1
|
Godoy DA, Fossi F, Robba C. Neuroworsening in Moderate Traumatic Brain Injury. Neurol Clin 2025; 43:51-63. [PMID: 39547741 DOI: 10.1016/j.ncl.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Patients with moderate traumatic brain injury (TBI) are at high risk for developing intracerebral complications and in particular neuroworsening (NW). NW can be unpredictable and may be an important risk factor for poor neurologic outcome and for increased mortality. NW is often a medical and surgical emergency, and it is, therefore, fundamental to identify patients at risk early because they require strict neuromonitoring and repeated neuroimaging. So far, there is no standardized and validated definition of NW. In this review, we aim to discuss the definition, risk factors, and management of patients with moderate TBI at high risk of NW.
Collapse
Affiliation(s)
- Daniel Agustin Godoy
- Neurointensive Care Unit, Sanatorio Pasteur Medical Center, Catamarca, Argentina
| | - Francesca Fossi
- Neurointensive Care Unit, Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Chiara Robba
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Italy; Neurological and General Intensive Care, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, Genova 16100, Italy.
| |
Collapse
|
2
|
Sigler A, Wu J, Pfaff A, Adetunji O, Nam P, James D, Burton C, Shi H. Repeated Low-Level Blast Exposure Alters Urinary and Serum Metabolites. Metabolites 2023; 13:metabo13050638. [PMID: 37233679 DOI: 10.3390/metabo13050638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
Repeated exposure to low-level blast overpressures can produce biological changes and clinical sequelae that resemble mild traumatic brain injury (TBI). While recent efforts have revealed several protein biomarkers for axonal injury during repetitive blast exposure, this study aims to explore potential small molecule biomarkers of brain injury during repeated blast exposure. This study evaluated a panel of ten small molecule metabolites involved in neurotransmission, oxidative stress, and energy metabolism in the urine and serum of military personnel (n = 27) conducting breacher training with repeated exposure to low-level blasts. The metabolites were analyzed using HPLC-tandem mass spectrometry, and the Wilcoxon signed-rank test was used for statistical analysis to compare the levels of pre-blast and post-blast exposures. Urinary levels of homovanillic acid (p < 0.0001), linoleic acid (p = 0.0030), glutamate (p = 0.0027), and serum N-acetylaspartic acid (p = 0.0006) were found to be significantly altered following repeated blast exposure. Homovanillic acid concentration decreased continuously with subsequent repeat exposure. These results suggest that repeated low-level blast exposures can produce measurable changes in urine and serum metabolites that may aid in identifying individuals at increased risk of sustaining a TBI. Larger clinical studies are needed to extend the generalizability of these findings.
Collapse
Affiliation(s)
- Austin Sigler
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Jiandong Wu
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Annalise Pfaff
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Olajide Adetunji
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Paul Nam
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | | | - Casey Burton
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
- Phelps Health, Rolla, MO 65401, USA
| | - Honglan Shi
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| |
Collapse
|
3
|
Oris C, Kahouadji S, Durif J, Bouvier D, Sapin V. S100B, Actor and Biomarker of Mild Traumatic Brain Injury. Int J Mol Sci 2023; 24:6602. [PMID: 37047574 PMCID: PMC10095287 DOI: 10.3390/ijms24076602] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Mild traumatic brain injury (mTBI) accounts for approximately 80% of all TBI cases and is a growing source of morbidity and mortality worldwide. To improve the management of children and adults with mTBI, a series of candidate biomarkers have been investigated in recent years. In this context, the measurement of blood biomarkers in the acute phase after a traumatic event helps reduce unnecessary CT scans and hospitalizations. In athletes, improved management of sports-related concussions is also sought to ensure athletes' safety. S100B protein has emerged as the most widely studied and used biomarker for clinical decision making in patients with mTBI. In addition to its use as a diagnostic biomarker, S100B plays an active role in the molecular pathogenic processes accompanying acute brain injury. This review describes S100B protein as a diagnostic tool as well as a potential therapeutic target in patients with mTBI.
Collapse
Affiliation(s)
- Charlotte Oris
- Biochemistry and Molecular Genetic Department, University Hospital, F-63000 Clermont-Ferrand, France
- Faculty of Medicine of Clermont-Ferrand, Université Clermont Auvergne, CNRS, Inserm, GReD, F-63000 Clermont-Ferrand, France
| | - Samy Kahouadji
- Biochemistry and Molecular Genetic Department, University Hospital, F-63000 Clermont-Ferrand, France
- Faculty of Medicine of Clermont-Ferrand, Université Clermont Auvergne, CNRS, Inserm, GReD, F-63000 Clermont-Ferrand, France
| | - Julie Durif
- Biochemistry and Molecular Genetic Department, University Hospital, F-63000 Clermont-Ferrand, France
| | - Damien Bouvier
- Biochemistry and Molecular Genetic Department, University Hospital, F-63000 Clermont-Ferrand, France
- Faculty of Medicine of Clermont-Ferrand, Université Clermont Auvergne, CNRS, Inserm, GReD, F-63000 Clermont-Ferrand, France
| | - Vincent Sapin
- Biochemistry and Molecular Genetic Department, University Hospital, F-63000 Clermont-Ferrand, France
- Faculty of Medicine of Clermont-Ferrand, Université Clermont Auvergne, CNRS, Inserm, GReD, F-63000 Clermont-Ferrand, France
| |
Collapse
|
4
|
Kattan D, Barsa C, Mekhijian S, Shakkour Z, Jammoul M, Doumit M, Zabala MCP, Darwiche N, Eid AH, Mechref Y, Wang KK, de Rivero Vaccari JP, Munoz Pareja JC, Kobeissy F. Inflammasomes as biomarkers and therapeutic targets in traumatic brain injury and related-neurodegenerative diseases: A comprehensive overview. Neurosci Biobehav Rev 2023; 144:104969. [PMID: 36423707 PMCID: PMC9805531 DOI: 10.1016/j.neubiorev.2022.104969] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022]
Abstract
Given the ambiguity surrounding traumatic brain injury (TBI) pathophysiology and the lack of any Food and Drug Administration (FDA)-approved neurotherapeutic drugs, there is an increasing need to better understand the mechanisms of TBI. Recently, the roles of inflammasomes have been highlighted as both potential therapeutic targets and diagnostic markers in different neurodegenerative disorders. Indeed, inflammasome activation plays a pivotal function in the central nervous system (CNS) response to many neurological conditions, as well as to several neurodegenerative disorders, specifically, TBI. This comprehensive review summarizes and critically discusses the mechanisms that govern the activation and assembly of inflammasome complexes and the major methods used to study inflammasome activation in TBI and its implication for other neurodegenerative disorders. Also, we will review how inflammasome activation is critical in CNS homeostasis and pathogenesis, and how it can impact chronic TBI sequalae and increase the risk of developing neurodegenerative diseases. Additionally, we discuss the recent updates on inflammasome-related biomarkers and the potential to utilize inflammasomes as putative therapeutic targets that hold the potential to better diagnose and treat subjects with TBI.
Collapse
Affiliation(s)
- Dania Kattan
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Chloe Barsa
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Sarin Mekhijian
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Zaynab Shakkour
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon; Program for Interdisciplinary Neuroscience, Department of Child Health, School of Medicine, University of Missouri, USA
| | - Maya Jammoul
- Department of Anatomy, Cell Biology, and Physiology, American University of Beirut, Beirut, Lebanon
| | - Mark Doumit
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Maria Camila Pareja Zabala
- Division of Pediatric Critical Care, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Kevin K Wang
- Morehouse School of Medicine, Department of Neurobiology, Atlanta, GA, USA
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Jennifer C Munoz Pareja
- Division of Pediatric Critical Care, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon; Morehouse School of Medicine, Department of Neurobiology, Atlanta, GA, USA.
| |
Collapse
|
5
|
Nwafor DC, Brichacek AL, Foster CH, Lucke-Wold BP, Ali A, Colantonio MA, Brown CM, Qaiser R. Pediatric Traumatic Brain Injury: An Update on Preclinical Models, Clinical Biomarkers, and the Implications of Cerebrovascular Dysfunction. J Cent Nerv Syst Dis 2022; 14:11795735221098125. [PMID: 35620529 PMCID: PMC9127876 DOI: 10.1177/11795735221098125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 04/14/2022] [Indexed: 11/15/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of pediatric morbidity and mortality. Recent studies suggest that children and adolescents have worse post-TBI outcomes and take longer to recover than adults. However, the pathophysiology and progression of TBI in the pediatric population are studied to a far lesser extent compared to the adult population. Common causes of TBI in children are falls, sports/recreation-related injuries, non-accidental trauma, and motor vehicle-related injuries. A fundamental understanding of TBI pathophysiology is crucial in preventing long-term brain injury sequelae. Animal models of TBI have played an essential role in addressing the knowledge gaps relating to pTBI pathophysiology. Moreover, a better understanding of clinical biomarkers is crucial to diagnose pTBI and accurately predict long-term outcomes. This review examines the current preclinical models of pTBI, the implications of pTBI on the brain’s vasculature, and clinical pTBI biomarkers. Finally, we conclude the review by speculating on the emerging role of the gut-brain axis in pTBI pathophysiology.
Collapse
Affiliation(s)
- Divine C. Nwafor
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
- West Virginia University School of Medicine, Morgantown, WV, USA
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Allison L. Brichacek
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Chase H. Foster
- Department of Neurosurgery, George Washington University Hospital, Washington D.C., USA
| | | | - Ahsan Ali
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| | | | - Candice M. Brown
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Rabia Qaiser
- Department of Neurosurgery, Baylor Scott and White, Temple, TX, USA
| |
Collapse
|
6
|
Nishimura K, Cordeiro JG, Ahmed AI, Yokobori S, Gajavelli S. Advances in Traumatic Brain Injury Biomarkers. Cureus 2022; 14:e23804. [PMID: 35392277 PMCID: PMC8978594 DOI: 10.7759/cureus.23804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2022] [Indexed: 11/05/2022] Open
Abstract
Traumatic brain injury (TBI) is increasingly a major cause of disability across the globe. The current methods of diagnosis are inadequate at classifying patients and prognosis. TBI is a diagnostic and therapeutic challenge. There is no Food and Drug Administration (FDA)-approved treatment for TBI yet. It took about 16 years of preclinical research to develop accurate and objective diagnostic measures for TBI. Two brain-specific protein biomarkers, namely, ubiquitin C-terminal hydrolase-L1 and glial fibrillary acidic protein, have been extensively characterized. Recently, the two biomarkers were approved by the FDA as the first blood-based biomarker, Brain Trauma Indicator™ (BTI™), via the Breakthrough Devices Program. This scoping review presents (i) TBI diagnosis challenges, (ii) the process behind the FDA approval of biomarkers, and (iii) known unknowns in TBI biomarker biology. The current lag in TBI incidence and hospitalization can be reduced if digital biomarkers such as hard fall detection are standardized and used as a mechanism to alert paramedics to an unresponsive trauma patient.
Collapse
|
7
|
Ramage AE, Ray KL, Franz HM, Tate DF, Lewis JD, Robin DA. Cingulo-Opercular and Frontoparietal Network Control of Effort and Fatigue in Mild Traumatic Brain Injury. Front Hum Neurosci 2022; 15:788091. [PMID: 35221951 PMCID: PMC8866657 DOI: 10.3389/fnhum.2021.788091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Neural substrates of fatigue in traumatic brain injury (TBI) are not well understood despite the considerable burden of fatigue on return to productivity. Fatigue is associated with diminishing performance under conditions of high cognitive demand, sense of effort, or need for motivation, all of which are associated with cognitive control brain network integrity. We hypothesize that the pathophysiology of TBI results in damage to diffuse cognitive control networks, disrupting coordination of moment-to-moment monitoring, prediction, and regulation of behavior. We investigate the cingulo-opercular (CO) and frontoparietal (FP) networks, which are engaged to sustain attention for task and maintain performance. A total of 61 individuals with mild TBI and 42 orthopedic control subjects participated in functional MRI during performance of a constant effort task requiring altering the amount of effort (25, 50, or 75% of maximum effort) utilized to manually squeeze a pneumostatic bulb across six 30-s trials. Network-based statistics assessed within-network organization and fluctuation with task manipulations by group. Results demonstrate small group differences in network organization, but considerable group differences in the evolution of task-related modulation of connectivity. The mild TBI group demonstrated elevated CO connectivity throughout the task with little variation in effort level or time on task (TOT), while CO connectivity diminished over time in controls. Several interregional CO connections were predictive of fatigue in the TBI group. In contrast, FP connectivity fluctuated with task manipulations and predicted fatigue in the controls, but connectivity fluctuations were delayed in the mild traumatic brain injury (mTBI) group and did not relate to fatigue. Thus, the mTBI group's hyper-connectivity of the CO irrespective of task demands, along with hypo-connectivity and delayed peak connectivity of the FP, may allow for attainment of task goals, but also contributes to fatigue. Findings are discussed in relation to performance monitoring of prediction error that relies on internal cues from sensorimotor feedback during task performance. Delay or inability to detect and respond to prediction errors in TBI, particularly evident in bilateral insula-temporal CO connectivity, corresponds to day-to-day fatigue and fatigue during task performance.
Collapse
Affiliation(s)
- Amy E. Ramage
- Interdisciplinary Program in Behavioral Neuroscience, Department of Communication Sciences and Disorders and Biological Sciences, University of New Hampshire, Durham, NH, United States
| | - Kimberly L. Ray
- Department of Psychology, University of Texas, Austin, TX, United States
| | - Hannah M. Franz
- Interdisciplinary Program in Behavioral Neuroscience, Department of Communication Sciences and Disorders and Biological Sciences, University of New Hampshire, Durham, NH, United States
| | - David F. Tate
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Jeffrey D. Lewis
- Mental Health Clinic, Wright Patterson Medical Center, Wright Patterson Air Force Base, Dayton, OH, United States
| | - Donald A. Robin
- Interdisciplinary Program in Behavioral Neuroscience, Department of Communication Sciences and Disorders and Biological Sciences, University of New Hampshire, Durham, NH, United States
| |
Collapse
|
8
|
Gier EC, Pulliam AN, Gaul DA, Moore SG, LaPlaca MC, Fernández FM. Lipidome Alterations following Mild Traumatic Brain Injury in the Rat. Metabolites 2022; 12:150. [PMID: 35208224 PMCID: PMC8878543 DOI: 10.3390/metabo12020150] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 12/10/2022] Open
Abstract
Traumatic brain injury (TBI) poses a major health challenge, with tens of millions of new cases reported globally every year. Brain damage resulting from TBI can vary significantly due to factors including injury severity, injury mechanism and exposure to repeated injury events. Therefore, there is need for robust blood biomarkers. Serum from Sprague Dawley rats was collected at several timepoints within 24 h of mild single or repeat closed head impacts. Serum samples were analyzed via ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS) in positive and negative ion modes. Known lipid species were identified through matching to in-house tandem MS databases. Lipid biomarkers have a unique potential to serve as objective molecular measures of injury response as they may be liberated to circulation more readily than larger protein markers. Machine learning and feature selection approaches were used to construct lipid panels capable of distinguishing serum from injured and uninjured rats. The best multivariate lipid panels had over 90% cross-validated sensitivity, selectivity, and accuracy. These mapped onto sphingolipid signaling, autophagy, necroptosis and glycerophospholipid metabolism pathways, with Benjamini adjusted p-values less than 0.05. The novel lipid biomarker candidates identified provide insight into the metabolic pathways altered within 24 h of mild TBI.
Collapse
Affiliation(s)
- Eric C. Gier
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA; (E.C.G.); (D.A.G.); (S.G.M.)
| | - Alexis N. Pulliam
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA 30332, USA;
| | - David A. Gaul
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA; (E.C.G.); (D.A.G.); (S.G.M.)
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Samuel G. Moore
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA; (E.C.G.); (D.A.G.); (S.G.M.)
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Michelle C. LaPlaca
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA 30332, USA;
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Facundo M. Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA; (E.C.G.); (D.A.G.); (S.G.M.)
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
9
|
Kobeissy F, Mallah K, Zibara K, Dakroub F, Dalloul Z, Nasser M, Nasrallah L, Mallah Z, El-Achkar GA, Ramadan N, Mohamed W, Mondello S, Hamade E, Habib A. The effect of clopidogrel and aspirin on the severity of traumatic brain injury in a rat model. Neurochem Int 2022; 154:105301. [PMID: 35121011 DOI: 10.1016/j.neuint.2022.105301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/07/2022] [Accepted: 01/31/2022] [Indexed: 10/19/2022]
Abstract
Traumatic Brain Injury (TBI) is one of the leading causes of death and disability worldwide. Aspirin (ASA) and clopidogrel (CLOP) are antiplatelet agents that inhibit platelet aggregation. They are implicated in worsening the intracerebral haemorrhage (ICH) risk post-TBI. However, antiplatelet drugs may also exert a neuroprotective effect post-injury. We determined the impact of aspirin and clopidogrel treatment, alone or in combination, on ICH and brain damage in an experimental rat TBI model. We assessed changes in platelet aggregation and measured serum thromboxane by enzyme immune assay. We also explored a panel of brain damage and apoptosis biomarkers by immunoblotting. Rats were treated with aspirin and/or clopidogrel for 48 h prior to TBI and sacrificed 48 h post-injury. In rats treated with antiplatelet agents prior to TBI, platelet aggregation was completely inhibited, and serum thromboxane was significantly decreased, compared to the TBI group without treatment. TBI increases UCHL-1 and GFAP, but decreases hexokinase expression compared to the non-injured controls. All groups treated with antiplatelet drugs prior to TBI had decreased UCH-L1 and GFAP serum levels compared to the TBI untreated group. Furthermore, the ASA and CLOP single treatments increased the hexokinase serum levels. We confirmed that αII-spectrin cleavage increased post-TBI, with the highest cleavage detected in CLOP-treated rats. Aspirin and/or clopidogrel treatment prior to TBI is a double-edged sword that exerts a dual effect post-injury. On one hand, ASA and CLOP single treatments increase the post-TBI ICH risk, with a further detrimental effect from the ASA + CLOP treatment. On the other hand, ASA and/or CLOP treatments are neuroprotective and result in a favourable profile of TBI injury markers. The ICH risk and the neuroprotection benefits from antiplatelet therapy should be weighed against each other to ameliorate the management of TBI patients.
Collapse
Affiliation(s)
- Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Khalil Mallah
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, BSB 204, MSC 504, Charleston, SC, 29425, USA
| | - Kazem Zibara
- ER045, Laboratory of Stem Cells, DSST, PRASE, Lebanese University, Beirut, Lebanon; Department of Biology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Fatima Dakroub
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Molecular Biology and Cancer Immunology Laboratory, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Zeinab Dalloul
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Mohammad Nasser
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Molecular Biology and Cancer Immunology Laboratory, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Leila Nasrallah
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Zahraa Mallah
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Molecular Biology and Cancer Immunology Laboratory, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Ghewa A El-Achkar
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Naify Ramadan
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Wael Mohamed
- Clinical Pharmacology Department, Menoufia Medical School, Menoufia University, AlMinufya, Egypt; Basic Medical Science Department, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | | | - Eva Hamade
- Molecular Biology and Cancer Immunology Laboratory, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon; Department of Biochemistry, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon.
| | - Aida Habib
- Department of Basic Medical Sciences, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
10
|
Li MJ, Yeh FC, Huang SH, Huang CX, Zhang H, Liu J. Differential Tractography and Correlation Tractography Findings on Patients With Mild Traumatic Brain Injury: A Pilot Study. Front Hum Neurosci 2022; 16:751902. [PMID: 35126076 PMCID: PMC8811572 DOI: 10.3389/fnhum.2022.751902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/05/2022] [Indexed: 11/13/2022] Open
Abstract
Differential tractography and correlation tractography are new tractography modalities to study neuronal changes in brain diseases, but their performances in detecting neuronal injuries are yet to be investigated in patients with mild traumatic brain injury (mTBI). Here we investigated the white matter injury in mTBI patients using differential and correlation tractography. The diffusion MRI was acquired at 33 mTBI patients and 31 health controls. 7 of the mTBI patients had one-year follow-up scans, and differential tractography was used to evaluate injured fiber bundles on these 7 patients. All subjects were evaluated using digital symbol substitution test (DSST) and trail making test A (TMT-A), and the correlation tractography was performed to explore the exact pathways related to the cognitive performance. Our results showed that differential tractography revealed neuronal changes in the corpus callosum in all 7 follow-up mTBI patients with FDR between 0.007 and 0.17. Further, the correlation tractography showed that the splenium of the corpus callosum, combined with the right superior longitudinal fasciculus and right cingulum, were correlated with DSST (FDR = 0.001669) in the acute mTBI patients. The cognitive impairment findings in the acute stage and the longitudinal findings in the corpus callosum in the chronic stage of mTBI patients suggest that differential tractography and correlation tractography are valuable tools in the diagnostic and prognostic evaluation of neuronal injuries in mTBI patients.
Collapse
Affiliation(s)
- Meng-Jun Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Si-Hong Huang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chu-Xin Huang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Huiting Zhang
- MR Scientific Marketing, Siemens Healthcare Ltd., Wuhan, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Jun Liu,
| |
Collapse
|
11
|
Li MJ, Huang SH, Huang CX, Liu J. Morphometric changes in the cortex following acute mild traumatic brain injury. Neural Regen Res 2022; 17:587-593. [PMID: 34380898 PMCID: PMC8504398 DOI: 10.4103/1673-5374.320995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Morphometric changes in cortical thickness (CT), cortical surface area (CSA), and cortical volume (CV) can reflect pathological changes after acute mild traumatic brain injury (mTBI). Most previous studies focused on changes in CT, CSA, and CV in subacute or chronic mTBI, and few studies have examined changes in CT, CSA, and CV in acute mTBI. Furthermore, acute mTBI patients typically show transient cognitive impairment, and few studies have reported on the relationship between cerebral morphological changes and cognitive function in patients with mTBI. This prospective cohort study included 30 patients with acute mTBI (15 males, 15 females, mean age 33.7 years) and 27 matched healthy controls (12 males, 15 females, mean age 37.7 years) who were recruited from the Second Xiangya Hospital of Central South University between September and December 2019. High-resolution T1-weighted images were acquired within 7 days after the onset of mTBI. The results of analyses using FreeSurfer software revealed significantly increased CSA and CV in the right lateral occipital gyrus of acute-stage mTBI patients compared with healthy controls, but no significant changes in CT. The acute-stage mTBI patients also showed reduced executive function and processing speed indicated by a lower score in the Digital Symbol Substitution Test, and reduced cognitive ability indicated by a longer time to complete the Trail Making Test-B. Both increased CSA and CV in the right lateral occipital gyrus were negatively correlated with performance in the Trail Making Test part A. These findings suggest that cognitive deficits and cortical alterations in CSA and CV can be detected in the acute stage of mTBI, and that increased CSA and CV in the right lateral occipital gyrus may be a compensatory mechanism for cognitive dysfunction in acute-stage mTBI patients. This study was approved by the Ethics Committee of the Second Xiangya Hospital of Central South University, China (approval No. 086) on February 9, 2019.
Collapse
Affiliation(s)
- Meng-Jun Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Si-Hong Huang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Chu-Xin Huang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| |
Collapse
|
12
|
Dennis EL, Baron D, Bartnik‐Olson B, Caeyenberghs K, Esopenko C, Hillary FG, Kenney K, Koerte IK, Lin AP, Mayer AR, Mondello S, Olsen A, Thompson PM, Tate DF, Wilde EA. ENIGMA brain injury: Framework, challenges, and opportunities. Hum Brain Mapp 2022; 43:149-166. [PMID: 32476212 PMCID: PMC8675432 DOI: 10.1002/hbm.25046] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/23/2020] [Accepted: 05/03/2020] [Indexed: 12/19/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of disability worldwide, but the heterogeneous nature of TBI with respect to injury severity and health comorbidities make patient outcome difficult to predict. Injury severity accounts for only some of this variance, and a wide range of preinjury, injury-related, and postinjury factors may influence outcome, such as sex, socioeconomic status, injury mechanism, and social support. Neuroimaging research in this area has generally been limited by insufficient sample sizes. Additionally, development of reliable biomarkers of mild TBI or repeated subconcussive impacts has been slow, likely due, in part, to subtle effects of injury and the aforementioned variability. The ENIGMA Consortium has established a framework for global collaboration that has resulted in the largest-ever neuroimaging studies of multiple psychiatric and neurological disorders. Here we describe the organization, recent progress, and future goals of the Brain Injury working group.
Collapse
Affiliation(s)
- Emily L. Dennis
- Department of NeurologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- George E. Wahlen Veterans Affairs Medical CenterSalt Lake CityUtahUSA
- Imaging Genetics CenterStevens Neuroimaging & Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
| | - David Baron
- Western University of Health SciencesPomonaCaliforniaUSA
| | - Brenda Bartnik‐Olson
- Department of RadiologyLoma Linda University Medical CenterLoma LindaCaliforniaUSA
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of PsychologyDeakin UniversityBurwoodVictoriaAustralia
| | - Carrie Esopenko
- Department of Rehabilitation and Movement SciencesRutgers Biomedical Health SciencesNewarkNew JerseyUSA
| | - Frank G. Hillary
- Department of PsychologyPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- Social Life and Engineering Sciences Imaging CenterUniversity ParkPennsylvaniaUSA
| | - Kimbra Kenney
- Department of NeurologyUniformed Services University of the Health SciencesBethesdaMarylandUSA
- National Intrepid Center of ExcellenceWalter Reed National Military Medical CenterBethesdaMarylandUSA
| | - Inga K. Koerte
- Psychiatry Neuroimaging LaboratoryBrigham and Women's HospitalBostonMassachusettsUSA
- Department of Child and Adolescent Psychiatry, Psychosomatics and PsychotherapyLudwig‐Maximilians‐UniversitätMunichGermany
| | - Alexander P. Lin
- Center for Clinical SpectroscopyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Andrew R. Mayer
- Mind Research NetworkAlbuquerqueNew MexicoUSA
- Department of Neurology and PsychiatryUniversity of New Mexico School of MedicineAlbuquerqueNew MexicoUSA
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional ImagingUniversity of MessinaMessinaItaly
| | - Alexander Olsen
- Department of PsychologyNorwegian University of Science and TechnologyTrondheimNorway
- Department of Physical Medicine and RehabilitationSt. Olavs Hospital, Trondheim University HospitalTrondheimNorway
| | - Paul M. Thompson
- Imaging Genetics CenterStevens Neuroimaging & Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
- Department of Neurology, Pediatrics, Psychiatry, Radiology, Engineering, and OphthalmologyUniversity of Southern California (USC)Los AngelesCaliforniaUSA
| | - David F. Tate
- Department of NeurologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- George E. Wahlen Veterans Affairs Medical CenterSalt Lake CityUtahUSA
| | - Elisabeth A. Wilde
- Department of NeurologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- George E. Wahlen Veterans Affairs Medical CenterSalt Lake CityUtahUSA
| |
Collapse
|
13
|
OUP accepted manuscript. Arch Clin Neuropsychol 2022; 37:1564-1578. [DOI: 10.1093/arclin/acac031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2022] [Indexed: 11/12/2022] Open
|
14
|
Clark JE, Pate R, Rine RM, Christy J, Dalton P, Damiano DL, Daniels S, Holmes JM, Katzmarzyk PT, Magasi S, McCreery R, McIver K, Newell KM, Sanger T, Sugden D, Taveras E, Hirschfeld S. NCS Assessments of the Motor, Sensory, and Physical Health Domains. Front Pediatr 2021; 9:622542. [PMID: 34900852 PMCID: PMC8661476 DOI: 10.3389/fped.2021.622542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/03/2021] [Indexed: 11/17/2022] Open
Abstract
As part of the National Children's Study (NCS) comprehensive and longitudinal assessment of the health status of the whole child, scientific teams were convened to recommend assessment measures for the NCS. This manuscript documents the work of three scientific teams who focused on the motor, sensory, or the physical health aspects of this assessment. Each domain team offered a value proposition for the importance of their domain to the health outcomes of the developing infant and child. Constructs within each domain were identified and measures of these constructs proposed. Where available extant assessments were identified. Those constructs that were in need of revised or new assessment instruments were identified and described. Recommendations also were made for the age when the assessments should take place.
Collapse
Affiliation(s)
- Jane E. Clark
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, United States
| | - Russell Pate
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | | | - Jennifer Christy
- Department of Physical Therapy, University of Alabama, Birmingham, AL, United States
| | - Pamela Dalton
- Monell Chemical Senses Center, Monell Center, Philadelphia, PA, United States
| | - Diane L. Damiano
- Rehabilitation Medicine Department, National Institutes of Health, Bethesda, MD, United States
| | - Stephen Daniels
- Department of Pediatrics, University of Colorado School of Medicine, Denver, CO, United States
| | - Jonathan M. Holmes
- Department of Ophthalmology and Vision Science, University Arizona, Tucson, AZ, United States
| | - Peter T. Katzmarzyk
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States
| | - Susan Magasi
- Department of Occupational Therapy, University of Illinois at Chicago, Chicago, IL, United States
| | - Ryan McCreery
- Boys Town National Research Hospital, Boys Town, NE, United States
| | - Kerry McIver
- Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - Karl M. Newell
- Department of Kinesiology, University of Georgia, Athens, GA, United States
| | - Terence Sanger
- Department of Biomedical Engineering, Neurology, and Biokinesiology, University of Southern California, Los Angeles, CA, United States
| | - David Sugden
- School of Education, University of Leeds, Leeds, United Kingdom
| | - Elsie Taveras
- Department of Pediatrics, Harvard Medical School and Mass General Hospital for Children, Boston, MA, United States
| | | |
Collapse
|
15
|
Hussain SF, Raza Z, Cash ATG, Zampieri T, Mazzoli RA, Kardon RH, Gomes RSM. Traumatic brain injury and sight loss in military and veteran populations- a review. Mil Med Res 2021; 8:42. [PMID: 34315537 PMCID: PMC8317328 DOI: 10.1186/s40779-021-00334-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/23/2021] [Indexed: 01/14/2023] Open
Abstract
War and combat exposure pose great risks to the vision system. More recently, vision related deficiencies and impairments have become common with the increased use of powerful explosive devices and the subsequent rise in incidence of traumatic brain injury (TBI). Studies have looked at the effects of injury severity, aetiology of injury and the stage at which visual problems become apparent. There was little discrepancy found between the frequencies or types of visual dysfunctions across blast and non-blast related groups, however complete sight loss appeared to occur only in those who had a blast-related injury. Generally, the more severe the injury, the greater the likelihood of specific visual disturbances occurring, and a study found total sight loss to only occur in cases with greater severity. Diagnosis of mild TBI (mTBI) is challenging. Being able to identify a potential TBI via visual symptoms may offer a new avenue for diagnosis.
Collapse
Affiliation(s)
- Syeda F. Hussain
- Research & Innovation, Blind Veterans UK, 12-14 Harcourt Street, London, W1H 4HD UK
- Bravo Victor, Research, 12-14 Harcourt Street, London, W1H 4HD UK
| | - Zara Raza
- Research & Innovation, Blind Veterans UK, 12-14 Harcourt Street, London, W1H 4HD UK
- Bravo Victor, Research, 12-14 Harcourt Street, London, W1H 4HD UK
| | - Andrew T. G. Cash
- Research & Innovation, Blind Veterans UK, 12-14 Harcourt Street, London, W1H 4HD UK
- Bravo Victor, Research, 12-14 Harcourt Street, London, W1H 4HD UK
| | - Thomas Zampieri
- Blinded Veterans Association, 1101 King Street, Suite 300, Alexandria, Virginia 22314 USA
| | - Robert A. Mazzoli
- Department of Ophthalmology, Madigan Army Medical Center, 9040 Jackson Avenue, Tacoma, Washington, 98431 USA
| | - Randy H. Kardon
- Iowa City VA Health Care System and Iowa City VA Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa 52246 USA
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa 52242 USA
| | - Renata S. M. Gomes
- Research & Innovation, Blind Veterans UK, 12-14 Harcourt Street, London, W1H 4HD UK
- Bravo Victor, Research, 12-14 Harcourt Street, London, W1H 4HD UK
- Northern Hub for Veterans and Military Families Research, Department of Nursing, Midwifery and Health, Faculty of Health and Life Sciences, Northumbria University, Newcastle, NE7 7XA UK
| |
Collapse
|
16
|
Al-Hajj S, Dhaini HR, Mondello S, Kaafarani H, Kobeissy F, DePalma RG. Beirut Ammonium Nitrate Blast: Analysis, Review, and Recommendations. Front Public Health 2021; 9:657996. [PMID: 34150702 PMCID: PMC8212863 DOI: 10.3389/fpubh.2021.657996] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
A massive chemical detonation occurred on August 4, 2020 in the Port of Beirut, Lebanon. An uncontrolled fire in an adjacent warehouse ignited ~2,750 tons of Ammonium Nitrate (AN), producing one of the most devastating blasts in recent history. The blast supersonic pressure and heat wave claimed the lives of 220 people and injured more than 6,500 instantaneously, with severe damage to the nearby dense residential and commercial areas. This review represents one of the in-depth reports to provide a detailed analysis of the Beirut blast and its health and environmental implications. It further reviews prior AN incidents and suggests actionable recommendations and strategies to optimize chemical safety measures, improve emergency preparedness, and mitigate the delayed clinical effects of blast and toxic gas exposures. These recommended actionable steps offer a starting point for government officials and policymakers to build frameworks, adopt regulations, and implement chemical safety protocols to ensure safe storage of hazardous materials as well as reorganizing healthcare system disaster preparedness to improve emergency preparedness in response to similar large-scale disasters and promote population safety. Future clinical efforts should involve detailed assessment of physical injuries sustained by blast victims, with systemic mitigation and possible treatment of late blast effects involving individuals, communities and the region at large.
Collapse
Affiliation(s)
- Samar Al-Hajj
- Health Management and Policy, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Hassan R Dhaini
- Department of Environmental Health, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Haytham Kaafarani
- Division of Trauma, Emergency Surgery and Surgical Critical Care. Massachusetts General Hospital, Boston, MA, United States
| | - Firas Kobeissy
- Department of Biochemistry & Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ralph G DePalma
- Office of Research and Development, Department of Veterans Affairs, Washington, DC, United States
| |
Collapse
|
17
|
Wright B, Wilmoth K, Juengst SB, Didehbani N, Maize R, Cullum CM. Perceived Recovery and Self-Reported Functioning in Adolescents with Mild Traumatic Brain Injury: The Role of Sleep, Mood, and Physical Symptoms. Dev Neurorehabil 2021; 24:237-243. [PMID: 33356738 DOI: 10.1080/17518423.2020.1858456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Purpose: To determine the contributions of anxiety, depressive, and concussion symptoms and sleep quality to self-perceived recovery in adolescents with concussion.Method: Adolescents aged 12-20 (n = 298) completed anxiety, depression, concussion symptoms, and sleep measures at an initial concussion clinic visit and three-month follow-up. At follow-up, they reported self-perceived recovery as percent back to normal.Results: Injury-related factors alone did not predict self-perceived recovery (R2Adj =.017, p =.074). More concurrent physical, mental health, and sleep symptoms explained 18.8% additional variance in poorer self-perceived recovery (R2Adj Change =.188, p <.05). Physical symptoms (Bstand = -.292) and anxiety (Bstand = -.260) accounted for the most variance in self-perceived recovery.Conclusion: Post-concussive symptoms, in particular anxiety and self-reported physical symptoms, seem to characterize protracted recovery. Self-perceived recovery as an outcome measure may provide a more holistic understanding of adolescents' experiences after concussion.
Collapse
Affiliation(s)
- Brittany Wright
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - K Wilmoth
- The University of Texas Southwestern Medical Center, Dallas, TX, USA.,Medical College of Wisconsin, Milwaukee, WI, USA
| | - S B Juengst
- The University of Texas Southwestern Medical Center, Dallas, TX, USA.,Medical College of Wisconsin, Milwaukee, WI, USA
| | - N Didehbani
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - R Maize
- Carlow University, Pittsburgh, PA, USA
| | - C M Cullum
- The University of Texas Southwestern Medical Center, Dallas, TX, USA.,Carlow University, Pittsburgh, PA, USA
| |
Collapse
|
18
|
UPLC-Q-TOF/MS-based plasma metabolome to identify biomarkers and time of injury in traumatic brain injured rats. Neuroreport 2021; 32:415-422. [PMID: 33788810 DOI: 10.1097/wnr.0000000000001576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND To identify the potent metabolic biomarkers and time of injury of traumatic brain injured (TBI). METHODS A total of 70 Sprague-Dawley rats were used to establish the TBI model in this study. The serum was collected at 3 h, 6 h, 12 h, 24 h, 3 days and 7 days after surgery. Ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry was performed to analyze metabolic changes in the serum of the TBI rats from different groups. The differences between the metabolic profiles of the rats in seven groups were analyzed using partial least squares discriminant analysis. RESULTS Metabolic profiling revealed significant differences between the sham-operated and other groups. A total of 49 potential TBI metabolite biomarkers were identified between the sham-operated group and the model groups at different time points. Among them, six metabolites (methionine sulfone, kynurenine, 3-hydroxyanthranilic acid, 3-Indolepropionic acid, citric acid and glycocholic acid) were identified as biomarkers of TBI to estimate the injury time. CONCLUSION Using metabolomic analysis, we identified new TBI serum biomarkers for accurate detection and determination of the timing of TBI injury.
Collapse
|
19
|
Huang S, Li S, Feng H, Chen Y. Iron Metabolism Disorders for Cognitive Dysfunction After Mild Traumatic Brain Injury. Front Neurosci 2021; 15:587197. [PMID: 33796002 PMCID: PMC8007909 DOI: 10.3389/fnins.2021.587197] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 02/10/2021] [Indexed: 01/25/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the most harmful forms of acute brain injury and predicted to be one of the three major neurological diseases that cause neurological disabilities by 2030. A series of secondary injury cascades often cause cognitive dysfunction of TBI patients leading to poor prognosis. However, there are still no effective intervention measures, which drive us to explore new therapeutic targets. In this process, the most part of mild traumatic brain injury (mTBI) is ignored because its initial symptoms seemed not serious. Unfortunately, the ignored mTBI accounts for 80% of the total TBI, and a large part of the patients have long-term cognitive dysfunction. Iron deposition has been observed in mTBI patients and accompanies the whole pathological process. Iron accumulation may affect long-term cognitive dysfunction from three pathways: local injury, iron deposition induces tau phosphorylation, the formation of neurofibrillary tangles; neural cells death; and neural network damage, iron deposition leads to axonal injury by utilizing the iron sensibility of oligodendrocytes. Thus, iron overload and metabolism dysfunction was thought to play a pivotal role in mTBI pathophysiology. Cerebrospinal fluid-contacting neurons (CSF-cNs) located in the ependyma have bidirectional communication function between cerebral-spinal fluid and brain parenchyma, and may participate in the pathway of iron-induced cognitive dysfunction through projected nerve fibers and transmitted factor, such as 5-hydroxytryptamine, etc. The present review provides an overview of the metabolism and function of iron in mTBI, and to seek a potential new treatment target for mTBI with a novel perspective through combined iron and CSF-cNs.
Collapse
Affiliation(s)
- Suna Huang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Su Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Yujie Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Third Military Medical University (Army Military Medical University), Chongqing, China
| |
Collapse
|
20
|
Zhou Z, Domel AG, Li X, Grant G, Kleiven S, Camarillo D, Zeineh M. White Matter Tract-Oriented Deformation Is Dependent on Real-Time Axonal Fiber Orientation. J Neurotrauma 2021; 38:1730-1745. [PMID: 33446060 DOI: 10.1089/neu.2020.7412] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic axonal injury (TAI) is a critical public health issue with its pathogenesis remaining largely elusive. Finite element (FE) head models are promising tools to bridge the gap between mechanical insult, localized brain response, and resultant injury. In particular, the FE-derived deformation along the direction of white matter (WM) tracts (i.e., tract-oriented strain) has been shown to be an appropriate predictor for TAI. The evolution of fiber orientation in time during the impact and its potential influence on the tract-oriented strain remains unknown, however. To address this question, the present study leveraged an embedded element approach to track real-time fiber orientation during impacts. A new scheme to calculate the tract-oriented strain was proposed by projecting the strain tensors from pre-computed simulations along the temporal fiber direction instead of its static counterpart directly obtained from diffuse tensor imaging. The results revealed that incorporating the real-time fiber orientation not only altered the direction but also amplified the magnitude of the tract-oriented strain, resulting in a generally more extended distribution and a larger volume ratio of WM exposed to high deformation along fiber tracts. These effects were exacerbated with the impact severities characterized by the acceleration magnitudes. Results of this study provide insights into how best to incorporate fiber orientation in head injury models and derive the WM tract-oriented deformation from computational simulations, which is important for furthering our understanding of the underlying mechanisms of TAI.
Collapse
Affiliation(s)
- Zhou Zhou
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - August G Domel
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Xiaogai Li
- Neuronic Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Gerald Grant
- Department of Neurosurgery, Stanford University, Stanford, California, USA.,Department of Neurology, Stanford University, Stanford, California, USA
| | - Svein Kleiven
- Neuronic Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | - David Camarillo
- Department of Bioengineering, Stanford University, Stanford, California, USA.,Department of Neurosurgery, Stanford University, Stanford, California, USA.,Department of Mechanical Engineering, Stanford University, Stanford, California, USA
| | - Michael Zeineh
- Department of Radiology, Stanford University, Stanford, California, USA
| |
Collapse
|
21
|
Al-Hajj S, Hammoud Z, Colnaric J, Ataya M, Macaron MM, Kadi K, Harati H, Phipps H, Mondello S, Tamim H, Abou Abbass H, Kobeissy F. Characterization of Traumatic Brain Injury Research in the Middle East and North Africa Region: A Systematic Review. Neuroepidemiology 2021; 55:1-12. [PMID: 33567436 DOI: 10.1159/000511554] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/09/2020] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Traumatic brain injury (TBI) represents a major health concern worldwide with a large impact in the Middle East and North Africa (MENA) region as a consequence of protracted wars and conflicts that adversely affect the general population. Currently, systematic TBI studies in the MENA region are lacking, nonetheless they are immensely needed to enhance trauma management and increase survival rates among TBI patients. This systematic review aims to characterize TBI in the MENA region to guide future policy choices and research efforts and inform tailored guidelines capable of improving TBI management and patient treatment and outcome. Furthermore, it will serve as a road map to evaluate and assess knowledge of trauma impact on regional health systems that can be adopted by health-care providers to raise awareness and improve trauma care. METHODS We conducted a comprehensive search strategy of several databases including MEDLINE/Ovid, PubMed, Embase, Scopus, CINAHL, Google Scholar, and the grey literature in accordance with the PROSPERO systematic review protocol CRD42017058952. Abstracts were screened, and selected eligible studies were reviewed independently by 2 reviewers. We collected demographics information along with TBI characteristics, mortality rates, and regional distribution. Data were extracted using REDCap and checked for accuracy. RESULTS The search strategy yielded 23,385 citations; 147 studies met the eligibility criteria and were included in this review. Motor vehicle accident (MVA) was the leading cause of TBI (41%) in the MENA region, followed by the military- (15.6%) and fall- (8.8%) related TBI. Males predominantly suffer from TBI-related injuries (85%), with a high prevalence of MVA- and military-related TBI injuries. The TBI mortality rate was 12.9%. The leading causes of mortality were MVA (68%), military (20.5%), and assault (2.9%). The vast majority of reported TBI severity was mild (63.1%) compared to moderate (10.7%) and severe TBI (20.2%). Patients mainly underwent a Glasgow Coma Scale assessment (22.1%), followed by computed tomography scan (8.9%) and surgery (4.1%). CONCLUSIONS Despite its clinical, social, and economic burden, the evidence of TBI research in the MENA region is scarce. Further research and high-quality epidemiological studies are urgently needed to gain a deep understanding of the TBI burden in the region, facilitate the allocation of adequate resources, implement effective preventive and intervention strategies and advise on the TBI patient management as reflective on the TBI patterns and modes.
Collapse
Affiliation(s)
- Samar Al-Hajj
- Health Management and Policy Department, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Zeinab Hammoud
- Health Management and Policy Department, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Jure Colnaric
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Maya Ataya
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Marie Michele Macaron
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Kamil Kadi
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hayat Harati
- Neuroscience Research Center, Faculty of Medicine, Lebanese University, Beirut, Lebanon
| | | | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Hani Tamim
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Hussein Abou Abbass
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Neuroscience Research Center, Faculty of Medicine, Lebanese University, Beirut, Lebanon
- Department of Surgery, Makassed General Hospital, Beirut, Lebanon
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon,
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, Florida, USA,
| |
Collapse
|
22
|
Plasma miR-9-3p and miR-136-3p as Potential Novel Diagnostic Biomarkers for Experimental and Human Mild Traumatic Brain Injury. Int J Mol Sci 2021; 22:ijms22041563. [PMID: 33557217 PMCID: PMC7913923 DOI: 10.3390/ijms22041563] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
Noninvasive, affordable circulating biomarkers for difficult-to-diagnose mild traumatic brain injury (mTBI) are an unmet medical need. Although blood microRNA (miRNA) levels are reportedly altered after traumatic brain injury (TBI), their diagnostic potential for mTBI remains inconclusive. We hypothesized that acutely altered plasma miRNAs could serve as diagnostic biomarkers both in the lateral fluid percussion injury (FPI) model and clinical mTBI. We performed plasma small RNA-sequencing from adult male Sprague-Dawley rats (n = 31) at 2 days post-TBI, followed by polymerase chain reaction (PCR)-based validation of selected candidates. miR-9a-3p, miR-136-3p, and miR-434-3p were identified as the most promising candidates at 2 days after lateral FPI. Digital droplet PCR (ddPCR) revealed 4.2-, 2.8-, and 4.6-fold elevations in miR-9a-3p, miR-136-3p, and miR-434-3p levels (p < 0.01 for all), respectively, distinguishing rats with mTBI from naïve rats with 100% sensitivity and specificity. DdPCR further identified a subpopulation of mTBI patients with plasma miR-9-3p (n = 7/15) and miR-136-3p (n = 5/15) levels higher than one standard deviation above the control mean at <2 days postinjury. In sTBI patients, plasma miR-9-3p levels were 6.5- and 9.2-fold in comparison to the mTBI and control groups, respectively. Thus, plasma miR-9-3p and miR-136-3p were identified as promising biomarker candidates for mTBI requiring further evaluation in a larger patient population.
Collapse
|
23
|
Sapin V, Gaulmin R, Aubin R, Walrand S, Coste A, Abbot M. Blood biomarkers of mild traumatic brain injury: State of art. Neurochirurgie 2021; 67:249-254. [PMID: 33482234 DOI: 10.1016/j.neuchi.2021.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/26/2020] [Accepted: 01/10/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Mild traumatic brain injury (mTBI) is one of the most common causes of emergency department visits around the world. Up to 90% of injuries are classified as mTBI. Cranial computed tomography (CCT) is a standard diagnosis tool to identify intracranial complications in adults with mTBI. Alternatively, children can be admitted for inpatient observation with CCT scans performed only on those with clinical deterioration. The use of blood biomarkers is a supplementary tool for identifying patients at risk of intracerebral lesions who may need imaging. METHOD We realised a bibliographic state of art providing a contemporary clinical and laboratory framework for blood biomarker testing in mTBI management. RESULTS The S100B protein is the only biomarker that can be used today in the clinical routine for management of mTBI with appropriate evidence-based medicine. Due to its excellent negative predictive value, S100B protein is an alternative choice to CCT scanning for mTBI management with considered, consensual and pragmatic use. In this state of art, we propose points to help clinicians and clinical pathologists use serum S100B protein in the clinical routine. A state of art on the different biomarkers (GFAP, UCH-L1, NF [H or L], tau, H-FABP, SNTF, NSE, miRNAs, MBP) is also conducted. Some of these other biomarkers, used alone (GFAP, UCH-L1) or in combination (GFAP+H-FABP±S100B±IL10) can improve the specificity of S100B. CONCLUSION Using a bibliographic state of art, we highlighted the added values of the blood biomarkers for the clinical management of mTBI.
Collapse
Affiliation(s)
- V Sapin
- Biochemistry and molecular biology department, CHU Gabriel-Montpied, Clermont-Ferrand, France.
| | - R Gaulmin
- ASM Clermont Auvergne, service médical, 63028 Clermont-Ferrand cedex 2, France
| | - R Aubin
- ASM Clermont Auvergne, service médical, 63028 Clermont-Ferrand cedex 2, France
| | - S Walrand
- Service de nutrition clinique, université Clermont Auvergne, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - A Coste
- Service de neurochirurgie, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - M Abbot
- ASM Clermont Auvergne, service médical, 63028 Clermont-Ferrand cedex 2, France; Service de médecine du sport, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France
| |
Collapse
|
24
|
Interest of blood biomarkers to predict lesions in medical imaging in the context of mild traumatic brain injury. Clin Biochem 2020; 85:5-11. [PMID: 32781055 DOI: 10.1016/j.clinbiochem.2020.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/21/2022]
Abstract
Mild traumatic brain injury (mTBI) is one of the common causes of emergency department visits around the world. Up to 90% of injuries are classified as mTBI. Cranial computed tomography (CCT) is a standard diagnostic tool for adults with mTBI. Alternatively, children can be admitted for inpatient observation with CCT scans performed only on those with clinical deterioration. The use of blood biomarkers is a supplementary tool for identifying patients at risk of intracerebral lesions who may need imaging. This review provides a contemporary clinical and laboratory framework for blood biomarker testing in mTBI management. The S100B protein is used routinely in the management of mTBI in Europe together with clinical guidelines. Due to its excellent negative predictive value, S100B protein is an alternative choice to CCT scanning for mTBI management under considered, consensual and pragmatic use. In this review, we propose points to help clinicians and clinical pathologists use serum S100B protein in the clinical routine. A review of the literature on the different biomarkers (GFAP, UCH-L1, NF [H or L], tau, H-FABP, SNTF, NSE, miRNAs, MBP, β trace protein) is also conducted. Some of these other blood biomarkers, used alone (GFAP, UCH-L1) or in combination (GFAP + H-FABP ± S100B ± IL10) can improve the specificity of S100B.
Collapse
|
25
|
Song B, Wang XX, Yang HY, Kong LT, Sun HY. Temperature-sensitive bone mesenchymal stem cells combined with mild hypothermia reduces neurological deficit in rats of severe traumatic brain injury. Brain Inj 2020; 34:975-982. [PMID: 32362186 DOI: 10.1080/02699052.2020.1753112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND To explore the combined influences of temperature-sensitive bone mesenchymal stem cells (tsBMSCs) and mild hypothermia (MH) on neurological function and glucose metabolism in rats with severe traumatic brain injury (TBI). METHODS SD rats were randomly divided into sham, TBI, TBI + MH, TBI + BMSCs and TBI + MH +tsBMSCs groups. Then, the brain water content, serum-specific proteins (S100β, NSE, LDH, and CK), and blood glucose at different time points were measured. Furthermore, GLUT-3 expression was detected by Western blotting, and apoptotic rate was determined by TUNEL staining. RESULTS After TBI rat establishment, the brain injury resulted in significant increases in mNSS scores and brain water content, and upregulations in serum levels of S100β, NSE, LDH and CK, and blood glucose, with the elevated cell apoptotic rate in the injured cortex. However, these changes were reversed by MH alone, BMSCs alone, or combination treatment of MH and tsBMSCs in varying degrees, and the combination treatment was superior to the treatment with BMSCs or MH alone. CONCLUSION Combination therapy of tsBMSCs and MH can reduce the neuronal apoptosis in severe TBI rats, with the suppression of serum biomarkers and hyperglycemia, contributing to the recovery of neurological functions. ABBREVIATIONS tsBMSCs: temperature-sensitive bone mesenchymal stem cells; MH: mild hypothermia; TBI: traumatic brain injury; mNSS: modified Neurological Severity Score.
Collapse
Affiliation(s)
- Bo Song
- Department of Emergency, YanTaiShan Hospital , YanTai, Shandong, China
| | - Xin-Xiang Wang
- Department of Laboratory, Yantai Chefoo Area Directly Subordinate Organ Hospital , YanTai, Shandong, China
| | - Hai-Yan Yang
- Department of Emergency, YanTaiShan Hospital , YanTai, Shandong, China
| | - Ling-Ting Kong
- Department of Emergency, YanTaiShan Hospital , YanTai, Shandong, China
| | - Hong-Yan Sun
- Department of Endocrinology, YanTaiShan Hospital , YanTai, Shandong, China
| |
Collapse
|
26
|
Harper MM, Rudd D, Meyer KJ, Kanthasamy AG, Anantharam V, Pieper AA, Vázquez-Rosa E, Shin MK, Chaubey K, Koh Y, Evans LP, Bassuk AG, Anderson MG, Dutca L, Kudva IT, John M. Identification of chronic brain protein changes and protein targets of serum auto-antibodies after blast-mediated traumatic brain injury. Heliyon 2020; 6:e03374. [PMID: 32099918 PMCID: PMC7029173 DOI: 10.1016/j.heliyon.2020.e03374] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/19/2019] [Accepted: 02/03/2020] [Indexed: 12/13/2022] Open
Abstract
In addition to needing acute emergency management, blast-mediated traumatic brain injury (TBI) is also a chronic disorder with delayed-onset symptoms that manifest and progress over time. While the immediate consequences of acute blast injuries are readily apparent, chronic sequelae are harder to recognize. Indeed, the identification of individuals with mild-TBI or TBI-induced symptoms is greatly impaired in large part due to the lack of objective and robust biomarkers. The purpose of this study was to address these need by identifying candidates for serum-based biomarkers of blast TBI, and also to identify unique or differentially regulated protein expression in the thalamus in C57BL/6J mice exposed to blast using high throughput qualitative screens of protein expression. To identify thalamic proteins differentially or uniquely associated with blast exposure, we utilized an antibody-based affinity-capture strategy (referred to as "proteomics-based analysis of depletomes"; PAD) to deplete thalamic lysates from blast-treated mice of endogenous thalamic proteins also found in control mice. Analysis of this "depletome" detected 75 unique proteins, many with associations to the myelin sheath. To identify blast-associated proteins eliciting production of circulating autoantibodies, serum antibodies of blast-treated mice were immobilized, and their immunogens subsequently identified by proteomic analysis of proteins specifically captured following incubation with thalamic lysates (a variant of a strategy referred to as "proteomics-based expression library screening"; PELS). This analysis identified 46 blast-associated immunogenic proteins, including 6 shared in common with the PAD analysis (ALDOA, PHKB, HBA-A1, DPYSL2, SYN1, and CKB). These proteins and their autoantibodies are appropriate for further consideration as biomarkers of blast-mediated TBI.
Collapse
Affiliation(s)
- Matthew M. Harper
- The Iowa City Department of Veterans Affairs Medical Center, Center for the Prevention and Treatment of Visual Loss, Iowa City, IA, USA
- The University of Iowa Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Danielle Rudd
- The Iowa City Department of Veterans Affairs Medical Center, Center for the Prevention and Treatment of Visual Loss, Iowa City, IA, USA
| | - Kacie J. Meyer
- The University of Iowa Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | | | | | - Andrew A. Pieper
- Harrington Discovery Institute, University Hospitals of Cleveland, Department of Psychiatry Case Western Reserve University, Geriatric Research Education and Clinical Centers, Louis Stokes VA Medical Center, Cleveland, OH 44106, USA
| | - Edwin Vázquez-Rosa
- Harrington Discovery Institute, University Hospitals of Cleveland, Department of Psychiatry Case Western Reserve University, Geriatric Research Education and Clinical Centers, Louis Stokes VA Medical Center, Cleveland, OH 44106, USA
| | - Min-Kyoo Shin
- Harrington Discovery Institute, University Hospitals of Cleveland, Department of Psychiatry Case Western Reserve University, Geriatric Research Education and Clinical Centers, Louis Stokes VA Medical Center, Cleveland, OH 44106, USA
| | - Kalyani Chaubey
- Harrington Discovery Institute, University Hospitals of Cleveland, Department of Psychiatry Case Western Reserve University, Geriatric Research Education and Clinical Centers, Louis Stokes VA Medical Center, Cleveland, OH 44106, USA
| | - Yeojung Koh
- Harrington Discovery Institute, University Hospitals of Cleveland, Department of Psychiatry Case Western Reserve University, Geriatric Research Education and Clinical Centers, Louis Stokes VA Medical Center, Cleveland, OH 44106, USA
| | - Lucy P. Evans
- The University of Iowa Department of Pediatrics, University of Iowa, Iowa City, IA, USA
- The University of Iowa Department of Neurology, University of Iowa, Iowa City, IA, USA
- The University of Iowa Department of Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA
| | - Alexander G. Bassuk
- The University of Iowa Department of Pediatrics, University of Iowa, Iowa City, IA, USA
- The University of Iowa Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Michael G. Anderson
- The Iowa City Department of Veterans Affairs Medical Center, Center for the Prevention and Treatment of Visual Loss, Iowa City, IA, USA
- The University of Iowa Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
- The University of Iowa Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Laura Dutca
- The Iowa City Department of Veterans Affairs Medical Center, Center for the Prevention and Treatment of Visual Loss, Iowa City, IA, USA
| | - Indira T. Kudva
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA, USA
| | | |
Collapse
|
27
|
Banoei MM, Casault C, Metwaly SM, Winston BW. Metabolomics and Biomarker Discovery in Traumatic Brain Injury. J Neurotrauma 2019; 35:1831-1848. [PMID: 29587568 DOI: 10.1089/neu.2017.5326] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of disability and mortality worldwide. The TBI pathogenesis can induce broad pathophysiological consequences and clinical outcomes attributed to the complexity of the brain. Thus, the diagnosis and prognosis are important issues for the management of mild, moderate, and severe forms of TBI. Metabolomics of readily accessible biofluids is a promising tool for establishing more useful and reliable biomarkers of TBI than using clinical findings alone. Metabolites are an integral part of all biochemical and pathophysiological pathways. Metabolomic processes respond to the internal and external stimuli resulting in an alteration of metabolite concentrations. Current high-throughput and highly sensitive analytical tools are capable of detecting and quantifying small concentrations of metabolites, allowing one to measure metabolite alterations after a pathological event when compared to a normal state or a different pathological process. Further, these metabolic biomarkers could be used for the assessment of injury severity, discovery of mechanisms of injury, and defining structural damage in the brain in TBI. Metabolic biomarkers can also be used for the prediction of outcome, monitoring treatment response, in the assessment of or prognosis of post-injury recovery, and potentially in the use of neuroplasticity procedures. Metabolomics can also enhance our understanding of the pathophysiological mechanisms of TBI, both in primary and secondary injury. Thus, this review presents the promising application of metabolomics for the assessment of TBI as a stand-alone platform or in association with proteomics in the clinical setting.
Collapse
Affiliation(s)
| | - Colin Casault
- 1 Department of Critical Care Medicine, University of Calgary , Alberta, Canada
| | | | - Brent W Winston
- 2 Departments of Critical Care Medicine, Medicine and Biochemistry and Molecular Biology, University of Calgary , Calgary, Alberta, Canada
| |
Collapse
|
28
|
Yi M, Dai X, Li Q, Xu X, Chen Y, Wang D. Downregulated lncRNA CRNDE contributes to the enhancement of nerve repair after traumatic brain injury in rats. Cell Cycle 2019; 18:2332-2343. [PMID: 31345079 PMCID: PMC6738523 DOI: 10.1080/15384101.2019.1647024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Objective: Long non-coding RNAs (lncRNAs) have recently been demonstrated to be involved in craniocerebral disease, but their expression in traumatic brain injury (TBI) is still unearthed. Therefore, we aimed to elucidate the effect of lncRNA CRNDE on TBI. Methods: Firstly, CRNDE expression was determined in serum of TBI patients and healthy controls. The TBI rat model was established based on Feeney’s freefall impact method. The modeled rats were injected with siRNA against CRNDE, and the rats’ neurobehavioral function were measured. Besides, expression of inflammatory factors, size, shape and number of hippocampal neurons, neuron apoptosis, Beclin I, LC3-I, LC3-II, glial fibrillary acidic protein (GFAP), BrdU, nerve growth factor (NGF), nestin, and neuronal nuclei (NeuN) expression were detected through different methods. Results: In TBI, CRNDE was found to be upregulated. Downregulated CRNDE improved neurobehavioral function, repressed expression of neuroinflammatory factors, elevated number of Nissl bodies, as well as restricted neuronal apoptosis and autophagy in TBI rats. Besides, downregulated CRNDE also promoted expression of GFAP, BrdU, NGF, nestin, and NeuN, thus induced the differentiation of neurons and the directional growth and regeneration of nerve fibers. Conclusion: Altogether, we found that silencing of CRNDE might be able to promote the nerve repair after TBI in rats.
Collapse
Affiliation(s)
- Min Yi
- Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University , Changsha , PR China
| | - Xingping Dai
- Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University , Changsha , PR China
| | - Qiuxia Li
- Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University , Changsha , PR China
| | - Xia Xu
- Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University , Changsha , PR China
| | - Yanyi Chen
- Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University , Changsha , PR China
| | - Dongsheng Wang
- Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University , Changsha , PR China
| |
Collapse
|
29
|
Bouvier D, Balayssac D, Durif J, Mourgues C, Sarret C, Pereira B, Sapin V. Assessment of the advantage of the serum S100B protein biomonitoring in the management of paediatric mild traumatic brain injury-PROS100B: protocol of a multicentre unblinded stepped wedge cluster randomised trial. BMJ Open 2019; 9:e027365. [PMID: 31129587 PMCID: PMC6537998 DOI: 10.1136/bmjopen-2018-027365] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION S100B serum analysis in clinical routine could reduce the number of cranial CT (CCT) scans performed on children with mild traumatic brain injury (mTBI). Sampling should take place within 3 hours of trauma and cut-off levels should be based on paediatric reference ranges. The aim of this study is to evaluate the utility of measuring serum S100B in the management of paediatric mTBI by demonstrating a decrease in the number of CCT scans prescribed in an S100B biomonitoring group compared with a 'conventional management' control group, with the assumption of a 30% relative decrease of the number of CCT scans between the two groups. METHODS AND ANALYSIS The protocol is a randomised, multicentre, unblinded, prospective, interventional study (nine centres) using a stepped wedge cluster design, comparing two groups (S100B biomonitoring and control). Children in the control group will have CCT scans or be hospitalised according to the current recommendations of the French Society of Paediatrics (SFP). In the S100B biomonitoring group, blood sampling to determine serum S100B protein levels will take place within 3 hours after mTBI and subsequent management will depend on the assay. If S100B is in the normal range according to age, the children will be discharged from the emergency department after 6 hours' observation. If the result is abnormal, CCT scans or hospitalisation will be prescribed in accordance with current SFP recommendations. The primary outcome measure will be the proportion of CCT scans performed (absence/presence of CCT scan for each patient) in the 48 hours following mTBI. ETHICS AND DISSEMINATION The protocol presented (Version 5, 03 November 2017) has been approved by the ethics committee Comité de Protection des Personnes sud-est 6 (first approval 08 June 2016, IRB: 00008526). Participation in the study is voluntary and anonymous. The study findings will be disseminated in international peer-reviewed journals and presented at relevant conferences. TRIAL REGISTRATION NUMBER NCT02819778.
Collapse
Affiliation(s)
- Damien Bouvier
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Université Clermont Auvergne, CNRS, INSERM, GReD, Clermont-Ferrand, France
| | - David Balayssac
- DRCI, CHU Clermont-Ferrand, Université Clermont-Auvergne, INSERM U1107, NEURO-DOL, Clermont-Ferrand, France
| | - Julie Durif
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | | | - Catherine Sarret
- Pediatric Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Bruno Pereira
- DRCI, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Vincent Sapin
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Université Clermont Auvergne, CNRS, INSERM, GReD, Clermont-Ferrand, France
| |
Collapse
|
30
|
He XY, Dan QQ, Wang F, Li YK, Fu SJ, Zhao N, Wang TH. Protein Network Analysis of the Serum and Their Functional Implication in Patients Subjected to Traumatic Brain Injury. Front Neurosci 2019; 12:1049. [PMID: 30766469 PMCID: PMC6365836 DOI: 10.3389/fnins.2018.01049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/24/2018] [Indexed: 02/05/2023] Open
Abstract
Traumatic brain injury (TBI) often leads to severe neurobehavioral impairment, but the underlying molecular mechanism remains to be elucidated. Here, we collected the sera from 23 patients (aged from 19 to 81 years old, third day after TBI as TBI-third group) subjected to TBI from The First Hospital of Kunming City, and the sera from 22 healthy donors (aged from 18 to 81 years old and as control group). Then, three samples from TBI-third group and three samples from control group were subjected to the protein microarray detection, and bioinformatics analysis. Then, enzyme-linked immunosorbent assay (ELISA) was used to verify significantly altered protein levels. Results showed that, when compared with the control group, all significantly differentially expressed proteins [DEPs, P < 0.05, FDR < 0.05, fold change (FC) > 2] contained 172 molecules in the TBI-third group, in which 65 proteins were upregulated, while 107 proteins were downregulated. The biological processes of these DEPs, mostly happened in the extracellular region and the extracellular region parts, are mainly involved in the regulation of cellular process, signaling and signal transduction, cell communication, response to stimuli, the immune system process and multicellular organismal development. Moreover, the essential molecular functions of them are cytokine activity, growth factor activity and morphogen activity. Additionally, the most significant pathways are enriched in cytokine–cytokine receptor interaction and PI3K-Akt signaling pathways among downregulated proteins, and pathways in cancer and cytokine–cytokine receptor interaction among upregulated proteins. Of these, we focused on the NGF, NT-3, IGF-2, HGF, NPY, CRP, MMP-9, and ICAM-2 with a high number of interactors in Protein–Protein Interaction (PPI) Network indicated by bioinformatics report. Furthermore, using ELISA test, we confirmed that all increase in the levels of NGF, NT-3, IGF-2, HGF, NPY, CRP, MMP-9, and ICAM-2 in the serum from TBI patients. Together, we determined the screened protein expressional profiles in serum for TBI patients, in which the cross-network between inflammatory factors and growth factors may play a crucial role in TBI damage and repair. Our findings could contribute to indication for the diagnosis and treatment of TBI in future translational medicine and clinical practice.
Collapse
Affiliation(s)
- Xiu-Ying He
- Department of Anesthesiology, Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qi-Qin Dan
- Department of Anesthesiology, Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Fang Wang
- Institute of Neuroscience, Laboratory Zoology Department, Kunming Medical University, Kunming, China
| | - Yu-Kai Li
- Institute of Neuroscience, Laboratory Zoology Department, Kunming Medical University, Kunming, China
| | - Song-Jun Fu
- Institute of Neuroscience, Laboratory Zoology Department, Kunming Medical University, Kunming, China
| | - Nan Zhao
- Department of Neurosurgery, The First Hospital of Kunming, Kunming, China
| | - Ting-Hua Wang
- Department of Anesthesiology, Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China.,Institute of Neuroscience, Laboratory Zoology Department, Kunming Medical University, Kunming, China
| |
Collapse
|
31
|
Shao M, Cao J, Bai L, Huang W, Wang S, Sun C, Gan S, Ye L, Yin B, Zhang D, Gu C, Hu L, Bai G, Yan Z. Preliminary Evidence of Sex Differences in Cortical Thickness Following Acute Mild Traumatic Brain Injury. Front Neurol 2018; 9:878. [PMID: 30386291 PMCID: PMC6199374 DOI: 10.3389/fneur.2018.00878] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/27/2018] [Indexed: 12/02/2022] Open
Abstract
The main objective of this study was to evaluate sex differences in cortical thickness after acute mild traumatic brain injury (mTBI) and its associations with clinical outcomes. Thirty-two patients with mTBI at acute phase (2.4 ± 1.3 days post-injury) and 30 healthy controls were enrolled. All the participants underwent comprehensive neurocognitive assessments and MRI to assess cortical thickness. Significant sex differences were determined by using variance analysis of factorial design. Relations between the cortical thickness and clinical assessments were measured with the Spearman Correlation. Results revealed that patients with mTBI had significantly reduced cortical thickness in the left entorhinal cortex while increased cortical thickness in the left precuneus cortex and right lateral occipital cortex, compared with healthy controls. The interaction effect of the group × sex on cortical thickness was significant. Female patients had significant thicker cortical thickness in the left caudal anterior cingulate cortex (ACC) than male patients and had higher scores on Posttraumatic stress disorder Checklist—Civilian Version (PCL-C). Spearman correlational analysis showed a significantly positive correlations between the cortical thickness of the left caudal ACC and PCL-C ratings in female patients. Sex differences in cortical thickness support its potential as a neuroimaging phenotype for investigating the differences in clinical profiles of mild TBI between women and men.
Collapse
Affiliation(s)
- Meihua Shao
- Radiology Department of the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jieli Cao
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, China
| | - Lijun Bai
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, China
| | - Wenming Huang
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, China
| | - Shan Wang
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, China
| | - Chuanzhu Sun
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, China
| | - Shuoqiu Gan
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi' an, China
| | - Limei Ye
- Radiology Department of the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Bo Yin
- Neurosurgery Department of the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Danbin Zhang
- Radiology Department of the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Chenghui Gu
- Neurosurgery Department of the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liuxun Hu
- Neurosurgery Department of the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guanghui Bai
- Radiology Department of the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zhihan Yan
- Radiology Department of the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
32
|
Predicting Concussion Recovery in Children and Adolescents in the Emergency Department. Curr Neurol Neurosci Rep 2018; 18:78. [DOI: 10.1007/s11910-018-0881-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Al-Dahhak R, Khoury R, Qazi E, Grossberg GT. Traumatic Brain Injury, Chronic Traumatic Encephalopathy, and Alzheimer Disease. Clin Geriatr Med 2018; 34:617-635. [PMID: 30336991 DOI: 10.1016/j.cger.2018.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury (TBI) is a major health and economic burden. With increasing aging population, this issue is expected to continue to rise. Neurodegenerative disorders are more common with aging population in general regardless of history of TBI. Recent evidence continues to support a relation between a TBI and neurocognitive decline later in life (such as in athletes and military). This article summarizes the pathologic and clinical effects of TBI (regardless of severity) on the later development of dementia in individuals 65 years or older.
Collapse
Affiliation(s)
- Roula Al-Dahhak
- Department of Neurology, Saint Louis University, 1438 South Grand Boulevard, Suite 105, St Louis, MO 63104, USA.
| | - Rita Khoury
- Department of Psychiatry and Behavioral Neuroscience, Saint Louis University, 1438 South Grand Boulevard, St Louis, MO 63104, USA
| | - Erum Qazi
- Department of Psychiatry and Behavioral Neuroscience, Saint Louis University, 1438 South Grand Boulevard, St Louis, MO 63104, USA
| | - George T Grossberg
- Department of Psychiatry and Behavioral Neuroscience, Saint Louis University, 1438 South Grand Boulevard, St Louis, MO 63104, USA
| |
Collapse
|
34
|
Sadrameli SS, Wong MS, Kabir R, Wiese JR, Podell K, Volpi JJ, Gadhia RR. Changes in Transcranial Sonographic Measurement of the Optic Nerve Sheath Diameter in Non-concussed Collegiate Soccer Players Across a Single Season. Cureus 2018; 10:e3090. [PMID: 30410819 PMCID: PMC6207277 DOI: 10.7759/cureus.3090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Introduction Bedside ultrasound measurement of the optic nerve sheath diameter (ONSD) is emerging as a non-invasive technique to evaluate and predict raised intracranial pressure (ICP) in both children and adults. The prognostic value of increased ONSD on brain computed tomography (CT) scan has previously been correlated with increased intensive care unit (ICU) mortality in patients with severe traumatic brain injury (TBI). Previous studies have also evaluated the association between high-contact sports, such as soccer, and TBI; however, the related changes in ONSD are still unknown. The aim of this study was to evaluate for the natural evolution of changes in ONSD in athletes who participate in high-contact sports. Methods In this prospective observational study, volunteers from a collegiate women’s soccer team underwent the measurement of ONSD with transcranial Doppler (TCD). ONSDs were measured during the initial visit during the pre-season period and again at the three-month follow-up. A single experienced neuro-sonographer performed all measurements to eliminate any operator bias. Results Twenty-four female college soccer players between the ages of 18 and 23 were included in this analysis. Mean ONSD during the initial pre-season clinic visit and the three-month follow-up were 4.14±0.6 mm and 5.02±0.72 mm, respectively (P < 0.0001). A two-tailed t-test analysis was performed, which resulted in a t-value of 4.76 and P < 0.00001. The average ONSD measured during the post-season follow-up showed a 21.3% increase compared to the baseline. Conclusion The evaluation of high-contact sports athletes is limited due to the lack of objective radiologic and diagnostic tools. Moreover, in an athlete suffering a concussion, return-to-play decisions are heavily dependent on the symptoms reported by the athletes. In our analysis of collegiate women’s soccer players, active participation in soccer competitions and practice may be associated with an increase in ONSD, independent of concussions. Further studies are underway to evaluate the clinical significance of these findings as well as possible correlations between concussions and changes in ONSD.
Collapse
Affiliation(s)
- Saeed S Sadrameli
- Neurosurgery, Houston Methodist Neurological Institute, Houston, USA
| | - Marcus S Wong
- Neurosurgery, Houston Methodist Neurological Institute, Houston, USA
| | - Rasadul Kabir
- Radiology, Houston Methodist Neurological Institute, Houston, USA
| | - Jonathan R Wiese
- Neurology, Houston Methodist Neurological Institute, Houston, USA
| | - Kenneth Podell
- Neurology, Houston Methodist Neurological Institute, Houston, USA
| | - John J Volpi
- Neurology, Houston Methodist Neurological Institute, Houston, USA
| | - Rajan R Gadhia
- Neurology, Houston Methodist Neurological Institute, Houston, USA
| |
Collapse
|
35
|
Mondello S, Sorinola A, Czeiter E, Vámos Z, Amrein K, Synnot A, Donoghue E, Sándor J, Wang KKW, Diaz-Arrastia R, Steyerberg EW, Menon DK, Maas AIR, Buki A. Blood-Based Protein Biomarkers for the Management of Traumatic Brain Injuries in Adults Presenting to Emergency Departments with Mild Brain Injury: A Living Systematic Review and Meta-Analysis. J Neurotrauma 2018; 38:1086-1106. [PMID: 29020853 PMCID: PMC8054517 DOI: 10.1089/neu.2017.5182] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Accurate diagnosis of traumatic brain injury (TBI) is critical to effective management and intervention, but can be challenging in patients with mild TBI. A substantial number of studies have reported the use of circulating biomarkers as signatures for TBI, capable of improving diagnostic accuracy and clinical decision making beyond current practice standards. We performed a systematic review and meta-analysis to comprehensively and critically evaluate the existing body of evidence for the use of blood protein biomarkers (S100 calcium binding protein B [S100B], glial fibrillary acidic protein [GFAP], neuron specific enolase [NSE], ubiquitin C-terminal hydrolase-L1 [UCH-L1]. tau, and neurofilament proteins) for diagnosis of intracranial lesions on CT following mild TBI. Effects of potential confounding factors and differential diagnostic performance of the included markers were explored. Further, appropriateness of study design, analysis, quality, and demonstration of clinical utility were assessed. Studies published up to October 2016 were identified through searches of MEDLINE®, Embase, EBM Reviews, the Cochrane Library, World Health Organization (WHO), International Clinical Trials Registry Platform (ICTRP), and clinicaltrials.gov. Following screening of the identified articles, 26 were selected as relevant. We found that measurement of S100B can help informed decision making in the emergency department, possibly reducing resource use; however, there is insufficient evidence that any of the other markers is ready for clinical application. Our work pointed out serious problems in the design, analysis, and reporting of many of the studies, and identified substantial heterogeneity and research gaps. These findings emphasize the importance of methodologically rigorous studies focused on a biomarker's intended use, and defining standardized, validated, and reproducible approaches. The living nature of this systematic review, which will summarize key updated information as it becomes available, can inform and guide future implementation of biomarkers in the clinical arena.
Collapse
Affiliation(s)
- Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | | | - Endre Czeiter
- Department of Neurosurgery, University of Pecs, Pecs, Hungary.,János Szentágothai Research Centre, University of Pecs, Pecs, Hungary.,MTA-PTE Clinical Neuroscience MR Research Group, Pecs, Hungary
| | - Zoltán Vámos
- Anesthesiology and Intensive Therapy, University of Pecs, Pecs, Hungary
| | - Krisztina Amrein
- Department of Neurosurgery, University of Pecs, Pecs, Hungary.,János Szentágothai Research Centre, University of Pecs, Pecs, Hungary.,MTA-PTE Clinical Neuroscience MR Research Group, Pecs, Hungary
| | - Anneliese Synnot
- Australian & New Zealand Intensive Care Research Centre (ANZIC-RC), Monash University, Melbourne, Victoria, Australia.,Cochrane Consumers and Communication Group, Centre for Health Communication and Participation, La Trobe University, Melbourne, Victoria, Australia
| | - Emma Donoghue
- Australian & New Zealand Intensive Care Research Centre (ANZIC-RC), Monash University, Melbourne, Victoria, Australia.,Cochrane Consumers and Communication Group, Centre for Health Communication and Participation, La Trobe University, Melbourne, Victoria, Australia
| | - János Sándor
- Department of Preventive Medicine, Division of Biostatistics and Epidemiology, University of Debrecen, Debrecen, Hungary
| | - Kevin K W Wang
- Program for Neuroproteomics & Biomarkers Research, Departments of Psychiatry & Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Ewout W Steyerberg
- Center for Clinical Decision Sciences, Department of Public Health, Erasmus Medical Center, Rotterdam, The Netherlands
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Cambridge, United Kingdom
| | - Andrew I R Maas
- Department of Neurosurgery, Antwerp University Hospital and University of Antwerp, Antwerp, Belgium
| | - Andras Buki
- Department of Neurosurgery, University of Pecs, Pecs, Hungary.,János Szentágothai Research Centre, University of Pecs, Pecs, Hungary.,MTA-PTE Clinical Neuroscience MR Research Group, Pecs, Hungary
| |
Collapse
|
36
|
Nokkari A, Abou-El-Hassan H, Mechref Y, Mondello S, Kindy MS, Jaffa AA, Kobeissy F. Implication of the Kallikrein-Kinin system in neurological disorders: Quest for potential biomarkers and mechanisms. Prog Neurobiol 2018; 165-167:26-50. [PMID: 29355711 PMCID: PMC6026079 DOI: 10.1016/j.pneurobio.2018.01.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/15/2018] [Indexed: 01/06/2023]
Abstract
Neurological disorders represent major health concerns in terms of comorbidity and mortality worldwide. Despite a tremendous increase in our understanding of the pathophysiological processes involved in disease progression and prevention, the accumulated knowledge so far resulted in relatively moderate translational benefits in terms of therapeutic interventions and enhanced clinical outcomes. Aiming at specific neural molecular pathways, different strategies have been geared to target the development and progression of such disorders. The kallikrein-kinin system (KKS) is among the most delineated candidate systems due to its ubiquitous roles mediating several of the pathophysiological features of these neurological disorders as well as being implicated in regulating various brain functions. Several experimental KKS models revealed that the inhibition or stimulation of the two receptors of the KKS system (B1R and B2R) can exhibit neuroprotective and/or adverse pathological outcomes. This updated review provides background details of the KKS components and their functions in different neurological disorders including temporal lobe epilepsy, traumatic brain injury, stroke, spinal cord injury, Alzheimer's disease, multiple sclerosis and glioma. Finally, this work will highlight the putative roles of the KKS components as potential neurotherapeutic targets and provide future perspectives on the possibility of translating these findings into potential clinical biomarkers in neurological disease.
Collapse
Affiliation(s)
- Amaly Nokkari
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon
| | - Hadi Abou-El-Hassan
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Mark S Kindy
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, FL, USA; James A. Haley VA Medical Center, Tampa, FL, USA
| | - Ayad A Jaffa
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon; Department of Medicine, Medical University of South, Charleston, SC, USA.
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon; Center for Neuroproteomics & Biomarkers Research, Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
37
|
Oris C, Pereira B, Durif J, Simon-Pimmel J, Castellani C, Manzano S, Sapin V, Bouvier D. The Biomarker S100B and Mild Traumatic Brain Injury: A Meta-analysis. Pediatrics 2018; 141:peds.2018-0037. [PMID: 29716980 DOI: 10.1542/peds.2018-0037] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/21/2018] [Indexed: 11/24/2022] Open
Abstract
CONTEXT The usefulness of S100B has been noted as a biomarker in the management of mild traumatic brain injury (mTBI) in adults. However, S100B efficacy as a biomarker in children has previously been relatively unclear. OBJECTIVE A meta-analysis is conducted to assess the prognostic value of S100B in predicting intracerebral lesions in children after mTBI. DATA SOURCES Medline, Embase, the Cochrane Central Register of Controlled Trials (CENTRAL), Web of Science, Scopus, and Google Scholar. STUDY SELECTION Studies including children suffering mTBI who underwent S100B measurement and computed tomography (CT) scans were included. DATA EXTRACTION Of 1030 articles screened, 8 studies met the inclusion criteria. RESULTS The overall pooled sensitivity and specificity were 100% (95% confidence interval [CI]: 98%-100%) and 34% (95% CI: 30%-38%), respectively. A second analysis was based on the collection of 373 individual data points from 4 studies. Sensitivity and specificity results, obtained from reference ranges in children with a sampling time <3 hours posttrauma, were 97% (95% CI: 84.2%-99.9%) and 37.5% (95% CI: 28.8%-46.8%), respectively. Only 1 child had a low S100B level and a positive CT scan result without clinically important traumatic brain injury. LIMITATIONS Only patients undergoing both a CT scan and S100B testing were selected for evaluation. CONCLUSIONS S100B serum analysis as a part of the clinical routine could significantly reduce the number of CT scans performed on children with mTBI. Sampling should take place within 3 hours of trauma. Cutoff levels should be based on pediatric reference ranges.
Collapse
Affiliation(s)
| | - Bruno Pereira
- Biostatistics Unit, Direction de la Recherche Clinique, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Julie Durif
- Department of Biochemistry and Molecular Biology, and
| | - Jeanne Simon-Pimmel
- Department of Pediatric Emergency Medicine, University Hospital, Nantes, France
| | - Christoph Castellani
- Department of Paediatric and Adolescent Surgery, Medical University of Graz, Graz, Austria
| | - Sergio Manzano
- Department of Pediatric Emergency Medicine, University Hospital, Geneva, Switzerland; and
| | - Vincent Sapin
- Department of Biochemistry and Molecular Biology, and.,GReD, Université Clermont Auvergne, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Clermont-Ferrand, France
| | - Damien Bouvier
- Department of Biochemistry and Molecular Biology, and .,GReD, Université Clermont Auvergne, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Clermont-Ferrand, France
| |
Collapse
|
38
|
Hogan SR, Phan JH, Alvarado-Velez M, Wang MD, Bellamkonda RV, Fernández FM, LaPlaca MC. Discovery of Lipidome Alterations Following Traumatic Brain Injury via High-Resolution Metabolomics. J Proteome Res 2018; 17:2131-2143. [PMID: 29671324 DOI: 10.1021/acs.jproteome.8b00068] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury (TBI) can occur across wide segments of the population, presenting in a heterogeneous manner that makes diagnosis inconsistent and management challenging. Biomarkers offer the potential to objectively identify injury status, severity, and phenotype by measuring the relative concentrations of endogenous molecules in readily accessible biofluids. Through a data-driven, discovery approach, novel biomarker candidates for TBI were identified in the serum lipidome of adult male Sprague-Dawley rats in the first week following moderate controlled cortical impact (CCI). Serum samples were analyzed in positive and negative modes by ultraperformance liquid chromatography-mass spectrometry (UPLC-MS). A predictive panel for the classification of injured and uninjured sera samples, consisting of 26 dysregulated species belonging to a variety of lipid classes, was developed with a cross-validated accuracy of 85.3% using omniClassifier software to optimize feature selection. Polyunsaturated fatty acids (PUFAs) and PUFA-containing diacylglycerols were found to be upregulated in sera from injured rats, while changes in sphingolipids and other membrane phospholipids were also observed, many of which map to known secondary injury pathways. Overall, the identified biomarker panel offers viable molecular candidates representing lipids that may readily cross the blood-brain barrier (BBB) and aid in the understanding of TBI pathophysiology.
Collapse
Affiliation(s)
- Scott R Hogan
- School of Chemistry and Biochemistry , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - John H Phan
- Wallace H Coulter Department of Biomedical Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Melissa Alvarado-Velez
- Wallace H Coulter Department of Biomedical Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - May Dongmei Wang
- Wallace H Coulter Department of Biomedical Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Ravi V Bellamkonda
- Wallace H Coulter Department of Biomedical Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Facundo M Fernández
- School of Chemistry and Biochemistry , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Michelle C LaPlaca
- Wallace H Coulter Department of Biomedical Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|
39
|
Shores DR, Everett AD. Children as Biomarker Orphans: Progress in the Field of Pediatric Biomarkers. J Pediatr 2018; 193:14-20.e31. [PMID: 29031860 PMCID: PMC5794519 DOI: 10.1016/j.jpeds.2017.08.077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/04/2017] [Accepted: 08/30/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Darla R Shores
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD.
| | - Allen D Everett
- Division of Cardiology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
40
|
Dadas A, Janigro D. The role and diagnostic significance of cellular barriers after concussive head trauma. ACTA ACUST UNITED AC 2018; 3:CNC53. [PMID: 30202595 DOI: 10.2217/cnc-2017-0019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/21/2017] [Indexed: 12/15/2022]
Abstract
The onset of concussive head trauma often triggers an intricate sequence of physical consequences and pathophysiological responses. These sequelae can be acute (i.e., hematoma) or chronic (i.e., autoimmune response, neurodegeneration, etc.), and may follow traumas of any severity. A critical factor for prognostication of postconcussion outcome is the pathophysiological response of cellular barriers, which can be measured by several biomarkers of the acute and chronic postinjury phases. We present herein a review on the postconcussion mechanisms of the blood-brain barrier, as well as the diagnostic/prognostic approaches that utilize differential biomarker expression across this boundary. We discuss the role of the blood-saliva cellular barrier as a regulatory filter for brain-derived biomarkers in blood, and its implications for saliva-based diagnostic assays.
Collapse
Affiliation(s)
- Aaron Dadas
- FloTBI, Inc, 4415 Euclid Ave Cleveland, OH 44103, USA.,FloTBI, Inc, 4415 Euclid Ave Cleveland, OH 44103, USA
| | - Damir Janigro
- FloTBI, Inc, 4415 Euclid Ave Cleveland, OH 44103, USA.,Department of Physiology, Case Western Reserve University, Cleveland, OH 44106, USA.,FloTBI, Inc, 4415 Euclid Ave Cleveland, OH 44103, USA.,Department of Physiology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
41
|
Mercier E, Tardif PA, Cameron PA, Batomen Kuimi BL, Émond M, Moore L, Mitra B, Frenette J, De Guise E, Ouellet MC, Bordeleau M, Le Sage N. Prognostic Value of S-100β Protein for Prediction of Post-Concussion Symptoms after a Mild Traumatic Brain Injury: Systematic Review and Meta-Analysis. J Neurotrauma 2018; 35:609-622. [PMID: 28969486 DOI: 10.1089/neu.2017.5013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This systematic review and meta-analysis aimed to determine the prognostic value of S-100β protein to identify patients with post-concussion symptoms after a mild traumatic brain injury (mTBI). A search strategy was submitted to seven databases from their inception to October 2016. Individual patient data were requested. Cohort studies evaluating the association between S-100β protein level and post-concussion symptoms assessed at least seven days after the mTBI were considered. Outcomes were dichotomized as persistent (≥3 months) or early (≥7 days <3 months). Our search strategy yielded 23,298 citations of which 29 studies including between seven and 223 patients (n = 2505) were included. Post-concussion syndrome (PCS) (16 studies) and neuropsychological symptoms (9 studies) were the most frequently assessed outcomes. The odds of having persistent PCS (odds ratio [OR] 0.62, 95% confidence interval [CI]: 0.34-1.12, p = 0.11, I2 0% [n = five studies]) in patients with an elevated S-100β protein serum level were not significantly different from those of patients with normal values while the odds of having early PCS (OR 1.67, 95% CI: 0.98-2.85, p = 0.06, I2 38% [n = five studies]) were close to statistical significance. Similarly, having an elevated S-100β protein serum level was not associated with the odds of returning to work at six months (OR 2.31, 95% CI: 0.50-10.64, p = 0.28, I2 22% [n = two studies]). Overall risk of bias was considered moderate. Results suggest that the prognostic biomarker S-100β protein has a low clinical value to identify patients at risk of persistent post-concussion symptoms. Variability in injury to S-100ß protein sample time, mTBI populations, and outcomes assessed could potentially explain the lack of association and needs further evaluation.
Collapse
Affiliation(s)
- Eric Mercier
- 1 Département de Médecine Familiale et Médecine d'Urgence, Faculté de Médecine, Université Laval , Québec, Canada .,2 Axe Santé des Populations et Pratiques Optimales en Santé, Unité de recherche en Traumatologie - Urgence - Soins Intensifs, Centre de recherche du CHU de Québec, Université Laval , Québec, Canada .,3 Emergency and Trauma Centre, The Alfred Hospital , Alfred Health, Australia .,4 School of Public Health and Preventive Medicine, Monash University , Melbourne, Victoria, Australia
| | - Pier-Alexandre Tardif
- 2 Axe Santé des Populations et Pratiques Optimales en Santé, Unité de recherche en Traumatologie - Urgence - Soins Intensifs, Centre de recherche du CHU de Québec, Université Laval , Québec, Canada
| | - Peter A Cameron
- 3 Emergency and Trauma Centre, The Alfred Hospital , Alfred Health, Australia .,4 School of Public Health and Preventive Medicine, Monash University , Melbourne, Victoria, Australia .,5 National Trauma Research Institute , The Alfred Hospital, Melbourne, Victoria, Australia
| | - Brice Lionel Batomen Kuimi
- 2 Axe Santé des Populations et Pratiques Optimales en Santé, Unité de recherche en Traumatologie - Urgence - Soins Intensifs, Centre de recherche du CHU de Québec, Université Laval , Québec, Canada
| | - Marcel Émond
- 1 Département de Médecine Familiale et Médecine d'Urgence, Faculté de Médecine, Université Laval , Québec, Canada .,6 Axe Santé des Populations et Pratiques Optimales en Santé, Unité de recherche en Vieillissement, Centre de recherche du CHU de Québec, Université Laval , Québec, Canada
| | - Lynne Moore
- 2 Axe Santé des Populations et Pratiques Optimales en Santé, Unité de recherche en Traumatologie - Urgence - Soins Intensifs, Centre de recherche du CHU de Québec, Université Laval , Québec, Canada .,6 Axe Santé des Populations et Pratiques Optimales en Santé, Unité de recherche en Vieillissement, Centre de recherche du CHU de Québec, Université Laval , Québec, Canada .,7 Département de Médecine Sociale et Préventive, Faculté de Médecine, Université Laval , Québec, Canada
| | - Biswadev Mitra
- 3 Emergency and Trauma Centre, The Alfred Hospital , Alfred Health, Australia .,4 School of Public Health and Preventive Medicine, Monash University , Melbourne, Victoria, Australia .,5 National Trauma Research Institute , The Alfred Hospital, Melbourne, Victoria, Australia
| | - Jérôme Frenette
- 8 Centre de Recherche et Centre Hospitalier Universitaire de Québec , Québec, Canada
| | - Elaine De Guise
- 9 Research-Institute, McGill University Health Centre , Montreal, Québec, Canada .,10 Centre de recherche interdisciplinaire en réadaptation du Montréal métropolitain (CRIR), Montréal , Québec, Canada
| | - Marie-Christine Ouellet
- 2 Axe Santé des Populations et Pratiques Optimales en Santé, Unité de recherche en Traumatologie - Urgence - Soins Intensifs, Centre de recherche du CHU de Québec, Université Laval , Québec, Canada .,8 Centre de Recherche et Centre Hospitalier Universitaire de Québec , Québec, Canada
| | - Martine Bordeleau
- 2 Axe Santé des Populations et Pratiques Optimales en Santé, Unité de recherche en Traumatologie - Urgence - Soins Intensifs, Centre de recherche du CHU de Québec, Université Laval , Québec, Canada
| | - Natalie Le Sage
- 1 Département de Médecine Familiale et Médecine d'Urgence, Faculté de Médecine, Université Laval , Québec, Canada .,2 Axe Santé des Populations et Pratiques Optimales en Santé, Unité de recherche en Traumatologie - Urgence - Soins Intensifs, Centre de recherche du CHU de Québec, Université Laval , Québec, Canada
| |
Collapse
|
42
|
Maas AIR, Menon DK, Adelson PD, Andelic N, Bell MJ, Belli A, Bragge P, Brazinova A, Büki A, Chesnut RM, Citerio G, Coburn M, Cooper DJ, Crowder AT, Czeiter E, Czosnyka M, Diaz-Arrastia R, Dreier JP, Duhaime AC, Ercole A, van Essen TA, Feigin VL, Gao G, Giacino J, Gonzalez-Lara LE, Gruen RL, Gupta D, Hartings JA, Hill S, Jiang JY, Ketharanathan N, Kompanje EJO, Lanyon L, Laureys S, Lecky F, Levin H, Lingsma HF, Maegele M, Majdan M, Manley G, Marsteller J, Mascia L, McFadyen C, Mondello S, Newcombe V, Palotie A, Parizel PM, Peul W, Piercy J, Polinder S, Puybasset L, Rasmussen TE, Rossaint R, Smielewski P, Söderberg J, Stanworth SJ, Stein MB, von Steinbüchel N, Stewart W, Steyerberg EW, Stocchetti N, Synnot A, Te Ao B, Tenovuo O, Theadom A, Tibboel D, Videtta W, Wang KKW, Williams WH, Wilson L, Yaffe K, Adams H, Agnoletti V, Allanson J, Amrein K, Andaluz N, Anke A, Antoni A, van As AB, Audibert G, Azaševac A, Azouvi P, Azzolini ML, Baciu C, Badenes R, Barlow KM, Bartels R, Bauerfeind U, Beauchamp M, Beer D, Beer R, Belda FJ, Bellander BM, Bellier R, Benali H, Benard T, Beqiri V, Beretta L, Bernard F, Bertolini G, Bilotta F, Blaabjerg M, den Boogert H, Boutis K, Bouzat P, Brooks B, Brorsson C, Bullinger M, Burns E, Calappi E, Cameron P, Carise E, Castaño-León AM, Causin F, Chevallard G, Chieregato A, Christie B, Cnossen M, Coles J, Collett J, Della Corte F, Craig W, Csato G, Csomos A, Curry N, Dahyot-Fizelier C, Dawes H, DeMatteo C, Depreitere B, Dewey D, van Dijck J, Đilvesi Đ, Dippel D, Dizdarevic K, Donoghue E, Duek O, Dulière GL, Dzeko A, Eapen G, Emery CA, English S, Esser P, Ezer E, Fabricius M, Feng J, Fergusson D, Figaji A, Fleming J, Foks K, Francony G, Freedman S, Freo U, Frisvold SK, Gagnon I, Galanaud D, Gantner D, Giraud B, Glocker B, Golubovic J, Gómez López PA, Gordon WA, Gradisek P, Gravel J, Griesdale D, Grossi F, Haagsma JA, Håberg AK, Haitsma I, Van Hecke W, Helbok R, Helseth E, van Heugten C, Hoedemaekers C, Höfer S, Horton L, Hui J, Huijben JA, Hutchinson PJ, Jacobs B, van der Jagt M, Jankowski S, Janssens K, Jelaca B, Jones KM, Kamnitsas K, Kaps R, Karan M, Katila A, Kaukonen KM, De Keyser V, Kivisaari R, Kolias AG, Kolumbán B, Kolundžija K, Kondziella D, Koskinen LO, Kovács N, Kramer A, Kutsogiannis D, Kyprianou T, Lagares A, Lamontagne F, Latini R, Lauzier F, Lazar I, Ledig C, Lefering R, Legrand V, Levi L, Lightfoot R, Lozano A, MacDonald S, Major S, Manara A, Manhes P, Maréchal H, Martino C, Masala A, Masson S, Mattern J, McFadyen B, McMahon C, Meade M, Melegh B, Menovsky T, Moore L, Morgado Correia M, Morganti-Kossmann MC, Muehlan H, Mukherjee P, Murray L, van der Naalt J, Negru A, Nelson D, Nieboer D, Noirhomme Q, Nyirádi J, Oddo M, Okonkwo DO, Oldenbeuving AW, Ortolano F, Osmond M, Payen JF, Perlbarg V, Persona P, Pichon N, Piippo-Karjalainen A, Pili-Floury S, Pirinen M, Ple H, Poca MA, Posti J, Van Praag D, Ptito A, Radoi A, Ragauskas A, Raj R, Real RGL, Reed N, Rhodes J, Robertson C, Rocka S, Røe C, Røise O, Roks G, Rosand J, Rosenfeld JV, Rosenlund C, Rosenthal G, Rossi S, Rueckert D, de Ruiter GCW, Sacchi M, Sahakian BJ, Sahuquillo J, Sakowitz O, Salvato G, Sánchez-Porras R, Sándor J, Sangha G, Schäfer N, Schmidt S, Schneider KJ, Schnyer D, Schöhl H, Schoonman GG, Schou RF, Sir Ö, Skandsen T, Smeets D, Sorinola A, Stamatakis E, Stevanovic A, Stevens RD, Sundström N, Taccone FS, Takala R, Tanskanen P, Taylor MS, Telgmann R, Temkin N, Teodorani G, Thomas M, Tolias CM, Trapani T, Turgeon A, Vajkoczy P, Valadka AB, Valeinis E, Vallance S, Vámos Z, Vargiolu A, Vega E, Verheyden J, Vik A, Vilcinis R, Vleggeert-Lankamp C, Vogt L, Volovici V, Voormolen DC, Vulekovic P, Vande Vyvere T, Van Waesberghe J, Wessels L, Wildschut E, Williams G, Winkler MKL, Wolf S, Wood G, Xirouchaki N, Younsi A, Zaaroor M, Zelinkova V, Zemek R, Zumbo F. Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research. Lancet Neurol 2017; 16:987-1048. [DOI: 10.1016/s1474-4422(17)30371-x] [Citation(s) in RCA: 822] [Impact Index Per Article: 102.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 07/06/2017] [Accepted: 09/27/2017] [Indexed: 12/11/2022]
|
43
|
Shahjouei S, Sadeghi-Naini M, Yang Z, Kobeissy F, Rathore D, Shokraneh F, Blackburn S, Manley GT, Wang KK. The diagnostic values of UCH-L1 in traumatic brain injury: A meta-analysis. Brain Inj 2017; 32:1-17. [DOI: 10.1080/02699052.2017.1382717] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shima Shahjouei
- Department of Neurosurgery, Children’s Hospital Medical Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Sadeghi-Naini
- Department of Neurosurgery, Imam Hossein hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zhihui Yang
- Program for Neurotrauma, Neuroproteomics and Biomarker Research, Departments of Emergency Medicine and Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Firas Kobeissy
- Program for Neurotrauma, Neuroproteomics and Biomarker Research, Departments of Emergency Medicine and Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
- American University of Beirut, Department of Biochemistry and Molecular Genetics, Beirut, Lebanon
| | - Disa Rathore
- Program for Neurotrauma, Neuroproteomics and Biomarker Research, Departments of Emergency Medicine and Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Farhad Shokraneh
- Research Center for Modeling in Health, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
- Cochrane Schizophrenia Group, The Institute of Mental Health, A Partnership Between the University of Nottingham and Nottinghamshire Healthcare NHS Trust, Nottingham, UK
| | - Spiros Blackburn
- University of Texas, Health Sciences Center, Houston, Texas, USA
| | - Geoff T Manley
- Department of Neurological surgery, San Francisco General Hospital, University of California, San Francisco, USA
| | - Kevin K.W. Wang
- Program for Neurotrauma, Neuroproteomics and Biomarker Research, Departments of Emergency Medicine and Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
44
|
Mercier E, Tardif PA, Emond M, Ouellet MC, de Guise É, Mitra B, Cameron P, Le Sage N. Characteristics of patients included and enrolled in studies on the prognostic value of serum biomarkers for prediction of postconcussion symptoms following a mild traumatic brain injury: a systematic review. BMJ Open 2017; 7:e017848. [PMID: 28963310 PMCID: PMC5623519 DOI: 10.1136/bmjopen-2017-017848] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Mild traumatic brain injury (mTBI) has been insufficiently researched, and its definition remains elusive. Investigators are confronted by heterogeneity in patients, mechanism of injury and outcomes. Findings are thus often limited in generalisability and clinical application. Serum protein biomarkers are increasingly assessed to enhance prognostication of outcomes, but their translation into clinical practice has yet to be achieved. A systematic review was performed to describe the adult populations included and enrolled in studies that evaluated the prognostic value of protein biomarkers to predict postconcussion symptoms following an mTBI. DATA SOURCES Searches of MEDLINE, Embase, CENTRAL, CINAHL, Web of Science, PsycBITE and PsycINFO up to October 2016. DATA SELECTION AND EXTRACTION Two reviewers independently screened for potentially eligible studies, extracted data and assessed the overall quality of evidence by outcome using the Grading of Recommendations Assessment, Development and Evaluation approach. RESULTS A total of 23 298 citations were obtained from which 166 manuscripts were reviewed. Thirty-six cohort studies (2812 patients) having enrolled between 7 and 311 patients (median 89) fulfilled our inclusion criteria. Most studies excluded patients based on advanced age (n=10 (28%)), neurological disorders (n=20 (56%)), psychiatric disorders (n=17 (47%)), substance abuse disorders (n=13 (36%)) or previous traumatic brain injury (n=10 (28%)). Twenty-one studies (58%) used at least two of these exclusion criteria. The pooled mean age of included patients was 39.3 (SD 4.6) years old (34 studies). The criteria used to define a mTBI were inconsistent. The most frequently reported outcome was postconcussion syndrome using the Rivermead Post-Concussion Symptoms Questionnaire (n=18 (50%)) with follow-ups ranging from 7 days to 5 years after the mTBI. CONCLUSIONS Most studies have recruited samples that are not representative and generalisable to the mTBI population. These exclusion criteria limit the potential use and translation of promising serum protein biomarkers to predict postconcussion symptoms.
Collapse
Affiliation(s)
- Eric Mercier
- Axe Santé des Populations et Pratiques Optimales en Santé, Unité de recherche en Traumatologie - Urgence - Soins Intensifs, Centre de recherche du CHU de Québec, Université Laval, Quebec, Canada
- Département de Médecine Familiale et Médecine d’Urgence, Faculté de Médecine, Université Laval, Quebec, Canada
- Emergency and Trauma Centre, The Alfred Hospital, Alfred Health, Melbourne, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Pier-Alexandre Tardif
- Axe Santé des Populations et Pratiques Optimales en Santé, Unité de recherche en Traumatologie - Urgence - Soins Intensifs, Centre de recherche du CHU de Québec, Université Laval, Quebec, Canada
| | - Marcel Emond
- Département de Médecine Familiale et Médecine d’Urgence, Faculté de Médecine, Université Laval, Quebec, Canada
- Axe Santé des Populations et Pratiques Optimales en Santé, Unité de recherche en Vieillissement, Centre de recherche du CHU de Québec, Université Laval, Quebec, Canada
| | - Marie-Christine Ouellet
- Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale (CIRRIS), Quebec, Canada
| | - Élaine de Guise
- Research-Institute, McGill University Health Centre, Quebec, Canada
- Centre de recherche interdisciplinaire en réadaptation du Montréal métropolitain (CRIR), Quebec, Canada
| | - Biswadev Mitra
- Emergency and Trauma Centre, The Alfred Hospital, Alfred Health, Melbourne, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
- National Trauma Research Institute, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Peter Cameron
- Emergency and Trauma Centre, The Alfred Hospital, Alfred Health, Melbourne, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
- National Trauma Research Institute, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Natalie Le Sage
- Axe Santé des Populations et Pratiques Optimales en Santé, Unité de recherche en Traumatologie - Urgence - Soins Intensifs, Centre de recherche du CHU de Québec, Université Laval, Quebec, Canada
- Département de Médecine Familiale et Médecine d’Urgence, Faculté de Médecine, Université Laval, Quebec, Canada
| |
Collapse
|
45
|
Mbachu SN, Pieribone VA, Bechtel KA, McCarthy ML, Melnick ER. Optimizing recruitment and retention of adolescents in ED research: Findings from concussion biomarker pilot study. Am J Emerg Med 2017; 36:884-887. [PMID: 28918968 DOI: 10.1016/j.ajem.2017.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 09/11/2017] [Indexed: 11/17/2022] Open
Affiliation(s)
- Sean N Mbachu
- Department of Emergency Medicine, Yale School of Medicine, New Haven, CT, United States; Department of Emergency Medicine, Georgetown University Hospital/Washington Hospital Center, Washington, DC, United States
| | - Vincent A Pieribone
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, United States; Department of Neurobiology, Yale School of Medicine, New Haven, CT, United States; The John B. Pierce Laboratory, New Haven, CT, United States.
| | - Kirsten A Bechtel
- Department of Emergency Medicine, Yale School of Medicine, New Haven, CT, United States; Department of Pediatrics, Yale School of Medicine, New Haven, CT, United States.
| | - Madeline L McCarthy
- Department of Emergency Medicine, Yale School of Medicine, New Haven, CT, United States; Department of Pediatrics, University of Massachusetts Medical Center, Worcester, MA, United States.
| | - Edward R Melnick
- Department of Emergency Medicine, Yale School of Medicine, New Haven, CT, United States.
| |
Collapse
|
46
|
Agoston DV, Langford D. Big Data in traumatic brain injury; promise and challenges. Concussion 2017; 2:CNC45. [PMID: 30202589 PMCID: PMC6122694 DOI: 10.2217/cnc-2016-0013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 05/25/2017] [Indexed: 01/14/2023] Open
Abstract
Traumatic brain injury (TBI) is a spectrum disease of overwhelming complexity, the research of which generates enormous amounts of structured, semi-structured and unstructured data. This resulting big data has tremendous potential to be mined for valuable information regarding the "most complex disease of the most complex organ". Big data analyses require specialized big data analytics applications, machine learning and artificial intelligence platforms to reveal associations, trends, correlations and patterns not otherwise realized by current analytical approaches. The intersection of potential data sources between experimental TBI and clinical TBI research presents inherent challenges for setting parameters for the generation of common data elements and to mine existing legacy data that would allow highly translatable big data analyses. In order to successfully utilize big data analyses in TBI, we must be willing to accept the messiness of data, collect and store all data and give up causation for correlation. In this context, coupling the big data approach to established clinical and pre-clinical data sources will transform current practices for triage, diagnosis, treatment and prognosis into highly integrated evidence-based patient care.
Collapse
Affiliation(s)
- Denes V Agoston
- Department of Anatomy, Physiology & Genetics, Uniformed Services University, Bethesda, MD 20814, USA.,Department of Neuroscience, Karolinska Institute, Stockholm, Sweden.,Department of Anatomy, Physiology & Genetics, Uniformed Services University, Bethesda, MD 20814, USA.,Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Dianne Langford
- Department of Neuroscience, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.,Department of Neuroscience, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
47
|
Themistocleous MS, Sakas DE, Boviatsis E, Tagaris G, Kouyialis A, Psachoulia C, Stathis P. The Insertion of Electrodes in the Brain for Electrophysiological Recording or Chronic Stimulation Is Not Associated With Any Biochemically Detectable Neuronal Injury. Neuromodulation 2017; 20:424-428. [PMID: 28393415 DOI: 10.1111/ner.12598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 01/29/2017] [Accepted: 02/15/2017] [Indexed: 01/29/2023]
Abstract
OBJECTIVE The aim of this study was to evaluate the degree of brain tissue injury that could be potentially induced by the introduction of a) microrecording electrodes, b) macrostimulation electrodes, or c) chronic stimulation electrodes. We aimed to evaluate whether the use of five simultaneous microrecording tracks is associated with any brain injury not detectable by conventional imaging such as CT or MRI. MATERIALS AND METHODS The study included 61 patients who underwent surgery for implantation of 121 DBS leads. In all cases, five simultaneous tracts were utilized for microelectrode recordings. All patients underwent measurements of serum S-100b at specific time points as follows: a) prior to the operation, and b) intraoperatively at specific stages of the procedure: 1) after opening the burr hole, 2) after the insertion of microrecording electrodes, 3) during macrostimulation, 4) at the end of the operation, and 5) on the first postoperative day. RESULTS The levels of serum S-100B protein remained within the normal range during the entire period of investigation in all patients with the exception of two cases. In both patients, the procedure was complicated by intraparenchymal hemorrhage visible in neuro-imaging. The first patient developed a small intraparenchymal hemorrhage, visible on the postoperative MRI, with no neurological deficit. The second patient experienced a focal epileptic seizure after the insertion of the right DBS chronic lead and the postoperative CT scan revealed a right frontal lobe hemorrhage. CONCLUSION These results strongly indicate that the insertion of either multiple recording electrodes or the implantation of chronic electrodes in DBS does not increase the risk of brain hemorrhage or of other intracranial complications, and furthermore it does not cause any biochemically detectable brain tissue damage.
Collapse
Affiliation(s)
- Marios S Themistocleous
- Department of Neurosurgery, University of Athens Medical School, "Evangelismos" Hospital, Athens, Greece.,P. Kokkalis Hellenic Center for Neurosurgical Research, Athens, Greece
| | - Damianos E Sakas
- Department of Neurosurgery, University of Athens Medical School, "Evangelismos" Hospital, Athens, Greece.,P. Kokkalis Hellenic Center for Neurosurgical Research, Athens, Greece
| | - Efstathios Boviatsis
- Department of Neurosurgery, University of Athens Medical School, "Evangelismos" Hospital, Athens, Greece.,P. Kokkalis Hellenic Center for Neurosurgical Research, Athens, Greece
| | - George Tagaris
- Department of Neurosurgery, University of Athens Medical School, "Evangelismos" Hospital, Athens, Greece.,P. Kokkalis Hellenic Center for Neurosurgical Research, Athens, Greece
| | - Andreas Kouyialis
- Department of Neurosurgery, University of Athens Medical School, "Evangelismos" Hospital, Athens, Greece
| | | | - Pantelis Stathis
- Department of Neurosurgery, University of Athens Medical School, "Evangelismos" Hospital, Athens, Greece.,P. Kokkalis Hellenic Center for Neurosurgical Research, Athens, Greece
| |
Collapse
|
48
|
Abstract
Biomarkers are key tools and can provide crucial information on the complex cascade of events and molecular mechanisms underlying traumatic brain injury (TBI) pathophysiology. Obtaining a profile of distinct classes of biomarkers reflecting core pathologic mechanisms could enable us to identify and characterize the initial injury and the secondary pathologic cascades. Thus, they represent a logical adjunct to improve diagnosis, track progression and activity, guide molecularly targeted therapy, and monitor therapeutic response in TBI. Accordingly, great effort has been put into the identification of novel biomarkers in the past 25 years. However, the role of brain injury markers in clinical practice has been long debated, due to inconsistent regulatory standards and lack of reliable evidence of analytical validity and clinical utility. We present a comprehensive overview of the markers currently available while characterizing their potential role and applications in diagnosis, monitoring, drug discovery, and clinical trials in TBI. In reviewing these concepts, we discuss the recent inclusion of brain damage biomarkers in the diagnostic guidelines and provide perspectives on the validation of such markers for their use in the clinic.
Collapse
|
49
|
Abstract
Traumatic brain injury (TBI) is the greatest cause of death and severe disability in young adults; its incidence is increasing in the elderly and in the developing world. Outcome from severe TBI has improved dramatically as a result of advancements in trauma systems and supportive critical care, however we remain without a therapeutic which acts directly to attenuate brain injury. Recognition of secondary injury and its molecular mediators has raised hopes for such targeted treatments. Unfortunately, over 30 late-phase clinical trials investigating promising agents have failed to translate a therapeutic for clinical use. Numerous explanations for this failure have been postulated and are reviewed here. With this historical context we review ongoing research and anticipated future trends which are armed with lessons from past trials, new scientific advances, as well as improved research infrastructure and funding. There is great hope that these new efforts will finally lead to an effective therapeutic for TBI as well as better clinical management strategies.
Collapse
Affiliation(s)
- Gregory W J Hawryluk
- Department of Neurosurgery, University of Utah, 175 North Medical Drive East, Salt Lake City, UT 84132, USA
| | - M Ross Bullock
- Neurotrauma, Department of Neurosurgery, Miller School of Medicine, Lois Pope LIFE Center, University of Miami, 1095 NW 14th Terrace, Miami, FL 33136, USA.
| |
Collapse
|
50
|
Martínez-Morillo E, Childs C, García BP, Álvarez Menéndez FV, Romaschin AD, Cervellin G, Lippi G, Diamandis EP. Neurofilament medium polypeptide (NFM) protein concentration is increased in CSF and serum samples from patients with brain injury. Clin Chem Lab Med 2016; 53:1575-84. [PMID: 25720124 DOI: 10.1515/cclm-2014-0908] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 01/06/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND Brain injury is a medical emergency that needs to be diagnosed and treated promptly. Several proteins have been studied as biomarkers of this medical condition. The aims of this study were to: 1) evaluate the selectivity and precision of a commercial ELISA kit for neurofilament medium polypeptide (NFM) protein; and 2) evaluate the concentration in cerebrospinal fluid (CSF) and serum of healthy individuals and patients with brain damage. METHODS An ELISA from Elabscience was used. The selectivity was evaluated using size-exclusion chromatography and mass spectrometry. Intra- and inter-batch coefficients of variation (CV) were also studied. Fifty-one CSF samples from 36 age-matched patients with hemorrhagic stroke (HS) (n=30), ischemic stroke (IS) (n=11) and healthy individuals (n=10) were assayed. In addition, serum samples from healthy volunteers (n=47), 68 serum samples from seven patients with HS, 106 serum samples from 12 patients with traumatic brain injury (TBI) and 68 serum samples from 68 patients with mild traumatic brain injury (mTBI) were also analyzed. RESULTS NFM was identified in the chromatographic fraction with highest immunoreactivity. The intra- and inter-batch CVs were ≤10% and ≤13%, respectively. The CSF-NFM concentration in HS was significantly higher (p<0.0001) than in IS and controls. Serum NFM concentration ranged from 0.26 to 8.57 ng/mL in healthy individuals (median=2.29), from 0.97 to 42.4 ng/mL in HS (median=10.8) and from 3.48 to 45.4 ng/mL in TBI (median=14.7). Finally, 44% of patients with mTBI had increased NFM concentration, with significantly higher levels (p=0.01) in patients with polytrauma. CONCLUSIONS To our knowledge this is the first study describing increased NFM levels in CSF and serum from patients with brain damage.
Collapse
|