Besançon, 25030 Besançon Cedex, France
| | - Kathy Dujardin
- Lille Neurosciences and Cognition, CHU-Lille, Neurology and Movement Disorders department, NS-Park/F-CRIN network, Univ. Lille, 59037 Lille, France
| | - Anne-Sophie Rolland
- Lille Neurosciences and Cognition, CHU-Lille, Department of Medical Pharmacology, NS-Park/F-CRIN, Univ. Lille, Inserm, 59045 Lille, France
| | - Thomas Wirth
- Service de Neurologie, NS-Park/F-CRIN network, Hôpitaux Universitaires de Strasbourg et Fédération de Médecine Translationnelle de Médecine de Strasbourg, 67200 Strasbourg, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM-U964/CNRS-UMR7104/Université de Strasbourg, 67400 Illkirch, France
| | - Ouhaid Lagha-Boukbiza
- Service de Neurologie, NS-Park/F-CRIN network, Hôpitaux Universitaires de Strasbourg et Fédération de Médecine Translationnelle de Médecine de Strasbourg, 67200 Strasbourg, France
| | - Jimmy Voirin
- Department of Neurosurgery, NS-PARK/F-CRIN network, Strasbourg University Hospital, 67200 Strasbourg, France
| | - Marie des Neiges Santin
- Department of Neurosurgery, NS-PARK/F-CRIN network, Strasbourg University Hospital, 67200 Strasbourg, France
| | - Elodie Hainque
- Assistance publique Hôpitaux de Paris, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Department of Neurology, NS-Park/F-CRIN network, Sorbonne Université, Paris Brain Institute-ICM, 75014 Paris, France
| | - David Grabli
- Assistance publique Hôpitaux de Paris, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Department of Neurology, NS-Park/F-CRIN network, Sorbonne Université, Paris Brain Institute-ICM, 75014 Paris, France
| | - Alexandre Comte
- UR LINC 481, Université de Franche-Comté, F-2500 Besançon, France
- Centre d'investigation clinique Inserm CIC 1431, CHU Besançon, F-25000 Besançon, France
| | - Sophie Drapier
- Department of Neurology, NS-PARK/F-CRIN network, University Hospital of Rennes, 35000 Rennes, France
| | - Franck Durif
- CNRS, Clermont Auvergne INP, Institut Pascal, Clermont-Ferrand University Hospital, Neurology department, NS-Park/F-CRIN network, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Ana Marques
- CNRS, Clermont Auvergne INP, Institut Pascal, Clermont-Ferrand University Hospital, Neurology department, NS-Park/F-CRIN network, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Alexandre Eusebio
- Department of Neurology and Movement Disorders, APHM, Hôpital Universitaire Timone, 13005 Marseille, France
- CNRS, Institut de Neurosciences de la Timone, Aix Marseille Univ., 13005 Marseille, France
| | - Jean-Philippe Azulay
- Department of Neurology and Movement Disorders, APHM, Hôpital Universitaire Timone, 13005 Marseille, France
- CNRS, Institut de Neurosciences de la Timone, Aix Marseille Univ., 13005 Marseille, France
| | - Caroline Giordana
- Department of Neurology, NS-Park/F-CRIN network, Centre Hospitalier Universitaire de Nice, 06002 Nice, France
| | - Jean-Luc Houeto
- Department of Neurology, NS-Park/F-CRIN network, Limoges University Hospital, Inserm, U1094, EpiMaCT-Epidemiology of chronic diseases in tropical zone, Limoges University Hospital,87042 Limoges, France
| | - Béchir Jarraya
- Neuroscience Pole, NS-Park/F-CRIN network, Hôpital Foch, Suresnes, University of Versailles Paris-Saclay, INSERM-CEA NeuroSpin, 91191 Gif-sur-Yvette, France
| | - David Maltete
- Department of Neurology, NS-Park/F-CRIN network, Rouen University Hospital and University of Rouen, 76000 Rouen, France
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, 76130 Mont-Saint-Aignan, France
| | - Olivier Rascol
- Department of Clinical Pharmacology and Neuroscience, CIC1436, NS-Park/F-CRIN network, NeuroToul Center of Excellence, Toulouse University Hospital, INSERM, CHU of Toulouse, 31000 Toulouse, France
| | - Tiphaine Rouaud
- Department of Neurology, Centre Expert Parkinson, NS-Park/F-CRIN network, CHU Nantes, 44093 Nantes, France
| | - Mélissa Tir
- Department of Neurology, NS-Park/F-CRIN network, Amiens University Hospital, 80000 Amiens, France
| | - Caroline Moreau
- Lille Neurosciences and Cognition, CHU-Lille, Neurology and Movement Disorders department, NS-Park/F-CRIN network, Univ. Lille, 59037 Lille, France
| | - Teodor Danaila
- Department of Neurology, NS-Park/F-CRIN network, Amiens University Hospital, 80000 Amiens, France
| | - Stéphane Prange
- Department of Neurology, NS-Park/F-CRIN network, Amiens University Hospital, 80000 Amiens, France
- Service de Neurologie C, NS-Park/F-CRIN network, Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, 69500 Bron, France
| | - Laurent Tatu
- Department of Neurology, NS-PARK/F-CRIN network, University Hospital of Besançon, 25030 Besançon Cedex, France
| | - Christine Tranchant
- Service de Neurologie, NS-Park/F-CRIN network, Hôpitaux Universitaires de Strasbourg et Fédération de Médecine Translationnelle de Médecine de Strasbourg, 67200 Strasbourg, France
| | - Jean-Christophe Corvol
- Assistance publique Hôpitaux de Paris, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Department of Neurology, NS-Park/F-CRIN network, Sorbonne Université, Paris Brain Institute-ICM, 75014 Paris, France
| | - David Devos
- Lille Neurosciences and Cognition, CHU-Lille, Neurology and Movement Disorders department, NS-Park/F-CRIN network, Univ. Lille, 59037 Lille, France
- Lille Neurosciences and Cognition, CHU-Lille, Department of Medical Pharmacology, NS-Park/F-CRIN, Univ. Lille, Inserm, 59045 Lille, France
| | - Stephane Thobois
- Service de Neurologie C, NS-Park/F-CRIN network, Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, 69500 Bron, France
- Institut des Sciences Cognitives Marc Jeannerot, CNRS, UMR5229, 69675 Bron, France
| | - Maxime Desmarets
- Centre d'investigation clinique Inserm CIC 1431, CHU Besançon, F-25000 Besançon, France
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, 25000 Besançon, France
| | - Mathieu Anheim
- Service de Neurologie, NS-Park/F-CRIN network, Hôpitaux Universitaires de Strasbourg et Fédération de Médecine Translationnelle de Médecine de Strasbourg, 67200 Strasbourg, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM-U964/CNRS-UMR7104/Université de Strasbourg, 67400 Illkirch, France
| |
Collapse
|
18
|
Costello H, Husain M, Roiser JP. Apathy and Motivation: Biological Basis and Drug Treatment. Annu Rev Pharmacol Toxicol 2024; 64:313-338. [PMID: 37585659 DOI: 10.1146/annurev-pharmtox-022423-014645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Apathy is a disabling syndrome associated with poor functional outcomes that is common across a broad range of neurological and psychiatric conditions. Currently, there are no established therapies specifically for the condition, and safe and effective treatments are urgently needed. Advances in the understanding of motivation and goal-directed behavior in humans and animals have shed light on the cognitive and neurobiological mechanisms contributing to apathy, providing an important foundation for the development of new treatments. Here, we review the cognitive components, neural circuitry, and pharmacology of apathy and motivation, highlighting converging evidence of shared transdiagnostic mechanisms. Though no pharmacological treatments have yet been licensed, we summarize trials of existing and novel compounds to date, identifying several promising candidates for clinical use and avenues of future drug development.
Collapse
Affiliation(s)
- Harry Costello
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom;
| | - Masud Husain
- Nuffield Department of Clinical Neurosciences and Department of Experimental Psychology, Oxford University, Oxford, United Kingdom
| | - Jonathan P Roiser
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom;
| |
Collapse
|
19
|
Lakhani DA, Zhou X, Tao S, Patel V, Wen S, Okromelidze L, Greco E, Lin C, Westerhold EM, Straub S, Wszolek ZK, Tipton PW, Uitti RJ, Grewal SS, Middlebrooks EH. Diagnostic utility of 7T neuromelanin imaging of the substantia nigra in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:13. [PMID: 38191546 PMCID: PMC10774294 DOI: 10.1038/s41531-024-00631-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder that presents a diagnostic challenge due to symptom overlap with other disorders. Neuromelanin (NM) imaging is a promising biomarker for PD, but adoption has been limited, in part due to subpar performance at standard MRI field strengths. We aimed to evaluate the diagnostic utility of ultra-high field 7T NM-sensitive imaging in the diagnosis of PD versus controls and essential tremor (ET), as well as NM differences among PD subtypes. A retrospective case-control study was conducted including PD patients, ET patients, and controls. 7T NM-sensitive 3D-GRE was acquired, and substantia nigra pars compacta (SNpc) volumes, contrast ratios, and asymmetry indices were calculated. Statistical analyses, including general linear models and ROC curves, were employed. Twenty-one PD patients, 13 ET patients, and 18 controls were assessed. PD patients exhibited significantly lower SNpc volumes compared to non-PD subjects. SNpc total volume showed 100% sensitivity and 96.8% specificity (AUC = 0.998) for differentiating PD from non-PD and 100% sensitivity and 95.2% specificity (AUC = 0.996) in differentiating PD from ET. Contrast ratio was not significantly different between PD and non-PD groups (p = 0.07). There was also significantly higher asymmetry index in SNpc volume in PD compared to non-PD cohorts (p < 0.001). NM signal loss in PD predominantly involved the inferior, posterior, and lateral aspects of SNpc. Akinetic-rigid subtype showed more significant NM signal loss compared to tremor dominant subtype (p < 0.001). 7T NM imaging demonstrates potential as a diagnostic tool for PD, including potential distinction between subtypes, allowing improved understanding of disease progression and subtype-related characteristics.
Collapse
Affiliation(s)
- Dhairya A Lakhani
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Xiangzhi Zhou
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Shengzhen Tao
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Vishal Patel
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Sijin Wen
- Department of Biostatistics, West Virginia University, Morgantown, WV, USA
| | | | - Elena Greco
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Chen Lin
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Sina Straub
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Ryan J Uitti
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Erik H Middlebrooks
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA.
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
20
|
Welton T, Hartono S, Shih YC, Schwarz ST, Xing Y, Tan EK, Auer DP, Harel N, Chan LL. Ultra-high-field 7T MRI in Parkinson's disease: ready for clinical use?-a narrative review. Quant Imaging Med Surg 2023; 13:7607-7620. [PMID: 37969629 PMCID: PMC10644128 DOI: 10.21037/qims-23-509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/15/2023] [Indexed: 11/17/2023]
Abstract
Background and Objective The maturation of ultra-high-field magnetic resonance imaging (MRI) [≥7 Tesla (7T)] has improved our capability to depict and characterise brain structures efficiently, with better signal-to-noise ratio (SNR) and spatial resolution. We evaluated whether these improvements benefit the clinical detection and management of Parkinson's disease (PD). Methods We performed a literature search in March 2023 in PubMed (MEDLINE), EMBASE and Google Scholar for articles on "7T MRI" AND "Parkinson*", written in English, published between inception and 1st March, 2023, which we synthesised in narrative form. Key Content and Findings In deep-brain stimulation (DBS) surgical planning, early studies show that 7T MRI can distinguish anatomical substructures, and that this results in reduced adverse effects. In other areas, while there is strong evidence for improved accuracy and precision of 7T MRI-based measurements for PD, there is limited evidence for meaningful clinical translation. In particular, neuromelanin-iron complex quantification and visualisation in midbrain nuclei is enhanced, enabling depiction of nigrosomes 1-5, improved morphometry and vastly improved radiological assessments; however, studies on the related clinical outcomes, diagnosis, subtyping, differentiation of atypical parkinsonisms, and monitoring of treatment response using 7T MRI are lacking. Moreover, improvements in clinical utility must be great enough to justify the additional costs. Conclusions Together, current evidence supports feasible future clinical implementation of 7T MRI for PD. Future impacts to clinical decision making for diagnosis, differentiation, and monitoring of progression or treatment response are likely; however, to achieve this, further longitudinal studies using 7T MRI are needed in prodromal, early-stage PD and parkinsonism cohorts focusing on clinical translational potential.
Collapse
Affiliation(s)
- Thomas Welton
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Septian Hartono
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Department of Diagnostic Radiology, Singapore General Hospital, Singapore, Singapore
| | - Yao-Chia Shih
- Duke-NUS Medical School, Singapore, Singapore
- Department of Diagnostic Radiology, Singapore General Hospital, Singapore, Singapore
- Graduate Institute of Medicine, Yuan Ze University and National Taiwan University, Taipei
| | - Stefan T. Schwarz
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
- Department of Radiology, Cardiff and Vale University Health Board, Cardiff, Wales, UK
| | - Yue Xing
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Eng-King Tan
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Dorothee P. Auer
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Noam Harel
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Ling-Ling Chan
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Department of Diagnostic Radiology, Singapore General Hospital, Singapore, Singapore
| |
Collapse
|
21
|
Bachman SL, Cole S, Yoo HJ, Nashiro K, Min J, Mercer N, Nasseri P, Thayer JF, Lehrer P, Mather M. Daily heart rate variability biofeedback training decreases locus coeruleus MRI contrast in younger adults in a randomized clinical trial. Int J Psychophysiol 2023; 193:112241. [PMID: 37647944 PMCID: PMC10591988 DOI: 10.1016/j.ijpsycho.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
As an arousal hub region in the brain, the locus coeruleus (LC) has bidirectional connections with the autonomic nervous system. Magnetic resonance imaging (MRI)-based measures of LC structural integrity have been linked to cognition and arousal, but less is known about factors that influence LC structure and function across time. Here, we tested the effects of heart rate variability (HRV) biofeedback, an intervention targeting the autonomic nervous system, on LC MRI contrast and sympathetic activity. Younger and older participants completed daily HRV biofeedback training for five weeks. Those assigned to an experimental condition performed biofeedback involving slow, paced breathing designed to increase heart rate oscillations, whereas those assigned to a control condition performed biofeedback to decrease heart rate oscillations. At the pre- and post-training timepoints, LC contrast was assessed using turbo spin echo MRI scans, and RNA sequencing was used to assess cAMP-responsive element binding protein (CREB)-regulated gene expression in circulating blood cells, an index of sympathetic nervous system signaling. We found that left LC contrast decreased in younger participants in the experimental group, and across younger participants, decreases in left LC contrast were related to the extent to which participants increased their heart rate oscillations during training. Furthermore, decreases in left LC contrast were associated with decreased expression of CREB-associated gene transcripts. On the contrary, there were no effects of biofeedback on LC contrast among older participants in the experimental group. These findings provide novel evidence that in younger adults, HRV biofeedback involving slow, paced breathing can decrease both LC contrast and sympathetic nervous system signaling.
Collapse
Affiliation(s)
- Shelby L Bachman
- University of Southern California, Los Angeles, CA 90089, United States of America
| | - Steve Cole
- University of California Los Angeles, Los Angeles, CA 90095, United States of America
| | - Hyun Joo Yoo
- University of Southern California, Los Angeles, CA 90089, United States of America
| | - Kaoru Nashiro
- University of Southern California, Los Angeles, CA 90089, United States of America
| | - Jungwon Min
- University of Southern California, Los Angeles, CA 90089, United States of America
| | - Noah Mercer
- University of Southern California, Los Angeles, CA 90089, United States of America
| | - Padideh Nasseri
- University of Southern California, Los Angeles, CA 90089, United States of America
| | - Julian F Thayer
- University of California Irvine, Irvine, CA 92697, United States of America
| | - Paul Lehrer
- Rutgers University, Piscataway, NJ 08852, United States of America
| | - Mara Mather
- University of Southern California, Los Angeles, CA 90089, United States of America.
| |
Collapse
|
22
|
Ye R, Hezemans FH, O'Callaghan C, Tsvetanov KA, Rua C, Jones PS, Holland N, Malpetti M, Murley AG, Barker RA, Williams-Gray CH, Robbins TW, Passamonti L, Rowe JB. Locus Coeruleus Integrity Is Linked to Response Inhibition Deficits in Parkinson's Disease and Progressive Supranuclear Palsy. J Neurosci 2023; 43:7028-7040. [PMID: 37669861 PMCID: PMC10586538 DOI: 10.1523/jneurosci.0289-22.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 09/07/2023] Open
Abstract
Parkinson's disease (PD) and progressive supranuclear palsy (PSP) both impair response inhibition, exacerbating impulsivity. Inhibitory control deficits vary across individuals and are linked with worse prognosis, and lack improvement on dopaminergic therapy. Motor and cognitive control are associated with noradrenergic innervation of the cortex, arising from the locus coeruleus (LC) noradrenergic system. Here we test the hypothesis that structural variation of the LC explains response inhibition deficits in PSP and PD. Twenty-four people with idiopathic PD, 14 with PSP-Richardson's syndrome, and 24 age- and sex-matched controls undertook a stop-signal task and ultrahigh field 7T magnetization-transfer-weighted imaging of the LC. Parameters of "race models" of go- versus stop-decisions were estimated using hierarchical Bayesian methods to quantify the cognitive processes of response inhibition. We tested the multivariate relationship between LC integrity and model parameters using partial least squares. Both disorders impaired response inhibition at the group level. PSP caused a distinct pattern of abnormalities in inhibitory control with a paradoxically reduced threshold for go responses, but longer nondecision times, and more lapses of attention. The variation in response inhibition correlated with the variability of LC integrity across participants in both clinical groups. Structural imaging of the LC, coupled with behavioral modeling in parkinsonian disorders, confirms that LC integrity is associated with response inhibition and LC degeneration contributes to neurobehavioral changes. The noradrenergic system is therefore a promising target to treat impulsivity in these conditions. The optimization of noradrenergic treatment is likely to benefit from stratification according to LC integrity.SIGNIFICANCE STATEMENT Response inhibition deficits contribute to clinical symptoms and poor outcomes in people with Parkinson's disease and progressive supranuclear palsy. We used cognitive modeling of performance of a response inhibition task to identify disease-specific mechanisms of abnormal inhibitory control. Response inhibition in both patient groups was associated with the integrity of the noradrenergic locus coeruleus, which we measured in vivo using ultra-high field MRI. We propose that the imaging biomarker of locus coeruleus integrity provides a trans-diagnostic tool to explain individual differences in response inhibition ability beyond the classic nosological borders and diagnostic criteria. Our data suggest a potential new stratified treatment approach for Parkinson's disease and progressive supranuclear palsy.
Collapse
Affiliation(s)
- Rong Ye
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom
| | - Frank H Hezemans
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, United Kingdom
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 GD Nijmegen, The Netherlands
| | - Claire O'Callaghan
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2050, New South Wales, Australia
| | - Kamen A Tsvetanov
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, United Kingdom
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Catarina Rua
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom
| | - P Simon Jones
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom
| | - Negin Holland
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom
| | - Maura Malpetti
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom
| | - Alexander G Murley
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom
| | - Roger A Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom
- Wellcome-MRC Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW, United Kingdom
| | - Caroline H Williams-Gray
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Luca Passamonti
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom
- Institute of Molecular Bioimaging and Physiology, National Research Council, 88100, Catanzaro, Italy
| | - James B Rowe
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| |
Collapse
|
23
|
Krohn F, Lancini E, Ludwig M, Leiman M, Guruprasath G, Haag L, Panczyszyn J, Düzel E, Hämmerer D, Betts M. Noradrenergic neuromodulation in ageing and disease. Neurosci Biobehav Rev 2023; 152:105311. [PMID: 37437752 DOI: 10.1016/j.neubiorev.2023.105311] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
The locus coeruleus (LC) is a small brainstem structure located in the lower pons and is the main source of noradrenaline (NA) in the brain. Via its phasic and tonic firing, it modulates cognition and autonomic functions and is involved in the brain's immune response. The extent of degeneration to the LC in healthy ageing remains unclear, however, noradrenergic dysfunction may contribute to the pathogenesis of Alzheimer's (AD) and Parkinson's disease (PD). Despite their differences in progression at later disease stages, the early involvement of the LC may lead to comparable behavioural symptoms such as preclinical sleep problems and neuropsychiatric symptoms as a result of AD and PD pathology. In this review, we draw attention to the mechanisms that underlie LC degeneration in ageing, AD and PD. We aim to motivate future research to investigate how early degeneration of the noradrenergic system may play a pivotal role in the pathogenesis of AD and PD which may also be relevant to other neurodegenerative diseases.
Collapse
Affiliation(s)
- F Krohn
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - E Lancini
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
| | - M Ludwig
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; CBBS Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| | - M Leiman
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - G Guruprasath
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - L Haag
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - J Panczyszyn
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - E Düzel
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, London UK-WC1E 6BT, UK; CBBS Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| | - D Hämmerer
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, London UK-WC1E 6BT, UK; CBBS Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany; Department of Psychology, University of Innsbruck, A-6020 Innsbruck, Austria
| | - M Betts
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; CBBS Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| |
Collapse
|
24
|
Veréb D, Mijalkov M, Canal-Garcia A, Chang YW, Gomez-Ruiz E, Gerboles BZ, Kivipelto M, Svenningsson P, Zetterberg H, Volpe G, Betts M, Jacobs HIL, Pereira JB. Age-related differences in the functional topography of the locus coeruleus and their implications for cognitive and affective functions. eLife 2023; 12:RP87188. [PMID: 37650882 PMCID: PMC10471162 DOI: 10.7554/elife.87188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
The locus coeruleus (LC) is an important noradrenergic nucleus that has recently attracted a lot of attention because of its emerging role in cognitive and psychiatric disorders. Although previous histological studies have shown that the LC has heterogeneous connections and cellular features, no studies have yet assessed its functional topography in vivo, how this heterogeneity changes over aging, and whether it is associated with cognition and mood. Here, we employ a gradient-based approach to characterize the functional heterogeneity in the organization of the LC over aging using 3T resting-state fMRI in a population-based cohort aged from 18 to 88 years of age (Cambridge Centre for Ageing and Neuroscience cohort, n=618). We show that the LC exhibits a rostro-caudal functional gradient along its longitudinal axis, which was replicated in an independent dataset (Human Connectome Project [HCP] 7T dataset, n=184). Although the main rostro-caudal direction of this gradient was consistent across age groups, its spatial features varied with increasing age, emotional memory, and emotion regulation. More specifically, a loss of rostral-like connectivity, more clustered functional topography, and greater asymmetry between right and left LC gradients was associated with higher age and worse behavioral performance. Furthermore, participants with higher-than-normal Hospital Anxiety and Depression Scale (HADS) ratings exhibited alterations in the gradient as well, which manifested in greater asymmetry. These results provide an in vivo account of how the functional topography of the LC changes over aging, and imply that spatial features of this organization are relevant markers of LC-related behavioral measures and psychopathology.
Collapse
Affiliation(s)
- Dániel Veréb
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska InstitutetStockholmSweden
| | - Mite Mijalkov
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska InstitutetStockholmSweden
| | - Anna Canal-Garcia
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska InstitutetStockholmSweden
| | - Yu-Wei Chang
- Department of Physics, Goteborg UniversityGoteborgSweden
| | | | - Blanca Zufiria Gerboles
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska InstitutetStockholmSweden
| | - Miia Kivipelto
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska InstitutetStockholmSweden
- University of Eastern FinlandKuopioFinland
| | - Per Svenningsson
- University of Eastern FinlandKuopioFinland
- Department of Clinical Neuroscience, Karolinska InstitutetStockholmSweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative Disease, UCL Institute of NeurologyLondonUnited Kingdom
- UK Dementia Research Institute at UCLLondonUnited Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Clear Water BayHong KongChina
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-MadisonMadisonUnited States
| | - Giovanni Volpe
- Department of Physics, Goteborg UniversityGoteborgSweden
| | - Matthew Betts
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University MagdeburgMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University MagdeburgMagdeburgGermany
- Center for Behavioral Brain Sciences, University of MagdeburgMagdeburgGermany
| | - Heidi IL Jacobs
- Maastricht UniversityMaastrichtNetherlands
- Massachusetts General HospitalBostonUnited States
| | - Joana B Pereira
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska InstitutetStockholmSweden
- Memory Research Unit, Department of Clinical Sciences Malmö, Lund UniversityLundSweden
| |
Collapse
|
25
|
Wolters AF, Heijmans M, Priovoulos N, Jacobs HIL, Postma AA, Temel Y, Kuijf ML, Michielse S. Neuromelanin related ultra-high field signal intensity of the locus coeruleus differs between Parkinson's disease and controls. Neuroimage Clin 2023; 39:103479. [PMID: 37494758 PMCID: PMC10394012 DOI: 10.1016/j.nicl.2023.103479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/05/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023]
Abstract
INTRODUCTION Neuromelanin related signal changes in catecholaminergic nuclei are considered as a promising MRI biomarker in Parkinson's disease (PD). Until now, most studies have investigated the substantia nigra (SN), while signal changes might be more prominent in the locus coeruleus (LC). Ultra-high field MRI improves the visualisation of these small brainstem regions and might support the development of imaging biomarkers in PD. OBJECTIVES To compare signal intensity of the SN and LC on Magnetization Transfer MRI between PD patients and healthy controls (HC) and to explore its association with cognitive performance in PD. METHODS This study was conducted using data from the TRACK-PD study, a longitudinal 7T MRI study. A total of 78 early-stage PD patients and 36 HC were included. A mask for the SN and LC was automatically segmented and manually corrected. Neuromelanin related signal intensity of the SN and LC was compared between PD and HC. RESULTS PD participants showed a lower contrast-to-noise ratio (CNR) in the right SN (p = 0.029) and left LC (p = 0.027). After adding age as a confounder, the CNR of the right SN did not significantly differ anymore between PD and HC (p = 0.055). Additionally, a significant positive correlation was found between the SN CNR and memory function. DISCUSSION This study confirms that neuromelanin related signal intensity of the LC differs between early-stage PD patients and HC. No significant difference was found in the SN. This supports the theory of bottom-up disease progression in PD. Furthermore, loss of SN integrity might influence working memory or learning capabilities in PD patients.
Collapse
Affiliation(s)
- Amée F Wolters
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | - Margot Heijmans
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Nikos Priovoulos
- Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands; Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Heidi I L Jacobs
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands; Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Alida A Postma
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, The Netherlands
| | - Yasin Temel
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands; Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Mark L Kuijf
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Stijn Michielse
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
26
|
Béreau M, Van Waes V, Servant M, Magnin E, Tatu L, Anheim M. Apathy in Parkinson's Disease: Clinical Patterns and Neurobiological Basis. Cells 2023; 12:1599. [PMID: 37371068 DOI: 10.3390/cells12121599] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Apathy is commonly defined as a loss of motivation leading to a reduction in goal-directed behaviors. This multidimensional syndrome, which includes cognitive, emotional and behavioral components, is one of the most prevalent neuropsychiatric features of Parkinson's disease (PD). It has been established that the prevalence of apathy increases as PD progresses. However, the pathophysiology and anatomic substrate of this syndrome remain unclear. Apathy seems to be underpinned by impaired anatomical structures that link the prefrontal cortex with the limbic system. It can be encountered in the prodromal stage of the disease and in fluctuating PD patients receiving bilateral chronic subthalamic nucleus stimulation. In these stages, apathy may be considered as a disorder of motivation that embodies amotivational behavioral syndrome, is underpinned by combined dopaminergic and serotonergic denervation and is dopa-responsive. In contrast, in advanced PD patients, apathy may be considered as cognitive apathy that announces cognitive decline and PD dementia, is underpinned by diffuse neurotransmitter system dysfunction and Lewy pathology spreading and is no longer dopa-responsive. In this review, we discuss the clinical patterns of apathy and their treatment, the neurobiological basis of apathy, the potential role of the anatomical structures involved and the pathways in motivational and cognitive apathy.
Collapse
Affiliation(s)
- Matthieu Béreau
- Département de Neurologie, CHU de Besançon, 25000 Besançon, France
- Université de Franche-Comté, LINC Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, 25000 Besançon, France
| | - Vincent Van Waes
- Université de Franche-Comté, LINC Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, 25000 Besançon, France
| | - Mathieu Servant
- Université de Franche-Comté, LINC Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, 25000 Besançon, France
| | - Eloi Magnin
- Département de Neurologie, CHU de Besançon, 25000 Besançon, France
- Université de Franche-Comté, LINC Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, 25000 Besançon, France
| | - Laurent Tatu
- Département de Neurologie, CHU de Besançon, 25000 Besançon, France
- Université de Franche-Comté, LINC Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, 25000 Besançon, France
- Laboratoire d'Anatomie, Université de Franche-Comté, 25000 Besançon, France
| | - Mathieu Anheim
- Département de Neurologie, CHU de Strasbourg, 67200 Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 67000 Strasbourg, France
- Institut de génétique Et de Biologie Moléculaire Et Cellulaire (IGBMC), INSERM-U964, CNRS-UMR7104, Université de Strasbourg, 67400 Illkirch-Graffenstaden, France
| |
Collapse
|
27
|
Veréb D, Mijalkov M, Canal-Garcia A, Chang YW, Gomez-Ruis E, Gerboles BZ, Kivipelto M, Svenningsson P, Zetterberg H, Volpe G, Betts MJ, Jacobs H, Pereira JB. Age-related differences in the functional topography of the locus coeruleus: implications for cognitive and affective functions. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.25.23286442. [PMID: 37333117 PMCID: PMC10274957 DOI: 10.1101/2023.02.25.23286442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The locus coeruleus (LC) is an important noradrenergic nucleus that has recently attracted a lot of attention because of its emerging role in cognitive and psychiatric disorders. Although previous histological studies have shown that the LC has heterogeneous connections and cellular features, no studies have yet assessed its functional topography in vivo, how this heterogeneity changes over aging and whether it is associated with cognition and mood. Here we employ a gradient-based approach to characterize the functional heterogeneity in the organization of the LC over aging using 3T resting-state fMRI in a population-based cohort aged from 18 to 88 years old (Cambridge Centre for Ageing and Neuroscience cohort, n=618). We show that the LC exhibits a rostro-caudal functional gradient along its longitudinal axis, which was replicated in an independent dataset (Human Connectome Project 7T dataset, n=184). Although the main rostro-caudal direction of this gradient was consistent across age groups, its spatial features varied with increasing age, emotional memory and emotion regulation. More specifically, a loss of rostral-like connectivity, more clustered functional topography and greater asymmetry between right and left LC gradients was associated with higher age and worse behavioral performance. Furthermore, participants with higher-than-normal Hospital Anxiety and Depression Scale ratings exhibited alterations in the gradient as well, which manifested in greater asymmetry. These results provide an in vivo account of how the functional topography of the LC changes over aging, and imply that spatial features of this organization are relevant markers of LC-related behavioral measures and psychopathology.
Collapse
Affiliation(s)
- Dániel Veréb
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Mite Mijalkov
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Anna Canal-Garcia
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Yu-Wei Chang
- Department of Physics, Goteborg University, Goteborg, Sweden
| | | | - Blanca Zufiria Gerboles
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Miia Kivipelto
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
- University of Eastern Finland, Kuopio, Finland
| | - Per Svenningsson
- University of Eastern Finland, Kuopio, Finland
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Giovanni Volpe
- Department of Physics, Goteborg University, Goteborg, Sweden
| | - Mathew J. Betts
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| | - Heidi Jacobs
- Maastricht University, Maastricht, The Netherlands
- Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Joana B. Pereira
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
- Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| |
Collapse
|
28
|
Orlando IF, Shine JM, Robbins TW, Rowe JB, O'Callaghan C. Noradrenergic and cholinergic systems take centre stage in neuropsychiatric diseases of ageing. Neurosci Biobehav Rev 2023; 149:105167. [PMID: 37054802 DOI: 10.1016/j.neubiorev.2023.105167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/28/2023] [Accepted: 03/28/2023] [Indexed: 04/15/2023]
Abstract
Noradrenergic and cholinergic systems are among the most vulnerable brain systems in neuropsychiatric diseases of ageing, including Alzheimer's disease, Parkinson's disease, Lewy body dementia, and progressive supranuclear palsy. As these systems fail, they contribute directly to many of the characteristic cognitive and psychiatric symptoms. However, their contribution to symptoms is not sufficiently understood, and pharmacological interventions targeting noradrenergic and cholinergic systems have met with mixed success. Part of the challenge is the complex neurobiology of these systems, operating across multiple timescales, and with non-linear changes across the adult lifespan and disease course. We address these challenges in a detailed review of the noradrenergic and cholinergic systems, outlining their roles in cognition and behaviour, and how they influence neuropsychiatric symptoms in disease. By bridging across levels of analysis, we highlight opportunities for improving drug therapies and for pursuing personalised medicine strategies.
Collapse
Affiliation(s)
- Isabella F Orlando
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Australia
| | - James M Shine
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Australia
| | - Trevor W Robbins
- Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, CB2 3EB, United Kingdom
| | - James B Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, CB2 0SZ, United Kingdom
| | - Claire O'Callaghan
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Australia.
| |
Collapse
|
29
|
Ray Chaudhuri K, Leta V, Bannister K, Brooks DJ, Svenningsson P. The noradrenergic subtype of Parkinson disease: from animal models to clinical practice. Nat Rev Neurol 2023:10.1038/s41582-023-00802-5. [PMID: 37142796 DOI: 10.1038/s41582-023-00802-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 05/06/2023]
Abstract
Many advances in understanding the pathophysiology of Parkinson disease (PD) have been based on research addressing its motor symptoms and phenotypes. Various data-driven clinical phenotyping studies supported by neuropathological and in vivo neuroimaging data suggest the existence of distinct non-motor endophenotypes of PD even at diagnosis, a concept further strengthened by the predominantly non-motor spectrum of symptoms in prodromal PD. Preclinical and clinical studies support early dysfunction of noradrenergic transmission in both the CNS and peripheral nervous system circuits in patients with PD that results in a specific cluster of non-motor symptoms, including rapid eye movement sleep behaviour disorder, pain, anxiety and dysautonomia (particularly orthostatic hypotension and urinary dysfunction). Cluster analyses of large independent cohorts of patients with PD and phenotype-focused studies have confirmed the existence of a noradrenergic subtype of PD, which had been previously postulated but not fully characterized. This Review discusses the translational work that unravelled the clinical and neuropathological processes underpinning the noradrenergic PD subtype. Although some overlap with other PD subtypes is inevitable as the disease progresses, recognition of noradrenergic PD as a distinct early disease subtype represents an important advance towards the delivery of personalized medicine for patients with PD.
Collapse
Affiliation(s)
- K Ray Chaudhuri
- Department of Basic and Clinical Neurosciences, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, UK.
| | - Valentina Leta
- Department of Basic and Clinical Neurosciences, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, UK
| | - Kirsty Bannister
- Central Modulation of Pain Lab, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - David J Brooks
- Institute of Translational and Clinical Research, University of Newcastle upon Tyne, Newcastle, UK
- Department of Nuclear Medicine, Aarhus University, Aarhus, Denmark
| | - Per Svenningsson
- Department of Basic and Clinical Neurosciences, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
30
|
Kelberman MA, Rorabaugh JM, Anderson CR, Marriott A, DePuy SD, Rasmussen K, McCann KE, Weiss JM, Weinshenker D. Age-dependent dysregulation of locus coeruleus firing in a transgenic rat model of Alzheimer's disease. Neurobiol Aging 2023; 125:98-108. [PMID: 36889122 PMCID: PMC10038926 DOI: 10.1016/j.neurobiolaging.2023.01.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023]
Abstract
Hyperphosphorylated tau in the locus coeruleus (LC) is ubiquitous in prodromal Alzheimer's disease (AD), and LC neurons degenerate as AD progresses. Hyperphosphorylated tau alters firing rates in other brain regions, but its effects on LC neurons are unknown. We assessed single unit LC activity in anesthetized wild-type (WT) and TgF344-AD rats at 6 months, which represents a prodromal stage when LC neurons are the only cells containing hyperphosphorylated tau in TgF344-AD animals, and at 15 months when amyloid-β (Aβ) and tau pathology are both abundant in the forebrain. At baseline, LC neurons from TgF344-AD rats were hypoactive at both ages compared to WT littermates but showed elevated spontaneous bursting properties. Differences in footshock-evoked LC firing depended on age, with 6-month TgF344-AD rats demonstrating aspects of hyperactivity, and 15-month transgenic rats showing hypoactivity. Early LC hyperactivity is consistent with appearance of prodromal neuropsychiatric symptoms and is followed by LC hypoactivity which contributes to cognitive impairment. These results support further investigation into disease stage-dependent noradrenergic interventions for AD.
Collapse
Affiliation(s)
| | | | | | - Alexia Marriott
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | | | | | | | - Jay M Weiss
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
31
|
Benarroch E. What Are Current Concepts on the Functional Organization of the Locus Coeruleus and Its Role in Cognition and Neurodegeneration? Neurology 2023; 100:132-137. [PMID: 36646470 DOI: 10.1212/wnl.0000000000206736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 01/18/2023] Open
|
32
|
Morphological basis of Parkinson disease-associated cognitive impairment: an update. J Neural Transm (Vienna) 2022; 129:977-999. [PMID: 35726096 DOI: 10.1007/s00702-022-02522-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
Cognitive impairment is one of the most salient non-motor symptoms of Parkinson disease (PD) that poses a significant burden on the patients and carers as well as being a risk factor for early mortality. People with PD show a wide spectrum of cognitive dysfunctions ranging from subjective cognitive decline and mild cognitive impairment (MCI) to frank dementia. The mean frequency of PD with MCI (PD-MCI) is 25.8% and the pooled dementia frequency is 26.3% increasing up to 83% 20 years after diagnosis. A better understanding of the underlying pathological processes will aid in directing disease-specific treatment. Modern neuroimaging studies revealed considerable changes in gray and white matter in PD patients with cognitive impairment, cortical atrophy, hypometabolism, dopamine/cholinergic or other neurotransmitter dysfunction and increased amyloid burden, but multiple mechanism are likely involved. Combined analysis of imaging and fluid markers is the most promising method for identifying PD-MCI and Parkinson disease dementia (PDD). Morphological substrates are a combination of Lewy- and Alzheimer-associated and other concomitant pathologies with aggregation of α-synuclein, amyloid, tau and other pathological proteins in cortical and subcortical regions causing destruction of essential neuronal networks. Significant pathological heterogeneity within PD-MCI reflects deficits in various cognitive domains. This review highlights the essential neuroimaging data and neuropathological changes in PD with cognitive impairment, the amount and topographical distribution of pathological protein aggregates and their pathophysiological relevance. Large-scale clinicopathological correlative studies are warranted to further elucidate the exact neuropathological correlates of cognitive impairment in PD and related synucleinopathies as a basis for early diagnosis and future disease-modifying therapies.
Collapse
|