1
|
Maji A, Paul A, Sarkar A, Nahar S, Bhowmik R, Samanta A, Nahata P, Ghosh B, Karmakar S, Kumar Maity T. Significance of TRAIL/Apo-2 ligand and its death receptors in apoptosis and necroptosis signalling: Implications for cancer-targeted therapeutics. Biochem Pharmacol 2024; 221:116041. [PMID: 38316367 DOI: 10.1016/j.bcp.2024.116041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/04/2024] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
The human immune defensesystem routinely expresses the tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), which is the most prevalent element for antitumor immunity. TRAIL associates with its death receptors (DRs), DR4 (TRAIL-R1), and DR5 (TRAIL-R2), in cancer cells to initiate the intracellular apoptosis cascade. Accordingly, numerous academic institutions and pharmaceutical companies havetried to exploreTRAIL's capacity to kill tumourcells by producing recombinant versions of it (rhTRAIL) or TRAIL receptor agonists (TRAs) [monoclonal antibody (mAb), synthetic and natural compounds, etc.] and molecules that sensitize TRAIL signalling pathway for therapeutic applications. Recently, several microRNAs (miRs) have been found to activate or inhibit death receptor signalling. Therefore, pharmacological regulation of these miRs may activate or resensitize the TRAIL DRs signal, and this is a novel approach for developing anticancer therapeutics. In this article, we will discuss TRAIL and its receptors and molecular pathways by which it induces various cell death events. We will unravel potential innovative applications of TRAIL-based therapeutics, and other investigated therapeutics targeting TRAIL-DRs and summarize the current preclinical pharmacological studies and clinical trials. Moreover, we will also emphasizea few situations where future efforts may be addressed to modulate the TRAIL signalling pathway.
Collapse
Affiliation(s)
- Avik Maji
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India.
| | - Abhik Paul
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India.
| | - Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India; Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata-700032, India.
| | - Sourin Nahar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India.
| | - Rudranil Bhowmik
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India; Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata-700032, India.
| | - Ajeya Samanta
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India.
| | - Pankaj Nahata
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India.
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad-500078, India.
| | - Sanmoy Karmakar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India; Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata-700032, India.
| | - Tapan Kumar Maity
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India.
| |
Collapse
|
2
|
Rakhi SA, Hara Y, Islam MS, Manome T, Alam S, Emon NU, Al-Mansur MA, Kuddus MR, Sarkar MR, Ishibashi M, Ahmed F. Isolation of bioactive phytochemicals from Crinum asiaticum L . along with their cytotoxic and TRAIL-resistance abrogating prospect assessment. Heliyon 2024; 10:e25049. [PMID: 38318065 PMCID: PMC10838800 DOI: 10.1016/j.heliyon.2024.e25049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/07/2024] Open
Abstract
Crinum asiaticum L. (Amaryllidaceae) is a perennial bulbous herb, locally utilized for possessing multifaceted pharmacological properties including anticancer, immune-stimulating, analgesic, antiviral, antimalarial, antibacterial and antifungal, in addition to its popularity as an aesthetic plant. Separation of MeOH extract of C. asiaticum leaves yielded three known compounds as cycloneolitsol (1), hippeastrine (2) and β-sitosterol (3). Among these, compounds 1 and 2 were subjected to the cytotoxic assay and found that they induced mild effect against HCT116, Huh7 and DU145 cell lines with the IC50 values from 73.76 to 132.53 μM. When tested for TRAIL-resistance abrogating activity, 1 (100 μM) along with TRAIL (100 ng/mL) showed moderate activity in AGS cells producing 25 % more inhibition than the agent alone. Whereas 2 (20 and 30 μM) in combination with TRAIL (100 ng/mL) exhibited strong activity in abrogating TRAIL-resistance and caused 34 % and 36 % more inhibition in AGS cells, respectively. The in-silico studies of compound 2 revealed high docking hits with the TRAIL-associated anti-apoptotic proteins which give a justification for the regulatory interactions to induce such abrogating activity. It is still recommended to conduct further investigations to understand their exact molecular mechanism.
Collapse
Affiliation(s)
- Sharmin Ahmed Rakhi
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Yasumasa Hara
- Department of Natural Products Chemistry, Chiba University, Chiba, 260-8675, Japan
| | - Md. Saiful Islam
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka, 1000, Bangladesh
- Pharmaceutical Sciences Research Division, BCSIR Laboratories, Dhaka, Bangladesh Council of Scientific and Industrial Research, Dhaka, 1205, Bangladesh
| | - Teruhisa Manome
- Department of Natural Products Chemistry, Chiba University, Chiba, 260-8675, Japan
| | - Safaet Alam
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka, 1000, Bangladesh
- Drugs and Toxins Research Division, BCSIR Laboratories Rajshahi, Bangladesh Council of Scientific and Industrial Research, Rajshahi, 6206, Bangladesh
| | - Nazim Uddin Emon
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | | | - Md. Ruhul Kuddus
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md. Raihan Sarkar
- Department of Pharmaceutical Technology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Masami Ishibashi
- Department of Natural Products Chemistry, Chiba University, Chiba, 260-8675, Japan
| | - Firoj Ahmed
- Department of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| |
Collapse
|
3
|
Lo KJ, Wang MH, Ho CT, Pan MH. Plant-Derived Extracellular Vesicles: A New Revolutionization of Modern Healthy Diets and Biomedical Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2853-2878. [PMID: 38300835 DOI: 10.1021/acs.jafc.3c06867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Plant-derived extracellular vesicles (PDEVs) have recently emerged as a promising area of research due to their potential health benefits and biomedical applications. Produced by various plant species, these EVs contain diverse bioactive molecules, including proteins, lipids, and nucleic acids. Increasing in vitro and in vivo studies have shown that PDEVs have inherent pharmacological activities that affect cellular processes, exerting anti-inflammatory, antioxidant, and anticancer activities, which can potentially contribute to disease therapy and improve human health. Additionally, PDEVs have shown potential as efficient and biocompatible drug delivery vehicles in treating various diseases. However, while PDEVs serve as a potential rising star in modern healthy diets and biomedical applications, further research is needed to address their underlying knowledge gaps, especially the lack of standardized protocols for their isolation, identification, and large-scale production. Furthermore, the safety and efficacy of PDEVs in clinical applications must be thoroughly evaluated. In this review, we concisely discuss current knowledge in the PDEV field, including their characteristics, biomedical applications, and isolation methods, to provide an overview of the current state of PDEV research. Finally, we discuss the challenges regarding the current and prospective issues for PDEVs. This review is expected to provide new insights into healthy diets and biomedical applications of vegetables and fruits, inspiring new advances in natural food-based science and technology.
Collapse
Affiliation(s)
- Kai-Jiun Lo
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Mu-Hui Wang
- Department of Medical Research, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901-8520, United States
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
4
|
Zarezadeh SM, Sharafi AM, Erabi G, Tabashiri A, Teymouri N, Mehrabi H, Golzan SA, Faridzadeh A, Abdollahifar Z, Sami N, Arabpour J, Rahimi Z, Ansari A, Abbasi MR, Azizi N, Tamimi A, Poudineh M, Deravi N. Natural STAT3 Inhibitors for Cancer Treatment: A Comprehensive Literature Review. Recent Pat Anticancer Drug Discov 2024; 19:403-502. [PMID: 37534488 DOI: 10.2174/1574892818666230803100554] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 08/04/2023]
Abstract
Cancer is one of the leading causes of mortality and morbidity worldwide, affecting millions of people physically and financially every year. Over time, many anticancer treatments have been proposed and studied, including synthetic compound consumption, surgical procedures, or grueling chemotherapy. Although these treatments have improved the daily life quality of patients and increased their survival rate and life expectancy, they have also shown significant drawbacks, including staggering costs, multiple side effects, and difficulty in compliance and adherence to treatment. Therefore, natural compounds have been considered a possible key to overcoming these problems in recent years, and thorough research has been done to assess their effectiveness. In these studies, scientists have discovered a meaningful interaction between several natural materials and signal transducer and activator of transcription 3 molecules. STAT3 is a transcriptional protein that is vital for cell growth and survival. Mechanistic studies have established that activated STAT3 can increase cancer cell proliferation and invasion while reducing anticancer immunity. Thus, inhibiting STAT3 signaling by natural compounds has become one of the favorite research topics and an attractive target for developing novel cancer treatments. In the present article, we intend to comprehensively review the latest knowledge about the effects of various organic compounds on inhibiting the STAT3 signaling pathway to cure different cancer diseases.
Collapse
Affiliation(s)
- Seyed Mahdi Zarezadeh
- Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Mohammad Sharafi
- Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gisou Erabi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Arefeh Tabashiri
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navid Teymouri
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hoda Mehrabi
- Student Research Committee, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Seyyed Amirhossein Golzan
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezoo Faridzadeh
- Department of Immunology and Allergy, Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Abdollahifar
- Student Research Committee, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Nafiseh Sami
- Student Research Committee, Tehran Medical Sciences, Islamic Azad University Medical Branch of Tehran, Tehran, Iran
| | - Javad Arabpour
- Department of Microbiology, Faculty of New Sciences, Islamic Azad University Medical Branch of Tehran, Tehran, Iran
| | - Zahra Rahimi
- School of Medicine, Zanjan University of Medical Sciences Zanjan, Iran
| | - Arina Ansari
- Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Nima Azizi
- Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Rahmati S, Karimi H, Alizadeh M, Khazaei AH, Paiva-Santos AC, Rezakhani L, Sharifi E. Prospects of plant-derived exosome-like nanocarriers in oncology and tissue engineering. Hum Cell 2024; 37:121-138. [PMID: 37878214 DOI: 10.1007/s13577-023-00994-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023]
Abstract
Almost all cell types, either in vivo or in vitro, create extracellular vesicles (EVs). Among them are exosomes (EXOs), i.e., tiny nanovesicles containing a lipid bilayer, proteins, and RNAs that are actively involved in cellular communication, indicating that they may be exploited as both diagnostics and therapeutics for conditions like cancer. These nanoparticles can also be used as nanocarriers in many types of research to carry agents such as drugs. Plant-derived exosome-like nanoparticles (PENs) are currently under investigation as a substitute for EXOs formed from mammalian cells, allowing researchers to get beyond the technical constraints of mammalian vesicles. Because of their physiological, chemical, and biological properties, PENs have a lot of promise for use as nanocarriers in drug delivery systems that can deliver various dosages, especially when it comes to large-scale repeatability. The present study has looked at the origins and isolation techniques of PENs, their anticancer properties, their usage as nanocarriers in the treatment of different illnesses, and their antioxidant properties. These nanoparticles can aid in the achievement of therapeutic objectives, as they have benign, non-immunogenic side effects and can pass biological barriers. Time-consuming and perhaps damaging PEN separation techniques is used. For the current PEN separation techniques to be used in commercial and therapeutic settings, they must be altered. In this regard, the concurrent application of biological sciences can be beneficial for improving PEN separation techniques. PENs' innate metabolic properties provide them a great deal of promise for application in drug delivery systems. However, there could be a risk to both the loaded medications and the intrinsic bioactive components if these particles are heavily armed with drugs. Therefore, to prevent these side effects, more studies are needed to devise sophisticated drug-loading procedures and to learn more about the physiology of PENs.
Collapse
Affiliation(s)
- Shima Rahmati
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hafez Karimi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Amir Hossein Khazaei
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Esmaeel Sharifi
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran.
| |
Collapse
|
6
|
Lian MQ, Chng WH, Liang J, Yeo HQ, Lee CK, Belaid M, Tollemeto M, Wacker MG, Czarny B, Pastorin G. Plant-derived extracellular vesicles: Recent advancements and current challenges on their use for biomedical applications. J Extracell Vesicles 2022; 11:e12283. [PMID: 36519808 PMCID: PMC9753580 DOI: 10.1002/jev2.12283] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 12/23/2022] Open
Abstract
Extracellular vesicles (EVs) represent a diverse class of lipid bilayer membrane vesicles released by both animal and plant cells. These ubiquitous vesicles are involved in intercellular communication and transport of various biological cargos, including proteins, lipids, and nucleic acids. In recent years, interest in plant-derived EVs has increased tremendously, as they serve as a scalable and sustainable alternative to EVs derived from mammalian sources. In vitro and in vivo findings have demonstrated that these plant-derived vesicles (PDVs) possess intrinsic therapeutic activities that can potentially treat diseases and improve human health. In addition, PDVs can also act as efficient and biocompatible drug carriers. While preclinical studies have shown promising results, there are still several challenges and knowledge gaps that have to be addressed for the successful translation of PDVs into clinical applications, especially in view of the lack of standardised protocols for material handling and PDV isolation from various plant sources. This review provides the readers with a quick overview of the current understanding and research on PDVs, critically analysing the current challenges and highlighting the immense potential of PDVs as a novel class of therapeutics to treat human diseases. It is expected that this work will guide scientists to address the knowledge gaps currently associated with PDVs and promote new advances in plant-based therapeutic solutions.
Collapse
Affiliation(s)
| | - Wei Heng Chng
- Department of PharmacyNational University of SingaporeSingaporeSingapore
- Integrative Sciences and Engineering Programme, NUS Graduate SchoolNational University of SingaporeSingaporeSingapore
| | - Jeremy Liang
- Department of ChemistryNational University of SingaporeSingaporeSingapore
| | - Hui Qing Yeo
- Department of PharmacyNational University of SingaporeSingaporeSingapore
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| | - Choon Keong Lee
- Department of PharmacyNational University of SingaporeSingaporeSingapore
| | - Mona Belaid
- Institute of Pharmaceutical ScienceKing's College LondonLondonUnited Kingdom
| | - Matteo Tollemeto
- Department of Health TechnologyTechnical University of DenmarkKongens LyngbyDenmark
| | | | - Bertrand Czarny
- School of Materials Science & EngineeringNanyang Technological UniversitySingaporeSingapore
| | - Giorgia Pastorin
- Department of PharmacyNational University of SingaporeSingaporeSingapore
| |
Collapse
|
7
|
Screening study of cancer-related cellular signals from microbial natural products. J Antibiot (Tokyo) 2021; 74:629-638. [PMID: 34193986 DOI: 10.1038/s41429-021-00434-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/24/2021] [Accepted: 06/05/2021] [Indexed: 02/06/2023]
Abstract
To identify bioactive natural products from various natural resources, such as plants and microorganisms, we investigated programs to screen for compounds that affect several cancer-related cellular signaling pathways, such as BMI1, TRAIL, and Wnt. This review summarizes the results of our recent studies, particularly those involving natural products isolated from microbial resources, such as actinomycetes, obtained from soil samples collected primarily around Chiba, Japan.
Collapse
|
8
|
Tian B, Hua Z, Wang Z, Wang J. RETRACTED ARTICLE: Physcion 8-O-β-glucopyranoside mediates the NLRP3-associated pyroptosis and cell metastasis in the human osteosarcoma cells via ER stress activation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:555. [PMID: 32072190 DOI: 10.1007/s00210-020-01836-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/30/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Baogang Tian
- Department of Orthopedics, Wuxi Traditional Chinese Medicine Hospital, Nanjing University of Chinese Medicine, No.8 Zhong'nan Road, Wuxi, 214071, Jiangsu, China
| | - Zhen Hua
- Department of Orthopedics, Wuxi Traditional Chinese Medicine Hospital, Nanjing University of Chinese Medicine, No.8 Zhong'nan Road, Wuxi, 214071, Jiangsu, China
| | - Zhijiong Wang
- Department of Orthopedics, Wuxi Traditional Chinese Medicine Hospital, Nanjing University of Chinese Medicine, No.8 Zhong'nan Road, Wuxi, 214071, Jiangsu, China
| | - Jianwei Wang
- Department of Orthopedics, Wuxi Traditional Chinese Medicine Hospital, Nanjing University of Chinese Medicine, No.8 Zhong'nan Road, Wuxi, 214071, Jiangsu, China.
| |
Collapse
|
9
|
Cinar I. Apoptosis-Inducing Activity and Antiproliferative Effect of Gossypin on PC-3 Prostate Cancer Cells. Anticancer Agents Med Chem 2021; 21:445-450. [PMID: 32698736 DOI: 10.2174/1871520620666200721103422] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/10/2020] [Accepted: 05/24/2020] [Indexed: 11/22/2022]
Abstract
AIM The rapid growth, morbidity and mortality of prostate cancer, and the lack of effective treatment have attracted great interest of researchers to find novel cancer therapies aiming at the effect of gossypin on cell proliferation and apoptosis of PC-3 cells. METHODS The effect of gossypin on cell viability was determined using MTT assay at 5-100μg/ml and cisplatin (50μM) in a time-dependent manner in PC-3 cell lines. The expression levels of caspase-3 (CASP3) and caspase-9 (CASP9) for apoptosis and Nuclear Factor Kappa B (NFKB1) for survival, inflammation, and growth were evaluated by real-time PCR. Hoechst staining was used to analyze apoptosis. RESULTS Gossypin showed an anti-proliferative effect on PC3 cell line in a time- and dose-dependent manner. In addition, gossypin led to a significant increase in apoptosis genes (CASP3, CASP9) when compared to control while it caused a decrease in the level of NFKB1, which is accepted as apoptosis inhibitor (p<0.05) (cisplatin-like). Gossypin 50 and 100μM significantly induced apoptotic mechanism in PC-3 cells. However, no apoptotic or commonly stained nuclei have been observed in control group cells. CONCLUSION The results indicated that gossypin can be defined as a promising anticancer agent for PC-3 human prostate cancer cell line.
Collapse
Affiliation(s)
- Irfan Cinar
- Department of Pharmacology, Faculty of Medicine, Kastamonu University, Kastamonu, Turkey
| |
Collapse
|
10
|
Peng XG, Liu J, Gao Y, Cheng F, Chang JL, Chen J, Duan FF, Ruan HL. Pchaeglobolactone A, Spiropchaeglobosin A, and Pchaeglobosals A and B: Four Rearranged Cytochalasans from Chaetomium globosum P2-2-2. Org Lett 2020; 22:9665-9669. [PMID: 33270452 DOI: 10.1021/acs.orglett.0c03623] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Four novel rearranged cytochalasans (1-4) were isolated from an endophytic fungus Chaetomium globosum P2-2-2. Pchaeglobolactone A (1) possessed an unprecedented 13-aza-21-oxa-tetracyclo-[10.6.1.217,19.015,19]henicosane core. Spiropchaeglobosin A (2) was the first example of cytochalasans featuring a novel spiro[5.10]hexadecane unit. Pchaeglobosals A (3) and B (4) featured a unique 5/5/13 fused tricyclic ring system. Compounds 1-4 were tested for their antiproliferative, apoptosis, cell cycle arrest, and TRAIL-resistance-overcoming activities on cancer cell lines.
Collapse
Affiliation(s)
- Xiao-Gang Peng
- School of Pharmacy, Tongji Medical College, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Junjun Liu
- School of Pharmacy, Tongji Medical College, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Ying Gao
- School of Pharmacy, Tongji Medical College, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Fang Cheng
- School of Pharmacy, Tongji Medical College, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Jin-Ling Chang
- School of Pharmacy, Tongji Medical College, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Juan Chen
- School of Pharmacy, Tongji Medical College, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Fang-Fang Duan
- School of Pharmacy, Tongji Medical College, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Han-Li Ruan
- School of Pharmacy, Tongji Medical College, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| |
Collapse
|
11
|
Cytochalasins from an endophytic fungus Phoma multirostrata XJ-2-1 with cell cycle arrest and TRAIL-resistance-overcoming activities. Bioorg Chem 2020; 104:104317. [PMID: 33142426 DOI: 10.1016/j.bioorg.2020.104317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
Nine new (1-9) and four known (10-13) [13]cytochalasins, along with three known 24-oxa[14]cytochalasins (14-16), were isolated from the culture of Phoma multirostrata XJ-2-1, an endophytic fungus obtained from the fibrous root of Parasenecio albus. Their structures were elucidated by interpretation of the nuclear magnetic resonance (NMR) and high-resolution electrospray ionization mass spectroscopy (HRESIMS). The absolute configurations were assigned by single-crystal X-ray crystallography, modified Mosher's method, and by analysis of their experimental electronic circular dichroism (ECD) spectra. Compound 6 could induce cell cycle arrest at G2-phase in CT26 and A549 cells, and displayed moderate cytotoxicity against CT26 and A549 cell lines with IC50 values of 6.03 and 5.04 μM, respectively. Co-treatment of 7-9, 13 and 16 with tumor necrosis factor related apoptosis inducing ligand (TRAIL) could significantly decrease the cell viability of A549, which revealed that cytochalasins could possibly be a new group of TRAIL sensitizers in lung cancer therapy.
Collapse
|
12
|
Transition-metal-free synthesis of 1,4-benzoxazepines via [4+3]-cycloaddition of para-quinone methides with azaoxyallyl cations. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9832-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Elmallah MIY, Cogo S, Constantinescu AA, Elifio-Esposito S, Abdelfattah MS, Micheau O. Marine Actinomycetes-Derived Secondary Metabolites Overcome TRAIL-Resistance via the Intrinsic Pathway through Downregulation of Survivin and XIAP. Cells 2020; 9:cells9081760. [PMID: 32708048 PMCID: PMC7464567 DOI: 10.3390/cells9081760] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/13/2020] [Accepted: 07/21/2020] [Indexed: 01/03/2023] Open
Abstract
Resistance of cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis represents the major hurdle to the clinical use of TRAIL or its derivatives. The discovery and development of lead compounds able to sensitize tumor cells to TRAIL-induced cell death is thus likely to overcome this limitation. We recently reported that marine actinomycetes’ crude extracts could restore TRAIL sensitivity of the MDA-MB-231 resistant triple negative breast cancer cell line. We demonstrate in this study, that purified secondary metabolites originating from distinct marine actinomycetes (sharkquinone (1), resistomycin (2), undecylprodigiosin (3), butylcyclopentylprodigiosin (4), elloxizanone A (5) and B (6), carboxyexfoliazone (7), and exfoliazone (8)), alone, and in a concentration-dependent manner, induce killing in both MDA-MB-231 and HCT116 cell lines. Combined with TRAIL, these compounds displayed additive to synergistic apoptotic activity in the Jurkat, HCT116 and MDA-MB-231 cell lines. Mechanistically, these secondary metabolites induced and enhanced procaspase-10, -8, -9 and -3 activation leading to an increase in PARP and lamin A/C cleavage. Apoptosis induced by these compounds was blocked by the pan-caspase inhibitor QvD, but not by a deficiency in caspase-8, FADD or TRAIL agonist receptors. Activation of the intrinsic pathway, on the other hand, is likely to explain both their ability to trigger cell death and to restore sensitivity to TRAIL, as it was evidenced that these compounds could induce the downregulation of XIAP and survivin. Our data further highlight that compounds derived from marine sources may lead to novel anti-cancer drug discovery.
Collapse
Affiliation(s)
- Mohammed I. Y. Elmallah
- LNC, INSERM, UMR1231, F-21079 Dijon, France; (S.C.); (A.A.C.)
- UFR Science de Santé, Université de Bourgogne Franche-Comté, F-21079 Dijon, France
- Chemistry Department, Faculty of Science, Helwan University, 11795 Ain Helwan, Cairo 11795, Egypt;
- Correspondence: (M.I.Y.E.); (O.M.)
| | - Sheron Cogo
- LNC, INSERM, UMR1231, F-21079 Dijon, France; (S.C.); (A.A.C.)
- UFR Science de Santé, Université de Bourgogne Franche-Comté, F-21079 Dijon, France
- Graduate Programme in Health Sciences, Pontifícia Universidade Catolica do Parana, Curitiba 80215–901, Parana, Brazil;
| | - Andrei A. Constantinescu
- LNC, INSERM, UMR1231, F-21079 Dijon, France; (S.C.); (A.A.C.)
- UFR Science de Santé, Université de Bourgogne Franche-Comté, F-21079 Dijon, France
| | - Selene Elifio-Esposito
- Graduate Programme in Health Sciences, Pontifícia Universidade Catolica do Parana, Curitiba 80215–901, Parana, Brazil;
| | - Mohammed S. Abdelfattah
- Chemistry Department, Faculty of Science, Helwan University, 11795 Ain Helwan, Cairo 11795, Egypt;
- Marine Natural Products Unit (MNPRU), Faculty of Science, Helwan University, 11795 Ain Helwan, Cairo 11795, Egypt
| | - Olivier Micheau
- LNC, INSERM, UMR1231, F-21079 Dijon, France; (S.C.); (A.A.C.)
- UFR Science de Santé, Université de Bourgogne Franche-Comté, F-21079 Dijon, France
- Correspondence: (M.I.Y.E.); (O.M.)
| |
Collapse
|
14
|
Fu DJ, Zhang YF, Chang AQ, Li J. β-Lactams as promising anticancer agents: Molecular hybrids, structure activity relationships and potential targets. Eur J Med Chem 2020; 201:112510. [PMID: 32592915 DOI: 10.1016/j.ejmech.2020.112510] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 01/17/2023]
Abstract
β-Lactam, commonly referred as azetidin-2-one, is a multifunctional building block for synthesizing β-amino ketones, γ-amino alcohols, and other compounds. Besides its well known antibiotic activity, this ring system exhibits a wide range of activities, attracting the attention of researchers. However, the structurally diverse β-lactam analogues as anticancer agents and their different molecular targets are poorly discussed. The purpose of this review is 3-fold: (1) to explore the molecular hybridization approach to design β-lactams hybrids as anticancer agents; (2) the structure activity relationship of the most active anticancer β-lactams and (3) to summarize their antitumor mechanisms.
Collapse
Affiliation(s)
- Dong-Jun Fu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Yun-Feng Zhang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - An-Qi Chang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.
| |
Collapse
|
15
|
Lautié E, Russo O, Ducrot P, Boutin JA. Unraveling Plant Natural Chemical Diversity for Drug Discovery Purposes. Front Pharmacol 2020; 11:397. [PMID: 32317969 PMCID: PMC7154113 DOI: 10.3389/fphar.2020.00397] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/16/2020] [Indexed: 12/11/2022] Open
Abstract
The screening and testing of extracts against a variety of pharmacological targets in order to benefit from the immense natural chemical diversity is a concern in many laboratories worldwide. And several successes have been recorded in finding new actives in natural products, some of which have become new drugs or new sources of inspiration for drugs. But in view of the vast amount of research on the subject, it is surprising that not more drug candidates were found. In our view, it is fundamental to reflect upon the approaches of such drug discovery programs and the technical processes that are used, along with their inherent difficulties and biases. Based on an extensive survey of recent publications, we discuss the origin and the variety of natural chemical diversity as well as the strategies to having the potential to embrace this diversity. It seemed to us that some of the difficulties of the area could be related with the technical approaches that are used, so the present review begins with synthetizing some of the more used discovery strategies, exemplifying some key points, in order to address some of their limitations. It appears that one of the challenges of natural product-based drug discovery programs should be an easier access to renewable sources of plant-derived products. Maximizing the use of the data together with the exploration of chemical diversity while working on reasonable supply of natural product-based entities could be a way to answer this challenge. We suggested alternative ways to access and explore part of this chemical diversity with in vitro cultures. We also reinforced how important it was organizing and making available this worldwide knowledge in an "inventory" of natural products and their sources. And finally, we focused on strategies based on synthetic biology and syntheses that allow reaching industrial scale supply. Approaches based on the opportunities lying in untapped natural plant chemical diversity are also considered.
Collapse
Affiliation(s)
- Emmanuelle Lautié
- Centro de Valorização de Compostos Bioativos da Amazônia (CVACBA)-Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, Brazil
| | - Olivier Russo
- Institut de Recherches Internationales SERVIER, Suresnes, France
| | - Pierre Ducrot
- Molecular Modelling Department, 'PEX Biotechnologie, Chimie & Biologie, Institut de Recherches SERVIER, Croissy-sur-Seine, France
| | - Jean A Boutin
- Institut de Recherches Internationales SERVIER, Suresnes, France
| |
Collapse
|
16
|
Feng J, Zhou M, Lin X, Lu A, Zhang X, Zhao M. Base-Mediated [3 + 4]-Cycloaddition of Anthranils with Azaoxyallyl Cations: A New Approach to Multisubstituted Benzodiazepines. Org Lett 2019; 21:6245-6248. [DOI: 10.1021/acs.orglett.9b02118] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Juan Feng
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing, China
- Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing, China
| | - Meng Zhou
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Xuanzi Lin
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - An Lu
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaoyi Zhang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing, China
- Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing, China
| | - Ming Zhao
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing, China
- Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing, China
| |
Collapse
|
17
|
Pailee P, Mahidol C, Ruchirawat S, Prachyawarakorn V. Diverse flavonoids from the roots of Millettia brandisiana. PHYTOCHEMISTRY 2019; 162:157-164. [PMID: 30925376 DOI: 10.1016/j.phytochem.2019.03.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 05/22/2023]
Abstract
The phytochemical investigation for the constituents of the roots of Millettia brandisiana, using bioassay guided fractionation, resulted in the isolation of five previously undescribed (namely brandisianones A-E) and twenty-six known flavonoids. Their chemical structures were determined using a combination of NMR, MS, IR, optical rotation and CD analysis, as well as comparison with the literature data. The crude extract as well as the isolated compounds were evaluated in various biological assays for their cytotoxicity against a panel of human cancer cell lines, potential inhibitory activity against aromatase, and antioxidant property using the oxygen radical absorbance capacity (ORAC) with an aim to search for leads and develop them to drug candidates in our drug discovery effort, we identified three bioactive flavonoids from M. brandisiana which could be further developed into a potential chemopreventive (antiaromatase) agent against breast cancer.
Collapse
Affiliation(s)
- Phanruethai Pailee
- Laboratory of Natural Products, Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
| | - Chulabhorn Mahidol
- Laboratory of Natural Products, Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand; Chemical Biology Program, Chulabhorn Graduate Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
| | - Somsak Ruchirawat
- Laboratory of Natural Products, Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand; Chemical Biology Program, Chulabhorn Graduate Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), CHE, Ministry of Education, Bangkok 10400, Thailand
| | - Vilailak Prachyawarakorn
- Laboratory of Natural Products, Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand.
| |
Collapse
|
18
|
Ishibashi M. Screening for natural products that affect Wnt signaling activity. J Nat Med 2019; 73:697-705. [PMID: 31147959 PMCID: PMC6713684 DOI: 10.1007/s11418-019-01320-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/07/2019] [Indexed: 11/27/2022]
Abstract
Wnt signaling has been implicated in numerous aspects of development, cell biology, and physiology. When aberrantly activated, Wnt signaling can also lead to the formation of tumors. Thus, Wnt signaling is an attractive target for cancer therapy. Based on our screening program targeting Wnt signaling activity using a cell-based luciferase screening system assessing TCF/β-catenin transcriptional activity, we isolated a series of terpenoids and heterocyclic aromatic compounds that affect the Wnt signaling pathway at different points. Here, we describe our recent results in screening for natural products that inhibit or activate Wnt signaling.
Collapse
Affiliation(s)
- Masami Ishibashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan.
| |
Collapse
|
19
|
Arai MA, Masuda A, Suganami A, Tamura Y, Ishibashi M. Synthesis and Evaluation of Fuligocandin B Derivatives with Activity for Overcoming TRAIL Resistance. Chem Pharm Bull (Tokyo) 2019; 66:810-817. [PMID: 30068801 DOI: 10.1248/cpb.c18-00308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling pathway induces apoptosis in cancer cells but not in normal cells. Therefore, this pathway has attracted attention regarding possible clinical treatment of cancer. However, many cancer cells demonstrate TRAIL resistance. To overcome this problem, small molecules that sensitize cancer cells to TRAIL are desired. Heterocyclic derivatives of the natural product, fuligocandin B (2), with activity for overcoming TRAIL resistance were synthesized, and their activity was evaluated. Of the synthetic molecules, the quinoline derivative (10g) showed potent activity against TRAIL-resistant gastric adenocarcinoma cells. After a docking study of the target protein valosin-containing protein, 7'-amino fuligocandin B (10m) was designed and synthesized. Compound 10m also showed good activity for overcoming TRAIL resistance. 10m produced a 49.7% difference in viability with TRAIL at 30 µM compared to without TRAIL. This activity was better than that of fuligocandin B (2).
Collapse
Affiliation(s)
- Midori A Arai
- Graduate School of Pharmaceutical Sciences, Chiba University
| | - Ayaka Masuda
- Graduate School of Pharmaceutical Sciences, Chiba University
| | | | | | | |
Collapse
|
20
|
Wang L, Wang X, Chen H, Zu X, Ma F, Liu K, Bode AM, Dong Z, Kim DJ. Gossypin inhibits gastric cancer growth by direct targeting of AURKA and RSK2. Phytother Res 2018; 33:640-650. [PMID: 30536456 DOI: 10.1002/ptr.6253] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/11/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022]
Abstract
Gossypin is a flavone extracted from Hibiscus vitifolius, which has been reported to exhibit anti-inflammatory, antioxidant, and anticancer activities. However, the anticancer properties of gossypin and its molecular mechanism of action against gastric cancer have not been fully investigated. In the present study, we report that gossypin is an Aurora kinase A (AURKA) and RSK2 inhibitor that suppresses gastric cancer growth. Gossypin attenuated anchorage-dependent and anchorage-independent gastric cancer cell growth as well as cell migration. Based on the results of in vitro screening and cell-based assays, gossypin directly binds to and inhibits AURKA and RSK2 activities and their downstream signaling proteins. Gossypin decreased S phase and increased G2/M phase cell cycle arrest by reducing the expression of cyclin A2 and cyclin B1 and the phosphorylation of the CDC protein. Additionally, gossypin also induced intrinsic apoptosis by activating caspases and PARP and increasing the expression of cytochrome c. Our results demonstrate that gossypin is an AURKA and RSK2 inhibitor that could be useful for treating gastric cancer.
Collapse
Affiliation(s)
- Li Wang
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Xiangyu Wang
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Hanyong Chen
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Xueyin Zu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China.,The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Fayang Ma
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China.,The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Kangdong Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China.,The Pathophysiology Department, The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, Henan, China.,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Zigang Dong
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China.,The Hormel Institute, University of Minnesota, Austin, Minnesota.,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan, China
| | - Dong Joon Kim
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| |
Collapse
|
21
|
Chiang SC, Choi YJ, Kang SE, Yun M, Lee BJ. Herbal Medicines Showing Synergistic Effects with Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) against A549 TRAIL-resistant Lung Cancer Cells: A Screening Study. Pharmacogn Mag 2018; 14:145-148. [PMID: 29720822 PMCID: PMC5909306 DOI: 10.4103/pm.pm_270_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 08/16/2017] [Indexed: 12/03/2022] Open
Abstract
Background: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a cytokine that activates apoptosis through death receptors on the cell surface and is regarded as a potential anticancer agent. However, many cancer cells are resistant to TRAIL-induced apoptosis. Objective: The aim is to identify the herbal medicines that could help overcome resistance in TRAIL-resistant lung cancer cells. Materials and Methods; TRAIL-resistant A549 cells and 13 herbal medicines with known apoptosis-related anticancer effects were used in this study: Clematidis Radix, Corydalis Tuber Rhizoma, Paeoniae Radix Rubra, Corni Fructus, Curcumae longae Rhizoma (CLR), Moutan Cortex, Salviae miltiorrhizae Radix, Phellodendri Cortex, Farfarae Flos, Paeoniae Radix Alba, Angelicae gigantis Radix, Coptidis Rhizoma (CR), and Taraxaci Herba. Cytotoxic effects were investigated after a 48-h incubation, using an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay, to identify the herbal medicines with the most potent synergistic effects with TRAIL. Results: The majority of the 13 medicines exhibited concentration-dependent cytotoxicity against A549 cells. Among them, CR and CLR showed the most potent cytotoxic effects, based on the IC50. We then investigated the use of these two medicines in combination with TRAIL and identified synergistic cytotoxic effects against TRAIL-resistant A549 cells. Conclusion: Synergistic cytotoxic effects of the combination of TRAIL and herbal medicines, in particular, CR and CLR, were confirmed in A549 cells. Therefore, CR and CLR showed potential to be used as candidates to overcome TRAIL resistance. Future studies to identify their underlying mechanism of action are required. SUMMARY Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an attractive anticancer agent which can induce apoptosis in tumor cells without causing cytotoxicity to normal cells However, resistance to TRAIL is often observed in some tumor cells, including nonsmall cell lung cancers, which may limit its cytotoxic efficacy in cancer treatment The combination treatment of TRAIL and herbal medicines, particularly Coptidis Rhizoma (CR) and Curcumae longae Rhizoma (CLR), can induce the synergistic cytotoxic effects against TRAIL-resistant A549 cells, indicating that TRAIL resistance was reduced by combination therapy.
Abbreviations used: TRAIL: Tumor necrosis factor-related apoptosis-inducing ligand; CLR: Curcumae longae Rhizoma; CR: Coptidis Rhizoma; NSCLC: non-small cell lung cancer.
Collapse
Affiliation(s)
- Shuen Cheng Chiang
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Yeon-Jung Choi
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Shi-Eun Kang
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Miyong Yun
- Department of Bioindustry and Bioresource Engineering, College of Life Sciences, Sejong University, Seoul, Republic of Korea
| | - Beom-Joon Lee
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea.,Department of Internal Medicine (Pulmonary and Allergy System), Korean Medicine Hospital, Seoul, Republic of Korea
| |
Collapse
|
22
|
Liu X, Arai MA, Ishibashi KTAM. Isolation of Resistomycin from a Terrestrial Actinomycete with TRAIL Resistance-overcoming Activity. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) potently induces apoptosis in most cancer cells, but not in normal cells, and, thus, has attracted intense interest as a promising antitumor agent. Activity-guided fractionation of the culture broth of the actinomycete CKK1172 strain led to the isolation of the antibiotic resistomycin (1) using human gastric adenocarcinoma AGS cells. Compound 1 exhibited TRAIL resistance-overcoming activity at 2 μM with 38% more inhibition than a treatment with 1 alone (without TRAIL) in TRAIL-resistant AGS cells.
Collapse
Affiliation(s)
- Xuefeidan Liu
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675 Japan
| | - Midori A. Arai
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675 Japan
| | | |
Collapse
|
23
|
Arai MA, Taguchi S, Komatsuzaki K, Uchiyama K, Masuda A, Sampei M, Satoh M, Kado S, Ishibashi M. Valosin-containing Protein is a Target of 5'-l Fuligocandin B and Enhances TRAIL Resistance in Cancer Cells. ChemistryOpen 2016; 5:574-579. [PMID: 28032027 PMCID: PMC5167318 DOI: 10.1002/open.201600081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Indexed: 01/25/2023] Open
Abstract
Fuligocandin B (2) is a novel natural product that can overcome TRAIL resistance. We synthesized enatiomerically pure fuligocandin B (2) and its derivative 5′‐I fuligocandin B (4), and found that the latter had an improved biological activity against the human gastric cancer cell line, AGS. We attached a biotin linker and photoactivatable aryl diazirine group to 5′‐I fuligocandin B (4), and employed a pull‐down assay to identify valosin‐containing protein (VCP/p97), an AAA ATPase, as a 5′‐I fuligocandin B (4) target protein. Knock‐down of VCP by siRNA enhanced sensitivity to TRAIL in AGS cells. In addition, 4 enhanced CHOP and DR5 protein expression, and overall intracellular levels of ubiquitinated protein. These data suggest that endoplasmic reticulum stress caused through VCP inhibition by 4 increases CHOP‐mediated DR5 up‐regulation, which enhances TRAIL‐induced cell death in AGS cells. To the best of our knowledge, this is the first example to show a relationship between VCP and TRAIL‐resistance‐overcoming activity in cancer cells.
Collapse
Affiliation(s)
- Midori A Arai
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1 Inohana, Chuo-ku Chiba 260-8675 Japan
| | - Shota Taguchi
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1 Inohana, Chuo-ku Chiba 260-8675 Japan
| | - Kazuhiro Komatsuzaki
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1 Inohana, Chuo-ku Chiba 260-8675 Japan
| | - Kento Uchiyama
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1 Inohana, Chuo-ku Chiba 260-8675 Japan
| | - Ayaka Masuda
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1 Inohana, Chuo-ku Chiba 260-8675 Japan
| | - Mana Sampei
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1 Inohana, Chuo-ku Chiba 260-8675 Japan
| | - Mamoru Satoh
- Division of Clinical Mass Spectrometry Chiba University Hospital 1-8-1 Inohana, Chuo-ku Chiba260-8670 Japan; Chemical Analysis Center Chiba University 1-33 Yayoi-cho, Inage-ku Chiba263-8522 Japan
| | - Sayaka Kado
- Chemical Analysis Center Chiba University 1-33 Yayoi-cho, Inage-ku Chiba 263-8522 Japan
| | - Masami Ishibashi
- Graduate School of Pharmaceutical Sciences Chiba University 1-8-1 Inohana, Chuo-ku Chiba 260-8675 Japan
| |
Collapse
|
24
|
Cabrera J, Saavedra E, del Rosario H, Perdomo J, Loro JF, Cifuente DA, Tonn CE, García C, Quintana J, Estévez F. Gardenin B-induced cell death in human leukemia cells involves multiple caspases but is independent of the generation of reactive oxygen species. Chem Biol Interact 2016; 256:220-7. [DOI: 10.1016/j.cbi.2016.07.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/05/2016] [Accepted: 07/12/2016] [Indexed: 12/27/2022]
|
25
|
Ahmed F, Toume K, Ishikawa N, Arai MA, Sadhu SK, Ishibashi M. Constituents from Entada scandens with TRAIL-resistance Overcoming Activity. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601100731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) has emerged as a promising anticancer agent because of its ability to selectively kill tumor cells. But TRAIL-resistance is a major problem of its therapy. A search for compounds for abrogating TRAIL-resistance has, thus, become an important strategy for anticancer drug discovery. In search of bioactive natural products for overcoming TRAIL-resistance, we previously reported some compounds with TRAIL-resistance overcoming activity. Bioassay guided fractionation of Entada scandens led to the isolation of four compounds (1-4). Of the isolates, compounds 1 and 3 showed moderate TRAIL-resistance overcoming activity in TRAIL-resistant human gastric adenocarcinoma (AGS) cells.
Collapse
Affiliation(s)
- Firoj Ahmed
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka-1000, Bangladesh
| | - Kazufumi Toume
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Naoki Ishikawa
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Midori A. Arai
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Samir K. Sadhu
- Pharmacy Discipline, Khulna University, Khulna-9208, Bangladesh
| | - Masami Ishibashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
26
|
Citrus limon-derived nanovesicles inhibit cancer cell proliferation and suppress CML xenograft growth by inducing TRAIL-mediated cell death. Oncotarget 2016; 6:19514-27. [PMID: 26098775 PMCID: PMC4637302 DOI: 10.18632/oncotarget.4004] [Citation(s) in RCA: 296] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 05/08/2015] [Indexed: 12/18/2022] Open
Abstract
Nanosized vesicles are considered key players in cell to cell communication, thus influencing physiological and pathological processes, including cancer. Nanovesicles have also been found in edible-plants and have shown therapeutic activity in inflammatory bowel diseases; however information on their role in affecting cancer progression is missing. Our study identify for the first time a fraction of vesicles from lemon juice (Citrus limon L.), obtained as a result of different ultracentrifugation, with density ranging from 1,15 to 1,19 g/ml and specific proteomic profile. By using an in vitro approach, we show that isolated nanovesicles inhibit cancer cell proliferation in different tumor cell lines, by activating a TRAIL-mediated apoptotic cell death. Furthermore, we demonstrate that lemon nanovesicles suppress CML tumor growth in vivo by specifically reaching tumor site and by activating TRAIL-mediated apoptotic cell processes. Overall, this study suggests the possible use of plant-edible nanovesicles as a feasible approach in cancer treatment.
Collapse
|
27
|
Karmakar UK, Toume K, Ishikawa N, Arai MA, Sadhu SK, Ahmed F, Ishibashi M. Bioassay-Guided Isolation of Compounds from Datura Stramonium with TRAIL-Resistance Overcoming Activity. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601100213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
TRAIL is a potent inducer of apoptosis in most cancer cells, but not in normal cells, and therefore has deserved intense interest as a promising agent for cancer therapy. In the search for bioactive natural products for overcoming TRAIL-resistance, we previously reported a number of active compounds. In our screening program on natural resources targeting overcoming TRAIL-resistance, activity-guided fractionation of the MeOH extract of Datura stramonium leaves led to the isolation of three alkaloids – scopolamine (1), trigonelline (2), and tyramine (3). Compounds 1, 2, and 3 exhibited TRAIL-resistance overcoming activity at 50, 150, and 100 μM, respectively in TRAIL-resistant AGS cells.
Collapse
Affiliation(s)
- Utpal K. Karmakar
- Graduate School of Pharmaceutical Sciences, Chiba University, Japan
- Pharmacy Discipline, Khulna University, Bangladesh
| | - Kazufumi Toume
- Graduate School of Pharmaceutical Sciences, Chiba University, Japan
| | - Naoki Ishikawa
- Graduate School of Pharmaceutical Sciences, Chiba University, Japan
| | - Midori A. Arai
- Graduate School of Pharmaceutical Sciences, Chiba University, Japan
| | | | - Firoj Ahmed
- Department of Pharmaceutical Chemistry, Dhaka University, Bangladesh
| | - Masami Ishibashi
- Graduate School of Pharmaceutical Sciences, Chiba University, Japan
| |
Collapse
|
28
|
Abdelfattah MS, Arai MA, Ishibashi M. Bioactive Secondary Metabolites with Unique Aromatic and Heterocyclic Structures Obtained from Terrestrial Actinomycetes Species. Chem Pharm Bull (Tokyo) 2016; 64:668-75. [DOI: 10.1248/cpb.c16-00038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Mohamed S. Abdelfattah
- Graduate School of Pharmaceutical Sciences, Chiba University
- Chemistry Department, Faculty of Science,
Helwan University
| | - Midori A. Arai
- Graduate School of Pharmaceutical Sciences, Chiba University
| | | |
Collapse
|
29
|
Liao SG, Yue JM. Dimeric Sesquiterpenoids. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 101 2016; 101:1-112. [DOI: 10.1007/978-3-319-22692-7_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
30
|
Ahmed F, Ishibashi M. Bio-active Natural Products with TRAIL-Resistance Overcoming Activity. Chem Pharm Bull (Tokyo) 2016; 64:119-27. [DOI: 10.1248/cpb.c15-00732] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Firoj Ahmed
- Graduate School of Pharmaceutical Sciences, Chiba University
- Department of Pharmaceutical Chemistry, University of Dhaka
| | | |
Collapse
|
31
|
Sulfotanone, a new alkyl sulfonic acid derivative from Streptomyces sp. IFM 11694 with TRAIL resistance-overcoming activity. J Nat Med 2015; 70:266-70. [DOI: 10.1007/s11418-015-0951-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/11/2015] [Indexed: 10/22/2022]
|
32
|
Marine Drugs Regulating Apoptosis Induced by Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL). Mar Drugs 2015; 13:6884-909. [PMID: 26580630 PMCID: PMC4663558 DOI: 10.3390/md13116884] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/02/2015] [Accepted: 11/09/2015] [Indexed: 12/14/2022] Open
Abstract
Marine biomass diversity is a tremendous source of potential anticancer compounds. Several natural marine products have been described to restore tumor cell sensitivity to TNF-related apoptosis inducing ligand (TRAIL)-induced cell death. TRAIL is involved during tumor immune surveillance. Its selectivity for cancer cells has attracted much attention in oncology. This review aims at discussing the main mechanisms by which TRAIL signaling is regulated and presenting how marine bioactive compounds have been found, so far, to overcome TRAIL resistance in tumor cells.
Collapse
|
33
|
Sesquiterpenes with TRAIL-resistance overcoming activity from Xanthium strumarium. Bioorg Med Chem 2015; 23:4746-4754. [PMID: 26081757 DOI: 10.1016/j.bmc.2015.05.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 05/22/2015] [Accepted: 05/24/2015] [Indexed: 02/04/2023]
Abstract
The ability of TRAIL to selectively induce apoptosis in cancer cells while sparing normal cells makes it an attractive target for the development of new cancer therapy. In search of bioactive natural products for overcoming TRAIL-resistance from natural resources, we previously reported a number of active compounds. In our screening program on natural resources targeting overcoming TRAIL-resistance, activity-guided fractionations of the extract of Xanthium strumarium led to the isolation of five sesquiterpene compounds (1-5). 11α,13-dihydroxanthinin (2) and 11α,13-dihydroxanthuminol (3) were first isolated from natural resources and xanthinosin (1), desacetylxanthanol (4), and lasidiol p-methoxybenzoate (5) were known compounds. All compounds (1-5) showed potent TRAIL-resistance overcoming activity at 8, 20, 20, 16, and 16 μM, respectively, in TRAIL-resistant AGS cells. Compounds 1 and 5 enhanced the levels of apoptosis inducing proteins DR4, DR5, p53, CHOP, Bax, cleaved caspase-3, cleaved caspase-8, and cleaved caspase-9 and also decreased the levels of cell survival protein Bcl-2 in TRAIL-resistant AGS cells in a dose-dependent manner. Compound 1 also enhanced the levels of DR4 and DR5 proteins in a time-dependent manner. Thus, compounds 1 and 5 were found to induce both extrinsic and intrinsic apoptotic cell death. Compound 1 also exhibit TRAIL-resistance overcoming activity in DLD1, DU145, HeLa, and MCF7 cells but did not decrease viability in non-cancer HEK293 cells up to 8 μM.
Collapse
|
34
|
Lee DH, Nam YJ, Lee CS. Quercetin-3-O-(2″-galloyl)-α-L-rhamnopyranoside attenuates cholesterol oxidation product-induced apoptosis by suppressing NF-κB-mediated cell death process in differentiated PC12 cells. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:869-81. [PMID: 25845326 DOI: 10.1007/s00210-015-1120-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/26/2015] [Indexed: 12/28/2022]
Abstract
Cholesterol oxidation products are suggested to be involved in neuronal cell degeneration. We examined the preventive effect of quercetin-3-O-(2″-galloyl)-α-L-rhamnopyranoside (QGR), a quercetin derivative, on the cholesterol oxidation product-induced neuronal cell death using differentiated PC12 cells in relation to nuclear factor (NF)-κB-mediated apoptotic process. 7-Ketocholesterol and 25-hydroxycholesterol induced a decrease in the levels of BH3 interacting-domain death agonist (Bid) and B cell lymphoma 2 (Bcl-2), increase in the levels of Bcl-2-associated X protein (Bax) and p53, loss of the mitochondrial transmembrane potential, cytochrome c release, activation of caspases, and cleavage of poly(ADP-ribose) polymerase 1 (PARP-1). 7-Ketocholesterol induced increase in cytosolic and nuclear NF-κB p65, nuclear phospho-NF-κB p65, cytosolic NF-κB p50, and cytosolic phospho-IκB-α levels. The addition of QGR, N-acetyl cysteine, or Bay 11-7085 attenuated the cholesterol oxidation product-induced changes in the apoptosis-related protein levels, activation of NF-κB, formation of reactive oxygen species, depletion of glutathione (GSH), nuclear damage, and cell death. The results show that QGR may attenuate the cholesterol oxidation product-induced apoptosis in PC12 cells by suppressing the activation of the mitochondrial pathway and the caspase-8- and Bid-dependent pathways that is mediated by NF-κB activation. The preventive effect appears to be associated with the inhibitory effect on the formation of reactive oxygen species and depletion of GSH.
Collapse
Affiliation(s)
- Da Hee Lee
- Department of Pharmacology, College of Medicine, and the BK21plus Skin Barrier Network Human Resources Development Team, Chung-Ang University, Seoul, 156-756, South Korea
| | | | | |
Collapse
|
35
|
Toume K, Habu T, Arai MA, Koyano T, Kowithayakorn T, Ishibashi M. Prenylated flavonoids and resveratrol derivatives isolated from Artocarpus communis with the ability to overcome TRAIL resistance. JOURNAL OF NATURAL PRODUCTS 2015; 78:103-110. [PMID: 25537111 DOI: 10.1021/np500734t] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In a screening program on natural products that can abrogate tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) resistance, four new prenylated flavonoid and resveratrol derivatives (1-4) were isolated from Artocarpus communis, together with eight known prenylflavonoids (5-12). The structures of 1-4 were elucidated spectroscopically. Pannokin D [corrected] (1) (2 μM) and artonin E (5) (3 μM) potently exhibited the ability to overcome TRAIL resistance. Artonin E (5) induced caspase-dependent apoptosis in combination with TRAIL, increased caspase 3/7 activity, and enhanced the protein levels of p53 and DR5. Moreover, this substance decreased cell viability in combination with TRAIL and enhanced the protein levels of DR5, and these effects were mediated by increases in the production of ROS (reactive oxygen species). Thus, artonin E (5) was found to induce extrinsic apoptotic cell death by the ROS- and p53-mediated up-regulation of DR5 expression in AGS cells.
Collapse
Affiliation(s)
- Kazufumi Toume
- Graduate School of Pharmaceutical Sciences, Chiba University , 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Mansha M, Abbas Y, Ullah N. Microwave-Assisted Claisen Rearrangement: Synthesis of Naturally Occurring TRAIL-Resistance-Overcoming Tyrosine Derivative. SYNTHETIC COMMUN 2015. [DOI: 10.1080/00397911.2014.974614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- M. Mansha
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Y. Abbas
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - N. Ullah
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| |
Collapse
|
37
|
Ishibashi M, Tahmina H, Toume K, A. Arai M, K. Sadhu S, Ahmed F. Isolation of Alkamides with Death Receptor-Enhancing Activities from Piper chaba. HETEROCYCLES 2015. [DOI: 10.3987/com-14-s(k)68] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Abe H, Kamimura M, Komatsu Y, Horino Y. Palladium-Mediated Intramolecular Biaryl Coupling Reaction: Convenient Preparation of Furoquinolinone Derivatives. HETEROCYCLES 2015. [DOI: 10.3987/com-14-s(k)84] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Hemming K, Chambers CS, Hamasharif MS, João H, Khan MN, Patel N, Airley R, Day S. Azide based routes to tetrazolo and oxadiazolo derivatives of pyrrolobenzodiazepines and pyrrolobenzothiadiazepines. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.07.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
40
|
Blumea balsamifera--a phytochemical and pharmacological review. Molecules 2014; 19:9453-77. [PMID: 24995927 PMCID: PMC6272021 DOI: 10.3390/molecules19079453] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 06/27/2014] [Accepted: 07/02/2014] [Indexed: 11/17/2022] Open
Abstract
The main components of sambong (Blumea balsamifera) are listed in this article. The whole plant and its crude extracts, as well as its isolated constituents, display numerous biological activities, such as antitumor, hepatoprotective, superoxide radical scavenging, antioxidant, antimicrobial and anti-inflammation, anti-plasmodial, anti-tyrosinase, platelet aggregation, enhancing percutaneous penetration, wound healing, anti-obesity, along with disease and insect resistant activities. Although many experimental and biological studies have been carried out, some traditional uses such as rheumatism healing still need to be verified by scientific pharmacological studies, and further studies including phytochemical standardization and bioactivity authentication would be beneficial.
Collapse
|
41
|
Bioactive heterocyclic natural products from actinomycetes having effects on cancer-related signaling pathways. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2014; 99:147-98. [PMID: 25296439 DOI: 10.1007/978-3-319-04900-7_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Minakawa T, Toume K, Arai MA, Koyano T, Kowithayakorn T, Ishibashi M. Prenylflavonoids isolated from Artocarpus champeden with TRAIL-resistance overcoming activity. PHYTOCHEMISTRY 2013; 96:299-304. [PMID: 24074554 DOI: 10.1016/j.phytochem.2013.08.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 07/17/2013] [Accepted: 08/26/2013] [Indexed: 06/02/2023]
Abstract
In a screening program for bioactive natural products which can overcome Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-resistance, three prenylflavonoids, named pannokin A-C, were isolated from a MeOH extract of Artocarpus champeden (Moraceae) roots, together with three known prenylflavonoids. The structures of pannokin A-C were elucidated by spectroscopic analysis. These of the prenylflavonoids in combination with TRAIL, showed cytotoxic activity in sensitizing TRAIL-resistant human gastric adenocarcinoma (AGS) cells. Of these compounds, heterophyllin increased caspase 3/7 activity when combined with TRAIL in AGS cells, and enhanced the expression of DR4 and DR5 mRNA. Moreover, heterophyllin up-regulated mRNA expression of CCAAT/enhancer-binding protein-homologous protein (CHOP) which was reported to be an important regulator of DR5 expression. Thus, heterophyllin was presumed to cause a CHOP-dependent up-regulation of DR5 expression resulting in apoptosis in AGS cells.
Collapse
Affiliation(s)
- Tomohiro Minakawa
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Henrich CJ, Beutler JA. Matching the power of high throughput screening to the chemical diversity of natural products. Nat Prod Rep 2013; 30:1284-98. [PMID: 23925671 PMCID: PMC3801163 DOI: 10.1039/c3np70052f] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Covering up to 2013. Application of high throughput screening technologies to natural product samples demands alterations in assay design as well as sample preparation in order to yield meaningful hit structures at the end of the campaign.
Collapse
Affiliation(s)
- Curtis J. Henrich
- Basic Science Program, SAIC-Frederick, Inc. Frederick National Lab
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702 USA
| | - John A. Beutler
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702 USA
| |
Collapse
|
44
|
Quercetin-3-O-(2”-galloyl)-α-l-rhamnopyranoside prevents TRAIL-induced apoptosis in human keratinocytes by suppressing the caspase-8- and Bid-pathways and the mitochondrial pathway. Chem Biol Interact 2013; 204:144-52. [DOI: 10.1016/j.cbi.2013.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 05/01/2013] [Accepted: 05/15/2013] [Indexed: 11/21/2022]
|
45
|
LIRDPRAPAMONGKOL KRIENGSAK, SAKURAI HIROAKI, ABDELHAMED SHERIF, YOKOYAMA SATORU, ATHIKOMKULCHAI SIRIVAN, VIRIYAROJ AMORNRAT, AWALE SURESH, RUCHIRAWAT SOMSAK, SVASTI JISNUSON, SAIKI IKUO. Chrysin overcomes TRAIL resistance of cancer cells through Mcl-1 downregulation by inhibiting STAT3 phosphorylation. Int J Oncol 2013; 43:329-37. [DOI: 10.3892/ijo.2013.1926] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 03/04/2013] [Indexed: 11/06/2022] Open
|
46
|
Afzal A, Oriqat G, Akram Khan M, Jose J, Afzal M. Chemistry and Biochemistry of Terpenoids fromCurcumaand Related Species. ACTA ACUST UNITED AC 2013. [DOI: 10.1080/22311866.2013.782757] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
47
|
Saikia JP, Konwarh R, Konwar BK, Karak N. Isolation and immobilization of Aroid polyphenol on magnetic nanoparticles: Enhancement of potency on surface immobilization. Colloids Surf B Biointerfaces 2013; 102:450-6. [PMID: 23010129 DOI: 10.1016/j.colsurfb.2012.08.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 08/16/2012] [Accepted: 08/17/2012] [Indexed: 10/27/2022]
|
48
|
Yang L, Wang Q, Li D, Zhou Y, Zheng X, Sun H, Yan J, Zhang L, Lin Y, Wang X. Wogonin enhances antitumor activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo through ROS-mediated downregulation of cFLIPL and IAP proteins. Apoptosis 2013; 18:618-26. [DOI: 10.1007/s10495-013-0808-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
49
|
Minakawa T, Toume K, Arai MA, Sadhu SK, Ahmed F, Ishibashi M. Eudesmane-type sesquiterpenoid and guaianolides from Kandelia candel in a screening program for compounds to overcome TRAIL resistance. JOURNAL OF NATURAL PRODUCTS 2012; 75:1431-1435. [PMID: 22823026 DOI: 10.1021/np300179c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In a screening program for natural products that can overcome TRAIL resistance, a new eudesmane-type sesquiterpenoid (1), three new guaianolides, mehirugins A-C (2-4), and two known guaianolides (5 and 6) were isolated from a MeOH extract of Kandelia candel leaves. Compounds 1 and 3-6 in combination with TRAIL showed cytotoxic activity in sensitizing TRAIL-resistant human gastric adenocarcinoma cells.
Collapse
Affiliation(s)
- Tomohiro Minakawa
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chiba 260-8675, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Abdelfattah MS, Toume K, Arai MA, Masu H, Ishibashi M. Katorazone, a new yellow pigment with a 2-azaquinone-phenylhydrazone structure produced by Streptomyces sp. IFM 11299. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.04.073] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|