1
|
Zhu B, Liang L, Hui L, Lu Y. Exploring the role of dermal sheath cells in wound healing and fibrosis. Wound Repair Regen 2024; 32:735-745. [PMID: 39129718 DOI: 10.1111/wrr.13206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/13/2024]
Abstract
Wound healing is a complex, dynamic process involving the coordinated interaction of diverse cell types, growth factors, cytokines, and extracellular matrix components. Despite emerging evidence highlighting their importance, dermal sheath cells remain a largely overlooked aspect of wound healing research. This review explores the multifunctional roles of dermal sheath cells in various phases of wound healing, including modulating inflammation, aiding in proliferation, and contributing to extracellular matrix remodelling. Special attention is devoted to the paracrine effects of dermal sheath cells and their role in fibrosis, highlighting their potential in improving healing outcomes, especially in differentiating between hairy and non-hairy skin sites. By drawing connections between dermal sheath cells activity and wound healing outcomes, this work proposes new insights into the mechanisms of tissue regeneration and repair, marking a step forward in our understanding of wound healing processes.
Collapse
Affiliation(s)
- Bing Zhu
- Translational Medicine Engineering Research Center of Inner Mongolia Autonomous Region, affiliated with Baotou Central Hospital, Baotou, China
| | - Lu Liang
- Translational Medicine Engineering Research Center of Inner Mongolia Autonomous Region, affiliated with Baotou Central Hospital, Baotou, China
| | - Lihua Hui
- Burn Research Institute of Inner Mongolia Autonomous Region, affiliated with Inner Mongolia Baogang Hospital, Baotou, China
| | - Yaojun Lu
- Translational Medicine Engineering Research Center of Inner Mongolia Autonomous Region, affiliated with Baotou Central Hospital, Baotou, China
| |
Collapse
|
2
|
Sosna B, Aebisher D, Myśliwiec A, Dynarowicz K, Bartusik-Aebisher D, Oleś P, Cieślar G, Kawczyk-Krupka A. Selected Cytokines and Metalloproteinases in Inflammatory Bowel Disease. Int J Mol Sci 2023; 25:202. [PMID: 38203373 PMCID: PMC10779120 DOI: 10.3390/ijms25010202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a collective term for two diseases: ulcerative colitis (UC) and Crohn's disease (CD). There are many factors, e.g., genetic, environmental and immunological, that increase the likelihood of these diseases. Indicators of IBDs include extracellular matrix metalloproteinases (MMPs). The aim of this review is to present data on the role of selected cytokines and metalloproteinases in IBD. In recent years, more and more transcriptomic studies are emerging. These studies are improving the characterization of the cytokine microenvironment inside inflamed tissue. It is observed that the levels of several cytokines are consistently increased in inflamed tissue in IBD, both in UC and CD. This review shows that MMPs play a major role in the pathology of inflammatory processes, cancer, and IBD. IBD-associated inflammation is associated with increased expression of MMPs and reduced ability of tissue inhibitors of metalloproteinases (TIMPs) to inhibit their action. In IBD patients in tissues that are inflamed, MMPs are produced in excess and TIMP activity is not sufficient to block MMPs. This review is based on our personal selection of the literature that was retrieved by a selective search in PubMed using the terms "Inflammatory bowel disease" and "pathogenesis of Inflammatory bowel diseases" that includes systematic reviews, meta-analyses, and clinical trials. The involvement of the immune system in the pathophysiology of IBD is reviewed in terms of the role of the cytokines and metalloproteinases involved.
Collapse
Affiliation(s)
- Barbara Sosna
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland; (B.S.); (P.O.); (G.C.)
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College, University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Angelika Myśliwiec
- Center for Innovative Research in Medical and Natural Sciences, Medical College, University of Rzeszów, 35-310 Rzeszów, Poland; (A.M.); (K.D.)
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College, University of Rzeszów, 35-310 Rzeszów, Poland; (A.M.); (K.D.)
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College, University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Piotr Oleś
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland; (B.S.); (P.O.); (G.C.)
| | - Grzegorz Cieślar
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland; (B.S.); (P.O.); (G.C.)
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland; (B.S.); (P.O.); (G.C.)
| |
Collapse
|
3
|
Abdou MM, Ötvös F, Dong D, Matziari M. Novel glycosyl prodrug of RXP03 as MMP-11 prodrug: design, synthesis and virtual screening. BMC Chem 2023; 17:167. [PMID: 38007463 PMCID: PMC10675898 DOI: 10.1186/s13065-023-01075-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 11/01/2023] [Indexed: 11/27/2023] Open
Abstract
Like most phosphinic acids, the potent and selective RXP03 inhibitor of different MMPs exhibited moderate absorption and low bioavailability, which impaired its use. In an unprecedented attempt, we present an interesting synthetic approach to a new class of phosphinate prodrug, glycosyl ester of RXP03, to provide a potentially improved blood-brain barrier (BBB) behavior compared to the former lead compound RXP03. To validate this speculation, a predictive study for permeability enhancer of glycosyl ester of RXP03 showed encouraging insights to improve drug delivery across biological barriers.
Collapse
Affiliation(s)
- Moaz M Abdou
- Egyptian Petroleum Research Institute, P.O. 11727, Nasr City, Cairo, Egypt.
| | - Ferenc Ötvös
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, 6726, Szeged, Hungary
| | - Dewen Dong
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Magdalini Matziari
- Department of Chemistry, Xi'an Jiaotong Liverpool University, Suzhou, 215123, Jiangsu, People's Republic of China
| |
Collapse
|
4
|
Zhao H, Wang Y, Xu H, Liu M, Xu X, Zhu S, Liu Z, Cai H, Wang Y, Lu J, Yang X, Kong S, Bao H, Wang H, Deng W. Stromal cells-specific retinoic acid determines parturition timing at single-cell and spatial-temporal resolution. iScience 2023; 26:107796. [PMID: 37720083 PMCID: PMC10502414 DOI: 10.1016/j.isci.2023.107796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/23/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023] Open
Abstract
The underlying mechanisms governing parturition remain largely elusive due to limited knowledge of parturition preparation and initiation. Accumulated evidences indicate that maternal decidua plays a critical role in parturition initiation. To comprehensively decrypt the cell heterogeneity in decidua approaching parturition, we investigate the roles of various cell types in mouse decidua process and reveal previously unappreciated insights in parturition initiation utilizing single-cell RNA sequencing (scRNA-seq). We enumerate the cell types in decidua and identity five different stromal cells populations and one decidualized stromal cells. Furthermore, our study unravels that stromal cells prepare for parturition by regulating local retinol acid (RA) synthesis. RA supplement decreases expression of extracellular matrix-related genes in vitro and accelerates the timing of parturition in vivo. Collectively, the discovery of contribution of stromal cells in parturition expands current knowledge about parturition and opens up avenues for the intervention of preterm birth (PTB).
Collapse
Affiliation(s)
- Hui Zhao
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yang Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Hui Xu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Meng Liu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xinmei Xu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Sijing Zhu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Zhao Liu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Han Cai
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yinan Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jinhua Lu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiaoqing Yang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Nantong University, Xisi Road, Nantong, Jiangsu, China
| | - Shuangbo Kong
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Haili Bao
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Wenbo Deng
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
5
|
Banerjee S, Baidya SK, Adhikari N, Jha T. An updated patent review of matrix metalloproteinase (MMP) inhibitors (2021-present). Expert Opin Ther Pat 2023; 33:631-649. [PMID: 37982191 DOI: 10.1080/13543776.2023.2284935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
INTRODUCTION Matrix metalloproteinases (MMPs) are strongly interlinked with the progression and mechanisms of several life-threatening diseases including cancer. Thus, novel MMP inhibitors (MMPIs) as promising drug candidates can be effective in combating these diseases. However, no MMPIs are marketed to date due to poor pharmacokinetics and lower selectivity. Therefore, this review was performed to study the newer MMPIs patented after the COVID-19 period for an updated perspective on MMPIs. AREAS COVERED This review highlights patents related to MMPIs, and their therapeutic implications published between January 2021 and August 2023 available in the Google Patents, Patentscope, and Espacenet databases. EXPERT OPINION Despite various MMP-related patents disclosed up to 2020, newer patent applications in the post-COVID-19 period decreased a lot. Besides major MMPs, other isoforms (i.e. MMP-3 and MMP-7) have gained attention recently for drug development. This may open up newer dimensions targeting these MMPs for therapeutic advancements. The isoform selectivity and bioavailability are major concerns for effective MMPI development. Thus, adopting theoretical approaches and experimental methodologies can unveil the development of novel MMPIs with improved pharmacokinetic profiles. Nevertheless, the involvement of MMPs in cancer, and the mechanisms of such MMPs in other diseases should be extensively studied for novel MMPI development.
Collapse
Affiliation(s)
| | | | | | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
6
|
Paskeh MDA, Ghadyani F, Hashemi M, Abbaspour A, Zabolian A, Javanshir S, Razzazan M, Mirzaei S, Entezari M, Goharrizi MASB, Salimimoghadam S, Aref AR, Kalbasi A, Rajabi R, Rashidi M, Taheriazam A, Sethi G. Biological impact and therapeutic perspective of targeting PI3K/Akt signaling in hepatocellular carcinoma: Promises and Challenges. Pharmacol Res 2023; 187:106553. [PMID: 36400343 DOI: 10.1016/j.phrs.2022.106553] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Cancer progression results from activation of various signaling networks. Among these, PI3K/Akt signaling contributes to proliferation, invasion, and inhibition of apoptosis. Hepatocellular carcinoma (HCC) is a primary liver cancer with high incidence rate, especially in regions with high prevalence of viral hepatitis infection. Autoimmune disorders, diabetes mellitus, obesity, alcohol consumption, and inflammation can also lead to initiation and development of HCC. The treatment of HCC depends on the identification of oncogenic factors that lead tumor cells to develop resistance to therapy. The present review article focuses on the role of PI3K/Akt signaling in HCC progression. Activation of PI3K/Akt signaling promotes glucose uptake, favors glycolysis and increases tumor cell proliferation. It inhibits both apoptosis and autophagy while promoting HCC cell survival. PI3K/Akt stimulates epithelial-to-mesenchymal transition (EMT) and increases matrix-metalloproteinase (MMP) expression during HCC metastasis. In addition to increasing colony formation capacity and facilitating the spread of tumor cells, PI3K/Akt signaling stimulates angiogenesis. Therefore, silencing PI3K/Akt signaling prevents aggressive HCC cell behavior. Activation of PI3K/Akt signaling can confer drug resistance, particularly to sorafenib, and decreases the radio-sensitivity of HCC cells. Anti-cancer agents, like phytochemicals and small molecules can suppress PI3K/Akt signaling by limiting HCC progression. Being upregulated in tumor tissues and clinical samples, PI3K/Akt can also be used as a biomarker to predict patients' response to therapy.
Collapse
Affiliation(s)
- Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Ghadyani
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alireza Abbaspour
- Cellular and Molecular Research Center,Qazvin University of Medical Sciences, Qazvin, Iran
| | - Amirhossein Zabolian
- Resident of department of Orthopedics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salar Javanshir
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrnaz Razzazan
- Medical Student, Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc. 6, Tide Street, Boston, MA 02210, USA
| | - Alireza Kalbasi
- Department of Pharmacy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| |
Collapse
|
7
|
Huang HC, Shiu BH, Su SC, Huang CC, Ting WC, Chang LC, Yang SF, Chou YE. The Impact of Matrix Metalloproteinase-11 Polymorphisms on Colorectal Cancer Progression and Clinicopathological Characteristics. Diagnostics (Basel) 2022; 12:diagnostics12071685. [PMID: 35885589 PMCID: PMC9317823 DOI: 10.3390/diagnostics12071685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/08/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cause of cancer mortality worldwide and the most prevalent cancer in Taiwan. The matrix metalloproteinase (MMP)-11 is a proteolytic enzyme of the MMP family which is involved in extracellular matrix degradation and tissue remodeling. In this study, we focused on the associations of MMP-11 single-nucleotide polymorphisms (SNPs) with CRC susceptibility and clinicopathological characteristics. The MMP-11 SNPs rs131451, rs738791, rs2267029, rs738792, and rs28382575 in 479 controls and 479 patients with CRC were analyzed with real-time polymerase chain reaction. We found that the MMP-11 SNP rs738792 “TC + CC” genotype was significantly associated with perineural invasion in colon cancer patients after controlling for clinical parameters [OR (95% CI) = 1.783 (1.074–2.960); p = 0.025]. The MMP-11 rs131451 “TC + CC” genotypic variants were correlated with greater tumor T status [OR (95% CI):1.254 (1.025–1.534); p = 0.028] and perineural invasion [OR (95% CI):1.773 (1.027–3.062); p = 0.040) in male CRC patients. Furthermore, analyses of The Cancer Genome Atlas (TCGA) revealed that MMP-11 levels were upregulated in colorectal carcinoma tissue compared with normal tissues and were correlated with advanced stage, larger tumor sizes, and lymph node metastasis. Moreover, the data from the Genotype-Tissue Expression (GTEx) database exhibited that the MMP-11 rs738792 “CC” and “CT” genotypic variants have higher MMP-11 expression than the “TT” genotype. In conclusion, our results have demonstrated that the MMP-11 SNPs rs738792 and rs131451 may have potential to provide biomarkers to evaluate CRC disease progression, and the MMP-11 rs131451 polymorphism may shed light on sex discrepancy in CRC development and prognosis.
Collapse
Affiliation(s)
- Hsien-Cheng Huang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (H.-C.H.); (B.-H.S.)
- Department of Emergency Medicine, Kuang Tien General Hospital, Taichung 433, Taiwan
| | - Bei-Hao Shiu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (H.-C.H.); (B.-H.S.)
- Department of Surgery, Chung Shan Medical University Hospital, Taichung 402, Taiwan; (C.-C.H.); (W.-C.T.)
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung 204, Taiwan;
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou 333, Taiwan
| | - Chi-Chou Huang
- Department of Surgery, Chung Shan Medical University Hospital, Taichung 402, Taiwan; (C.-C.H.); (W.-C.T.)
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Wen-Chien Ting
- Department of Surgery, Chung Shan Medical University Hospital, Taichung 402, Taiwan; (C.-C.H.); (W.-C.T.)
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Lun-Ching Chang
- Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA;
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (H.-C.H.); (B.-H.S.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Correspondence: (S.-F.Y.); (Y.-E.C.)
| | - Ying-Erh Chou
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Correspondence: (S.-F.Y.); (Y.-E.C.)
| |
Collapse
|
8
|
Ashooriha M, Ahmadi R, Ahadi H, Emami S. Application of kojic acid scaffold in the design of non-tyrosinase enzyme inhibitors. Chem Biol Drug Des 2022; 100:290-303. [PMID: 35555863 DOI: 10.1111/cbdd.14065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022]
Abstract
Kojic acid (KA) is a hydroxypyranone natural metabolite mainly known as tyrosinase inhibitor. Currently, this compound is used as a whitening agent in cosmetics and as an anti-browning agent in food industry. Given the easy-manipulation in different positions of the KA molecule, many investigations have been carried out to find new tyrosinase inhibitors derived from KA. Beside anti-tyrosinase activity, many KA-based compounds have been designed for targeting other enzymes including human neutrophil elastase, catechol-O-methyltransferase, matrix metalloproteinases, monoamine oxidase, human lactate dehydrogenase, endonucleases, D-amino acid oxidase, and receptors such as histamine H3 and apelin (APJ) receptors. This review could help biochemists and medicinal chemists in designing diverse KA-derived enzyme inhibitors.
Collapse
Affiliation(s)
- Morteza Ashooriha
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Ahmadi
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamideh Ahadi
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Emami
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
9
|
Piskór BM, Przylipiak A, Dąbrowska E, Niczyporuk M, Ławicki S. Matrilysins and Stromelysins in Pathogenesis and Diagnostics of Cancers. Cancer Manag Res 2020; 12:10949-10964. [PMID: 33154674 PMCID: PMC7608139 DOI: 10.2147/cmar.s235776] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 09/18/2020] [Indexed: 12/23/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are endopeptidases which are widely studied in terms of their role in the physiological and pathological processes in the organism. In this article, we consider usefulness of matrilysins and stromelysins in pathogenesis and diagnostic of the most common malignancies in the world, e.g., lung, breast, prostate, and colorectal cancers. In all of the mentioned cancers, matrilysins and stromelysins have a pivotal role in their development and also may have diagnostic utility. Influence to the cancerous process is connected with specific dependencies between these enzymes and components of the extracellular matrix (ECM), non-matrix components like cell surface components. All the information provided below allows to take a closer look at matrilysins and stromelysins and their functions in the cancer development.
Collapse
Affiliation(s)
- Barbara Maria Piskór
- Department of Aesthetic Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Andrzej Przylipiak
- Department of Aesthetic Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Emilia Dąbrowska
- Department of Aesthetic Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Marek Niczyporuk
- Department of Aesthetic Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Sławomir Ławicki
- Department of Population Medicine and Civilization Diseases Prevention, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
10
|
Chen C, Liu X, Jiang J, Li S, Wang G, Ju L, Wang F, Liu T, Li S. Matrix Metalloproteinase 11 is a Potential Biomarker in Bladder Cancer Diagnosis and Prognosis. Onco Targets Ther 2020; 13:9059-9069. [PMID: 32982295 PMCID: PMC7494396 DOI: 10.2147/ott.s243452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 08/16/2020] [Indexed: 12/18/2022] Open
Abstract
Purpose Bladder cancer is one of the leading causes of cancer death all over the world, and half of patients are diagnosed at advanced stages with poor therapeutic response. Thus, developing new biomarkers for bladder cancer diagnosis and prognosis is urgently needed. Materials and Methods Bioinformatic and gene ontology (GO) analysis were employed to screen highly upregulated and secretory tumor markers in the TCGA BLCA cohort. IHC in tissue microarray and ELISA in cancer cell culture medium were used to validate the expression of putative biomarkers in bladder cancer. Bisulfite sequencing was used to detect DNA methylation status in the promoter of putative genes. Results In this study, MMP11 is first identified as one of the most differentially expressed genes (DEGs) in bladder cancer by meta-analysis in a TCGA bladder cancer cohort. The strong upregulation of MMP11 is confirmed at protein levels in both bladder cancer patients and cell lines. Mechanistic studies reveal that MMP11 promoter hypomethylation, but not genomic amplification or mutation, accounts for its enhanced expression in bladder cancer both in vitro and in vivo. Moreover, clinicopathological analysis indicates that MMP11 upregulation is associated with the tumor progression and poor survival in bladder cancer patients. Discussion These findings suggest that MMP11, as a secretory protein, is a promising biomarker for diagnosis and prognosis in bladder cancer.
Collapse
Affiliation(s)
- Chen Chen
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Human Genetics Resource Preservation Center of Wuhan University, Wuhan, People's Republic of China
| | - Xiaoping Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Jiazhi Jiang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Shenjuan Li
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Human Genetics Resource Preservation Center of Wuhan University, Wuhan, People's Republic of China
| | - Gang Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Human Genetics Resource Preservation Center of Wuhan University, Wuhan, People's Republic of China
| | - Lingao Ju
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Human Genetics Resource Preservation Center of Wuhan University, Wuhan, People's Republic of China
| | - Fubing Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Human Genetics Resource Preservation Center of Wuhan University, Wuhan, People's Republic of China
| | - Tongzu Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Sheng Li
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Human Genetics Resource Preservation Center of Wuhan University, Wuhan, People's Republic of China.,Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
11
|
Drug-Induced Gingival Overgrowth: The Effect of Cyclosporin A and Mycophenolate Mophetil on Human Gingival Fibroblasts. Biomedicines 2020; 8:biomedicines8070221. [PMID: 32708980 PMCID: PMC7400382 DOI: 10.3390/biomedicines8070221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/08/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022] Open
Abstract
Drug-induced gingival overgrowth may occur after a chronic administration of three classes of systemic drugs: Anticonvulsants, immunosuppressants, and calcium channel blockers. This study aimed to investigate how cyclosporin A and mycophenolate mophetil (immunosuppressive drugs) could interfere with human gingival fibroblasts functions, leading to gingival enlargement. Human gingival fibroblasts derived from the tissue of a 60-year-old female were cultured in a DMEME medium. A stock solution with 1 mg/mL of mycophenolate and 1 mg/mL of cyclosporine were prepared and dissolved in a DMEM medium to prepare a serial dilution at the concentrations of 5000, 2000, 1000, 500, and 100 ng/mL, for both treatments. Cell viability was measured using the PrestoBlue™ Reagent Protocol. Quantitative real-time RT-PCR was performed in order to analyze the expression of 57 genes coding for gingival fibroblasts "Extracellular Matrix and Adhesion Molecules". Mycophenolate and cyclosporine had no effect on fibroblast cell viability at 1000 ng/mL. Both the treatments showed similar effects on the expression profiling of treated cells: Downregulation of most extracellular matrix metalloproteases genes (MMP8, MMP11, MMP15, MMP16, MMP24) was assessed, while CDH1, ITGA2, ITGA7, LAMB3, MMP12, and MMP13 were recorded to be upregulated in fibroblasts treated with immunosuppressive drugs. It has been demonstrated that gingival overgrowth can be caused by the chronic administration of cyclosporin A and mycophenolate mophetil. However, given the contrasting data of literature, further investigations are needed, making clear the possible effects of immunosuppressive drugs on fibroblasts.
Collapse
|
12
|
Isabela Avila-Rodríguez M, Meléndez-Martínez D, Licona-Cassani C, Manuel Aguilar-Yañez J, Benavides J, Lorena Sánchez M. Practical context of enzymatic treatment for wound healing: A secreted protease approach (Review). Biomed Rep 2020; 13:3-14. [PMID: 32440346 PMCID: PMC7238406 DOI: 10.3892/br.2020.1300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/14/2020] [Indexed: 12/13/2022] Open
Abstract
Skin wounds have been extensively studied as their healing represents a critical step towards achieving homeostasis following a traumatic event. Dependent on the severity of the damage, wounds are categorized as either acute or chronic. To date, chronic wounds have the highest economic impact as long term increases wound care costs. Chronic wounds affect 6.5 million patients in the United States with an annual estimated expense of $25 billion for the health care system. Among wound treatment categories, active wound care represents the fastest-growing category due to its specific actions and lower costs. Within this category, proteases from various sources have been used as successful agents in debridement wound care. The wound healing process is predominantly mediated by matrix metalloproteinases (MMPs) that, when dysregulated, result in defective wound healing. Therapeutic activity has been described for animal secretions including fish epithelial mucus, maggot secretory products and snake venom, which contain secreted proteases (SPs). No further alternatives for use, sources or types of proteases used for wound healing have been found in the literature to date. Through the present review, the context of enzymatic wound care alternatives will be discussed. In addition, substrate homology of SPs and human MMPs will be compared and contrasted. The purpose of these discussions is to identify and propose the stages of wound healing in which SPs may be used as therapeutic agents to improve the wound healing process.
Collapse
Affiliation(s)
| | - David Meléndez-Martínez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, Nuevo León 64849, Mexico
| | | | - José Manuel Aguilar-Yañez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, Nuevo León 64849, Mexico
- Scicore Medical SAPI de CV, Monterrey, Nuevo León 64920, Mexico
| | - Jorge Benavides
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, Nuevo León 64849, Mexico
| | - Mirna Lorena Sánchez
- Laboratorio de Materiales Biotecnológicos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes-Imbice-Conicet-Cicpba, Bernal, Buenos Aires B1876BXD, Argentina
| |
Collapse
|
13
|
Impact of Matrix Metalloproteinases 11 Gene Variants on Urothelial Cell Carcinoma Development and Clinical Characteristics. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17020475. [PMID: 31940762 PMCID: PMC7013383 DOI: 10.3390/ijerph17020475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 12/20/2022]
Abstract
Urothelial cell carcinoma (UCC) is one of the lethal causes of cancer mortality of the genitourinary tract. Carcinogenic epidemiological risk factors exposure and age over 65 years old are associated with UCC risk. Matrix metalloproteinase 11 (MMP11) was suggested as a tumor marker of metastasis and predictor of poor survival in urothelial carcinomas. In this study, we focused on the associations of MMP11 single-nucleotide polymorphisms (SNPs) to UCC susceptibility, clinicopathological characteristics, and prognosis. In this study, real-time polymerase chain reaction was used to analyze five SNPs of MMP11 rs738791, rs2267029, rs738792, rs28382575, and rs131451 in 431 patients with UCC and 650 cancer-free controls. The MMP11 rs28382575 polymorphic “CT” genotype were susceptible to UCC (AOR = 2.045, 95% CI = 1.088 − 3.843; p = 0.026). For MMP11 rs131451, a significant association was found in 166 UCC patients among age ≤ 65 years old who carried MMP11 rs131451 polymorphic “CC” genotype, which is associated with lower risk to develop later tumor T status (T1-T4) (OR = 0.375, 95% CI = 0.159 − 0.887; p = 0.026) compared with the (CT + TT) genotype. Furthermore, patients of UCC with rs738792 polymorphic “CC” genotype were observed to have higher free of relapse (FS) (p = 0.035), disease specific survival rate (p = 0.037), and overall survival rate (p = 0.009) compared with the rs738792 (CT + CC) genotype. In conclusion, our results demonstrated that the MMP11 SNPs are associated with UCC susceptibility, clinical status, and disease survival. The MMP11 polymorphisms may have potential to predict UCC susceptibility and prognosis.
Collapse
|
14
|
Matchett EF, Wang S, Crawford BD. Paralogues of Mmp11 and Timp4 Interact during the Development of the Myotendinous Junction in the Zebrafish Embryo. J Dev Biol 2019; 7:jdb7040022. [PMID: 31816958 PMCID: PMC6955687 DOI: 10.3390/jdb7040022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023] Open
Abstract
The extracellular matrix (ECM) of the myotendinous junction (MTJ) undergoes dramatic physical and biochemical remodeling during the first 48 h of development in zebrafish, transforming from a rectangular fibronectin-dominated somite boundary to a chevron-shaped laminin-dominated MTJ. Matrix metalloproteinase 11 (Mmp11, a.k.a. Stromelysin-3) is both necessary and sufficient for the removal of fibronectin at the MTJ, but whether this protease acts directly on fibronectin and how its activity is regulated remain unknown. Using immunofluorescence, we show that both paralogues of Mmp11 accumulate at the MTJ during this time period, but with Mmp11a present early and later replaced by Mmp11b. Moreover, Mmp11a also accumulates intracellularly, associated with the Z-discs of sarcomeres within skeletal muscle cells. Using the epitope-mediated MMP activation (EMMA) assay, we show that despite having a weaker paired basic amino acid motif in its propeptide than Mmp11b, Mmp11a is activated by furin, but may also be activated by other mechanisms intracellularly. One or both paralogues of tissue inhibitors of metalloproteinase-4 (Timp4) are also present at the MTJ throughout this process, and yeast two-hybrid assays reveal distinct and specific interactions between various domains of these proteins. We propose a model in which Mmp11a activity is modulated (but not inhibited) by Timp4 during early MTJ remodeling, followed by a phase in which Mmp11b activity is both inhibited and spatially constrained by Timp4 in order to maintain the structural integrity of the mature MTJ.
Collapse
|
15
|
Omar M, Laknaur A, Al-Hendy A, Yang Q. Myometrial progesterone hyper-responsiveness associated with increased risk of human uterine fibroids. BMC Womens Health 2019; 19:92. [PMID: 31288815 PMCID: PMC6617862 DOI: 10.1186/s12905-019-0795-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/02/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Uterine Fibroids (UFs) growth is ovarian steroid-dependent. Previous studies have shown that estrogen and progesterone play an important role in UF development. However, the mechanism underlying progesterone induced UF pathogenesis is largely unknown. In this study, we determined the expression of progesterone receptor and compared the expression level of progesterone-regulated genes (PRGs) in human myometrial cells from normal uteri (MyoN) versus uteri with UFs (MyoF) in response to progesterone. METHODS Primary human myometrial cells were isolated from premenopausal patients with structurally normal uteri (PrMyoN). Primary human myometrial cells were also isolated from uterus with UFs (PrMyoF). Isolated tissues were excised at least 2 cm from the closest UFs lesion(s). Progesterone receptor (PR) expression was assessed using Western blot (WB). Expression levels of 15 PRGs were measured by qRT-PCR in PrMyoN and PrMyoF cells in the presence or absence of progesterone. RESULTS WB analysis revealed higher expression levels of PR in PrMyoF cells as compared to PrMyoN cells. Furthermore, we compared the expression patterns of 15 UF-related PRGs in PrMyoN and PrMyoF primary cells in response to progesterone hormone treatment. Our studies demonstrated that five PRGs including Bcl2, FOXO1A, SCGB2A2, CYP26a1 and MMP11 exhibited significant progesterone-hyper-responsiveness in human PrMyoF cells as compared to PrMyoN cells (P < 0.05). Another seven PRGs, including CIDEC, CANP6, ADHL5, ALDHA1, MT1E, KIK6, HHI showed gain in repression in response to progesterone treatment (P > 0.05). Importantly, these genes play crucial roles in cell proliferation, apoptosis, cell cycle, tissue remodeling and tumorigenesis in the development of UFs. CONCLUSION These data support the idea that progesterone acts as contributing mechanism in the origin of UFs. Identification and analysis of these PRGs will help to further understand the role of progesterone in UF development.
Collapse
Affiliation(s)
- Mona Omar
- Division of Translation Research, Department of Obstetrics and Gynecology, Augusta University, Medical College of Georgia, Augusta, GA USA
- Department of Obstetrics and Gynecology, Tanta University Faculty of Medicine, 3 El-Bahr Street, Tanta, Egypt
| | - Archana Laknaur
- Division of Translation Research, Department of Obstetrics and Gynecology, Augusta University, Medical College of Georgia, Augusta, GA USA
- Georgia Cancer Center, Augusta University, 1410 Laney Walker Blvd, Augusta, GA 30912 USA
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Illinois at Chicago, 909 S. Wood Street, (M/C 808), Chicago, IL 60612 USA
- Department of Obstetrics and Gynecology, University of Illinois @ Chicago (UIC), 820 South Wood Street, Chicago, IL 60612 USA
| | - Qiwei Yang
- Department of Obstetrics and Gynecology, University of Illinois at Chicago, 909 S. Wood Street, (M/C 808), Chicago, IL 60612 USA
| |
Collapse
|
16
|
Abdou MM, El-Saeed RA. Potential chemical transformation of phosphinic acid derivatives and their applications in the synthesis of drugs. Bioorg Chem 2019; 90:103039. [PMID: 31220667 DOI: 10.1016/j.bioorg.2019.103039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/28/2019] [Accepted: 06/03/2019] [Indexed: 11/29/2022]
Abstract
The chemical transformation of phosphinic acid is a well-considered mature area of research on account of the historical significant reactions such as Kabachnik-Fields, Mannich, Arbuzov, Michaelis-Becker, etc. Considerable advances have been made over last years especially in metal-catalyzed, free-radical processes and asymmetric synthesis using catalytic enantioselective. As a result, the aim of this synopsis is to make the reader familiar with advances in the approaches of phosphinic acids toward the synthesis of highly functionalized and valuable buildings blocks. Another purpose of this survey is to provide the current status of the applications of phosphinic acids in the synthesis of drugs.
Collapse
Affiliation(s)
- Moaz M Abdou
- Egyptian Petroleum Research Institute, Nasr City, P.O. 11727, Cairo, Egypt; Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK.
| | - Rasha A El-Saeed
- Department of Chemistry, Faculty of Science, Mansoura University, ET-35516 Mansoura, Egypt
| |
Collapse
|
17
|
Gobin E, Bagwell K, Wagner J, Mysona D, Sandirasegarane S, Smith N, Bai S, Sharma A, Schleifer R, She JX. A pan-cancer perspective of matrix metalloproteases (MMP) gene expression profile and their diagnostic/prognostic potential. BMC Cancer 2019; 19:581. [PMID: 31200666 PMCID: PMC6567474 DOI: 10.1186/s12885-019-5768-0] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 05/29/2019] [Indexed: 12/25/2022] Open
Abstract
Implication By understanding Matrix Metalloprotease (MMP) dysregulation from a pan-cancer perspective, this study sheds light on the diagnostic potentials of MMPs across multiple neoplasms. Background MMPs are intriguing genes related to cancer disease progression, functional promotion of angiogenesis, invasion, metastasis, and avoidance of immune surveillance. Many studies have noted these genes are frequently upregulated in cancer. However, expression patterns of all MMPs and their diagnostic and prognostic potential have not been investigated in a pan-cancer perspective. Methods The Cancer Genome Atlas (TCGA) data were used to evaluate diagnostic and prognostic potential of 24 MMPs in fifteen different cancer types. Gene expression measured by RNA-seq was analyzed by differential expression, hierarchical clustering, and ROC analysis for individual genes and in combination. Results MMP1, MMP9, MMP10, MMP11, and MMP13 were almost universally upregulated across all cancers, with significant (p < 0.05) fold change (FC > 2) in ten of fifteen cancers. MMP3, MMP7, MMP12 and MMP14) are significantly up-regulated in at least 10 cancer types. Interestingly, MMP2, MMP7, MMP23B, MMP27 and MMP28) are significantly down-regulated in seven to nine cancer types. Multiple MMPs possess AUC’s > 0.9 in more than one cancer. However, survival analyses suggest that the prognostic value of MMPs is limited to clear cell renal carcinoma. Conclusions Most MMPs have consistently increased gene expression across cancers, while several MMPs have consistently decreased expression in several cancer types. Many MMPs have diagnostic value individually or in combination, while the prognostic value of MMPs is restricted to one subtype of kidney cancer. Electronic supplementary material The online version of this article (10.1186/s12885-019-5768-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emily Gobin
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Kayla Bagwell
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - John Wagner
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - David Mysona
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Sharmila Sandirasegarane
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Nathan Smith
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Shan Bai
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Robert Schleifer
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Jin-Xiong She
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
18
|
Detection of proteolytic activity by covalent tethering of fluorogenic substrates in zymogram gels. Biotechniques 2019; 64:203-210. [PMID: 29793363 DOI: 10.2144/btn-2018-0005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Current zymographic techniques detect only a subset of known proteases due to the limited number of native proteins that have been optimized for incorporation into polyacrylamide gels. To address this limitation, we have developed a technique to covalently incorporate fluorescently labeled, protease-sensitive peptides using an azido-PEG3-maleimide crosslinker. Peptides incorporated into gels enabled measurement of MMP-2, -9, -14, and bacterial collagenase. Sensitivity analysis demonstrated that use of peptide functionalized gels could surpass detection limits of current techniques. Finally, electrophoresis of conditioned media from cultured cells resulted in the appearance of several proteolytic bands, some of which were undetectable by gelatin zymography. Taken together, these results demonstrate that covalent incorporation of fluorescent substrates can greatly expand the library of detectable proteases using zymographic techniques.
Collapse
|
19
|
Vanichkitrungruang S, Chuang CY, Hawkins CL, Hammer A, Hoefler G, Malle E, Davies MJ. Oxidation of human plasma fibronectin by inflammatory oxidants perturbs endothelial cell function. Free Radic Biol Med 2019; 136:118-134. [PMID: 30959171 DOI: 10.1016/j.freeradbiomed.2019.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/18/2019] [Accepted: 04/01/2019] [Indexed: 01/08/2023]
Abstract
Dysfunction of endothelial cells of the artery wall is an early event in cardiovascular disease and atherosclerosis. The cause(s) of this dysfunction are unresolved, but accumulating evidence suggests that oxidants arising from chronic low-grade inflammation are contributory agents, with increasing data implicating myeloperoxidase (MPO, released by activated leukocytes), and the oxidants it generates (e.g. HOCl and HOSCN). As these are formed extracellularly and react rapidly with proteins, we hypothesized that MPO-mediated damage to the matrix glycoprotein fibronectin (FN) would modulate FN structure and function, and its interactions with human coronary artery endothelial cells (HCAEC). Exposure of human plasma FN to HOCl resulted in modifications to FN and its functional epitopes. A dose-dependent loss of methionine and tryptophan residues, together with increasing concentrations of methionine sulfoxide, and modification of the cell-binding fragment (CBF) and heparin-binding fragment (HBF) domains was detected with HOCl, but not HOSCN. FN modification resulted in a loss of HCAEC adhesion, impaired cell spreading and reduced cell proliferation. Exposure to HCAEC to HOCl-treated FN altered the expression of HCAEC genes associated with extracellular matrix (ECM) synthesis and adhesion. Modifications were detected on HCAEC-derived ECM pre-treated with HOCl, but not HOSCN, with a loss of antibody recognition of the CBF, HBF and extra-domain A. Co-localization of epitopes arising from MPO-generated HOCl and cell-derived FN was detected in human atherosclerotic lesions. Damage was also detected on FN extracted from lesions. These data support the hypothesis that HOCl, but not HOSCN, targets and modifies FN resulting in arterial wall endothelial cell dysfunction.
Collapse
Affiliation(s)
- Siriluck Vanichkitrungruang
- The Heart Research Institute, Newtown, NSW, Australia; Faculty of Medicine, The University of Sydney, NSW, Australia; Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Christine Y Chuang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Clare L Hawkins
- The Heart Research Institute, Newtown, NSW, Australia; Faculty of Medicine, The University of Sydney, NSW, Australia; Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Astrid Hammer
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Gerald Hoefler
- Institute of Pathology, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Ernst Malle
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Michael J Davies
- The Heart Research Institute, Newtown, NSW, Australia; Faculty of Medicine, The University of Sydney, NSW, Australia; Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark.
| |
Collapse
|
20
|
Talma M, Maślanka M, Mucha A. Recent developments in the synthesis and applications of phosphinic peptide analogs. Bioorg Med Chem Lett 2019; 29:1031-1042. [PMID: 30846252 DOI: 10.1016/j.bmcl.2019.02.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 01/20/2023]
Abstract
Synthetic pseudopeptides that fit well with the active site architecture allow the most effective binding to enzymes, similar to native substrates in high-energy transition states. Phosphinic acid peptide analogs that comprise the tetrahedral phosphorus moiety introduced to replace an internal amide bond exert such an isosteric or isoelectronic resemblance, combined with providing other advantageous features, for example, metal complexing properties. Accordingly, they are capable of inhibiting metal-dependent enzymes involved in biological functions in eukaryotic and prokaryotic cells. These enzymes are associated with notorious human diseases, such as cancer, e.g., matrix metalloproteinases, or are etiological factors of protozoal and bacterial infections, e.g., metalloaminopeptidases. The affinity and selectivity of these compounds can be conveniently adjusted, either by structural modification of dedicated side chains or by backbone elongation to enhance specific interactions with the corresponding binding pockets. Recent approaches to the synthesis of these compounds are illustrated by examples of the preparation of rationally designed structures of inhibitors of particular enzymes. Activity against appealing enzymatic targets is presented, along with the molecular mechanisms of action and therapeutic implications. Innovative aspects of phosphinic peptide application, e.g., as activity-based probes, and ligands of complexes of radioisotopes for nuclear medicine are also outlined.
Collapse
Affiliation(s)
- Michał Talma
- Wrocław University of Science and Technology, Department of Bioorganic Chemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Marta Maślanka
- Wrocław University of Science and Technology, Department of Bioorganic Chemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Artur Mucha
- Wrocław University of Science and Technology, Department of Bioorganic Chemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| |
Collapse
|
21
|
Jayatilaka H, Umanzor FG, Shah V, Meirson T, Russo G, Starich B, Tyle P, Lee JSH, Khatau S, Gil-Henn H, Wirtz D. Tumor cell density regulates matrix metalloproteinases for enhanced migration. Oncotarget 2018; 9:32556-32569. [PMID: 30220965 PMCID: PMC6135685 DOI: 10.18632/oncotarget.25863] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/18/2018] [Indexed: 02/01/2023] Open
Abstract
Matrix metalloproteinases (MMPs) may play a critical role in metastatic cancers, yet multiple human clinical trials targeting MMPs have surprisingly failed. Cancer cell density changes dramatically during the early growth of a primary tumor and during the early seeding steps of secondary tumors and has been implicated in playing an important role in regulating metastasis and drug resistance. This study reveals that the expression of MMPs is tightly regulated by local tumor cell density through the synergistic signaling mechanism of Interleukin 6 (IL-6) and Interleukin 8 (IL-8) via the JAK2/STAT3 complex. Local tumor cell density also plays a role in the responsiveness of cells to matrix metalloproteinases inhibitors (MMPI), such as Batimastat, Marimastat, Bryostatin I, and Cipemastat, where different migratory phenotypes are observed in low and high cell density conditions. Cell density-dependent MMP regulation can be directly targeted by the simultaneous inhibition of IL-6 and IL-8 receptors via Tocilizumab and Reparixin to significantly decrease the expression of MMPs in mouse xenograft models and decrease effective metastasis. This study reveals a new strategy to decrease MMP expression through pharmacological intervention of the cognate receptors of IL-6 and IL-8 to decrease metastatic capacity of tumor cells.
Collapse
Affiliation(s)
- Hasini Jayatilaka
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA.,Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD, USA.,Department of Pediatrics, Bass Center for Childhood Cancer, Stanford University, Stanford, CA, USA
| | - Fatima G Umanzor
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA.,Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD, USA
| | - Vishwesh Shah
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Tomer Meirson
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Gabriella Russo
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Bartholomew Starich
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Pranay Tyle
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Jerry S H Lee
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA.,Center for Strategic Scientific Initiatives, National Cancer Institute, Bethesda, MD, USA.,Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Medicine/Oncology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shyam Khatau
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Hava Gil-Henn
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA.,Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD, USA.,Department of Oncology and Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
22
|
Baldauf MC, Gerke JS, Kirschner A, Blaeschke F, Effenberger M, Schober K, Rubio RA, Kanaseki T, Kiran MM, Dallmayer M, Musa J, Akpolat N, Akatli AN, Rosman FC, Özen Ö, Sugita S, Hasegawa T, Sugimura H, Baumhoer D, Knott MML, Sannino G, Marchetto A, Li J, Busch DH, Feuchtinger T, Ohmura S, Orth MF, Thiel U, Kirchner T, Grünewald TGP. Systematic identification of cancer-specific MHC-binding peptides with RAVEN. Oncoimmunology 2018; 7:e1481558. [PMID: 30228952 PMCID: PMC6140548 DOI: 10.1080/2162402x.2018.1481558] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/21/2018] [Accepted: 05/21/2018] [Indexed: 02/03/2023] Open
Abstract
Immunotherapy can revolutionize anti-cancer therapy if specific targets are available. Immunogenic peptides encoded by cancer-specific genes (CSGs) may enable targeted immunotherapy, even of oligo-mutated cancers, which lack neo-antigens generated by protein-coding missense mutations. Here, we describe an algorithm and user-friendly software named RAVEN (Rich Analysis of Variable gene Expressions in Numerous tissues) that automatizes the systematic and fast identification of CSG-encoded peptides highly affine to Major Histocompatibility Complexes (MHC) starting from transcriptome data. We applied RAVEN to a dataset assembled from 2,678 simultaneously normalized gene expression microarrays comprising 50 tumor entities, with a focus on oligo-mutated pediatric cancers, and 71 normal tissue types. RAVEN performed a transcriptome-wide scan in each cancer entity for gender-specific CSGs, and identified several established CSGs, but also many novel candidates potentially suitable for targeting multiple cancer types. The specific expression of the most promising CSGs was validated in cancer cell lines and in a comprehensive tissue-microarray. Subsequently, RAVEN identified likely immunogenic CSG-encoded peptides by predicting their affinity to MHCs and excluded sequence identity to abundantly expressed proteins by interrogating the UniProt protein-database. The predicted affinity of selected peptides was validated in T2-cell peptide-binding assays in which many showed binding-kinetics like a very immunogenic influenza control peptide. Collectively, we provide an exquisitely curated catalogue of cancer-specific and highly MHC-affine peptides across 50 cancer types, and a freely available software (https://github.com/JSGerke/RAVENsoftware) to easily apply our algorithm to any gene expression dataset. We anticipate that our peptide libraries and software constitute a rich resource to advance anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Michaela C Baldauf
- Faculty of Medicine, Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, LMU Munich, Munich, Germany
| | - Julia S Gerke
- Faculty of Medicine, Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, LMU Munich, Munich, Germany
| | - Andreas Kirschner
- Children's Cancer Research Center, Technische Universität München (TUM), Munich, Germany
| | - Franziska Blaeschke
- Department of Pediatrics, Dr. von Hauner'sches Children's Hospital, LMU Munich, Munich, Germany
| | - Manuel Effenberger
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Kilian Schober
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Rebeca Alba Rubio
- Faculty of Medicine, Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, LMU Munich, Munich, Germany
| | | | - Merve M Kiran
- Department of Pathology, Medical Faculty, Yildirim Beyazit University, Ankara, Turkey
| | - Marlene Dallmayer
- Faculty of Medicine, Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, LMU Munich, Munich, Germany
| | - Julian Musa
- Faculty of Medicine, Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, LMU Munich, Munich, Germany
| | - Nurset Akpolat
- Department of Pathology, Turgut Ozal Medical Center, Inonu University, Malatya, Turkey
| | - Ayse N Akatli
- Department of Pathology, Turgut Ozal Medical Center, Inonu University, Malatya, Turkey
| | - Fernando C Rosman
- Department for Pathology, Hospital Municipal Jesus, Rio de Janeiro, Brazil
| | - Özlem Özen
- Department of Pathology, Medical Faculty, Başkent University Hospital, Ankara, Turkey
| | - Shintaro Sugita
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
| | - Tadashi Hasegawa
- Department of Pathology, Sapporo Medical University, Sapporo, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu School of Medicine, Hamamatsu, Japan
| | - Daniel Baumhoer
- Bone Tumor Reference Center, Institute of Pathology of the University Hospital of Basel, Basel, Switzerland
| | - Maximilian M L Knott
- Faculty of Medicine, Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, LMU Munich, Munich, Germany
| | - Giuseppina Sannino
- Faculty of Medicine, Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, LMU Munich, Munich, Germany
| | - Aruna Marchetto
- Faculty of Medicine, Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, LMU Munich, Munich, Germany
| | - Jing Li
- Faculty of Medicine, Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, LMU Munich, Munich, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Tobias Feuchtinger
- Department of Pediatrics, Dr. von Hauner'sches Children's Hospital, LMU Munich, Munich, Germany
| | - Shunya Ohmura
- Faculty of Medicine, Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, LMU Munich, Munich, Germany
| | - Martin F Orth
- Faculty of Medicine, Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, LMU Munich, Munich, Germany
| | - Uwe Thiel
- Children's Cancer Research Center, Technische Universität München (TUM), Munich, Germany
| | - Thomas Kirchner
- Faculty of Medicine, Institute of Pathology, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas G P Grünewald
- Faculty of Medicine, Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, LMU Munich, Munich, Germany.,Faculty of Medicine, Institute of Pathology, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
23
|
Arcidiacono B, Chiefari E, Laria AE, Messineo S, Bilotta FL, Britti D, Foti DP, Foryst-Ludwig A, Kintscher U, Brunetti A. Expression of matrix metalloproteinase-11 is increased under conditions of insulin resistance. World J Diabetes 2017; 8:422-428. [PMID: 28989568 PMCID: PMC5612832 DOI: 10.4239/wjd.v8.i9.422] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/04/2017] [Accepted: 05/05/2017] [Indexed: 02/05/2023] Open
Abstract
AIM To investigate matrix metalloproteinase-11 (MMP-11) expression in adipose tissue dysfunction, using in vitro and in vivo models of insulin resistance.
METHODS Culture of mouse 3T3-L1 preadipocytes were induced to differentiation into mature 3T3-L1 adipocytes. Cellular insulin resistance was induced by treating differentiated cultured adipocytes with hypoxia and/or tumor necrosis factor (TNF)-α, and transcriptional changes were analyzed in each condition thereafter. For the in vivo studies, MMP-11 expression levels were measured in white adipose tissue (WAT) from C57BL/6J mice that underwent low fat diet or high-fat feeding in order to induce obesity and obesity-related insulin resistance. Statistical analysis was carried out with GraphPad Prism Software.
RESULTS MMP-11 mRNA expression levels were significantly higher in insulin resistant 3T3-L1 adipocytes compared to control cells (1.46 ± 0.49 vs 0.83 ± 0.21, respectively; P < 0.00036). The increase in MMP-11 expression was observed even in the presence of TNF-α alone (3.79 ± 1.11 vs 1 ± 0.17, P < 0.01) or hypoxia alone (1.79 ± 0.7 vs 0.88 ± 0.1, P < 0.00023). The results obtained in in vitro experiments were confirmed in the in vivo model of insulin resistance. In particular, MMP-11 mRNA was upregulated in WAT from obese mice compared to lean mice (5.5 ± 2.8 vs 1.1 ± 0.7, respectively; P < 3.72E-08). The increase in MMP-11 levels in obese mice was accompanied by the increase in typical markers of fibrosis, such as collagen type VI alpha 3 (Col6α3), and fibroblast-specific protein 1.
CONCLUSION Our results indicate that dysregulation of MMP-11 expression is an early process in the adipose tissue dysfunction, which leads to obesity and obesity-related insulin resistance.
Collapse
Affiliation(s)
- Biagio Arcidiacono
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Eusebio Chiefari
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Anna Elisa Laria
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Sebastiano Messineo
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | | | - Domenico Britti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Daniela Patrizia Foti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Anna Foryst-Ludwig
- Institute of Pharmacology, Center for Cardiovascular Research, 10117 Berlin, Germany
| | - Ulrich Kintscher
- Institute of Pharmacology, Center for Cardiovascular Research, 10117 Berlin, Germany
| | - Antonio Brunetti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
24
|
Duong MN, Geneste A, Fallone F, Li X, Dumontet C, Muller C. The fat and the bad: Mature adipocytes, key actors in tumor progression and resistance. Oncotarget 2017; 8:57622-57641. [PMID: 28915700 PMCID: PMC5593672 DOI: 10.18632/oncotarget.18038] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 05/08/2017] [Indexed: 02/07/2023] Open
Abstract
Growing evidence has raised the important roles of adipocytes as an active player in the tumor microenvironment. In many tumors adipocytes are in close contact with cancer cells. They secrete various factors that can mediate local and systemic effects. The adipocyte-cancer cell crosstalk leads to phenotypical and functional changes of both cell types, which can further enhance tumor progression. Moreover, obesity, which is associated with an increase in adipose mass and an alteration of adipose tissue, has been established as a risk factor for cancer incidence and cancer-related mortality. In this review, we summarize the mechanisms of the adipocyte-cancer cell crosstalk in both obese and lean conditions as well as its impact on cancer cell growth, local invasion, metastatic spread and resistance to treatments. Better characterization of cancer-associated adipocytes and the key molecular events in the adipocyte-cancer cell crosstalk will provide insights into tumor biology and suggest efficient therapeutic opportunities.
Collapse
Affiliation(s)
- Minh Ngoc Duong
- Department of Oncology/CHUV-UNIL, Biopole 3, Epalinges, Switzerland
| | - Aline Geneste
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM UMR 1052/CNRS 5286, Lyon, France
| | - Frederique Fallone
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Xia Li
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Charles Dumontet
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM UMR 1052/CNRS 5286, Lyon, France.,Hospices Civils de Lyon, Lyon, France
| | - Catherine Muller
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
25
|
Riaz S, Zeidan A, Mraiche F. Myocardial proteases and cardiac remodeling. J Cell Physiol 2017; 232:3244-3250. [PMID: 28255990 DOI: 10.1002/jcp.25884] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 12/22/2022]
Abstract
Cardiac hypertrophy (CH), characterized by the enlargement of cardiomyocytes, fibrosis and apoptosis, is one of the leading causes of death worldwide. Despite the advances in cardiovascular research, there remains a need to further investigate the signaling pathways that mediate CH in order to identify novel therapeutic targets. One of the hallmarks of CH is the remodeling of the extracellular matrix (ECM). Multiple studies have shown an important role of cysteine proteases and matrix metalloproteinases (MMPs) in the remodeled heart. This review focuses on the role of cysteine cathepins and MMPs in cardiac remodeling.
Collapse
Affiliation(s)
- Sadaf Riaz
- College of Pharmacy, Qatar University, Doha, Qatar
| | - Asad Zeidan
- Faculty of Medicine, Department of Anatomy, Cell Biology and Physiology, American University of Beirut, Beirut, Lebanon
| | | |
Collapse
|
26
|
Li WM, Wei YC, Huang CN, Ke HL, Li CC, Yeh HC, Chang LL, Huang CH, Li CF, Wu WJ. Matrix metalloproteinase-11 as a marker of metastasis and predictor of poor survival in urothelial carcinomas. J Surg Oncol 2016; 113:700-7. [PMID: 26861489 DOI: 10.1002/jso.24195] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 01/21/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND OBJECTIVES Urothelial carcinomas (UC) of urinary bladder (UB) and upper urinary tract (UT) are heterogeneous diseases with high morbidity and mortality. We looked for genes with metalloendopeptidase activity in a published UBUC transcriptomic database (GSE31684):MMP-11 was the most significant, showing stepwise up-regulation. We analyzed MMP-11 expression and association with clinicopathologic factors and survival in our well-characterized cohort of UCs. METHODS We determined MMP-11 expression in 295 UBUCs and 340 UTUCs with immunohistochemistry, evaluated by H-score. In a retrospective study, MMP-11 expression was correlated with clinicopathologic features and with disease-specific survival (DSS) and metastasis-free survival (MeFS). The statistical significance was evaluated with univariate and multivariate analyses. RESULTS High MMP-11 expression was significantly associated with advanced pT status, nodal metastasis, high histological grade, vascular and perineural invasion, and frequent mitoses. In multivariate Cox regression analyses, which adjusted for standard clinicopathologic characteristics, MMP-11 expression was independently associated with cancer-specific mortality (hazard ratio [HR] in UTUC:3.027, P = 0.005; in UBUC: 2.631, P = 0.010) and with metastasis development (HR in UTUC:2.261, P = 0.018; in UBUC:1.801, P = 0.026). CONCLUSIONS MMP-11 overexpression is associated with aggressive tumor phenotype and unfavorable clinical outcome in UTUC and UBUC, suggesting it may serve as a novel prognostic and therapeutic target. J. Surg. Oncol. 2016;113:700-707. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wei-Ming Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Ministry of Health and Welfare Pingtung Hospital, Pingtung, Taiwan
| | - Yu-Ching Wei
- Department of Pathology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Chun-Nung Huang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hung-Lung Ke
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Chia Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Hsin-Chih Yeh
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Pathology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Lin-Li Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Microbiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Hsiung Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chien-Feng Li
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan.,Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan.,National Cancer Research Institute, National Health Research Institutes, Tainan, Taiwan.,Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Internal Medicine and Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Jeng Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan.,Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
27
|
A convenient synthesis and spatial structure of 2-aryl-2-oxo-2-phenylbenzo[e]-1,4,2-oxazaphosphinanes. Russ Chem Bull 2014. [DOI: 10.1007/s11172-013-0271-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Kosikowska P, Lesner A. Inhibitors of cathepsin G: a patent review (2005 to present). Expert Opin Ther Pat 2013; 23:1611-24. [PMID: 24079661 DOI: 10.1517/13543776.2013.835397] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Cathepsin G (CatG) is a neutral proteinase originating from human neutrophils. It displays a unique dual specificity (trypsin- and chymotrypsin-like); thus, its enzymatic activity is difficult to control. CatG is involved in the pathophysiology of several serious human diseases, such as chronic obstructive pulmonary disease (COPD), Crohn's disease, rheumatoid arthritis, cystic fibrosis and other conditions clinically manifested by excessive inflammatory reactions. For mentioned reasons, CatG was considered as good molecular target for the development of novel drugs. However, none of them have yet entered the market as novel therapeutic agents. AREAS COVERED This article presents an in-depth and detailed analysis of the therapeutic potential of CatG inhibitors based on a review of patent applications and academic publishing disclosed in patents and patent applications (1991 - 2012), with several exceptions for inhibitors retrieved from academic articles. EXPERT OPINION Among the discussed inhibitors of CatG, examples corresponding to derivatives of β-ketophosphonic acids, aminoalkylphosphonic esters and boswellic acids (BAs) could be regarded as the most promising. The most promising one seems to be analogues of compounds of Nature's origin (peptidic and BA derivates). Nevertheless, nothing is currently known about the clinical disposition of any of the CatG inhibitors discovered so far. This latter point suggests that there is still a lot of work to do in the design of stable, pharmacologically active compounds able to specifically regulate the in vivo activity of cathepsin G.
Collapse
Affiliation(s)
- Paulina Kosikowska
- University of Gdansk, Department of Bioorganic Chemistry , Wita Stwosza 63, 80-952 Gdansk , Poland +48585235095 ; +48585235472 ;
| | | |
Collapse
|
29
|
Cho KI, Haque M, Wang J, Yu M, Hao Y, Qiu S, Pillai ICL, Peachey NS, Ferreira PA. Distinct and atypical intrinsic and extrinsic cell death pathways between photoreceptor cell types upon specific ablation of Ranbp2 in cone photoreceptors. PLoS Genet 2013; 9:e1003555. [PMID: 23818861 PMCID: PMC3688534 DOI: 10.1371/journal.pgen.1003555] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 04/23/2013] [Indexed: 12/26/2022] Open
Abstract
Non-autonomous cell-death is a cardinal feature of the disintegration of neural networks in neurodegenerative diseases, but the molecular bases of this process are poorly understood. The neural retina comprises a mosaic of rod and cone photoreceptors. Cone and rod photoreceptors degenerate upon rod-specific expression of heterogeneous mutations in functionally distinct genes, whereas cone-specific mutations are thought to cause only cone demise. Here we show that conditional ablation in cone photoreceptors of Ran-binding protein-2 (Ranbp2), a cell context-dependent pleiotropic protein linked to neuroprotection, familial necrotic encephalopathies, acute transverse myelitis and tumor-suppression, promotes early electrophysiological deficits, subcellular erosive destruction and non-apoptotic death of cones, whereas rod photoreceptors undergo cone-dependent non-autonomous apoptosis. Cone-specific Ranbp2 ablation causes the temporal activation of a cone-intrinsic molecular cascade highlighted by the early activation of metalloproteinase 11/stromelysin-3 and up-regulation of Crx and CoREST, followed by the down-modulation of cone-specific phototransduction genes, transient up-regulation of regulatory/survival genes and activation of caspase-7 without apoptosis. Conversely, PARP1+-apoptotic rods develop upon sequential activation of caspase-9 and caspase-3 and loss of membrane permeability. Rod photoreceptor demise ceases upon cone degeneration. These findings reveal novel roles of Ranbp2 in the modulation of intrinsic and extrinsic cell death mechanisms and pathways. They also unveil a novel spatiotemporal paradigm of progression of neurodegeneration upon cell-specific genetic damage whereby a cone to rod non-autonomous death pathway with intrinsically distinct cell-type death manifestations is triggered by cell-specific loss of Ranbp2. Finally, this study casts new light onto cell-death mechanisms that may be shared by human dystrophies with distinct retinal spatial signatures as well as with other etiologically distinct neurodegenerative disorders. The secondary demise of healthy neurons upon the degeneration of neurons harboring primary genetic defect(s) is hallmark to neurodegenerative diseases. However, the factors and mechanisms driving these cell-death processes are not understood, a severe limitation which has hampered the therapeutic development of neuroprotective approaches. The neuroretina is comprised of two main types of photoreceptor neurons, rods and cones. These undergo degeneration upon heterogeneous mutations or environmental stressors and the underlying diseases present conspicuous spatiotemporal pathological signatures whose molecular bases are not understood. We employed the multifunctional protein, Ran-binding protein-2 (Ranbp2), which is implicated in cell-type and stress-dependent clinical manifestations, to examine its role(s) in primary and secondary photoreceptor death mechanisms upon its specific loss in cones. Contrary to prior findings, we found that dying cones can trigger the loss of healthy rods. This process arises by the immediate activation of novel Ranbp2-responsive factors and downstream cascade events in cones that promote extrinsically the demise of rods. The mechanisms of rod and cone demise are molecularly distinct. Collectively, the data uncover distinct Ranbp2 roles in intrinsic and extrinsic cell-death and will likely contribute to our understanding of the spatiotemporal onset and progression of diseases affecting photoreceptor mosaics and other neural networks.
Collapse
Affiliation(s)
- Kyoung-in Cho
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - MdEmdadul Haque
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jessica Wang
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Minzhong Yu
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| | - Ying Hao
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sunny Qiu
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Indulekha C. L. Pillai
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Neal S. Peachey
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
- Research Service, Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, United States of America
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Paulo A. Ferreira
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
30
|
Synthesis and modifications of phosphinic dipeptide analogues. Molecules 2012; 17:13530-68. [PMID: 23154272 PMCID: PMC6268094 DOI: 10.3390/molecules171113530] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 11/09/2012] [Accepted: 11/12/2012] [Indexed: 01/01/2023] Open
Abstract
Pseudopeptides containing the phosphinate moiety (-P(O)(OH)CH2-) have been studied extensively, mainly as transition state analogue inhibitors of metalloproteases. The key synthetic aspect of their chemistry is construction of phosphinic dipeptide derivatives bearing appropriate side-chain substituents. Typically, this synthesis involves a multistep preparation of two individual building blocks, which are combined in the final step. As this methodology does not allow simple variation of the side-chain structure, many efforts have been dedicated to the development of alternative approaches. Recent achievements in this field are summarized in this review. Improved methods for the formation of the phosphinic peptide backbone, including stereoselective and multicomponent reactions, are presented. Parallel modifications leading to the structurally diversified substituents are also described. Finally, selected examples of the biomedical applications of the title compounds are given.
Collapse
|
31
|
Human matrix metalloproteinases: an ubiquitarian class of enzymes involved in several pathological processes. Mol Aspects Med 2011; 33:119-208. [PMID: 22100792 DOI: 10.1016/j.mam.2011.10.015] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 10/29/2011] [Indexed: 02/07/2023]
Abstract
Human matrix metalloproteinases (MMPs) belong to the M10 family of the MA clan of endopeptidases. They are ubiquitarian enzymes, structurally characterized by an active site where a Zn(2+) atom, coordinated by three histidines, plays the catalytic role, assisted by a glutamic acid as a general base. Various MMPs display different domain composition, which is very important for macromolecular substrates recognition. Substrate specificity is very different among MMPs, being often associated to their cellular compartmentalization and/or cellular type where they are expressed. An extensive review of the different MMPs structural and functional features is integrated with their pathological role in several types of diseases, spanning from cancer to cardiovascular diseases and to neurodegeneration. It emerges a very complex and crucial role played by these enzymes in many physiological and pathological processes.
Collapse
|
32
|
Mucha A, Kafarski P, Berlicki Ł. Remarkable potential of the α-aminophosphonate/phosphinate structural motif in medicinal chemistry. J Med Chem 2011; 54:5955-80. [PMID: 21780776 DOI: 10.1021/jm200587f] [Citation(s) in RCA: 494] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Artur Mucha
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | | | | |
Collapse
|
33
|
Sollazzo V, Palmieri A, Pezzetti F, Massari L, Carinci F. Effects of pulsed electromagnetic fields on human osteoblastlike cells (MG-63): a pilot study. Clin Orthop Relat Res 2010; 468:2260-77. [PMID: 20387020 PMCID: PMC2895828 DOI: 10.1007/s11999-010-1341-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 03/25/2010] [Indexed: 01/31/2023]
Abstract
BACKGROUND Although pulsed electromagnetic fields (PEMFs) are used to treat delayed unions and nonunions, their mechanisms of action are not completely clear. However, PEMFs are known to affect the expression of certain genes. QUESTIONS/PURPOSES We asked (1) whether PEMFs affect gene expression in human osteoblastlike cells (MG63) in vitro, and (2) whether and to what extent stimulation by PEMFs induce cell proliferation and differentiation in MG-63 cultures. METHODS We cultured two groups of MG63 cells. One group was treated with PEMFs for 18 hours whereas the second was maintained in the same culture condition without PEMFs (control). Gene expression was evaluated throughout cDNA microarray analysis containing 19,000 genes spanning a substantial fraction of the human genome. RESULTS PEMFs induced the upregulation of important genes related to bone formation (HOXA10, AKT1), genes at the transductional level (CALM1, P2RX7), genes for cytoskeletal components (FN1, VCL), and collagenous (COL1A2) and noncollagenous (SPARC) matrix components. However, PEMF induced downregulation of genes related to the degradation of extracellular matrix (MMP-11, DUSP4). CONCLUSIONS AND CLINICAL RELEVANCE PEMFs appear to induce cell proliferation and differentiation. Furthermore, PEMFs promote extracellular matrix production and mineralization while decreasing matrix degradation and absorption. Our data suggest specific mechanisms of the observed clinical effect of PEMFs, and thus specific approaches for use in regenerative medicine.
Collapse
Affiliation(s)
- Vincenzo Sollazzo
- Istituto di Clinica Ortopedica Università di Ferrara, Corso Giovecca 203, 44100 Ferrara, Italy
| | - Annalisa Palmieri
- Istituto di Chirurgia Maxillo Facciale Università di Ferrara, Ferrara, Italy
| | - Furio Pezzetti
- Istituto di Istologia ed Embriologia Generale Università di Bologna, Bologna, Italy
| | - Leo Massari
- Istituto di Clinica Ortopedica Università di Ferrara, Corso Giovecca 203, 44100 Ferrara, Italy
| | - Francesco Carinci
- Istituto di Chirurgia Maxillo Facciale Università di Ferrara, Ferrara, Italy
| |
Collapse
|
34
|
Abstract
Matrix metalloproteases (MMPs) comprise a family of enzymes that cleave protein substrates based on a conserved mechanism involving activation of an active site-bound water molecule by a Zn(2+) ion. Although the catalytic domain of MMPs is structurally highly similar, there are many differences with respect to substrate specificity, cellular and tissue localization, membrane binding and regulation that make this a very versatile family of enzymes with a multitude of physiological functions, many of which are still not fully understood. Essentially, all members of the MMP family have been linked to disease development, notably to cancer metastasis, chronic inflammation and the ensuing tissue damage as well as to neurological disorders. This has stimulated a flurry of studies into MMP inhibitors as therapeutic agents, as well as into measuring MMP levels as diagnostic or prognostic markers. As with most protein families, deciphering the function(s) of MMPs is difficult, as they can modify many proteins. Which of these reactions are physiologically or pathophysiologically relevant is often not clear, although studies on knockout animals, human genetic and epigenetic, as well as biochemical studies using natural or synthetic inhibitors have provided insight to a great extent. In this review, we will give an overview of 23 members of the human MMP family and describe functions, linkages to disease and structural and mechanistic features. MMPs can be grouped into soluble (including matrilysins) and membrane-anchored species. We adhere to the 'MMP nomenclature' and provide the reader with reference to the many, often diverse, names for this enzyme family in the introduction.
Collapse
|
35
|
Joseph DS, Malik M, Nurudeen S, Catherino WH. Myometrial cells undergo fibrotic transformation under the influence of transforming growth factor β-3. Fertil Steril 2010; 93:1500-8. [DOI: 10.1016/j.fertnstert.2009.01.081] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 01/15/2009] [Accepted: 01/16/2009] [Indexed: 01/08/2023]
|
36
|
Kupai K, Szucs G, Cseh S, Hajdu I, Csonka C, Csont T, Ferdinandy P. Matrix metalloproteinase activity assays: Importance of zymography. J Pharmacol Toxicol Methods 2010; 61:205-9. [PMID: 20176119 DOI: 10.1016/j.vascn.2010.02.011] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 02/16/2010] [Accepted: 02/16/2010] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases capable of degrading extracellular matrix, including the basement membrane. MMPs are associated with various physiological processes such as morphogenesis, angiogenesis, and tissue repair. Moreover, due to the novel non-matrix related intra- and extracellular targets of MMPs, dysregulation of MMP activity has been implicated in a number of acute and chronic pathological processes, such as arthritis, acute myocardial infarction, chronic heart failure, chronic obstructive pulmonary disease, inflammation, and cancer metastasis. MMPs are considered as viable drug targets in the therapy of the above diseases. METHODS For the development of selective MMP inhibitor molecules, reliable methods are necessary for target validation and lead development. Here, we discuss the major methods used for MMP assays, focusing on substrate zymography. We highlight some problems frequently encountered during sample preparations, electrophoresis, and data analysis of zymograms. RESULTS AND DISCUSSION Zymography is a widely used technique to study extracellular matrix-degrading enzymes, such as MMPs, from tissue extracts, cell cultures, serum or urine. This simple and sensitive technique identifies MMPs by the degradation of their substrate and by their molecular weight and therefore helps to understand the widespread role of MMPs in different pathologies and cellular pathways.
Collapse
Affiliation(s)
- K Kupai
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The recognition that the successful clinical use of MMP inhibitors will require quantitative correlation of MMP activity with disease type, and to disease progression, has stimulated intensive effort toward the development of sensitive assay methods, improved analytical methods for the determination of the structural profile for MMP-sub-type inhibition, and the development of new methods for the determination - in both quantitative and qualitative terms - of MMP activity. This chapter reviews recent progress toward these objectives, with particular emphasis on the quantitative and qualitative profiling of MMP activity in cells and tissues. Quantitative determination of MMP activity is made from the concentration of the MMP from the tissue, using immobilization of a broad-spectrum MMP inhibitor on a chromatography resin. Active MMP, to the exclusion of MMP zymogens and endogenous TIMP-inhibited MMPs, is retained on the column. Characterization of the MMP sub-type(s) follows from appropriate analysis of the active MMP eluted from the resin. Qualitative determination of MMP involvement in disease can be made using an MMP sub-type-selective inhibitor. The proof of principle, with respect to this qualitative determination of the disease involvement of the gelatinase MMP-2 and MMP-9 sub-types, is provided by the class of thiirane-based MMP mechanism-based inhibitors (SB-3CT as the prototype). Positive outcomes in animal models of disease having MMP-2 and/or -9 dependency follow administration of this MMP inhibitor, whereas this inhibitor is inactive in disease models where other MMPs (such as MMP-14) are involved.
Collapse
Affiliation(s)
- Jed F Fisher
- Department of Chemistry and Biochemistry, Walther Cancer Research Center, University of Notre Dame, Notre Dame, IN, USA
| | | |
Collapse
|
38
|
Yan YL, Miller MT, Cao Y, Cohen SM. Synthesis of hydroxypyrone- and hydroxythiopyrone-based matrix metalloproteinase inhibitors: developing a structure-activity relationship. Bioorg Med Chem Lett 2009; 19:1970-6. [PMID: 19261472 PMCID: PMC2833267 DOI: 10.1016/j.bmcl.2009.02.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2009] [Accepted: 02/10/2009] [Indexed: 11/22/2022]
Abstract
The zinc(II)-dependent matrix metalloproteinases (MMPs) are associated with a variety of diseases. Development of inhibitors to modulate MMP activity has been an active area of investigation for therapeutic development. Hydroxypyrones and hydroxythiopyrones are alternative zinc-binding groups (ZBGs) that, when combined with peptidomimetic backbones, comprise a novel class of MMP inhibitors (MMPi). In this report, a series of hydroxypyrone- and hydroxythiopyrone-based MMPi with aryl backbones at the 2-, 5-, and 6-positions of the hydroxypyrone ring have been synthesized. Synthetic routes for developing inhibitors with substituents at two of these positions (so-called double-handed inhibitors) are also explored. The MMP inhibition profiles and structure-activity relationship of synthesized hydroxypyrones and hydroxythiopyrones have been analyzed. The results here show that the ZBG, the position of the backbone on the ZBG, and the nature of the linker between the ZBG and backbone are critical for MMPi activities.
Collapse
Affiliation(s)
- Yi-Long Yan
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0358, United States
| | - Melissa T. Miller
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0358, United States
| | - Yuchen Cao
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0358, United States
| | - Seth M. Cohen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0358, United States
| |
Collapse
|
39
|
Biological Activity of Aminophosphonic Acids and Their Short Peptides. TOPICS IN HETEROCYCLIC CHEMISTRY 2009. [DOI: 10.1007/7081_2008_14] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
40
|
Smith L, Wagner TE, Huizar I, Schnapp LM. uPARAP expression during murine lung development. Gene Expr Patterns 2008; 8:486-93. [PMID: 18639653 DOI: 10.1016/j.gep.2008.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2007] [Revised: 06/07/2008] [Accepted: 06/24/2008] [Indexed: 11/16/2022]
Abstract
Lung remodeling requires active collagen deposition and degradation. Urokinase plasminogen activator receptor-associated protein (uPARAP), or Endo 180, is a cell-surface receptor for collagens, which leads to collagen internalization and degradation. Thus, uPARAP-mediated collagen degradation is an additional pathway for matrix remodeling in addition to matrix remodeling mediated by matrix metalloproteinases and cathepsins. Using immunohistochemistry, we demonstrate extensive uPARAP expression in the mesenchyme throughout murine lung development. By immunofluorescence, we demonstrate significant overlap of uPARAP expression with collagen IV expression, but minimal overlap with collagen I expression in the developing murine lung. Finally, we compared lung development between wild-type and uPARAP(-/-) mice, and found no significant histologic differences, indicating the presence of alternative collagen degradation pathways during murine lung development.
Collapse
Affiliation(s)
- Leah Smith
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Harborview Medical Center, University of Washington, Box 359640, 325 9th Ave, Seattle, WA 98104, USA
| | | | | | | |
Collapse
|
41
|
Roy S, Khanna S, Rink C, Biswas S, Sen CK. Characterization of the acute temporal changes in excisional murine cutaneous wound inflammation by screening of the wound-edge transcriptome. Physiol Genomics 2008; 34:162-84. [PMID: 18460641 DOI: 10.1152/physiolgenomics.00045.2008] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This work represents a maiden effort to systematically screen the transcriptome of the healing wound-edge tissue temporally using high-density GeneChips. Changes during the acute inflammatory phase of murine excisional wounds were characterized histologically. Sets of genes that significantly changed in expression during healing could be segregated into the following five sets: up-early (6-24 h; cytokine-cytokine receptor interaction pathway), up-intermediary (12-96 h; leukocyte-endothelial interaction pathway), up-late (48-96 h; cell-cycle pathway), down-early (6-12 h; purine metabolism) and down-intermediary (12-96 h; oxidative phosphorylation pathway). Results from microarray and real-time PCR analyses were consistent. Results listing all genes that were significantly changed at any specific time point were further mined for cell-type (neutrophils, macrophages, endothelial, fibroblasts, and pluripotent stem cells) specificity. Candidate genes were also clustered on the basis of their functional annotation, linking them to inflammation, angiogenesis, reactive oxygen species (ROS), or extracellular matrix (ECM) categories. Rapid induction of genes encoding NADPH oxidase subunits and downregulation of catalase in response to wounding is consistent with the fact that low levels of endogenous H2O2 is required for wound healing. Angiogenic genes, previously not connected to cutaneous wound healing, that were induced in the healing wound-edge included adiponectin, epiregulin, angiomotin, Nogo, and VEGF-B. This study provides a digested database that may serve as a valuable reference tool to develop novel hypotheses aiming to elucidate the biology of cutaneous wound healing comprehensively.
Collapse
Affiliation(s)
- Sashwati Roy
- Comprehensive Wound Center, Department of Surgery, Davis Heart & Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
42
|
A microarray study of gene and protein regulation in human and rat brain following middle cerebral artery occlusion. BMC Neurosci 2007; 8:93. [PMID: 17997827 PMCID: PMC2194693 DOI: 10.1186/1471-2202-8-93] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Accepted: 11/12/2007] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Altered gene expression is an important feature of ischemic cerebral injury and affects proteins of many functional classes. We have used microarrays to investigate the changes in gene expression at various times after middle cerebral artery occlusion in human and rat brain. RESULTS Our results demonstrated a significant difference in the number of genes affected and the time-course of expression between the two cases. The total number of deregulated genes in the rat was 335 versus 126 in the human, while, of 393 overlapping genes between the two array sets, 184 were changed only in the rat and 36 in the human with a total of 41 genes deregulated in both cases. Interestingly, the mean fold changes were much higher in the human. The expression of novel genes, including p21-activated kinase 1 (PAK1), matrix metalloproteinase 11 (MMP11) and integrase interactor 1, was further analyzed by RT-PCR, Western blotting and immunohistochemistry. Strong neuronal staining was seen for PAK1 and MMP11. CONCLUSION Our findings confirmed previous studies reporting that gene expression screening can detect known and unknown transcriptional features of stroke and highlight the importance of research using human brain tissue in the search for novel therapeutic agents.
Collapse
|
43
|
Expression of matrix metalloproteinases MMP-1, MMP-11 and MMP-19 is correlated with the WHO-grading of human malignant gliomas. Neurosci Res 2007; 60:40-9. [PMID: 17980449 DOI: 10.1016/j.neures.2007.09.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 08/06/2007] [Accepted: 09/19/2007] [Indexed: 01/12/2023]
Abstract
Glioblastomas (GBM) are the most prevalent type of malignant primary brain tumor in adults. They may manifest de novo or develop from low-grade astrocytomas (LGA) or anaplastic astrocytomas. They are characterized by an aggressive local growth pattern and a marked degree of invasiveness, resulting in poor prognosis. Tumor progression is facilitated by an increased activity of proteolytic enzymes such as matrix metalloproteinases (MMPs). Elevated levels of several MMPs were found in glioblastomas compared to LGA and normal brain (NB). However, data for some MMPs, like MMP-1, are controversially discussed and other MMPs like MMP-11 and MMP-19 have as yet not been analysed in detail. We examined the expression of MMP-1, MMP-9, MMP-11 and MMP-19 in NB, LGA and GBM by semiquantitative RT-PCR, Western blotting and immunohistochemistry and found an enhanced expression of these MMPs in GBM compared to LGA or NB in signal strength and in the percentage of tumors displaying MMP expression. The transition from LGA to GBM was characterized by a shift of pro-MMP-11 to expression of the active enzyme. Therefore, MMP-1, MMP-11 and MMP-19 might be of importance for the development of high-grade astrocytic tumors and may be promising targets for therapy.
Collapse
|