1
|
Zhou X, Medina-Ramirez IE, Su G, Liu Y, Yan B. All Roads Lead to Rome: Comparing Nanoparticle- and Small Molecule-Driven Cell Autophagy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310966. [PMID: 38616767 DOI: 10.1002/smll.202310966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/27/2024] [Indexed: 04/16/2024]
Abstract
Autophagy, vital for removing cellular waste, is triggered differently by small molecules and nanoparticles. Small molecules, like rapamycin, non-selectively activate autophagy by inhibiting the mTOR pathway, which is essential for cell regulation. This can clear damaged components but may cause cytotoxicity with prolonged use. Nanoparticles, however, induce autophagy, often causing oxidative stress, through broader cellular interactions and can lead to a targeted form known as "xenophagy." Their impact varies with their properties but can be harnessed therapeutically. In this review, the autophagy induced by nanoparticles is explored and small molecules across four dimensions: the mechanisms behind autophagy induction, the outcomes of such induction, the toxicological effects on cellular autophagy, and the therapeutic potential of employing autophagy triggered by nanoparticles or small molecules. Although small molecules and nanoparticles each induce autophagy through different pathways and lead to diverse effects, both represent invaluable tools in cell biology, nanomedicine, and drug discovery, offering unique insights and therapeutic opportunities.
Collapse
Affiliation(s)
- Xiaofei Zhou
- College of Science & Technology, Hebei Agricultural University, Baoding, 071001, China
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Baoding, 071100, China
| | - Iliana E Medina-Ramirez
- Department of Chemistry, Universidad Autónoma de Aguascalientes, Av Universidad 940, Aguascalientes, Aguascalientes, México
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Yin Liu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 10024, China
| | - Bing Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
2
|
Wang J, Zhao W, Zhang Z, Liu X, Xie T, Wang L, Xue Y, Zhang Y. A Journey of Challenges and Victories: A Bibliometric Worldview of Nanomedicine since the 21st Century. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308915. [PMID: 38229552 DOI: 10.1002/adma.202308915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/18/2023] [Indexed: 01/18/2024]
Abstract
Nanotechnology profoundly affects the advancement of medicine. Limitations in diagnosing and treating cancer and chronic diseases promote the growth of nanomedicine. However, there are very few analytical and descriptive studies regarding the trajectory of nanomedicine, key research powers, present research landscape, focal investigative points, and future outlooks. Herein, articles and reviews published in the Science Citation Index Expanded of Web of Science Core Collection from first January 2000 to 18th July 2023 are analyzed. Herein, a bibliometric visualization of publication trends, countries/regions, institutions, journals, research categories, themes, references, and keywords is produced and elaborated. Nanomedicine-related academic output is increasing since the COVID-19 pandemic, solidifying the uneven global distribution of research performance. While China leads in terms of publication quantity and has numerous highly productive institutions, the USA has advantages in academic impact, commercialization, and industrial value. Nanomedicine integrates with other disciplines, establishing interdisciplinary platforms, in which drug delivery and nanoparticles remain focal points. Current research focuses on integrating nanomedicine and cell ferroptosis induction in cancer immunotherapy. The keyword "burst testing" identifies promising research directions, including immunogenic cell death, chemodynamic therapy, tumor microenvironment, immunotherapy, and extracellular vesicles. The prospects, major challenges, and barriers to addressing these directions are discussed.
Collapse
Affiliation(s)
- Jingyu Wang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Wenling Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhao Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Xingzi Liu
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Tong Xie
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Lan Wang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Yuzhou Xue
- Department of Cardiology, Institute of Vascular Medicine, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, State Key Laboratory of Vascular Homeostasis and Remodeling Peking University, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing, 100191, China
| | - Yuemiao Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| |
Collapse
|
3
|
Wang X, Xu W, Li J, Shi C, Guo Y, Shan J, Qi R. Nano-omics: Frontier fields of fusion of nanotechnology. SMART MEDICINE 2023; 2:e20230039. [PMID: 39188303 PMCID: PMC11236068 DOI: 10.1002/smmd.20230039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/15/2023] [Indexed: 08/28/2024]
Abstract
Nanotechnology, an emerging force, has infiltrated diverse domains like biomedical, materials, and environmental sciences. Nano-omics, an emerging fusion, combines nanotechnology with omics, boasting amplified sensitivity and resolution. This review introduces nanotechnology basics, surveys its recent strides in nano-omics, deliberates present challenges, and envisions future growth.
Collapse
Affiliation(s)
- Xuan Wang
- School of Medicine & Holistic Integrative MedicineNanjing University of Chinese MedicineNanjingChina
- Jiangsu Key Laboratory of Pediatric Respiratory DiseaseInstitute of PediatricsNanjing University of Chinese MedicineNanjingChina
- Medical Metabolomics CenterNanjing University of Chinese MedicineNanjingChina
| | - Weichen Xu
- Jiangsu Key Laboratory of Pediatric Respiratory DiseaseInstitute of PediatricsNanjing University of Chinese MedicineNanjingChina
- Medical Metabolomics CenterNanjing University of Chinese MedicineNanjingChina
| | - Jun Li
- School of Medicine & Holistic Integrative MedicineNanjing University of Chinese MedicineNanjingChina
| | - Chen Shi
- School of Medicine & Holistic Integrative MedicineNanjing University of Chinese MedicineNanjingChina
- Jiangsu Key Laboratory of Pediatric Respiratory DiseaseInstitute of PediatricsNanjing University of Chinese MedicineNanjingChina
- Medical Metabolomics CenterNanjing University of Chinese MedicineNanjingChina
| | - Yuanyuan Guo
- School of Medicine & Holistic Integrative MedicineNanjing University of Chinese MedicineNanjingChina
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory DiseaseInstitute of PediatricsNanjing University of Chinese MedicineNanjingChina
- Medical Metabolomics CenterNanjing University of Chinese MedicineNanjingChina
| | - Ruogu Qi
- School of Medicine & Holistic Integrative MedicineNanjing University of Chinese MedicineNanjingChina
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexasUS
| |
Collapse
|
4
|
Akhmadeev BS, Nizameev IR, Kholin KV, Voloshina AD, Gerasimova TP, Gubaidullin AT, Kadirov MK, Ismaev IE, Brylev KA, Zairov RR, Mustafina AR. Molecular and Nano-Structural Optimization of Nanoparticulate Mn2+-Hexarhenium Cluster Complexes for Optimal Balance of High T1- and T2-Weighted Contrast Ability with Low Hemoagglutination and Cytotoxicity. Pharmaceutics 2022; 14:pharmaceutics14071508. [PMID: 35890403 PMCID: PMC9316779 DOI: 10.3390/pharmaceutics14071508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 11/30/2022] Open
Abstract
The present work introduces rational design of nanoparticulate Mn(II)-based contrast agents through both variation of the μ3 (inner) ligands within a series of hexarhenium cluster complexes [{Re6(μ3-Q)8}(CN)6]4− (Re6Q8, Q = S2−, Se2− or Te2−) and interfacial decoration of the nanoparticles (NPs) K4−2xMnxRe6Q8 (x = 1.3 − 1.8) by a series of pluronics (F-68, P-123, F-127). The results highlight an impact of the ligand and pluronic for the optimal colloid behavior of the NPs allowing high colloid stability in ambient conditions and efficient phase separation under the centrifugation. It has been revealed that the K4−2xMnxRe6Se8 NPs and those decorated by F-127 are optimal from the viewpoint of magnetic relaxivities r1 and r2 (8.9 and 10.9 mM−1s−1, respectively, at 0.47 T) and low hemoagglutination activity. The insignificant leaching of Mn2+ ions from the NPs correlates with their insignificant effect on the cell viability of both M-HeLa and Chang Liver cell lines. The T1- and T2-weighted contrast ability of F-127–K4−2xMnxRe6Q8 NPs was demonstrated through the measurements of phantoms at whole body 1.5 T scanner.
Collapse
Affiliation(s)
- Bulat Salavatovich Akhmadeev
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., 420088 Kazan, Russia; (I.R.N.); (K.V.K.); (A.D.V.); (T.P.G.); (A.T.G.); (M.K.K.); (R.R.Z.); (A.R.M.)
- Correspondence:
| | - Irek R. Nizameev
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., 420088 Kazan, Russia; (I.R.N.); (K.V.K.); (A.D.V.); (T.P.G.); (A.T.G.); (M.K.K.); (R.R.Z.); (A.R.M.)
| | - Kirill V. Kholin
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., 420088 Kazan, Russia; (I.R.N.); (K.V.K.); (A.D.V.); (T.P.G.); (A.T.G.); (M.K.K.); (R.R.Z.); (A.R.M.)
| | - Alexandra D. Voloshina
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., 420088 Kazan, Russia; (I.R.N.); (K.V.K.); (A.D.V.); (T.P.G.); (A.T.G.); (M.K.K.); (R.R.Z.); (A.R.M.)
| | - Tatyana P. Gerasimova
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., 420088 Kazan, Russia; (I.R.N.); (K.V.K.); (A.D.V.); (T.P.G.); (A.T.G.); (M.K.K.); (R.R.Z.); (A.R.M.)
| | - Aidar T. Gubaidullin
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., 420088 Kazan, Russia; (I.R.N.); (K.V.K.); (A.D.V.); (T.P.G.); (A.T.G.); (M.K.K.); (R.R.Z.); (A.R.M.)
| | - Marsil K. Kadirov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., 420088 Kazan, Russia; (I.R.N.); (K.V.K.); (A.D.V.); (T.P.G.); (A.T.G.); (M.K.K.); (R.R.Z.); (A.R.M.)
| | - Ildus E. Ismaev
- Department of Electronic Instrumentation and Quality Management, A.N. Tupolev Kazan Research Technological University, 420015 Kazan, Russia;
| | - Konstantin A. Brylev
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russia;
| | - Rustem R. Zairov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., 420088 Kazan, Russia; (I.R.N.); (K.V.K.); (A.D.V.); (T.P.G.); (A.T.G.); (M.K.K.); (R.R.Z.); (A.R.M.)
| | - Asiya R. Mustafina
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Str., 420088 Kazan, Russia; (I.R.N.); (K.V.K.); (A.D.V.); (T.P.G.); (A.T.G.); (M.K.K.); (R.R.Z.); (A.R.M.)
| |
Collapse
|
5
|
Zaib S, Areeba BS, Nehal Rana BS, Wattoo JI, Alsaab HO, Alzhrani RM, Awwad NS, Ibrahium HA, Khan I. Nanomedicines Targeting Heat Shock Protein 90 Gene Expression in the Therapy of Breast Cancer. ChemistrySelect 2022. [DOI: 10.1002/slct.202104553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sumera Zaib
- Department of Biochemistry Faculty of Life Sciences University of Central Punjab Lahore 54590 Pakistan
| | - B. S. Areeba
- Department of Biochemistry Faculty of Life Sciences University of Central Punjab Lahore 54590 Pakistan
| | - B. S. Nehal Rana
- Department of Biochemistry Faculty of Life Sciences University of Central Punjab Lahore 54590 Pakistan
| | - Javed Iqbal Wattoo
- Department of Biotechnology Faculty of Life Sciences University of Central Punjab Lahore 54590 Pakistan
| | - Hashem O. Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology Taif University, P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Rami M. Alzhrani
- Department of Pharmaceutics and Industrial Pharmacy College of Pharmacy Taif University, P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Nasser S. Awwad
- Chemistry Department Faculty of Science King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Hala A. Ibrahium
- Biology Department Faculty of Science King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
- Department of Semi Pilot Plant Nuclear Materials Authority P.O. Box 530 El Maadi Egypt
| | - Imtiaz Khan
- Manchester Institute of Biotechnology The University of Manchester 131 Princess Street Manchester M1 7DN United Kingdom
| |
Collapse
|
6
|
Nieto-Argüello A, Medina-Cruz D, Pérez-Ramírez YS, Pérez-García SA, Velasco-Soto MA, Jafari Z, De Leon I, González MU, Huttel Y, Martínez L, Mayoral Á, Webster TJ, García-Martín JM, Cholula-Díaz JL. Composition-Dependent Cytotoxic and Antibacterial Activity of Biopolymer-Capped Ag/Au Bimetallic Nanoparticles against Melanoma and Multidrug-Resistant Pathogens. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:779. [PMID: 35269267 PMCID: PMC8912067 DOI: 10.3390/nano12050779] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023]
Abstract
Nanostructured silver (Ag) and gold (Au) are widely known to be potent biocidal and cytotoxic agents as well as biocompatible nanomaterials. It has been recently reported that combining both metals in a specific chemical composition causes a significant enhancement in their antibacterial activity against antibiotic-resistant bacterial strains, as well as in their anticancer effects, while preserving cytocompatibility properties. In this work, Ag/Au bimetallic nanoparticles over a complete atomic chemical composition range were prepared at 10 at% through a green, highly reproducible, and simple approach using starch as a unique reducing and capping agent. The noble metal nanosystems were thoroughly characterized by different analytical techniques, including UV-visible and FT-IR spectroscopies, XRD, TEM/EDS, XPS and ICP-MS. Moreover, absorption spectra simulations for representative colloidal Ag/Au-NP samples were conducted using FDTD modelling. The antibacterial properties of the bimetallic nanoparticles were determined against multidrug-resistant Escherichia coli and methicillin-resistant Staphylococcus aureus, showing a clear dose-dependent inhibition even at the lowest concentration tested (5 µg/mL). Cytocompatibility assays showed a medium range of toxicity at low and intermediate concentrations (5 and 10 µg/mL), while triggering an anticancer behavior, even at the lowest concentration tested, in a process involving reactive oxygen species production per the nanoparticle Au:Ag ratio. In this manner, this study provides promising evidence that the presently fabricated Ag/Au-NPs should be further studied for a wide range of antibacterial and anticancer applications.
Collapse
Affiliation(s)
- Alfonso Nieto-Argüello
- School of Engineering and Sciences, Tecnologico de Monterrey, Eugenio Garza Sada 2501, Monterrey 64849, NL, Mexico; (A.N.-A.); (Y.S.P.-R.); (M.A.V.-S.); (Z.J.); (I.D.L.)
| | - David Medina-Cruz
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA; (D.M.-C.); (T.J.W.)
| | - Yeremi S. Pérez-Ramírez
- School of Engineering and Sciences, Tecnologico de Monterrey, Eugenio Garza Sada 2501, Monterrey 64849, NL, Mexico; (A.N.-A.); (Y.S.P.-R.); (M.A.V.-S.); (Z.J.); (I.D.L.)
| | - Sergio A. Pérez-García
- Centro de Investigación en Materiales Avanzados, S. C. (CIMAV), Unidad Monterrey, Alianza Norte 202, Apodaca 66628, NL, Mexico;
| | - Miguel A. Velasco-Soto
- School of Engineering and Sciences, Tecnologico de Monterrey, Eugenio Garza Sada 2501, Monterrey 64849, NL, Mexico; (A.N.-A.); (Y.S.P.-R.); (M.A.V.-S.); (Z.J.); (I.D.L.)
| | - Zeinab Jafari
- School of Engineering and Sciences, Tecnologico de Monterrey, Eugenio Garza Sada 2501, Monterrey 64849, NL, Mexico; (A.N.-A.); (Y.S.P.-R.); (M.A.V.-S.); (Z.J.); (I.D.L.)
| | - Israel De Leon
- School of Engineering and Sciences, Tecnologico de Monterrey, Eugenio Garza Sada 2501, Monterrey 64849, NL, Mexico; (A.N.-A.); (Y.S.P.-R.); (M.A.V.-S.); (Z.J.); (I.D.L.)
| | - María Ujué González
- Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, 28760 Tres Cantos, Spain; (M.U.G.); (J.M.G.-M.)
| | - Yves Huttel
- Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC, Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain; (Y.H.); (L.M.)
| | - Lidia Martínez
- Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC, Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain; (Y.H.); (L.M.)
| | - Álvaro Mayoral
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Pedro Cerbuna, 50009 Zaragoza, Spain;
- Laboratorio de Microscopías Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
- Center for High-Resolution Electron Microscopy (CħEM), School of Physical Science and Technology (SPST), ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Thomas J. Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA; (D.M.-C.); (T.J.W.)
| | - José M. García-Martín
- Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, 28760 Tres Cantos, Spain; (M.U.G.); (J.M.G.-M.)
| | - Jorge L. Cholula-Díaz
- School of Engineering and Sciences, Tecnologico de Monterrey, Eugenio Garza Sada 2501, Monterrey 64849, NL, Mexico; (A.N.-A.); (Y.S.P.-R.); (M.A.V.-S.); (Z.J.); (I.D.L.)
| |
Collapse
|
7
|
Mallik R, Saha M, Mukherjee C. Porous Silica Nanospheres with a Confined Mono(aquated) Mn(II)-Complex: A Potential T1- T2 Dual Contrast Agent for Magnetic Resonance Imaging. ACS APPLIED BIO MATERIALS 2021; 4:8356-8367. [PMID: 35005912 DOI: 10.1021/acsabm.1c00937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Magnetic resonance imaging has emerged as an indispensable imaging modality for the early-stage diagnosis of many diseases. The imaging in the presence of a contrast agent is always advantageous, as it mitigates the low-sensitivity issue of the measurements and provides excellent contrast in the acquired images even in a short acquisition time. However, the stability and high relaxivity of the contrast agents remained a challenge. Here, molecules of a mononuclear, mono(aquated), thermodynamically stable [log KMnL = 14.80(7) and pMn = 8.97] Mn(II)-complex (1), based on a hexadentate pyridine-picolinate unit-containing ligand (H2PyDPA), were confined within a porous silica nanosphere in a noncovalent fashion to render a stable nanosystem, complex 1@SiO2NP. The entrapped complex 1 (complex 1@SiO2) exhibited r1 = 8.46 mM-1 s-1 and r2 = 33.15 mM-1 s-1 at pH = 7.4, 25 °C, and 1.41 T in N-(2-hydroxyethyl)piperazine-N'-ethanesulfonic acid buffer. The values were about 2.9 times higher compared to the free (unentrapped)-complex 1 molecules. The synthesized complex 1@SiO2NP interacted significantly with albumin protein and consequently boosted both the relaxivity values to r1 = 24.76 mM-1 s-1 and r2 = 63.96 mM-1 s-1 at pH = 7.4, 37 °C, and 1.41 T. The kinetic inertness of the entrapped molecules was established by recognizing no appreciable change in the r1 value upon challenging complex 1@SiO2NP with 30 and 40 times excess of Zn(II) ions at pH 6 and 25 °C. The water molecule coordinated to the Mn(II) ion in complex 1@SiO2 was also impervious to the physiologically relevant anions (bicarbonate, biphosphate, and citrate) and pH of the medium. Thus, it ensured the availability of the inner-coordination site of complex 1 for the coordination of water molecules in the biological media. The concentration-dependent changes in image intensities in T1- and T2-weighted phantom images and uptake of the nanoparticles by the HeLa cell put forward the biocompatible complex 1@SiO2NP as a potential dual-mode MRI contrast agent, an alternative to Gd(III)-containing contrast agents.
Collapse
Affiliation(s)
- Riya Mallik
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Muktashree Saha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Chandan Mukherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
8
|
Dahanayake V, Lyons T, Kerwin B, Rodriguez O, Albanese C, Parasido E, Lee Y, Keuren EV, Li L, Maxey E, Paunesku T, Woloschak G, Stoll SL. Paramagnetic Mn 8Fe 4- co-Polystyrene Nanobeads as a Potential T 1-T 2 Multimodal Magnetic Resonance Imaging Contrast Agent with In Vivo Studies. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39042-39054. [PMID: 34375073 PMCID: PMC10506655 DOI: 10.1021/acsami.1c09232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In developing a cluster-nanocarrier design, as a magnetic resonance imaging contrast agent, we have investigated the enhanced relaxivity of a manganese and iron-oxo cluster grafted within a porous polystyrene nanobead with increased relaxivity due to a higher surface area. The synthesis of the cluster-nanocarrier for the cluster Mn8Fe4O12(O2CC6H4CH═CH2)16(H2O)4, cross-linked with polystyrene (the nanocarrier), under miniemulsion conditions is described. By including a branched hydrophobe, iso-octane, the resulting nanobeads are porous and ∼70 nm in diameter. The increased surface area of the nanobeads compared to nonporous nanobeads leads to an enhancement in relaxivity; r1 increases from 3.8 to 5.2 ± 0.1 mM-1 s-1, and r2 increases from 11.9 to 50.1 ± 4.8 mM-1 s-1, at 9.4 teslas, strengthening the potential for T1 and T2 imaging. Several metrics were used to assess stability, and the porosity produced no reduction in metal stability. Synchrotron X-ray fluorescence microscopy was used to demonstrate that the nanobeads remain intact in vivo. In depth, physicochemical characteristics were determined, including extensive pharmacokinetics, in vivo imaging, and systemic biodistribution analysis.
Collapse
Affiliation(s)
- Vidumin Dahanayake
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| | - Trevor Lyons
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| | - Brendan Kerwin
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| | - Olga Rodriguez
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C. 20057, United States
| | - Christopher Albanese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C. 20057, United States
- Department of Radiology, Georgetown University Medical Center, Washington, D.C. 20057, United States
| | - Erika Parasido
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C. 20057, United States
| | - Yichien Lee
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C. 20057, United States
| | - Edward Van Keuren
- Department of Physics and Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| | - Luxi Li
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Evan Maxey
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Tatjana Paunesku
- Department of Radiation Oncology, Northwestern University, 303 E. Chicago Ave., Chicago, Illinois 60611, United States
| | - Gayle Woloschak
- Department of Radiation Oncology, Northwestern University, 303 E. Chicago Ave., Chicago, Illinois 60611, United States
| | - Sarah L Stoll
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| |
Collapse
|
9
|
Hübner R, Paretzki A, von Kiedrowski V, Maspero M, Cheng X, Davarci G, Braun D, Damerow H, Judmann B, Filippou V, Dallanoce C, Schirrmacher R, Wängler B, Wängler C. PESIN Conjugates for Multimodal Imaging: Can Multimerization Compensate Charge Influences on Cell Binding Properties? A Case Study. Pharmaceuticals (Basel) 2021; 14:ph14060531. [PMID: 34199635 PMCID: PMC8226452 DOI: 10.3390/ph14060531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
Recently, anionic charges were found to negatively influence the in vitro gastrin-releasing peptide receptor (GRPR) binding parameters of dually radioisotope and fluorescent dye labeled GRPR-specific peptide dimers. From this, the question arose if this adverse impact on in vitro GRP receptor affinities could be mitigated by a higher valency of peptide multimerization. For this purpose, we designed two different hybrid multimodal imaging units (MIUs), comprising either one or two click chemistry-compatible functional groups and reacted them with PESIN (PEG3-BBN7-14, PEG = polyethylene glycol) dimers to obtain a dually labeled peptide homodimer or homotetramer. Using this approach, other dually labeled peptide monomers, dimers, and tetramers can also be obtained, and the chelator and fluorescent dye can be adapted to specific requirements. The MIUs, as well as their peptidic conjugates, were evaluated in terms of their photophysical properties, radiolabeling efficiency with 68Ga and 64Cu, hydrophilicity, and achievable GRP receptor affinities. Here, the hydrophilicity and the GRP receptor binding affinities were found to be especially strongly influenced by the number of negative charges and peptide copies, showing logD (1-octanol-water-distribution coefficient) and IC50 (half maximal inhibitory concentration) values of -2.2 ± 0.1 and 59.1 ± 1.5 nM for the homodimer, and -1.9 ± 0.1 and 99.8 ± 3.2 nM for the homotetramer, respectively. From the obtained data, it can be concluded that the adverse influence of negatively charged building blocks on the in vitro GRP receptor binding properties of dually labeled PESIN multimers can, at least partly, be compensated for by the number of introduced peptide binding motives and the used molecular design.
Collapse
Affiliation(s)
- Ralph Hübner
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (M.M.); (D.B.); (H.D.); (B.J.)
- Institute of Inorganic Chemistry, University Stuttgart, Pfaffenwaldring 55, 70550 Stuttgart, Germany; (A.P.); (V.F.)
- Correspondence: (R.H.); (C.W.)
| | - Alexa Paretzki
- Institute of Inorganic Chemistry, University Stuttgart, Pfaffenwaldring 55, 70550 Stuttgart, Germany; (A.P.); (V.F.)
| | - Valeska von Kiedrowski
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (V.v.K.); (X.C.); (G.D.); (B.W.)
| | - Marco Maspero
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (M.M.); (D.B.); (H.D.); (B.J.)
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section “Pietro Pratesi”, University of Milan, Via L. Mangiagalli 25, 20133 Milan, Italy;
| | - Xia Cheng
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (V.v.K.); (X.C.); (G.D.); (B.W.)
| | - Güllü Davarci
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (V.v.K.); (X.C.); (G.D.); (B.W.)
| | - Diana Braun
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (M.M.); (D.B.); (H.D.); (B.J.)
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (V.v.K.); (X.C.); (G.D.); (B.W.)
| | - Helen Damerow
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (M.M.); (D.B.); (H.D.); (B.J.)
| | - Benedikt Judmann
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (M.M.); (D.B.); (H.D.); (B.J.)
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (V.v.K.); (X.C.); (G.D.); (B.W.)
| | - Vasileios Filippou
- Institute of Inorganic Chemistry, University Stuttgart, Pfaffenwaldring 55, 70550 Stuttgart, Germany; (A.P.); (V.F.)
| | - Clelia Dallanoce
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section “Pietro Pratesi”, University of Milan, Via L. Mangiagalli 25, 20133 Milan, Italy;
| | - Ralf Schirrmacher
- Department of Oncology, Division of Oncological Imaging, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada;
| | - Björn Wängler
- Molecular Imaging and Radiochemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (V.v.K.); (X.C.); (G.D.); (B.W.)
| | - Carmen Wängler
- Biomedical Chemistry, Department of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (M.M.); (D.B.); (H.D.); (B.J.)
- Correspondence: (R.H.); (C.W.)
| |
Collapse
|
10
|
Usman A. Nanoparticle enhanced optical biosensing technologies for Prostate Specific Antigen biomarker detection. IEEE Rev Biomed Eng 2020; 15:122-137. [PMID: 33136544 DOI: 10.1109/rbme.2020.3035273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Prostate Cancer (PCa) is one of the deadliest forms of Cancer among men. Early screening process for PCa is primarily conducted with the help of a FDA approved biomarker known as Prostate Specific Antigen (PSA). The PSA-based screening is challenged with the inability to differentiate between the cancerous PSA and Benign Prostatic Hyperplasia (BPH), resulting in high rates of false-positives. Optical techniques such as optical absorbance, scattering, surface plasmon resonance (SPR), and fluorescence have been extensively employed for Cancer diagnostic applications. One of the most important diagnostic applications involves utilization of nanoparticles (NPs) for highly specific, sensitive, rapid, multiplexed, and high performance Cancer detection and quantification. The incorporation of NPs with these optical biosensing techniques allow realization of low cost, point-of-care, highly sensitive, and specific early cancer detection technologies, especially for PCa. In this work, the current state-of-the-art, challenges, and efforts made by the researchers for realization of low cost, point-of-care (POC), highly sensitive, and specific NP enhanced optical biosensing technologies for PCa detection using PSA biomarker are discussed and analyzed.
Collapse
|
11
|
Sartaj A, Baboota S, Ali J. Nanomedicine: A Promising Avenue for the Development of Effective Therapy for Breast Cancer. Curr Cancer Drug Targets 2020; 20:603-615. [PMID: 32228423 DOI: 10.2174/1568009620666200331124113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/26/2020] [Accepted: 03/10/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE Breast cancer is the most probable cancer among women. However, the available treatment is based on targeting different stages of breast cancer viz., radiation therapy, hormonal therapy, chemotherapy, and surgical interventions, which have some limitations. The available chemotherapeutics are associated with problems like low solubility, low permeability, high first-pass metabolism, and P-glycoprotein efflux. Hence, the aforementioned restrictions lead to ineffective treatment. Multiple chemotherapeutics can also cause resistance in tumors. So, the purpose is to develop an effective therapeutic regimen for the treatment of breast cancer by applying a nanomedicinal approach. METHODS This review has been conducted on a systematic search strategy, based on relevant literature available on Pub Med, MedlinePlus, Google Scholar, and Sciencedirect up to November 2019 using keywords present in abstract and title of the review. As per our inclusion and exclusion criteria, 226 articles were screened. Among 226, a total of 40 articles were selected for this review. RESULTS The significant findings with the currently available treatment is that the drug, besides its distribution to the target-specific site, also distributes to healthy cells, which results in severe side effects. Moreover, the drug is less bioavailable at the site of action; therefore, to overcome this, a high dose is required, which again causes side effects and lower the benefits. Nanomedicinal approaches give an alternative approach to avoid the associated problems of available chemotherapeutics treatment of breast cancer. CONCLUSION The nanomedicinal strategies are useful over the conventional treatment of breast cancer and deliver a target-specific drug-using different novel drug delivery approaches.
Collapse
Affiliation(s)
- Ali Sartaj
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi- 110062, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi- 110062, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi- 110062, India
| |
Collapse
|
12
|
Cordani M, Strippoli R, Somoza Á. Nanomaterials as Inhibitors of Epithelial Mesenchymal Transition in Cancer Treatment. Cancers (Basel) 2019; 12:E25. [PMID: 31861725 PMCID: PMC7017008 DOI: 10.3390/cancers12010025] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
Abstract: Epithelial-mesenchymal transition (EMT) has emerged as a key regulator of cell invasion and metastasis in cancers. Besides the acquisition of migratory/invasive abilities, the EMT process is tightly connected with the generation of cancer stem cells (CSCs), thus contributing to chemoresistance. However, although EMT represents a relevant therapeutic target for cancer treatment, its application in the clinic is still limited due to various reasons, including tumor-stage heterogeneity, molecular-cellular target specificity, and appropriate drug delivery. Concerning this last point, different nanomaterials may be used to counteract EMT induction, providing novel therapeutic tools against many different cancers. In this review, (1) we discuss the application of various nanomaterials for EMT-based therapies in cancer, (2) we summarize the therapeutic relevance of some of the proposed EMT targets, and (3) we review the potential benefits and weaknesses of each approach.
Collapse
Affiliation(s)
- Marco Cordani
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy;
- National Institute for Infectious Diseases “Lazzaro Spallanzani” I.R.C.C.S., 00149 Rome, Italy
| | - Álvaro Somoza
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain
- CNB-CSIC-IMDEA Nanociencia Associated Unit “Unidad de Nanobiotecnología”, 28049 Madrid, Spain
| |
Collapse
|
13
|
Dahanayake V, Pornrungroj C, Pablico-Lansigan M, Hickling WJ, Lyons T, Lah D, Lee Y, Parasido E, Bertke JA, Albanese C, Rodriguez O, Van Keuren E, Stoll SL. Paramagnetic Clusters of Mn 3(O 2CCH 3) 6(Bpy) 2 in Polyacrylamide Nanobeads as a New Design Approach to a T 1- T 2 Multimodal Magnetic Resonance Imaging Contrast Agent. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18153-18164. [PMID: 30964631 PMCID: PMC8515904 DOI: 10.1021/acsami.9b03216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
There is an increasing need for gadolinium-free magnetic resonance imaging (MRI) contrast agents, particularly for patients suffering from chronic kidney disease. Using a cluster-nanocarrier combination, we have identified a novel approach to the design of biomedical nanomaterials and report here the criteria for the cluster and the nanocarrier and the advantages of this combination. We have investigated the relaxivity of the following manganese oxo clusters: the parent cluster Mn3(O2CCH3)6(Bpy)2 (1) where Bpy = 2,2'-bipyridine and three new analogs, Mn3(O2CC6H4CH═CH2)6(Bpy)2 (2), Mn3(O2CC(CH3)═CH2)6(Bpy)2 (3), and Mn3O(O2CCH3)6(Pyr)2 (4) where Pyr = pyridine. The parent cluster, Mn3(O2CCH3)6(Bpy)2 (1), had impressive relaxivity ( r1 = 6.9 mM-1 s-1, r2 = 125 mM-1 s-1) and was found to be the most amenable for the synthesis of cluster-nanocarrier nanobeads. Using the inverse miniemulsion polymerization technique (1) in combination with the hydrophilic monomer acrylamide, we synthesized nanobeads (∼125 nm diameter) with homogeneously dispersed clusters within the polyacrylamide matrix (termed Mn3Bpy-PAm). The nanobeads were surface-modified by co-polymerization with an amine-functionalized monomer. This enabled various postsynthetic modifications, for example, to attach a near-IR dye, Cyanine7, as well as a targeting agent. When evaluated as a potential multimodal MRI contrast agent, high relaxivity and contrast were observed with r1 = 54.4 mM-1 s-1 and r2 = 144 mM-1 s-1, surpassing T1 relaxivity of clinically used Gd-DTPA chelates as well as comparable T2 relaxivity to iron oxide microspheres. Physicochemical properties, cellular uptake, and impacts on cell viability were also investigated.
Collapse
Affiliation(s)
- Vidumin Dahanayake
- Department of Chemistry, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets NW, Washington, DC 20057, United States
| | - Chanon Pornrungroj
- Department of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets NW, Washington, DC 20057, United States
- IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Michele Pablico-Lansigan
- Department of Chemistry, American University, 4400 Massachusetts Avenue, NW, Washington, DC 20016, United States
| | - William J. Hickling
- Department of Chemistry, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets NW, Washington, DC 20057, United States
| | - Trevor Lyons
- Department of Chemistry, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets NW, Washington, DC 20057, United States
| | - David Lah
- Department of Chemistry, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets NW, Washington, DC 20057, United States
| | - Yichien Lee
- Department of Oncology, Lombardi Comprehensive Cancer Center and Center for Translational Imaging, Georgetown University Medical Center, Washington, DC 20057, United States
| | - Erika Parasido
- Department of Oncology, Lombardi Comprehensive Cancer Center and Center for Translational Imaging, Georgetown University Medical Center, Washington, DC 20057, United States
| | - Jeffery A. Bertke
- Department of Chemistry, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets NW, Washington, DC 20057, United States
| | - Christopher Albanese
- Department of Oncology, Lombardi Comprehensive Cancer Center and Center for Translational Imaging, Georgetown University Medical Center, Washington, DC 20057, United States
| | - Olga Rodriguez
- Department of Oncology, Lombardi Comprehensive Cancer Center and Center for Translational Imaging, Georgetown University Medical Center, Washington, DC 20057, United States
| | - Edward Van Keuren
- Department of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets NW, Washington, DC 20057, United States
| | - Sarah L. Stoll
- Department of Chemistry, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets NW, Washington, DC 20057, United States
- Corresponding Author:
| |
Collapse
|
14
|
Cordani M, Somoza Á. Targeting autophagy using metallic nanoparticles: a promising strategy for cancer treatment. Cell Mol Life Sci 2019; 76:1215-1242. [PMID: 30483817 PMCID: PMC6420884 DOI: 10.1007/s00018-018-2973-y] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/20/2018] [Indexed: 02/08/2023]
Abstract
Despite the extensive genetic and phenotypic variations present in the different tumors, they frequently share common metabolic alterations, such as autophagy. Autophagy is a self-degradative process in response to stresses by which damaged macromolecules and organelles are targeted by autophagic vesicles to lysosomes and then eliminated. It is known that autophagy dysfunctions can promote tumorigenesis and cancer development, but, interestingly, its overstimulation by cytotoxic drugs may also induce cell death and chemosensitivity. For this reason, the possibility to modulate autophagy may represent a valid therapeutic approach to treat different types of cancers and a variety of clinical trials, using autophagy modulators, are currently employed. On the other hand, recent progress in nanotechnology offers plenty of tools to fight cancer with innovative and efficient therapeutic agents by overcoming obstacles usually encountered with traditional drugs. Interestingly, nanomaterials can modulate autophagy and have been exploited as therapeutic agents against cancer. In this article, we summarize the most recent advances in the application of metallic nanostructures as potent modulators of autophagy process through multiple mechanisms, stressing their therapeutic implications in cancer diseases. For this reason, we believe that autophagy modulation with nanoparticle-based strategies would acquire clinical relevance in the near future, as a complementary therapy for the treatment of cancers and other diseases.
Collapse
Affiliation(s)
- Marco Cordani
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), CNB-CSIC-IMDEA Nanociencia Associated Unit "Unidad de Nanobiotecnología", Madrid, Spain.
- Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia), Faraday 9, Office 129, Lab 137 Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain.
| | - Álvaro Somoza
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), CNB-CSIC-IMDEA Nanociencia Associated Unit "Unidad de Nanobiotecnología", Madrid, Spain.
- Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia), Faraday 9, Office 129, Lab 137 Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
15
|
Sayes CM, Hickey AJ. Perspectives for Characterizing Drug Component of Theranostic Products Containing Nanomaterials. Bioanalysis 2019. [DOI: 10.1007/978-3-030-01775-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
16
|
Antimicrobial peptides, nanotechnology, and natural metabolites as novel approaches for cancer treatment. Pharmacol Ther 2018; 183:160-176. [DOI: 10.1016/j.pharmthera.2017.10.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
Dreussi E, Ecca F, Scarabel L, Gagno S, Toffoli G. Immunogenetics of prostate cancer: a still unexplored field of study. Pharmacogenomics 2018; 19:263-283. [PMID: 29325503 DOI: 10.2217/pgs-2017-0163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The immune system is a double-edged sword with regard to the prostate cancer (PCa) battle. Immunogenetics, the study of the potential role of immune-related polymorphisms, is taking its first steps in the treatment of this malignancy. This review summarizes the most recent papers addressing the potential of immunogenetics in PCa, reporting immune-related polymorphisms associated with tumor aggressiveness, treatment toxicity and patients' prognosis. With some peculiarities, RNASEL, IL-6, IL-10, IL-1β and MMP7 have arisen as the most significant biomarkers in PCa treatment and management, having a potential clinical role. Validation prospective clinical studies are required to translate immunogenetics into precision treatment of PCa.
Collapse
Affiliation(s)
- Eva Dreussi
- Department of Experimental & Clinical Pharmacology, Centro di Riferimento Oncologico, National Cancer Institute, Aviano, 33081, Italy
| | - Fabrizio Ecca
- Department of Experimental & Clinical Pharmacology, Centro di Riferimento Oncologico, National Cancer Institute, Aviano, 33081, Italy
| | - Lucia Scarabel
- Department of Experimental & Clinical Pharmacology, Centro di Riferimento Oncologico, National Cancer Institute, Aviano, 33081, Italy
| | - Sara Gagno
- Department of Experimental & Clinical Pharmacology, Centro di Riferimento Oncologico, National Cancer Institute, Aviano, 33081, Italy
| | - Giuseppe Toffoli
- Department of Experimental & Clinical Pharmacology, Centro di Riferimento Oncologico, National Cancer Institute, Aviano, 33081, Italy
| |
Collapse
|
18
|
Abrahamse H, Kruger CA, Kadanyo S, Mishra A. Nanoparticles for Advanced Photodynamic Therapy of Cancer. Photomed Laser Surg 2017; 35:581-588. [DOI: 10.1089/pho.2017.4308] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Cherie Ann Kruger
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Sania Kadanyo
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Ajay Mishra
- Nanotechnology and Water Sustainability Research Unit, College of Science, Engineering and Technology, University of South Africa, Johannesburg, South Africa
| |
Collapse
|
19
|
Ahmad F, Zhou Y. Pitfalls and Challenges in Nanotoxicology: A Case of Cobalt Ferrite (CoFe 2O 4) Nanocomposites. Chem Res Toxicol 2017; 30:492-507. [PMID: 28118545 DOI: 10.1021/acs.chemrestox.6b00377] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Nanotechnology is developing at a rapid pace with promises of a brilliant socio-economic future. The apprehensions of vivid future involvement with nanotechnology make nanoobjects ubiquitous in the macroscopic world of humans. Nanotechnology helps us to visualize the new mysterious horizons in engineering, sophisticated electronics, environmental remediation, biosensing, and nanomedicine. In all these hotspots, cobalt ferrite (CoFe) nanoparticles (NPs) are outstanding contestants because of their astonishing controllable physicochemical and magnetic properties with ease of synthesis methods. The extensive use of CoFe NPs may result in CoFe NPs easily penetrating the human body unintentionally by ingestion, inhalation, adsorption, etc. and intentionally being instilled into the human body during biomedical diagnostics and treatment. After being housed in the human body, it might induce oxidative stress, cytotoxicity, genotoxicity, inflammation, apoptosis, and developmental, metabolic and hormonal abnormalities. In this review, we compiled the toxicity knowledge of CoFe NPs aimed to provide the safe usage of this breed of nanomaterials.
Collapse
Affiliation(s)
- Farooq Ahmad
- College of Chemical Engineering, Zhejiang University of Technology , Hangzhou 310032, China.,State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Ying Zhou
- College of Chemical Engineering, Zhejiang University of Technology , Hangzhou 310032, China.,Research Center of Analysis and Measurement, Zhejiang University of Technology , 18 Chaowang Road, Hangzhou 310032, China
| |
Collapse
|
20
|
Daeyaert F, Deem MW. A Pareto Algorithm for Efficient De Novo Design of Multi-functional Molecules. Mol Inform 2016; 36. [PMID: 28124835 DOI: 10.1002/minf.201600044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/06/2016] [Indexed: 12/19/2022]
Abstract
We have introduced a Pareto sorting algorithm into Synopsis, a de novo design program that generates synthesizable molecules with desirable properties. We give a detailed description of the algorithm and illustrate its working in 2 different de novo design settings: the design of putative dual and selective FGFR and VEGFR inhibitors, and the successful design of organic structure determining agents (OSDAs) for the synthesis of zeolites. We show that the introduction of Pareto sorting not only enables the simultaneous optimization of multiple properties but also greatly improves the performance of the algorithm to generate molecules with hard-to-meet constraints. This in turn allows us to suggest approaches to address the problem of false positive hits in de novo structure based drug design by introducing structural and physicochemical constraints in the designed molecules, and by forcing essential interactions between these molecules and their target receptor.
Collapse
Affiliation(s)
- Frits Daeyaert
- FD Computing, Stijn Streuvelsstraat 64, 2340, Beerse, Belgium.,Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX, USA
| | - Micheal W Deem
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX, USA
| |
Collapse
|
21
|
Shukla SK, Shukla SK, Govender PP, Giri NG. Biodegradable polymeric nanostructures in therapeutic applications: opportunities and challenges. RSC Adv 2016. [DOI: 10.1039/c6ra15764e] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Biodegradable polymeric nanostructures (BPNs) have shown great promise in different therapeutic applications such as diagnosis, imaging, drug delivery, cosmetics, organ implants, and tissue engineering.
Collapse
Affiliation(s)
- S. K. Shukla
- Department of Polymer Science
- Bhaskaracharya College of Applied Sciences
- University of Delhi
- Delhi-110075
- India
| | - Sudheesh K. Shukla
- Department of Applied Chemistry
- University of Johannesburg
- Johannesburg
- South Africa
| | - Penny P. Govender
- Department of Applied Chemistry
- University of Johannesburg
- Johannesburg
- South Africa
| | - N. G. Giri
- Department of Chemistry
- Shivaji College
- University of Delhi
- New Delhi-110027
- India
| |
Collapse
|
22
|
Chen R, Zhao Y, Huang Y, Yang Q, Zeng X, Jiang W, Liu J, Thrasher JB, Forrest ML, Li B. Nanomicellar TGX221 blocks xenograft tumor growth of prostate cancer in nude mice. Prostate 2015; 75:593-602. [PMID: 25620467 PMCID: PMC4376584 DOI: 10.1002/pros.22941] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 11/10/2014] [Indexed: 11/09/2022]
Abstract
BACKGROUND Combination of androgen ablation along with early detection and surgery has made prostate cancer highly treatable at the initial stage. However, this cancer remains the second leading cause of cancer death among American men due to castration-resistant progression, suggesting that novel therapeutic agents are urgently needed for this life-threatening condition. Phosphatidylinositol 3-kinase p110β is a major cellular signaling molecule and has been identified as a critical factor in prostate cancer progression. In a recent report, we established a nanomicelle-based strategy to deliver p110β-specific inhibitor TGX221 to prostate cancer cells by conjugating the surface of nanomicelles with a RNA aptamer against prostate specific membrane antigen (PSMA) present in all clinical prostate cancers. In this study, we tested this nanomicellar TGX221 for its in vivo anti-tumor effect in mouse xenograft models. METHODS Prostate cancer cell lines LAPC-4, LNCaP, C4-2 and 22RV1 were used to establish subcutaneous xenograft tumors in nude mice. Paraffin sections from xenograft tumor specimens were used in immunohistochemistry assays to detect AKT phosphorylation, cell proliferation marker Ki67 and proliferating cell nuclear antigen (PCNA), as well as 5-bromo-2-deoxyuridine (BrdU) incorporation. Quantitative PCR assay was conducted to determine prostate-specific antigen (PSA) gene expression in xenograft tumors. RESULTS Although systemic delivery of unconjugated TGX221 significantly reduced xenograft tumor growth in nude mice compared to solvent control, the nanomicellar TGX221 conjugates completely blocked tumor growth of xenografts derived from multiple prostate cancer cell lines. Further analyses revealed that AKT phosphorylation and cell proliferation indexes were dramatically reduced in xenograft tumors received nanomicellar TGX221 compared to xenograft tumors received unconjugated TGX221 treatment. There was no noticeable side effect by gross observation or at microscopic level of organ tissue section. CONCLUSION These data strongly suggest that prostate cancer cell-targeted nanomicellar TGX221 is an effective anti-cancer agent for prostate cancer.
Collapse
Affiliation(s)
- Ruibao Chen
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS 66160
- Department of Urology, Tongji Hospital, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Yunqi Zhao
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047
| | - Yan Huang
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS 66160
| | - Qiuhong Yang
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047
| | - Xing Zeng
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS 66160
- Department of Urology, Tongji Hospital, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Wencong Jiang
- Department of Urology, The Affiliated Hospital, Guangdong Medical College, Zhanjiang 524001, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Huazhong University of Science & Technology, Wuhan 430030, China
| | - J. Brantley Thrasher
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS 66160
| | - M. Laird Forrest
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047
| | - Benyi Li
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS 66160
- Department of Urology, The Affiliated Hospital, Guangdong Medical College, Zhanjiang 524001, China
- Corresponding author: Benyi Li, MD/PhD, KUMC Urology, 3901 Rainbow Blvd, MS 3035, Kansas City, KS 66160. . Tel: 913.588.4773
| |
Collapse
|
23
|
Lin YS, Lee MY, Yang CH, Huang KS. Active targeted drug delivery for microbes using nano-carriers. Curr Top Med Chem 2015; 15:1525-31. [PMID: 25877093 PMCID: PMC4997950 DOI: 10.2174/1568026615666150414123157] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/29/2014] [Accepted: 12/15/2014] [Indexed: 01/12/2023]
Abstract
Although vaccines and antibiotics could kill or inhibit microbes, many infectious diseases remain difficult to treat because of acquired resistance and adverse side effects. Nano-carriers-based technology has made significant progress for a long time and is introducing a new paradigm in drug delivery. However, it still has some challenges like lack of specificity toward targeting the infectious site. Nanocarriers utilized targeting ligands on their surface called 'active target' provide the promising way to solve the problems like accelerating drug delivery to infectious areas and preventing toxicity or side-effects. In this mini review, we demonstrate the recent studies using the active targeted strategy to kill or inhibit microbes. The four common nano-carriers (e.g. liposomes, nanoparticles, dendrimers and carbon nanotubes) delivering encapsulated drugs are introduced.
Collapse
Affiliation(s)
| | | | | | - Keng-Shiang Huang
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan.
| |
Collapse
|
24
|
Lamch L, Bazylińska U, Kulbacka J, Pietkiewicz J, Bieżuńska-Kusiak K, Wilk KA. Polymeric micelles for enhanced Photofrin II ® delivery, cytotoxicity and pro-apoptotic activity in human breast and ovarian cancer cells. Photodiagnosis Photodyn Ther 2014; 11:570-85. [PMID: 25449154 DOI: 10.1016/j.pdpdt.2014.10.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND Searching for photodynamic therapy (PDT) - effective nanocarriers which enable a photosensitizer to be selectively delivered to tumor cells with enhanced bioavailability and diminished dark cytotoxicity is of current interest. The main objective of this study is to evaluate newly designed mixed polymeric micelles based on Pluronics P123 and F127 for the improved delivery of Photofrin II(®) (Ph II(®)) to circumvent unfavorable effects overcoming multidrug resistance (MDR) in tumor cells - in breast MCF-7/WT (caspase-3 deficient) and ovarian SKOV-3 (resistant to chemotherapy). METHODS Ph II(®)-loaded micelles were obtained and analyzed for size and morphology, solubilization efficiency, physical stability and in vitro drug release. Intracellular uptake, reactive oxygen species (ROS) generation, mitochondrial oxidoreductive potential and proapoptotic activity (TUNEL assay) studies were evaluated in the examined cancer cells. The preliminary biocompatibility characteristics of all nanocarriers was determined by assessment of their hemolytic activity in human erythrocytes and dark toxicity in cancer cells. RESULTS Dynamic light scattering (DLS) and atomic force microscopy (AFM) confirmed that almost monodisperse, sphere-shaped and nanosized (DH<20 nm) carriers were developed. Biological studies after photodynamic reaction (PDR) with encapsulated Ph II(®) revealed increased ROS level, malondialdehyde (MDA) concentration and protein damage in SKOV-3 and MCF-7/WT cells in comparison to treatment with free Ph II(®). Numerous apoptotic cells were detected after nano-therapy in both cell lines, with observed significant morphological disorders in ovarian cancer cells. In the case of encapsulated Ph II(®) only negligible disruption of human erythrocytes and cancer cells was observed. CONCLUSIONS The obtained biocompatible long-lasting nanocarriers significantly enhance the Photofrin II(®) photodynamic effect and apoptosis in both SKOV-3 and MCF-7/WT cell lines.
Collapse
Affiliation(s)
- Lukasz Lamch
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wroclaw University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Urszula Bazylińska
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wroclaw University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Julita Kulbacka
- Department of Medical Biochemistry, Medical University, Chałubińskiego 10, 50-368 Wrocław, Poland.
| | - Jadwiga Pietkiewicz
- Department of Medical Biochemistry, Medical University, Chałubińskiego 10, 50-368 Wrocław, Poland
| | | | - Kazimiera A Wilk
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wroclaw University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
25
|
Zhao Y, Lin D, Wu F, Guo L, He G, Ouyang L, Song X, Huang W, Li X. Discovery and in vivo evaluation of novel RGD-modified lipid-polymer hybrid nanoparticles for targeted drug delivery. Int J Mol Sci 2014; 15:17565-76. [PMID: 25268623 PMCID: PMC4227178 DOI: 10.3390/ijms151017565] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/22/2014] [Accepted: 09/25/2014] [Indexed: 02/05/2023] Open
Abstract
In the current study, the lipid-shell and polymer-core hybrid nanoparticles (lpNPs) modified by Arg–Gly–Asp(RGD) peptide, loaded with curcumin (Cur), were developed by emulsification-solvent volatilization method. The RGD-modified hybrid nanoparticles (RGD–lpNPs) could overcome the poor water solubility of Cur to meet the requirement of intravenous administration and tumor active targeting. The obtained optimal RGD-lpNPs, composed of PLGA (poly(lactic-co-glycolic acid))–mPEG (methoxyl poly(ethylene- glycol)), RGD–polyethylene glycol (PEG)–cholesterol (Chol) copolymers and lipids, had good entrapment efficiency, submicron size and negatively neutral surface charge. The core-shell structure of RGD–lpNPs was verified by TEM. Cytotoxicity analysis demonstrated that the RGD–lpNPs encapsulated Cur retained potent anti-tumor effects. Flow cytometry analysis revealed the cellular uptake of Cur encapsulated in the RGD–lpNPs was increased for human umbilical vein endothelial cells (HUVEC). Furthermore, Cur loaded RGD–lpNPs were more effective in inhibiting tumor growth in a subcutaneous B16 melanoma tumor model. The results of immunofluorescent and immunohistochemical studies by Cur loaded RGD–lpNPs therapies indicated that more apoptotic cells, fewer microvessels, and fewer proliferation-positive cells were observed. In conclusion, RGD–lpNPs encapsulating Cur were developed with enhanced anti-tumor activity in melanoma, and Cur loaded RGD–lpNPs represent an excellent tumor targeted formulation of Cur which might be an attractive candidate for cancer therapy.
Collapse
Affiliation(s)
- Yinbo Zhao
- State Key Laboratory of Biotherapy, Department of Pharmacy and Urology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Dayong Lin
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China.
| | - Fengbo Wu
- State Key Laboratory of Biotherapy, Department of Pharmacy and Urology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Li Guo
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Gu He
- State Key Laboratory of Biotherapy, Department of Pharmacy and Urology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Liang Ouyang
- State Key Laboratory of Biotherapy, Department of Pharmacy and Urology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Xiangrong Song
- State Key Laboratory of Biotherapy, Department of Pharmacy and Urology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Wei Huang
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiang Li
- State Key Laboratory of Biotherapy, Department of Pharmacy and Urology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
26
|
Kobeissy FH, Gulbakan B, Alawieh A, Karam P, Zhang Z, Guingab-Cagmat JD, Mondello S, Tan W, Anagli J, Wang K. Post-genomics nanotechnology is gaining momentum: nanoproteomics and applications in life sciences. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2014; 18:111-31. [PMID: 24410486 DOI: 10.1089/omi.2013.0074] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The post-genomics era has brought about new Omics biotechnologies, such as proteomics and metabolomics, as well as their novel applications to personal genomics and the quantified self. These advances are now also catalyzing other and newer post-genomics innovations, leading to convergences between Omics and nanotechnology. In this work, we systematically contextualize and exemplify an emerging strand of post-genomics life sciences, namely, nanoproteomics and its applications in health and integrative biological systems. Nanotechnology has been utilized as a complementary component to revolutionize proteomics through different kinds of nanotechnology applications, including nanoporous structures, functionalized nanoparticles, quantum dots, and polymeric nanostructures. Those applications, though still in their infancy, have led to several highly sensitive diagnostics and new methods of drug delivery and targeted therapy for clinical use. The present article differs from previous analyses of nanoproteomics in that it offers an in-depth and comparative evaluation of the attendant biotechnology portfolio and their applications as seen through the lens of post-genomics life sciences and biomedicine. These include: (1) immunosensors for inflammatory, pathogenic, and autoimmune markers for infectious and autoimmune diseases, (2) amplified immunoassays for detection of cancer biomarkers, and (3) methods for targeted therapy and automatically adjusted drug delivery such as in experimental stroke and brain injury studies. As nanoproteomics becomes available both to the clinician at the bedside and the citizens who are increasingly interested in access to novel post-genomics diagnostics through initiatives such as the quantified self, we anticipate further breakthroughs in personalized and targeted medicine.
Collapse
Affiliation(s)
- Firas H Kobeissy
- 1 Center for Neuroproteomics and Biomarkers Research, Department of Psychiatry, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Tárkányi F, Takács S, Ditrói F, Csikai J, Hermanne A, Ignatyuk AV. Activation cross-sections of deuteron induced reactions on (nat)Gd up to 50 MeV. Appl Radiat Isot 2013; 83 Pt A:25-35. [PMID: 24215815 DOI: 10.1016/j.apradiso.2013.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 09/05/2013] [Accepted: 10/14/2013] [Indexed: 11/19/2022]
Abstract
Activation cross-sections are presented for the first time for (nat)Gd(d,xn)(161,160,156(m+)), (154,154m1,154m2,153,152(m+),151(m+))Tb, (nat)Gd(d,x)(159,153,151)Gd and (nat)Gd(d,x)(156)Eu reactions from their respective thresholds up to 50 MeV. The cross-sections were measured by the stacked-foil irradiation technique and by using high resolution γ-ray spectrometry. The measured values were compared with the results of theoretical models calculated by the computer codes ALICE-D, EMPIRE-D and TALYS (data from TENDL library). Integral yields of the reaction products were deduced from the excitation functions.
Collapse
Affiliation(s)
- F Tárkányi
- Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), H-4026 Debrecen, Hungary
| | | | | | | | | | | |
Collapse
|
28
|
Pablico-Lansigan MH, Hickling WJ, Japp EA, Rodriguez OC, Ghosh A, Albanese C, Nishida M, Van Keuren E, Fricke S, Dollahon N, Stoll SL. Magnetic nanobeads as potential contrast agents for magnetic resonance imaging. ACS NANO 2013; 7:9040-8. [PMID: 24047405 DOI: 10.1021/nn403647t] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Metal-oxo clusters have been used as building blocks to form hybrid nanomaterials and evaluated as potential MRI contrast agents. We have synthesized a biocompatible copolymer based on a water stable, nontoxic, mixed-metal-oxo cluster, Mn8Fe4O12(L)16(H2O)4, where L is acetate or vinyl benzoic acid, and styrene. The cluster alone was screened by NMR for relaxivity and was found to be a promising T2 contrast agent, with r1 = 2.3 mM(-1) s(-1) and r2 = 29.5 mM(-1) s(-1). Initial cell studies on two human prostate cancer cell lines, DU-145 and LNCap, reveal that the cluster has low cytotoxicity and may be potentially used in vivo. The metal-oxo cluster Mn8Fe4(VBA)16 (VBA = vinyl benzoic acid) can be copolymerized with styrene under miniemulsion conditions. Miniemulsion allows for the formation of nanometer-sized paramagnetic beads (~80 nm diameter), which were also evaluated as a contrast agent for MRI. These highly monodispersed, hybrid nanoparticles have enhanced properties, with the option for surface functionalization, making them a promising tool for biomedicine. Interestingly, both relaxivity measurements and MRI studies show that embedding the Mn8Fe4 core within a polymer matrix decreases r2 effects with little effect on r1, resulting in a positive T1 contrast enhancement.
Collapse
Affiliation(s)
- Michele H Pablico-Lansigan
- Department of Chemistry, Georgetown University , 37th and O Streets NW, Washington, D.C. 20057, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Liu TW, MacDonald TD, Jin CS, Gold JM, Bristow RG, Wilson BC, Zheng G. Inherently multimodal nanoparticle-driven tracking and real-time delineation of orthotopic prostate tumors and micrometastases. ACS NANO 2013; 7:4221-32. [PMID: 23544841 PMCID: PMC3667620 DOI: 10.1021/nn400669r] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 04/01/2013] [Indexed: 05/18/2023]
Abstract
Prostate cancer is the most common cancer among men and the second cause of male cancer-related deaths. There are currently three critical needs in prostate cancer imaging to personalize cancer treatment: (1) accurate intraprostatic imaging for multiple foci and extra-capsular extent; (2) monitoring local and systemic treatment response and predicting recurrence; and (3) more sensitive imaging of occult prostate cancer bone metastases. Recently, our lab developed porphysomes, inherently multimodal, all-organic nanoparticles with flexible and robust radiochemistry. Herein, we validate the first in vivo application of (64)Cu-porphysomes in clinically relevant orthotopic prostate and bony metastatic cancer models. We demonstrate clear multimodal delineation of orthotopic tumors on both the macro- and the microscopic scales (using both PET and fluorescence) and sensitively detected small bony metastases (<2 mm). The unique and multifaceted properties of porphysomes offers a promising all-in-one prostate cancer imaging agent for tumor detection and treatment response/recurrence monitoring using both radionuclide- and photonic-based strategies.
Collapse
Affiliation(s)
- Tracy W. Liu
- Ontario Cancer Institute, Campbell Family Institute for Cancer Research and Techna Institute, UHN, 610 University Avenue, Toronto, ON Canada M5G 2M9
- Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON Canada M5G 2M9
| | - Thomas D. MacDonald
- Ontario Cancer Institute, Campbell Family Institute for Cancer Research and Techna Institute, UHN, 610 University Avenue, Toronto, ON Canada M5G 2M9
- Department of Pharmaceutical Sciences, University of Toronto, 144 College Street, Toronto, ON Canada M5S 3M2
| | - Cheng S. Jin
- Ontario Cancer Institute, Campbell Family Institute for Cancer Research and Techna Institute, UHN, 610 University Avenue, Toronto, ON Canada M5G 2M9
- Department of Pharmaceutical Sciences, University of Toronto, 144 College Street, Toronto, ON Canada M5S 3M2
| | - Joseph M. Gold
- Ontario Cancer Institute, Campbell Family Institute for Cancer Research and Techna Institute, UHN, 610 University Avenue, Toronto, ON Canada M5G 2M9
- Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON Canada M5G 2M9
| | - Robert G. Bristow
- Ontario Cancer Institute, Campbell Family Institute for Cancer Research and Techna Institute, UHN, 610 University Avenue, Toronto, ON Canada M5G 2M9
- Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON Canada M5G 2M9
- Princess Margaret Cancer Center, UHN, 610 University Avenue, Toronto, ON Canada M5T 2M9
| | - Brian C. Wilson
- Ontario Cancer Institute, Campbell Family Institute for Cancer Research and Techna Institute, UHN, 610 University Avenue, Toronto, ON Canada M5G 2M9
- Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON Canada M5G 2M9
| | - Gang Zheng
- Ontario Cancer Institute, Campbell Family Institute for Cancer Research and Techna Institute, UHN, 610 University Avenue, Toronto, ON Canada M5G 2M9
- Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, ON Canada M5G 2M9
- Department of Pharmaceutical Sciences, University of Toronto, 144 College Street, Toronto, ON Canada M5S 3M2
- Address correspondence to
| |
Collapse
|
30
|
Zamboni WC, Torchilin V, Patri AK, Hrkach J, Stern S, Lee R, Nel A, Panaro NJ, Grodzinski P. Best practices in cancer nanotechnology: perspective from NCI nanotechnology alliance. Clin Cancer Res 2012; 18:3229-41. [PMID: 22669131 PMCID: PMC3916007 DOI: 10.1158/1078-0432.ccr-11-2938] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Historically, treatment of patients with cancer using chemotherapeutic agents has been associated with debilitating and systemic toxicities, poor bioavailability, and unfavorable pharmacokinetics. Nanotechnology-based drug delivery systems, on the other hand, can specifically target cancer cells while avoiding their healthy neighbors, avoid rapid clearance from the body, and be administered without toxic solvents. They hold immense potential in addressing all of these issues, which has hampered further development of chemotherapeutics. Furthermore, such drug delivery systems will lead to cancer therapeutic modalities that are not only less toxic to the patient but also significantly more efficacious. In addition to established therapeutic modes of action, nanomaterials are opening up entirely new modalities of cancer therapy, such as photodynamic and hyperthermia treatments. Furthermore, nanoparticle carriers are also capable of addressing several drug delivery problems that could not be effectively solved in the past and include overcoming formulation issues, multidrug-resistance phenomenon, and penetrating cellular barriers that may limit device accessibility to intended targets, such as the blood-brain barrier. The challenges in optimizing design of nanoparticles tailored to specific tumor indications still remain; however, it is clear that nanoscale devices carry a significant promise toward new ways of diagnosing and treating cancer. This review focuses on future prospects of using nanotechnology in cancer applications and discusses practices and methodologies used in the development and translation of nanotechnology-based therapeutics.
Collapse
Affiliation(s)
- William C Zamboni
- UNC Eshelman School of Pharmacy, UNC Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, UNC Institute for Pharmacogenomics and Individualized Therapy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Liu Y, Bauer AQ, Akers WJ, Sudlow G, Liang K, Shen D, Berezin MY, Culver JP, Achilefu S. Hands-free, wireless goggles for near-infrared fluorescence and real-time image-guided surgery. Surgery 2011; 149:689-98. [PMID: 21496565 DOI: 10.1016/j.surg.2011.02.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 02/10/2011] [Indexed: 11/24/2022]
Abstract
BACKGROUND Current cancer management faces several challenges, including the occurrence of a residual tumor after resection, the use of radioactive materials or high concentrations of blue dyes for sentinel lymph node biopsy, and the use of bulky systems in surgical suites for image guidance. To overcome these limitations, we developed a real-time, intraoperative imaging device that, when combined with near infrared fluorescent molecular probes, can aid in the identification of tumor margins, guide surgical resections, map sentinel lymph nodes, and transfer acquired data wirelessly for remote analysis. METHODS We developed a new compact, wireless, wearable, and battery-operated device that allows for hands-free operation by surgeons. A charge-coupled device-based, consumer-grade night vision viewer was used to develop the detector portion of the device, and the light source portion was developed from a compact headlamp. This piece was retrofitted to provide both near infrared excitation and white light illumination simultaneously. Wireless communication was enabled by integrating a battery-operated, miniature, radio-frequency video transmitter into the system. We applied the device in several types of oncologic surgical procedures in murine models, including sentinel lymph node mapping, fluorescence-guided tumor resection, and surgery under remote expert guidance. RESULTS Unlike conventional imaging instruments, the device displays fluorescence information directly on its eyepiece. When employed in sentinel lymph node mapping, the locations of sentinel lymph nodes were visualized clearly, even with tracer level dosing of a near infrared fluorescent dye (indocyanine green). When used in tumor resection, tumor margins and small nodules invisible to the naked eye were visualized readily. In a simulated, point-of-care setting, tumors were located successfully and removed under remote guidance using the wireless feature of the device. Importantly, the total cost of this prototype system ($1200) is substantially less than existing imaging instruments. CONCLUSION Our results demonstrate the feasibility of using the new device to aid surgical resection of tumors, map sentinel lymph nodes, and facilitate telemedicine.
Collapse
Affiliation(s)
- Yang Liu
- Department of Radiology, Washington University, St. Louis, MO; Department of Biomedical Engineering, Washington University, St. Louis, MO
| | | | | | | | | | | | | | | | | |
Collapse
|