1
|
Liang X, Su W, Zhang W, Wang S, Wu X, Li X, Gao W. An overview of the research progress on Aconitum carmichaelii Debx.:active compounds, pharmacology, toxicity, detoxification, and applications. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118832. [PMID: 39306209 DOI: 10.1016/j.jep.2024.118832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/18/2024] [Accepted: 09/13/2024] [Indexed: 09/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aconitum carmichaelii Debx. is the most widely distributed species of Aconitum plants in China and has a long history of medicinal use. Because of its toxicity, A. carmichaelii is classified as lower class in the Shennong Bencao Jing (Shennong's Classic of Materia Medica). According to the theory of Chinese medicine, the roots can be used to revive yang for resuscitation, dispel wind, remove dampness, and relieve pain. AIMS OF THE REVIEW This review focuses on summarizing the latest reports on the components, pharmacology, toxicity, detoxification mechanism and application of A. carmichaelii. It aims to provide ideas for in-depth research on activity mechanism of A. carmichaelii and expanding the value of exploitation and utilization. MATERIALS AND METHODS Information was collected from the following online scientific databases: PubMed, Web of Science, Wiley Online Library, SciFinder, Scopus, PubChem, China National Knowledge Internet (CNKI), etc. Additional data were obtained from other Chinese medicine books. RESULTS In this review, 224 compounds were categorized and new compounds discovered in the last five years were highlighted. The main components of A. carmichaelii are C19-diterpene alkaloids(C19-DAs), among which diester-type aconitine is the most toxic and also the main active ingredient, while monoester diterpene alkaloids (MDAs) and aminol diterpene alkaloids (ADAs) are greatly toxicity reduced due to the loss of ester bond. Heating and compatibility are the means to increase the efficiency and reduce the toxicity of A. carmichaelii. In addition, it also contains abundant C20-diterpene alkaloids (C20-DAs). Like C19-DAs, these compounds also have cardiotonic, anticancer, anti-inflammatory and analgesic pharmacological effects, but their toxicity is weaker. The above-ground part contains not only a variety of MDAs and ADAs, but also contains abundant non-diterpenoid alkaloids and active polysaccharides. In addition to pharmacological effects, we further summarized the mechanisms of cardiotoxicity, neurotoxicity and other toxicity of A. carmichaelii. What's more, the application prospects are also discussed. Polysaccharides and diterpenoid alkaloids in A. carmichaelii and related traditional prescriptions have great promising prospects for the development of new drugs. CONCLUSION A. carmichaelii has rich alkaloids and polysaccharides, but the new compounds discovered in recent years are only in the activity screening stage. The toxic differences between C19- and C20- DAs and the dose that affect toxicity of A. carmichaelii are still not clear. The non-traditional medicinal parts, such as stems and leaves, show great potential for development and utilization. More extensive and in-depth exploration of low-toxic active compounds, as well as the mechanism of efficacy-enhancement and toxicity-attenuation, will help A. carmichaelii to be better and safer used for clinical.
Collapse
Affiliation(s)
- Xv Liang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Wenya Su
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Weimei Zhang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Shirui Wang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Xipei Wu
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Xia Li
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China.
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China.
| |
Collapse
|
2
|
Zhang S, Nie S, Wu R, Chen X, Huang P. Extraction, purification, structural characterization, and bioactivities of Radix Aconiti Lateralis Preparata (Fuzi) polysaccharides: A review. Int J Biol Macromol 2024; 292:139285. [PMID: 39736284 DOI: 10.1016/j.ijbiomac.2024.139285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/21/2024] [Accepted: 12/27/2024] [Indexed: 01/01/2025]
Abstract
Radix Aconiti Lateralis Preparata (Fuzi) polysaccharide (FZP) is a key bioactive macromolecule derived from the root of Aconitum carmichaeli Debx. FZP has a variety of biological activities, including immunomodulatory, anti-tumor, anti-depressant, organ-protective, hypoglycemic, anti-inflammatory, and other activities. The biological activities of polysaccharides are closely related to their structures, and different extraction and purification methods will yield different polysaccharide structures. In this review, we summarized the advancements in FZP research, including extraction techniques, biological activities, and mechanism to provide basic reference for developing and applying as therapeutic agents and functional foods. At the same time, the shortcomings of FZP research are discussed in depth, and the potential development prospects and future research direction are prospected.
Collapse
Affiliation(s)
- Shan Zhang
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Shanshan Nie
- Department of Cardiovascular Disease, The first Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Ruipeng Wu
- Department of Cardiovascular Disease, The first Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Xinju Chen
- Department of Digestive Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China.
| | - Peng Huang
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
3
|
Yang C, Fu J, Zheng F, Fu Y, Duan X, Zuo R, Zhu J. Aconitine promotes ROS-activated P38/MAPK/Nrf2 pathway to inhibit autophagy and promote myocardial injury. J Cardiothorac Surg 2024; 19:665. [PMID: 39707526 DOI: 10.1186/s13019-024-03149-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Aconitine has cardiotoxicity, but the mechanism of cardiotoxicity induced by aconitine is limited. The aim of this study was to investigate the mechanism of myocardial injury induced by aconitine. METHODS Using aconitine, ROS inhibitor N-acetylcysteine(NAC), the autophagy activitor Rapamycin (Rap) or the P38/MAPK pathway activitor Dehydrocorydaline treats H9C2 cells. CCK-8 assay was used to assay cell proliferation activity. Flow Cytometry was used to detect cell apoptosis. Dichloro-dihydrofluorescein diacetate was used to detect ROS levels. The expression of LC3 was detected by Immunofluorescence Staining. Western blotting detected the expression of related proteins. The mRNA levels of inflammatory factors were detected by RT-qPCR. RESULTS Aconitine inhibits cardiomyocyte proliferation, induces apoptosis and secretion of inflammatory factors. Aconitine activates the P38/MAPK/Nrf2 pathway, induces ROS increase, and promotes autophagy. NAC can inhibit proliferation inhibition, apoptosis, inflammation and P38/MAPK/Nrf2 pathway activation induced by aconitine. Rap and P38 activators can partially recover the effects of NAC on proliferation, apoptosis, inflammation and autophagy of cardiomyocytes. CONCLUSION Aconitine promotes ROS-activated P38/MAPK/Nrf2 pathway to inhibit autophagy and promote myocardial injury.
Collapse
Affiliation(s)
- Chunai Yang
- Department of Emergency, The Affiliated Hospital of Yunnan University, Kunming, 650021, China
| | - Jinxiao Fu
- Department of Geriatric Medicine, The Affiliated Hospital of Yunnan University, 176 Qingnian Road, Wuhua District, Kunming, 650021, Yunnan, China.
| | - Fenshuang Zheng
- Department of Emergency, The Affiliated Hospital of Yunnan University, Kunming, 650021, China
| | - Yangshan Fu
- Department of Emergency, The Affiliated Hospital of Yunnan University, Kunming, 650021, China
| | - Xueqiong Duan
- Department of Emergency, The Affiliated Hospital of Yunnan University, Kunming, 650021, China
| | - Ruiling Zuo
- Department of Emergency, The Affiliated Hospital of Yunnan University, Kunming, 650021, China
| | - Junbo Zhu
- Department of Emergency, The Affiliated Hospital of Yunnan University, Kunming, 650021, China
| |
Collapse
|
4
|
Yang N, Guo J, Zhang J, Gao S, Xiang Q, Wen J, Huang Y, Rao C, Chen Y. A toxicological review of alkaloids. Drug Chem Toxicol 2024; 47:1267-1281. [PMID: 38465444 DOI: 10.1080/01480545.2024.2326051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/12/2024]
Abstract
Alkaloids are naturally occurring compounds with complex structures found in natural plants. To further improve the understanding of plant alkaloids, this review focuses on the classification, toxicity and mechanisms of action, providing insight into the occurrence of alkaloid-poisoning events and guiding the safe use of alkaloids in food, supplements and clinical applications. Based on their chemical structure, alkaloids can be divided into organic amines, diterpenoids, pyridines, isoquinolines, indoles, pyrrolidines, steroids, imidazoles and purines. The mechanisms of toxicity of alkaloids, including neurotoxicity, hepatoxicity, nephrotoxicity, cardiotoxicity and cytotoxicity, have also been reviewed. Some cases of alkaloid poisoning have been introduced when used as food or clinically, including accidental food poisoning, excessive consumption, and poisoning caused by the improper use of alkaloids in a clinical setting, and the importance of safety evaluation was illustrated. This review summarizes the toxicity and mechanism of action of alkaloids and provides evidence for the need for the safe use of alkaloids in food, supplements and clinical applications.
Collapse
Affiliation(s)
- Nannan Yang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jiafu Guo
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jian Zhang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Song Gao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qiwen Xiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jiayu Wen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yan Huang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Chaolong Rao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yan Chen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Xu Z, Yuan Y, Yuan Y, Ru L, Yuan Z, Xu Q, Li X. Safety assessment of Wuzhuyu decoction extract: acute and subacute oral toxicity studies in rats. Drug Chem Toxicol 2024; 47:889-896. [PMID: 38291651 DOI: 10.1080/01480545.2024.2309341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/06/2023] [Indexed: 02/01/2024]
Abstract
Wuzhuyu decoction (WZYD) is a well-known classic traditional Chinese medicine prescription and has been widely used to treat headache, nausea, vomiting, insomnia, etc. However, little published information is available about its safety. Our aim was to investigate the acute and subacute oral toxicity of WZYD extract in rats following the technical guidelines from China's National Medical Products Administration (NMPA) for single and repeated doses toxicity studies of drugs. Acute oral toxicity was assessed in rats via oral administration of WZYD extract at 4 g/kg three times within a day followed by a 14-day observation period. To evaluate the subacute toxicity, rats were orally administered with WZYD extract at doses of 0, 0.44, 1.33, and 4 g/kg for 28 days. The items examined included clinical signs, body weight, food consumption, hematological and biochemical parameters, bone marrow smear, organ index, and histopathology. After the rats were administered with 12 g/kg (3 × 4 g/kg) WZYD extract, no mortality and toxic effects were observed during the observation period. In the subacute toxicity study, WZYD extract did not cause any significant treatment-related abnormality in each examined item of rats, so the no observed adverse effect level (NOAEL) of WZYD extract for 28 days orally administered to rats is considered to be 4 g/kg, which is approximately 80-fold of its clinical proposed dosage.
Collapse
Affiliation(s)
- Zhiyong Xu
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Sci-tech Industrial Park, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongtian Yuan
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yueming Yuan
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Sci-tech Industrial Park, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Ru
- Sci-tech Industrial Park, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zheng Yuan
- Sci-tech Industrial Park, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qin Xu
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaobo Li
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Sci-tech Industrial Park, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
6
|
Weisheng H, Shuquan Z, Weiwei Z, Meichen P, Huine L, Hongmei D. Fatal poisoning due to aconite: Autopsy findings and postmortem quantitative analysis. Forensic Sci Med Pathol 2024; 20:999-1004. [PMID: 37783875 DOI: 10.1007/s12024-023-00728-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Aconitum species are commonly used in traditional Chinese medicine, and they have a narrow therapy window due to the possibility of aconitine poisoning. Aconitine poisoning deaths appear infrequently in forensic practice. It is important to collect valuable body samples in time due to the rapid absorption and excretion of aconitine. However, it is unknown whether postmortem samples have value for toxicological analysis if the deceased has experienced long-term treatment before death. Herein, we present a case of a woman who died after 12 days of failed active treatment for aconitine poisoning. Aconitine was detected in the liver tissue. To our knowledge, this is the first case report describing the detection of aconitine in a decedent after long-term active treatment. The findings indicated that the aconitine concentration in liver tissue can be maintained after long-term treatment; this information may therefore serve as a reference in forensic practice.
Collapse
Affiliation(s)
- Huang Weisheng
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Zhao Shuquan
- Department of Forensic Pathology, Zhongshan School of Medicine Sun Yat-sen University, Guangzhou, China
| | - Zhu Weiwei
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Meichen
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Huine
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Hongmei
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Luo X, Dong M, Liu J, Guo N, Li J, Shi Y, Yang Y. Fermentation: improvement of pharmacological effects and applications of botanical drugs. Front Pharmacol 2024; 15:1430238. [PMID: 39253373 PMCID: PMC11381286 DOI: 10.3389/fphar.2024.1430238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
Fermentation is an important concoction technique for botanical drugs. Fermentation transforms and enhances the active ingredients of botanical drugs through specific microbiological processes, ultimately affecting their pharmacological effects. This review explores the use of fermented botanical drugs in areas such as anti-tumor, hypolipidemic, antioxidant, antimicrobial, cosmetology, and intestinal flora regulation. It elucidates the potential pharmacological mechanisms and discusses the benefits of fermentation technology for botanical drugs, including reducing toxic side effects, enhancing drug efficacy, and creating new active ingredients. This article also discussesdelves into the common strains and factors influencing the fermentation process, which are crucial for the successful transformation and enhancement of these drugs. Taken together, this study aimed to provide a reference point for further research and wider applications of botanical drug fermentation technology.
Collapse
Affiliation(s)
- Xinxin Luo
- Department of First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Mosi Dong
- Department of First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Juntong Liu
- Department of First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Naifei Guo
- Department of Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Jing Li
- Department of First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Yan Shi
- Department of Liaoning Key Laboratory of Chinese Medicine Combining Disease and Syndrome of Diabetes, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Yufeng Yang
- Department of First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
- Department of College of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
8
|
Oshima Y, Tanaka A, Fukuki M, Otsuki A, Hisatome I. A Case of High-Dose Intravenous MgSO 4 and Hemoperfusion for Aconite Poisoning with Chronic Kidney Disease. Yonago Acta Med 2024; 67:270-279. [PMID: 39176192 PMCID: PMC11335928 DOI: 10.33160/yam.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024]
Abstract
Aconite contains four highly toxic diester-diterpene alkaloids, including aconitine, mesaconitine, hypaconitine, and jesaconitine, in all plant parts. Aconite has been used as for suicide, murder, and as an arrow poison since ancient Greek and Roman times. Ventricular tachyarrhythmias are the most common cause of death in aconite poisoning, and antiarrhythmic drugs and cardioversion are ineffective. A 61-year-old woman ingested the crushed raw roots of a single aconite plant. An ambulance brought her to the Tottori University Hospital 30 min after ingestion. She had a history of chronic stage 5 kidney disease but was not on dialysis. Her heart rate (HR) was 120 bpm upon arrival. The patient developed sustained supraventricular tachycardia (SVT) at an HR of 165 bpm with frequent premature ventricular contractions (PVCs) 15 min after arrival. She then developed sustained monomorphic ventricular tachycardia (VT) at an HR of 200 bpm 20 min after arrival, which progressed to pulseless polymorphic VT. Cardioversion was unsuccessful. External cardiac massage restored spontaneous circulation; however, her underlying rhythm remained sustained SVT with frequent PVCs. These arrhythmias repeatedly led to circulatory arrest. She was administered six intravenous boluses of 2 g of MgSO4 in the emergency department, which prevented her from going into sustained pulseless VT. Hemoperfusion (HP) with activated charcoal was performed 1.5 h after arrival. The aconitine, mesaconitine, and hypaconitine plasma concentrations were high at 8.9, 23.5, and 5.5 ng/mL, respectively, before the start of HP but decreased to 1.7, 4.0, and 2.7 ng/mL, respectively, after 7 h of HP. She returned to sinus rhythm on the second day of hospitalization; however, the patient required maintenance hemodialysis. We concluded that high-dose IV MgSO4 is an effective treatment for fatal tachyarrhythmias due to aconite poisoning, and that in cases of renal failure, HP may be required to remove aconite toxins from the body.
Collapse
Affiliation(s)
- Yoshiaki Oshima
- Division of Anesthesiology and Critical Care Medicine, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
- Department of Anesthesiology, Yonago Medical Center, Yonago 683-0006, Japan
| | - Akira Tanaka
- Division of Anesthesiology and Critical Care Medicine, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Masaharu Fukuki
- Department of Cardiology, Yonago Medical Center, Yonago 683-0006, Japan
| | - Akihiro Otsuki
- Division of Anesthesiology and Critical Care Medicine, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Ichiro Hisatome
- Department of Cardiology, Yonago Medical Center, Yonago 683-0006, Japan
| |
Collapse
|
9
|
Xue R, Zhang Q, Mei X, Wang B, Su L, Mao C, Guo ZJ, Gao B, Ji D, Lu T. Research on quality marker based on the processing from Aconiti lateralis radix praeparata to Heishunpian. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:1443-1456. [PMID: 38797531 DOI: 10.1002/pca.3376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/29/2024]
Abstract
INTRODUCTION Aconiti lateralis radix praeparata (ALRP), the sub root of Aconitum carmichaelii Debx., is a traditional Chinese medicine with good pharmacological effects. Heishunpian (HSP), prepared through the process of brine immersing, boiling, rinsing, dyeing, and steaming ALRP is one of the most widely used forms of decoction pieces in clinical practice. OBJECTIVES This study aims to investigate the mechanisms of component changes and transformations during the processing from ALRP to HSP, and to screen for their quality markers through UHPLC-QTOF-MS analysis. METHODS Samples from ALRP to HSP during processing were prepared and analyzed by UHPLC-QTOF-MS. By comparing the differences between before and after each processing step, the purpose of processing and the transformation of components during processing were studied. In addition, multiple batches of ALRP and HSP were determined, and potential quality markers were screened. RESULTS Through the analysis of ALRP and five key processing samples, 55 components were identified. Immersing in brine, rinsing, and dyeing were the main factors of component loss, and boiling caused a slight loss of components. Some components were enhanced during the steaming process. Combining the screened differences components between multiple ALRP and HSP, 10 components were considered as potential quality biomarkers. CONCLUSION This study found that the adjacent hydroxyl groups of the ester group may have a positive impact on the hydrolysis of the ester group, and 10 quality markers were preliminarily screened. It provides a reference for quality control and clinical application of ALRP and HSP.
Collapse
Affiliation(s)
- Rong Xue
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qian Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xi Mei
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bin Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lianlin Su
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunqin Mao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhi Jun Guo
- Nanjing University of Chinese Medicine and China Resources Sanjiu Medical & Pharmaceutical Co. Ltd., Shenzhen Longhua, China
| | - Bo Gao
- Nanjing University of Chinese Medicine and China Resources Sanjiu Medical & Pharmaceutical Co. Ltd., Shenzhen Longhua, China
| | - De Ji
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tulin Lu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
10
|
Bian YY, Hou J, Khakurel S. Treatment of a patient with aconitine poisoning using veno-arterial membrane oxygenation: A case report. World J Clin Cases 2024; 12:4842-4852. [PMID: 39070832 PMCID: PMC11235513 DOI: 10.12998/wjcc.v12.i21.4842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/23/2024] [Accepted: 06/12/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Aconitine poisoning is highly prone to causing malignant arrhythmias. The elimination of aconitine from the body takes a considerable amount of time, and during this period, patients are at a significant risk of death due to malignant arrhythmias associated with aconitine poisoning. CASE SUMMARY A 30-year-old male patient was admitted due to accidental ingestion of aconitine-containing drugs. Upon arrival at the emergency department, the patient intermittently experienced malignant arrhythmias including ventricular tachycardia, ventricular fibrillation, ventricular premature beats, and cardiac arrest. Emergency interventions such as cardiopulmonary resuscitation and defibrillation were promptly administered. Additionally, veno-arterial extracorporeal membrane oxygenation (VA-ECMO) therapy was initiated. Successful resuscitation was achieved before ECMO placement, but upon initiation of ECMO, the patient experienced recurrent malignant arrhythmias. ECMO was utilized to maintain hemodynamics and respiration, while continuous blood purification therapy for toxin clearance, mechanical ventilation, and hypothermic brain protection therapy were concurrently administered. On the third day of VA-ECMO support, the patient's respiratory and hemodynamic status stabilized, with only frequent ventricular premature beats observed on electrocardiographic monitoring, and echocardiography indicated recovery of cardiac contractile function. On the fourth day, a significant reduction in toxin levels was observed, along with stable hemodynamic and respiratory functions. Following a successful pump-controlled retrograde trial occlusion test, ECMO assistance was terminated. The patient gradually improved postoperatively and achieved recovery. He was discharged 11 days later. CONCLUSION VA-ECMO can serve as a bridging resuscitation technique for patients with reversible malignant arrhythmias.
Collapse
Affiliation(s)
- Yu-Yao Bian
- Department of Emergency Medicine, Hebei Petro China Central Hospital, Langfang 065000, Hebei Province, China
| | - Jin Hou
- Department of Internal Medicine, Langfang Health Vocational College, Langfang 065000, Hebei Province, China
| | - Sudha Khakurel
- Dallas Campus, UT Health Houston School of Public Health, Dallas, TX 75201, United States
| |
Collapse
|
11
|
Wu Z, Qian J, Feng C, Chen Z, Gao X, Liu Y, Gao Y. A review of Aconiti Lateralis Radix Praeparata (Fuzi) for kidney disease: phytochemistry, toxicology, herbal processing, and pharmacology. Front Pharmacol 2024; 15:1427333. [PMID: 39021829 PMCID: PMC11251978 DOI: 10.3389/fphar.2024.1427333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
Background Aconiti Lateralis Radix Praeparata, commonly known as Fuzi in. traditional Chinese medicine (TCM), is widely utilized in clinical practice despite its inherent toxicity. Since ancient times, TCM practitioners have explored various processing techniques to broaden its clinical applications and enhance its safety profile. This review aims to summarize the effects of processing on the chemical composition, toxicity, and pharmacological properties of Fuzi, as well as investigate potential underlying mechanisms. Methods Data on phytochemistry, toxicology, pharmacology, and processing methods of Fuzi were gathered from the literature of electronic databases, including Web of Science, PubMed, and CNKI. Results Fuzi contains over 100 kinds of chemical compounds, including alkaloids, flavonoids, and polysaccharides, among which alkaloids are the main active compounds. Diester-diterpenoid alkaloids are the main contributors to Fuzi's toxicity and have side effects on some organs, such as the heart, liver, kidneys, nervous system, and reproductive system. The chemical composition of aconite, particularly its alkaloid content, was changed by hydrolysis or substitution reaction during processing to enhance its efficacy and reduce its toxicity. Salted aconite could enhance the therapeutic efficacy of Fuzi in treating kidney diseases and influence its pharmacokinetics. Conclusion Processing plays an important role in increasing the efficiency and decreasing toxicity of aconite. Further studies are needed to elucidate the changes of aconite before and after processing and the underlying mechanisms of these changes, thereby providing evidence for the clinical safety of drug use.
Collapse
Affiliation(s)
- Ziyang Wu
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Jiawen Qian
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Chenhang Feng
- The Third Affiliated Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhouqi Chen
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Xiangfu Gao
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yang Liu
- Shaanxi Academy of Traditional Chinese Medicine, Xi’an, China
| | - Yuancheng Gao
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
12
|
Cao WY, Liu JY, Sun M, Wang JK, Lu F, Yang QN, Zhang WT, Zi MJ, Zhang BE, Liu HB, Wang SG, Wu Y, Wu RZ, Wu WD, Li R, Zhu ZY, Gao R. Pharmacokinetics, safety, and efficacy of Fuqi Guben Gao in the treatment of kidney-yang deficiency syndrome: a randomized, double-blind phase I trial. Front Pharmacol 2024; 15:1351871. [PMID: 39015370 PMCID: PMC11250459 DOI: 10.3389/fphar.2024.1351871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/05/2024] [Indexed: 07/18/2024] Open
Abstract
Introduction: Fuqi Guben Gao (FQGBG) is a botanical drug formulation composed of FuZi (FZ; Aconitum carmichaelii Debeaux [Ranunculaceae; Aconiti radix cocta]), Wolfberry (Lycium barbarum L. [Solanaceae; Lycii fructus]), and Cinnamon (Neolitsea cassia (L.) Kosterm. [Lauraceae; Cinnamomi cortex]). It has been used to clinically treat nocturia caused by kidney-yang deficiency syndrome (KYDS) for over 30 years and warms kidney yang. However, the pharmacological mechanism and the safety of FQGBG in humans require further exploration and evaluation. Methods: We investigated the efficacy of FQGBG in reducing urination and improving immune organ damage in two kinds of KYDS model rats (hydrocortisone-induced model and natural aging model), and evaluated the safety of different oral FQGBG doses through pharmacokinetic (PK) parameters, metabonomics, and occurrence of adverse reactions in healthy Chinese participants in a randomized, double-blind, placebo-controlled, single ascending dose clinical trial. Forty-two participants were allocated to six cohorts with FQGBG doses of 12.5, 25, 50, 75, 100, and 125 g. The PKs of FQGBG in plasma were determined using a fully validated LC-MS/MS method. Results: FQGBG significantly and rapidly improved the symptoms of increased urination in both two KYDS model rats and significantly resisted the adrenal atrophy in hydrocortisone-induced KYDS model rats. No apparent increase in adverse events was observed with dose escalation. Major adverse drug reactions included toothache, thirst, heat sensation, gum pain, diarrhea, abdominal distension, T-wave changes, and elevated creatinine levels. The PK results showed a higher exposure level of benzoylhypaconine (BHA) than benzoylmesaconine (BMA) and a shorter half-life of BMA than BHA. Toxic diester alkaloids, aconitine, mesaconitine, and hypaconitine were below the lower quantitative limit. Drug-induced metabolite markers primarily included lysophosphatidylcholines, fatty acids, phenylalanine, and arginine metabolites; no safety-related metabolite changes were observed. Conclusion: Under the investigated dosing regimen, FQGBG was safe. The efficacy mechanism of FQGBG in treating nocturia caused by KYDS may be related to the improvement of the hypothalamus-pituitary-adrenal axis function and increased energy metabolism. Clinical Trial Registration: https://www.chictr.org.cn/showproj.html?proj=26934, identifier ChiCTR1800015840.
Collapse
Affiliation(s)
- Wei-Yi Cao
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Jun-Yu Liu
- Yunnan Province Company Key Laboratory for TCM and Ethnic Drug of New Drug Creation, Yunnan Institute of Materia Medica, Kunming, Yunnan, China
- Yunnan Baiyao Group Co., Ltd., Kunming, Yunnan, China
| | - Min Sun
- Yunnan Province Company Key Laboratory for TCM and Ethnic Drug of New Drug Creation, Yunnan Institute of Materia Medica, Kunming, Yunnan, China
- Yunnan Baiyao Group Co., Ltd., Kunming, Yunnan, China
| | - Jing-Kun Wang
- Yunnan Province Company Key Laboratory for TCM and Ethnic Drug of New Drug Creation, Yunnan Institute of Materia Medica, Kunming, Yunnan, China
- Yunnan Baiyao Group Co., Ltd., Kunming, Yunnan, China
| | - Fang Lu
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Qiao-Ning Yang
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Wan-Tong Zhang
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Ming-Jie Zi
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Bai-E Zhang
- Yunnan Province Company Key Laboratory for TCM and Ethnic Drug of New Drug Creation, Yunnan Institute of Materia Medica, Kunming, Yunnan, China
- Yunnan Baiyao Group Co., Ltd., Kunming, Yunnan, China
| | - Hong-Bin Liu
- Yunnan Province Company Key Laboratory for TCM and Ethnic Drug of New Drug Creation, Yunnan Institute of Materia Medica, Kunming, Yunnan, China
- Yunnan Baiyao Group Co., Ltd., Kunming, Yunnan, China
| | - Shu-Ge Wang
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Yi Wu
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Rong-Zu Wu
- Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Wen-Di Wu
- Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Rui Li
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Zhao-Yun Zhu
- Yunnan Province Company Key Laboratory for TCM and Ethnic Drug of New Drug Creation, Yunnan Institute of Materia Medica, Kunming, Yunnan, China
- Yunnan Baiyao Group Co., Ltd., Kunming, Yunnan, China
| | - Rui Gao
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| |
Collapse
|
13
|
Guo YJ, Yao JJ, Guo ZZ, Ding M, Zhang KL, Shen QH, Li Y, Yu SF, Wan T, Xu FP, Wang Y, Qi XX, Wu JJ, Chen JX, Liu ZQ, Lu LL. HBB contributes to individualized aconitine-induced cardiotoxicity in mice via interfering with ABHD5/AMPK/HDAC4 axis. Acta Pharmacol Sin 2024; 45:1224-1236. [PMID: 38467717 PMCID: PMC11130212 DOI: 10.1038/s41401-023-01206-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 11/19/2023] [Indexed: 03/13/2024] Open
Abstract
The root of Aconitum carmichaelii Debx. (Fuzi) is an herbal medicine used in China that exerts significant efficacy in rescuing patients from severe diseases. A key toxic compound in Fuzi, aconitine (AC), could trigger unpredictable cardiotoxicities with high-individualization, thus hinders safe application of Fuzi. In this study we investigated the individual differences of AC-induced cardiotoxicities, the biomarkers and underlying mechanisms. Diversity Outbred (DO) mice were used as a genetically heterogeneous model for mimicking individualization clinically. The mice were orally administered AC (0.3, 0.6, 0.9 mg· kg-1 ·d-1) for 7 d. We found that AC-triggered cardiotoxicities in DO mice shared similar characteristics to those observed in clinic patients. Most importantly, significant individual differences were found in DO mice (variation coefficients: 34.08%-53.17%). RNA-sequencing in AC-tolerant and AC-sensitive mice revealed that hemoglobin subunit beta (HBB), a toxic-responsive protein in blood with 89% homology to human, was specifically enriched in AC-sensitive mice. Moreover, we found that HBB overexpression could significantly exacerbate AC-induced cardiotoxicity while HBB knockdown markedly attenuated cell death of cardiomyocytes. We revealed that AC could trigger hemolysis, and specifically bind to HBB in cell-free hemoglobin (cf-Hb), which could excessively promote NO scavenge and decrease cardioprotective S-nitrosylation. Meanwhile, AC bound to HBB enhanced the binding of HBB to ABHD5 and AMPK, which correspondingly decreased HDAC-NT generation and led to cardiomyocytes death. This study not only demonstrates HBB achievement a novel target of AC in blood, but provides the first clue for HBB as a novel biomarker in determining the individual differences of Fuzi-triggered cardiotoxicity.
Collapse
Affiliation(s)
- Ya-Juan Guo
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jing-Jing Yao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhen-Zhen Guo
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ming Ding
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Kun-Lin Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Qing-Hong Shen
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yu Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Shao-Fang Yu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ting Wan
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Fu-Ping Xu
- Guandong Provincial hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Ying Wang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiao-Xiao Qi
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jin-Jun Wu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jian-Xin Chen
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Zhong-Qiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Lin-Lin Lu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
14
|
Chen LX, Yang FQ. Applications of magnetic solid-phase extraction in the sample preparation of natural product analysis (2020-2023). J Sep Sci 2024; 47:e2400082. [PMID: 38819785 DOI: 10.1002/jssc.202400082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
Sample preparation, including extraction, separation, and purification, is a vital process for natural product analysis. As an attractive sample pretreatment method, magnetic solid-phase extraction (MSPE) has gained plenty of attention, mainly due to its simpler operation, less consumption of organic solvents, and shorter processing time than traditional SPE. This updated review is devoted to summarizing the applications of MSPE based on different magnetic nanomaterials in the analysis of various natural products in complex matrixes, such as biological samples, plants, and Chinese herbal preparations in the past four years (2020-2023). The preparation and fabrication of different materials are briefly introduced. Furthermore, the extraction mechanism and interaction forces between adsorbent and analytes are elaborated, and the advantages and disadvantages of different adsorbents coupled with various analytical methods for MSPE of different natural products are summarized. Moreover, the future trends and opportunities for MSPE in the natural product analysis are discussed. It is expected that this work can provide updated information for future research on the applications of MSPE in such fields.
Collapse
Affiliation(s)
- Ling-Xiao Chen
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, P. R. China
| | - Feng-Qing Yang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, P. R. China
| |
Collapse
|
15
|
Rui Y, Zhang X, Min X, Xie H, Ma X, Geng F, Liu R. Unlocking renal Restoration: Mesaconine from Aconitum plants restore mitochondrial function to halt cell apoptosis in acute kidney injury. Int Immunopharmacol 2024; 133:112170. [PMID: 38691919 DOI: 10.1016/j.intimp.2024.112170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/09/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
Acute kidney injury (AKI) is characterized by a sudden decline in renal function. Traditional Chinese medicine has employed Fuzi for kidney diseases; however, concerns about neurotoxicity and cardiotoxicity have constrained its clinical use. This study explored mesaconine, derived from processed Fuzi, as a promising low-toxicity alternative for AKI treatment. In this study, we assessed the protective effects of mesaconine in gentamicin (GM)-induced NRK-52E cells and AKI rat models in vitro and in vivo, respectively. Mesaconine promotes the proliferation of damaged NRK-52E cells and down-regulates intracellular transforming growth factor β1 (TGF-β1) and kidney injury molecule 1 (KIM-1) to promote renal cell repair. Concurrently, mesaconine restored mitochondrial morphology and permeability transition pores, reversed the decrease in mitochondrial membrane potential, mitigated mitochondrial dysfunction, decreased ATP production, inhibited inflammatory factor release, and reduced early apoptosis rates. In vivo, GM-induced AKI rat models exhibited elevated AKI biomarkers, in which mesaconine was effectively reduced, indicating improved renal function. Mesaconine enhanced superoxide dismutase activity, reduced malondialdehyde content, alleviated inflammatory infiltrate, mitigated tubular and glomerular lesions, and downregulated NF-κB (nuclear factor-κb) p65 expression, leading to decreased tumor necrosis factor-α (TNF-α) and IL-1β (interleukin-1β) levels in GM-induced AKI animals. Furthermore, mesaconine inhibited the expression of renal pro-apoptotic proteins (Bax, cytochrome c, cleaved-caspase 9, and cleaved-caspase 3) and induced the release of the anti-apoptotic protein bcl-2, further suppressing apoptosis. This study highlighted the therapeutic potential of mesaconine in GM-induced AKI. Its multifaceted mechanisms, including the restoration of mitochondrial dysfunction, anti-inflammatory and antioxidant effects, and apoptosis mitigation, make mesaconine a promising candidate for further exploration in AKI management.
Collapse
Affiliation(s)
- Yixin Rui
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; Department of Pharmacology, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Xiumeng Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; Department of Pharmacology, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Xinran Min
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; Department of Pharmacology, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Hongxiao Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; Department of Pharmacology, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Xiuying Ma
- Sichuan Engineering Research Center for Medicinal Animals, Sichuan 611137, China
| | - Funeng Geng
- Sichuan Engineering Research Center for Medicinal Animals, Sichuan 611137, China; Guizhou Yunfeng Pharmaceutical, Guizhou 510000, China.
| | - Rong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; Department of Pharmacology, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.
| |
Collapse
|
16
|
Chen XJ, Liu SY, Li SM, Feng JK, Hu Y, Cheng XZ, Hou CZ, Xu Y, Hu M, Feng L, Xiao L. The recent advance and prospect of natural source compounds for the treatment of heart failure. Heliyon 2024; 10:e27110. [PMID: 38444481 PMCID: PMC10912389 DOI: 10.1016/j.heliyon.2024.e27110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 03/07/2024] Open
Abstract
Heart failure is a continuously developing syndrome of cardiac insufficiency caused by diseases, which becomes a major disease endangering human health as well as one of the main causes of death in patients with cardiovascular diseases. The occurrence of heart failure is related to hemodynamic abnormalities, neuroendocrine hormones, myocardial damage, myocardial remodeling etc, lead to the clinical manifestations including dyspnea, fatigue and fluid retention with complex pathophysiological mechanisms. Currently available drugs such as cardiac glycoside, diuretic, angiotensin-converting enzyme inhibitor, vasodilator and β receptor blocker etc are widely used for the treatment of heart failure. In particular, natural products and related active ingredients have the characteristics of mild efficacy, low toxicity, multi-target comprehensive efficacy, and have obvious advantages in restoring cardiac function, reducing energy disorder and improving quality of life. In this review, we mainly focus on the recent advance including mechanisms and active ingredients of natural products for the treatment of heart failure, which will provide the inspiration for the development of more potent clinical drugs against heart failure.
Collapse
Affiliation(s)
- Xing-Juan Chen
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| | - Si-Yuan Liu
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Si-Ming Li
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| | | | - Ying Hu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Xiao-Zhen Cheng
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| | - Cheng-Zhi Hou
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| | - Yun Xu
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| | - Mu Hu
- Peking University International Hospital, Beijing, 102206, China
| | - Ling Feng
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| | - Lu Xiao
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| |
Collapse
|
17
|
Song L, Mi S, Zhao Y, Liu Z, Wang J, Wang H, Li W, Wang J, Zu W, Du H. Integrated virtual screening and in vitro studies for exploring the mechanism of triterpenoids in Chebulae Fructus alleviating mesaconitine-induced cardiotoxicity via TRPV1 channel. Front Pharmacol 2024; 15:1367682. [PMID: 38500766 PMCID: PMC10945000 DOI: 10.3389/fphar.2024.1367682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Background: In traditional Mongolian or Tibetan medicine in China, Chebulae Fructus (CF) is widely used to process or combine with aconitums to decrease the severe toxicity of aconitums. Researches in this area have predominantly focused on tannins, with few research on other major CF components for cardiotoxicity mitigation. The present study aimed to clarify whether triterpenoids can attenuate the cardiotoxicity caused by mesaconitine (MA) and investigate the mechanism of cardiotoxicity attenuation. Methods: Firstly, the pharmacophore model, molecular docking, and 3D-QSAR model were used to explore the mechanism of CF components in reducing the toxicity of MA mediated by the TRPV1 channel. Then three triterpenoids were selected to verify whether the triterpenoids had the effect of lowering the cardiotoxicity of MA using H9c2 cells combined with MTT, Hoechst 33258, and JC-1. Finally, Western blot, Fluo-3AM, and MTT assays combined with capsazepine were used to verify whether the triterpenoids reduced H9c2 cardiomyocyte toxicity induced by MA was related to the TRPV1 channel. Results: Seven triterpenoids in CF have the potential to activate the TRPV1 channel. And they exhibited greater affinity for TRPV1 compared to other compounds and MA. However, their activity was relatively lower than that of MA. Cell experiments revealed that MA significantly reduced H9c2 cell viability, resulting in diminished mitochondrial membrane potential and nuclear pyknosis and damage. In contrast, the triterpenoids could improve the survival rate significantly and counteract the damage of MA to the cells. We found that MA, arjungenin (AR), and maslinic acid (MSA) except corosolic acid (CRA) upregulated the expression of TRPV1 protein. MA induced a significant influx of calcium, whereas all three triterpenoids alleviated this trend. Blocking the TRPV1 channel with capsazepine only increased the cell viability that had been simultaneously treated with MA, and AR, or MSA. However, there was no significant difference in the CRA groups treated with or without capsazepine. Conclusion: The triterpenoids in CF can reduce the cardiotoxicity caused by MA. The MSA and AR function as TRPV1 agonists with comparatively reduced activity but a greater capacity to bind to TRPV1 receptors, thus antagonizing the excessive activation of TRPV1 by MA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Hong Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
18
|
Luo L, Feng F, Zhong A, Guo N, He J, Li C. The advancement of polysaccharides in disease modulation: Multifaceted regulation of programmed cell death. Int J Biol Macromol 2024; 261:129669. [PMID: 38272424 DOI: 10.1016/j.ijbiomac.2024.129669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024]
Abstract
Programmed cell death (PCD), also known as regulatory cell death (RCD), is a process that occurs in all organisms and is closely linked to both normal physiological processes and disease states. Various signaling pathways, such as TP53, KRAS, NOTCH, hypoxia, and metabolic reprogramming, have been found to regulate RCD. Polysaccharides, which are essential natural products, have been the subject of extensive research in the fields of food, nutrition, and medicine due to their wide range of pharmacological effects. Studies have shown that polysaccharides have biological activities and the potential to target signal transduction pathways for the treatment of diseases. This paper provides a review of the mechanisms through which polysaccharides exert their therapeutic effects at different levels and explores the relationship between different types of RCD and human diseases. The aim of this review is to provide a theoretical basis for the further clinical use and application of polysaccharide bioactivities.
Collapse
Affiliation(s)
- Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| | - Fuhai Feng
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Ai Zhong
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Nuoqing Guo
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Jiake He
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Chenying Li
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| |
Collapse
|
19
|
Zhao P, Tian Y, Geng Y, Zeng C, Ma X, Kang J, Lu L, Zhang X, Tang B, Geng F. Aconitine and its derivatives: bioactivities, structure-activity relationships and preliminary molecular mechanisms. Front Chem 2024; 12:1339364. [PMID: 38318112 PMCID: PMC10839071 DOI: 10.3389/fchem.2024.1339364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
Aconitine (AC), which is the primary bioactive diterpene alkaloid derived from Aconitum L plants, have attracted considerable interest due to its unique structural feature. Additionally, AC demonstrates a range of biological activities, such as its ability to enhance cardiac function, inhibit tumor growth, reduce inflammation, and provide analgesic effects. However, the structure-activity relationships of AC are remain unclear. A clear understanding of these relationships is indeed critical in developing effective biomedical applications with AC. In line with these challenges, this paper summarized the structural characteristics of AC and relevant functional and bioactive properties and the structure-activity relationships presented in biomedical applications. The primary temporal scope of this review was established as the period spanning from 2010 to 2023. Subsequently, the objective of this review was to provide a comprehensive understanding of the specific action mechanism of AC, while also exploring potential novel applications of AC derivatives in the biomedical field, drawing upon their structural characteristics. In conclusion, this review has provided a comprehensive analysis of the challenges and prospects associated with AC in the elucidation of structure-bioactivity relationships. Furthermore, the importance of exploring modern biotechnology approaches to enhance the potential biomedical applications of AC has been emphasized.
Collapse
Affiliation(s)
- Pengyu Zhao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ye Tian
- Guizhou Yunfeng Pharmaceutical Co., Ltd., Qianxinan Buyi and Miao Autonomous Prefecture, China
| | - Yuefei Geng
- Sichuan Key Laboratory of Medical American Cockroach, Chengdu, China
| | - Chenjuan Zeng
- Guizhou Yunfeng Pharmaceutical Co., Ltd., Qianxinan Buyi and Miao Autonomous Prefecture, China
| | - Xiuying Ma
- Sichuan Key Laboratory of Medical American Cockroach, Chengdu, China
| | - Jie Kang
- Guizhou Yunfeng Pharmaceutical Co., Ltd., Qianxinan Buyi and Miao Autonomous Prefecture, China
| | - Lin Lu
- Sichuan Engineering Research Center for Medicinal Animals, Chengdu, China
| | - Xin Zhang
- Sichuan Good Doctor Pharmaceutical Group, Chengdu, China
| | - Bo Tang
- Sichuan Engineering Research Center for Medicinal Animals, Chengdu, China
| | - Funeng Geng
- Sichuan Key Laboratory of Medical American Cockroach, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
20
|
Zhang S, Jia Y, Ma G, Yang Y, Cao Z, Luo A, Zhang Z, Li S, Wen J, Liu H, Ma J. Bupleurum exerts antiarrhythmic effects by inhibiting L-type calcium channels in mouse ventricular myocytes. Biochem Biophys Res Commun 2024; 691:149322. [PMID: 38039833 DOI: 10.1016/j.bbrc.2023.149322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Bupleurum (Bup), is a traditional effective medicine to treat colds and fevers in clinics. Multiple studies have demonstrated that Bup exhibites various biological activities, including cardioprotective effects, anti-inflammatory, anticancer, antipyretic, antimicrobial, and antiviral effects, etc. Currently, the effects of Bup on cardiac electrophysiology have not been reported yet. METHODS Electrocardiogram recordings were used to investigate the effects of Bup on aconitine-induced arrhythmias. Patch-clamp techniques were used to explore the effects of Bup on APs and ion currents. RESULTS Bup reduced the incidence of ventricular fibrillation (VF) and delayed the onset time of ventricular tachycardia (VT) in mice. Additionally, Bup (40 mg/mL) suppressed DADs induced by high-Ca2+ and shortened action potential duration at 50 % completion of repolarization (APD50) and action potential duration at 90 % completion of repolarization (APD90) to 60.89 % ± 8.40 % and 68.94 % ± 3.24 % of the control, respectively. Moreover, Bup inhibited L-type calcium currents (ICa.L) in a dose-dependent manner, with an IC50 value of 25.36 mg/mL. Furthermore, Bup affected the gated kinetics of L-type calcium channels by slowing down steady-state activation, accelerating the steady-state inactivation, and delaying the inactivation-recovery process. However, Bup had no effects on the Transient sodium current (INa.T), ATX II-increased late sodium current (INa.L), transient outward current (Ito), delayed rectifier potassium current (IK), or inward rectifier potassium current (IK1). CONCLUSION Bup is an antiarrhythmic agent that may exert its antiarrhythmic effects by inhibiting L-type calcium channels.
Collapse
Affiliation(s)
- Shuanglin Zhang
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yuzhong Jia
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Guolan Ma
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yanyan Yang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Zhenzhen Cao
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Antao Luo
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Zefu Zhang
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Shihan Li
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jie Wen
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Hanfeng Liu
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jihua Ma
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China; Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, 430065, China
| |
Collapse
|
21
|
Mares C, Udrea AM, Buiu C, Staicu A, Avram S. Therapeutic Potentials of Aconite-like Alkaloids: Bioinformatics and Experimental Approaches. Mini Rev Med Chem 2024; 24:159-175. [PMID: 36994982 DOI: 10.2174/1389557523666230328153417] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 03/31/2023]
Abstract
Compounds from plants that are used in traditional medicine may have medicinal properties. It is well known that plants belonging to the genus Aconitum are highly poisonous. Utilizing substances derived from Aconitum sp. has been linked to negative effects. In addition to their toxicity, the natural substances derived from Aconitum species may have a range of biological effects on humans, such as analgesic, anti-inflammatory, and anti-cancer characteristics. Multiple in silico, in vitro, and in vivo studies have demonstrated the effectiveness of their therapeutic effects. In this review, the clinical effects of natural compounds extracted from Aconitum sp., focusing on aconitelike alkaloids, are investigated particularly by bioinformatics tools, such as the quantitative structure- activity relationship method, molecular docking, and predicted pharmacokinetic and pharmacodynamic profiles. The experimental and bioinformatics aspects of aconitine's pharmacogenomic profile are discussed. Our review could help shed light on the molecular mechanisms of Aconitum sp. compounds. The effects of several aconite-like alkaloids, such as aconitine, methyllycacintine, or hypaconitine, on specific molecular targets, including voltage-gated sodium channels, CAMK2A and CAMK2G during anesthesia, or BCL2, BCL-XP, and PARP-1 receptors during cancer therapy, are evaluated. According to the reviewed literature, aconite and aconite derivatives have a high affinity for the PARP-1 receptor. The toxicity estimations for aconitine indicate hepatotoxicity and hERG II inhibitor activity; however, this compound is not predicted to be AMES toxic or an hERG I inhibitor. The efficacy of aconitine and its derivatives in treating many illnesses has been proven experimentally. Toxicity occurs as a result of the high ingested dose; however, the usage of this drug in future research is based on the small quantity of an active compound that fulfills a therapeutic role.
Collapse
Affiliation(s)
- Catalina Mares
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 050095, Bucharest, Romania
| | - Ana-Maria Udrea
- Laser Department, National Institute for Laser, Plasma and Radiation Physics, Magurele, 077125, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, 50567, Romania
| | - Catalin Buiu
- Department of Automatic Control and Systems Engineering, Politehnica University of Bucharest, Bucharest, 060042, Romania
| | - Angela Staicu
- Laser Department, National Institute for Laser, Plasma and Radiation Physics, Magurele, 077125, Romania
| | - Speranta Avram
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 050095, Bucharest, Romania
| |
Collapse
|
22
|
Abstract
Shock is the clinical manifestation of acute circulatory failure, which results in inadequate utilization of cellular oxygen. It is a common condition with high mortality rates in intensive care units. The intravenous administration of Shenfu Injection (SFI) may attenuate inflammation, regulate hemodynamics and oxygen metabolism; inhibit ischemia-reperfusion responses; and have adaptogenic and antiapoptotic effects. In this review, we have discussed the clinical applications and antishock pharmacological effects of SFI. Further in-depth and large-scale multicenter clinical studies are warranted to determine the therapeutic effects of SFI on shock.
Collapse
Affiliation(s)
- Ming-Qing Zhang
- Department of Emergency Medicine, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Chun-Sheng Li
- Department of Emergency Medicine, Critical Care Center, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, 100050, China.
| |
Collapse
|
23
|
Li Q, Peng F, Yan X, Chen Y, Zhou J, Wu S, Jiang W, Jin X, Liang J, Peng C, Pan X. Inhibition of SLC7A11-GPX4 signal pathway is involved in aconitine-induced ferroptosis in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:116029. [PMID: 36503029 DOI: 10.1016/j.jep.2022.116029] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/18/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aconitum species, with a long history of traditional application, were applied to treat rheumatism, arthritis, stroke, and pain in Chinese medical practice. However, misuse of Aconitum species may induce central nervous toxic effects, such as numbness, vomiting, and even coma. Aconitine has been proved to be the main toxic component of Aconitum plants. Neurotoxicity is the main toxic effect of aconitine, while the underlying mechanism of aconitine remains unclear. AIM OF THE STUDY The purpose of the study is to explore the effects and molecular mechanism of ferroptosis caused by aconitine in vivo and in vitro. MATERIALS AND METHODS Six-dpf zebrafish larvae and SH-SY5Y cells were treated with different concentrations of aconitine for 24 h. Inhibitors treatment, e.g. pretreatment with Necrostain-1 (Nec-1) and Z-VZD-FMK for 12 h, or with Ferrostain-1 (Fer-1) for 4 h, were involved in the identification of aconitine-induced ferroptosis. Transient transfection experiment was conducted to explore the effects of SLC7A11 in the process of aconitine-induced ferroptosis. The effects of aconitine on morphological changes, lipid peroxidation, ferrous ion, and ferroptosis were detected by transmission electron microscope, flow cytometry, confocal microscopy, enzyme-linked immunosorbent assay and western blotting. RESULTS In SH-SY5Y cells, morphological changes including shrunken mitochondria, increased mitochondrial membranes density and ruptured mitochondrial membranes were captured in aconitine-treated group. The cell viability and GSH content dose-dependently declined, levels of lipid reactive oxygen species (ROS), malondialdehyde (MDA), and ferrous ion significantly increased after aconitine exposure for 24 h. Ferroptosis inhibitor Fer-1 pretreatment effectively increased cell viability, GSH content, and decreased levels of MDA and lipid peroxidation, suggesting that aconitine induced ferroptosis. In addition, the protein expression of SLC7A11 and GPX4 were improved after Fer-1 preincubation, which indicated that aconitine triggered ferroptosis via the inhibition of SLC7A11 and the inactivation of GPX4. Ferroptotic characteristics, including GSH depletion and lipid peroxidation accumulation, were alleviated via overexpression of SLC7A11 to increase protein expression of GPX4. In zebrafish experiment, GSH depletion, lipid peroxidation accumulation, iron overload, and the decreased protein expression of SLC7A11 and GPX4 were also induced in zebrafish larvae after aconitine exposure. Taken together, aconitine triggered ferroptotic cell death via inhibiting SLC7A11/GPX4 signal pathway in vivo and in vitro. CONCLUSION All results indicated that aconitine triggered ferroptosis of SH-SY5Y cells and zebrafish larvae nerve cells, which involved the inhibition of SLC7A11/GPX4 signal pathway mediated by lipid peroxidation damage and iron overload.
Collapse
Affiliation(s)
- Qiuju Li
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- West China School of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyu Yan
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Chen
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Zhou
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuangyue Wu
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wanyanhan Jiang
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuhui Jin
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Jie Liang
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xiaoqi Pan
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
24
|
Wang S, Sun ST, Zhang XY, Ding HR, Yuan Y, He JJ, Wang MS, Yang B, Li YB. The Evolution of Single-Cell RNA Sequencing Technology and Application: Progress and Perspectives. Int J Mol Sci 2023; 24:ijms24032943. [PMID: 36769267 PMCID: PMC9918030 DOI: 10.3390/ijms24032943] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/01/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
As an emerging sequencing technology, single-cell RNA sequencing (scRNA-Seq) has become a powerful tool for describing cell subpopulation classification and cell heterogeneity by achieving high-throughput and multidimensional analysis of individual cells and circumventing the shortcomings of traditional sequencing for detecting the average transcript level of cell populations. It has been applied to life science and medicine research fields such as tracking dynamic cell differentiation, revealing sensitive effector cells, and key molecular events of diseases. This review focuses on the recent technological innovations in scRNA-Seq, highlighting the latest research results with scRNA-Seq as the core technology in frontier research areas such as embryology, histology, oncology, and immunology. In addition, this review outlines the prospects for its innovative application in traditional Chinese medicine (TCM) research and discusses the key issues currently being addressed by scRNA-Seq and its great potential for exploring disease diagnostic targets and uncovering drug therapeutic targets in combination with multiomics technologies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bin Yang
- Correspondence: (B.Y.); (Y.-B.L.)
| | - Yu-Bo Li
- Correspondence: (B.Y.); (Y.-B.L.)
| |
Collapse
|
25
|
Tao H, Liu X, Tian R, Liu Y, Zeng Y, Meng X, Zhang Y. A review: Pharmacokinetics and pharmacology of aminoalcohol-diterpenoid alkaloids from Aconitum species. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115726. [PMID: 36183950 DOI: 10.1016/j.jep.2022.115726] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/31/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aconitum medicinal materials, such as Aconitum carmichaelii Debeaux (Chinese: Wutou/) and Aconitum kusnezoffii Reichb. (Chinese: Caowu/), are a kind of important Traditional Chinese Medicine (TCM) with great medicinal value. Statistics show that there are over 600 efficient TCM formulations comprising Aconitum medicinal materials. But high toxicity limits their clinical application. Clinically, the Aconitum medicinal materials must undergo a complex processing process that includes soaking, steaming, and boiling with pharmaceutical excipients, which makes highly toxic ester diterpenoid alkaloids are hydrolyzed to form less toxic aminoalcohol-diterpenoid alkaloids (ADAs). AIM OF THE STUDY This review aims to summarize the pharmacokinetic and pharmacological activities of low-toxicity ADAs, providing a reference for future ADAs research and drug development. MATERIALS AND METHODS Accessible literature on ADAs published between 1984 and 2022 were screened and obtained from available electronic databases such as PubMed, Web of Science, Springer, Science Direct and Google Scholar, followed by systematic analysis. RESULTS ADAs are secondary products of plant metabolism, widely distributed in the Aconitum species and Delphinium species. The toxicity of ADAs as pharmacodynamic components of Aconitum medicinal materials is much lower than that of other diterpenoid alkaloids due to the absence of ester bonds. On the one hand, the pharmacokinetics of ADAs have received little attention compared to other toxic alkaloids. The research primarily focuses on aconine and mesaconine. According to existing studies, ADAs absorption in the gastrointestinal tract is primarily passive with a short Tmax. Simultaneously, efflux transporters have less impact on ADAs absorption than non-ADAs. After entering the body, ADAs are widely distributed in the heart, liver, lungs, and kidney, but less in the brain. Notably, aconine is not well metabolized by liver microsomes. Aconine and mesaconine are excreted in urine and feces, respectively. ADAs, on the other hand, have been shown to have a variety of pharmacological activities, including cardiac, analgesic, anti-inflammatory, anti-tumor, antioxidant, and regenerative effects via regulating multiple signaling pathways, including Nrf2/ARE, PERK/eIF2α/ATF4/Chop, ERK/CREB, NF-κB, Bcl-2/Bax, and GSK3β/β-catenin signaling pathways. CONCLUSIONS ADAs have been shown to have beneficial effects on heart disease, neurological disease, and other systemic diseases. Moreover, ADAs have low toxicity and a wide range of safe doses. All of these suggest that ADAs have great potential for drug development.
Collapse
Affiliation(s)
- Honglin Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianfeng Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ruimin Tian
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yue Liu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Yong Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China; Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| |
Collapse
|
26
|
Wang M, Hu WJ, Zhou X, Yu K, Wang Y, Yang BY, Kuang HX. Ethnopharmacological use, pharmacology, toxicology, phytochemistry, and progress in Chinese crude drug processing of the lateral root of Aconitum carmichaelii Debeaux. (Fuzi): A review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115838. [PMID: 36257343 DOI: 10.1016/j.jep.2022.115838] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/01/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The lateral root of Aconitum carmichaelii Debeaux. (also known as Fuzi in Chinese) is a toxic Chinese medicine but widely used in clinical practice with remarkable effects. It is specifically used to treat cardiovascular diseases, rheumatoid arthritis, and other diseases, in Korea, Japan, and India. AIM OF THIS REVIEW This study aimed to summarize and discuss the effects of drug processing on toxicity, chemical composition, and pharmacology of the lateral root of Aconitum carmichaelii Debeaux. This review could provide feasible insights for further studies. MATERIALS AND METHODS Relevant information on phytochemistry, pharmacology, and toxicology of Fuzi was collected through published materials and electronic databases, including the Chinese Pharmacopoeia, Flora of China, Web of Science, PubMed, Baidu Scholar, Google Scholar, and CNKI. RESULTS More than 100 chemical compounds, including alkaloids, flavonoids, and polysaccharides were revealed. Modern pharmacological studies show that these chemical components have good effects on anti-inflammatory, anti-tumor, anti-aging, treatment of cardiovascular diseases, and improving immunity. Di-ester alkaloids are the main source of Fuzi toxicity. Increasing studies have shown that Fuzi can induce multiple organ damage, especially cardiotoxicity and neurotoxicity. At present, most of the Fuzi used in clinical practice are processed. The processing affects the chemical structure, pharmacology, and toxicology of Fuzi. Moreover, different processing methods have different effects on Fuzi. CONCLUSIONS This review analyzed the effects of Fuzi processing methods on its toxicity and efficiency. The lateral roots of aconite are the known medicinal part of Fuzi; however, the aerial parts of aconite are understudied and require further research to expand its medicinal potential. Processing and compatibility are the primary means to reduce Fuzi toxicity. Nevertheless, establishing a reasonable unified safe dose range requires further discussion.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| | - Wen-Jing Hu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Xiao Zhou
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Kuo Yu
- Beidahuang Industry Group General Hospital, Harbin, 150000, China
| | - Yan Wang
- Beidahuang Industry Group General Hospital, Harbin, 150000, China
| | - Bing-You Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| |
Collapse
|
27
|
Chen W, Luo H, Zhong Z, Wei J, Wang Y. The safety of Chinese medicine: A systematic review of endogenous substances and exogenous residues. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154534. [PMID: 36371955 DOI: 10.1016/j.phymed.2022.154534] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Safety and toxicity have become major challenges in the internationalization of Chinese medicine. Inspite of its wide application, security problems of Chinese medicine still occur from time to time, raising widespread concerns about its safety. Most of the studies either only partially discussed the intrinsic toxicities or extrinsic harmful residues in Chinese medicine, or briefly described detoxification and attenuation methods. It is necessary to systematically discuss Chinese medicine's extrinsic and intrinsic toxic components and corresponding toxicity detoxification or detection methods as a whole. PURPOSE This review comprehensively summarizes various toxic components in Chinese medicine from intrinsic and extrinsic. Then the corresponding methods for detoxification or detection of toxicity are highlighted. It is expected to provide a reference for safeguards for developing and using Chinese medicine. METHODS A literature search was conducted in the databases, including PubMed, Web of Science,Wan-fang database, and the China National Knowledge Infrastructure (CNKI). Keywords used were safety, toxicity, intrinsic toxicities, extrinsic harmful residues, alkaloids, terpene and macrolides, saponins, toxic proteins, toxic crystals, minerals, heavy metals, pesticides, mycotoxins, sulfur dioxide, detoxification, detection, processing (Paozhi), compatibility (Peiwu), Chinese medicine, etc., and combinations of these keywords. All selected articles were from 2006 to 2022, and each was assessed critically for our exclusion criteria. Studies describe the classification of toxic components of Chinese medicine, the toxic effects and mechanisms of Chinese medicine, and the corresponding methods for detoxification or detection of toxicity. RESULTS The toxic components of Chinese medicines can be classified as intrinsic toxicities and extrinsic harmful residues. Firstly, we summarized the intrinsic toxicities of Chinese medicine, the adverse effects and toxicity mechanisms caused by these components. Next, we focused on the detoxification or attenuation methods for intrinsic toxicities of Chinese medicine. The other main part discussed the latest progress in analytical strategies for exogenous hazardous substances, including heavy metals, pesticides, and mycotoxins. Beyond reviewing mainstream instrumental methods, we also introduced the emerging biochip, biosensor and immuno-based techniques. CONCLUSION In this review, we provide an overall assessment of the recent progress in endogenous toxins and exogenous hazardous substances concerning Chinese medicine, which is expected to render deeper insights into the safety of Chinese medicine.
Collapse
Affiliation(s)
- Wenyue Chen
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Hua Luo
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China; College of Pharmacy, Guangxi Medical University, Nanning 530021, China; Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China; College of Pharmacy, Guangxi Medical University, Nanning 530021, China; Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Jinchao Wei
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| |
Collapse
|
28
|
Zhang C, Fan S, Zhao JQ, Jiang Y, Sun JX, Li HJ. Transcriptomics and metabolomics reveal the role of CYP1A2 in psoralen/isopsoralen-induced metabolic activation and hepatotoxicity. Phytother Res 2023; 37:163-180. [PMID: 36056681 DOI: 10.1002/ptr.7604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/23/2022] [Accepted: 08/12/2022] [Indexed: 01/19/2023]
Abstract
Psoralen and isopsoralen are the pharmacologically important but hepatotoxic components in Psoraleae Fructus. The purpose of this study was to reveal the underlying mechanism of psoralen/isopsoralen-induced hepatotoxicity. Initially, we applied integrated analyses of transcriptomic and metabolomic profiles in mice treated with psoralen and isopsoralen, highlighting the xenobiotic metabolism by cytochromes P450 as a potential pathway. Then, with verifications of expression levels by qRT-PCR and western blot, affinities by molecular docking, and metabolic contributions by recombinant human CYP450 and mouse liver microsomes, CYP1A2 was screened out as the key metabolic enzyme. Afterwards, CYP1A2 induction and inhibition models in HepG2 cells and mice were established to verify the role of CYP1A2, demonstrating that induction of CYP1A2 aggravated the hepatotoxicity, and conversely inhibition alleviated the hepatotoxic effects. Additionally, we detected glutathione adducts with reactive intermediates of psoralen and isopsoralen generated by CYP1A2 metabolism in biosystems of recombinant human CYP1A2 and mouse liver microsomes, CYP1A2-overexpressed HepG2 cells, mice livers and the chemical reaction system using UPLC-Q-TOF-MS/MS. Ultimately, the high-content screening presented the cellular oxidative stress and relevant hepatotoxicity due to glutathione depletion by reactive intermediates. In brief, our findings illustrated that CYP1A2-mediated metabolic activation is responsible for the psoralen/isopsoralen-induced hepatotoxicity.
Collapse
Affiliation(s)
- Cai Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Song Fan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jin-Quan Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yan Jiang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Jia-Xing Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
29
|
Liao YP, Shen LH, Cai LH, Chen J, Shao HQ. Acute myocardial necrosis caused by aconitine poisoning: A case report. World J Clin Cases 2022; 10:12416-12421. [PMID: 36483800 PMCID: PMC9724530 DOI: 10.12998/wjcc.v10.i33.12416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Herbal medicine has a long history of use in the prevention and treatment of disease and is becoming increasingly popular globally. However, there are also widespread concerns about its safety. Among them, the cardiotoxicity of aconitine has been described.
CASE SUMMARY We report a case of a 61-year-old male with aconitine poisoning presenting with malignant arrhythmia and severe cardiogenic shock, which was successfully managed with aggressive advanced life support and heart transplantation.
CONCLUSION This is the first case wherein in vivo cardiac pathology was obtained, confirming that aconitine caused acute myocardial necrosis.
Collapse
Affiliation(s)
- Yu-Ping Liao
- Department of Critical Care Medicine, Dongguan People’s Hospital, Dongguan 523058, Guangdong Province, China
| | - Li-Han Shen
- Department of Critical Care Medicine, Dongguan People’s Hospital, Dongguan 523058, Guangdong Province, China
| | - Li-Hua Cai
- Department of Critical Care Medicine, Dongguan People’s Hospital, Dongguan 523058, Guangdong Province, China
| | - Jie Chen
- Department of Critical Care Medicine, Dongguan People’s Hospital, Dongguan 523058, Guangdong Province, China
| | - Han-Quan Shao
- Department of Critical Care Medicine, Dongguan People’s Hospital, Dongguan 523058, Guangdong Province, China
| |
Collapse
|
30
|
Yu X, Liang TH, Wang M, Ren XL, Zhou ZY, Jiang MM, Zhang DQ. An innovative extraction strategy for herbal medicine by adopting p-sulphonatocalix[6]/[8]arenes. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:1068-1085. [PMID: 35778370 DOI: 10.1002/pca.3160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/05/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Alkaloids exist in various herbal medicine widely and exhibit diverse biological and pharmacological activities. p-Sulphonatocalix[6]arenes (SC6A) and p-sulphonatocalix[8]arenes (SC8A) are water-soluble supramolecular macrocycles and are applied to the extraction of alkaloids from herbal products. OBJECTIVE In this study, an innovative method of SC6A/SC8A assisted extraction of the alkaloids from herbs was established. METHODS SC6A and SC8A were designed to extract 27 alkaloids from seven herbal medicines. Based on the significant solubilisation and extraction effect, Stephaniae Tetrandrae Radix (Fangji, FJ) was selected to obtain the optimal extraction process by adopting single factor test and orthogonal experiment. Then, the alkaloids and SC6A/SC8A were separated by one-step alkalisation and SCnA were reused. The host-guest complexes between alkaloids and SCnA were determined by competitive fluorescence titration, differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR) and proton nuclear magnetic resonance (1 H-NMR) analysis. RESULTS The optimum condition for SC6A assisted extraction was 5:1:80 (g/g/mL) for herbs/SC6A/solution ratio, 355-250 μm particle size and ultrasonicate 0.5 h, whilst 10:1:40 (g/g/mL) for herbs/SC8A/solution ratio, 355-250 μm particle size and ultrasonicate 0.5 h for SC8A assisted extraction. The total yield of alkaloids (fangchinoline and tetrandrine) from FJ was increased by 4.87 times and 5.97 times with SC6A and SC8A. Moreover, a good reusability of SC6A/SC8A was achieved by alkalisation dissociation. Host-guest complexes were determined by competitive fluorescence titration at a molar ratio of 1:1 between most alkaloids (25/27, except evodiamine and rutaecarpine) and SC6A/SC8A. The complex structure was proved by DSC, FTIR and 1 H-NMR analysis. CONCLUSION The study provided an effective eco-friendly and energy-saving extraction method of alkaloids from herbal medicine.
Collapse
Affiliation(s)
- Xuan Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Teng-Hui Liang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Meng Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiao-Liang Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhen-Yu Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Miao-Miao Jiang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - De-Qin Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
31
|
Sun K, Wu L, Wang S, Deng W. Antitumor effects of Chinese herbal medicine compounds and their nano-formulations on regulating the immune system microenvironment. Front Oncol 2022; 12:949332. [PMID: 36212483 PMCID: PMC9540406 DOI: 10.3389/fonc.2022.949332] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
Abstract
Traditional Chinese medicine (TCM), including herbal medicine, acupuncture and meditation, has a wide range of applications in China. In recent years, herbal compounding and active ingredients have been used to control tumor growth, reduce suffering, improve quality of life, and prolong the life span of cancer patients. To reduce side effects, herbal medicine can be used in conjunction with radiotherapy and chemotherapy or can be used as an adjuvant to strengthen the immune effect of anticancer vaccines. In particular, in the immunosuppressed tumor microenvironment, herbal medicine can have antitumor effects by stimulating the immune response. This paper reviews the advances in research on antitumor immunomodulation in Chinese herbal medicine, including the regulation of the innate immune system, which includes macrophages, MDSCs, and natural killer cells, and the adaptive immune system, which includes CD4+ T cells, CD8+ T cells, and regulatory T cells (Tregs), to influence tumor-associated inflammation. In addition, a combination of active ingredients of herbal medicine and modern nanotechnology alter the tumor immune microenvironment. In recent years, immunological antitumor therapy in TCM has been applied on a reasonably large scale both nationally and internationally, and there is potential for further clinical expansion. Investigation of immune modulation mechanisms in Chinese herbal medicine will provide novel perspectives of how herbal medicine controls tumor growth and metastasis, which will contribute to the evolution of tumor research.
Collapse
|
32
|
Münkler P, Klatt N, Scherschel K, Kuklik P, Jungen C, Cavus E, Eickholt C, Christoph J, Lemoine MD, Christ T, Willems S, Riedel R, Kirchhof P, Meyer C. Repolarization indicates electrical instability in ventricular arrhythmia originating from papillary muscle. Europace 2022; 25:688-697. [PMID: 35989424 PMCID: PMC9935011 DOI: 10.1093/europace/euac126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 06/30/2022] [Indexed: 11/12/2022] Open
Abstract
AIMS Cardiac arrhythmia originating from the papillary muscle (PM) can trigger ventricular fibrillation (VF) and cause sudden cardiac death even in the absence of structural heart disease. Most premature ventricular contractions, however, are benign and hitherto difficult to distinguish from a potentially fatal arrhythmia. Altered repolarization characteristics are associated with electrical instability, but electrophysiological changes which precede degeneration into VF are still not fully understood. METHODS AND RESULTS Ventricular arrhythmia (VA) was induced by aconitine injection into PMs of healthy sheep. To investigate mechanisms of degeneration of stable VA into VF in structurally healthy hearts, endocardial high-density and epicardial mapping was performed during sinus rhythm (SR) and VA. The electrical restitution curve, modelling the relation of diastolic interval and activation recovery interval (a surrogate parameter for action potential duration), is steeper in VA than in non-arrhythmia (ventricular pacing and SR). Steeper restitution curves reflect electrical instability and propensity to degenerate into VF. Importantly, we find the parameter repolarization time in relation to cycle length (RT/CL) to differentiate self-limiting from degenerating arrhythmia with high specificity and sensitivity. CONCLUSION RT/CL may serve as a simple index to aid differentiation between self-limiting and electrically instable arrhythmia with the propensity to degenerate to VF. RT/CL is independent of cycle length and could easily be measured to identify electrical instability in patients.
Collapse
Affiliation(s)
- Paula Münkler
- Corresponding author. Tel: +49 040 7410 0; fax: +49 040 7410 55862. E-mail address:
| | - Niklas Klatt
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Hospital Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Katharina Scherschel
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Hospital Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany,Division of Cardiology, Angiology and Intensive Care, Cardiac Neuro- and Electrophysiology Research Consortium (cNEP), EKV Düsseldorf, Düsseldorf, Germany,Cardiac Neuro- and Electrophysiology Research Consortium (cNEP), Medical Faculty, Heinrich Heine University Düsseldorf, Kirchfeldstraße 40, 40217, Düsseldorf, Germany
| | - Pawel Kuklik
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Hospital Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany,Department of Cardiology, Asklepios Hospital St Georg, Lohmühlenstraße 5, 20099, Hamburg, Germany
| | - Christiane Jungen
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Hospital Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany,Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ersin Cavus
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Hospital Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Christian Eickholt
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Hospital Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany,Department of Cardiology, Asklepios Hospital St Georg, Lohmühlenstraße 5, 20099, Hamburg, Germany
| | - Jan Christoph
- Cardiovascular Research Institute University of California, San Francisco, 555 Mission Bay Blvd South, 352S, San Francisco, CA, USA
| | - Marc D Lemoine
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Hospital Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany
| | - Torsten Christ
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany,Institute of Experimental Pharmacology and Toxicology, University Medical Centre, Martinistraße 52, 20246 Hamburg, Germany
| | - Stephan Willems
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Hospital Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany,Department of Cardiology, Asklepios Hospital St Georg, Lohmühlenstraße 5, 20099, Hamburg, Germany
| | - René Riedel
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Hospital Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany,Max Planck Institute for Evolutionary Biology, Plön, Germany,German Rheumatism Research Centre Berlin—an Institute of the Leibniz Association, Berlin, Germany
| | - Paulus Kirchhof
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Hospital Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany,Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Christian Meyer
- Department of Cardiology, University Heart and Vascular Center Hamburg, University Hospital Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany,Division of Cardiology, Angiology and Intensive Care, Cardiac Neuro- and Electrophysiology Research Consortium (cNEP), EKV Düsseldorf, Düsseldorf, Germany,Cardiac Neuro- and Electrophysiology Research Consortium (cNEP), Medical Faculty, Heinrich Heine University Düsseldorf, Kirchfeldstraße 40, 40217, Düsseldorf, Germany
| |
Collapse
|
33
|
Qin J, Chen J, Peng F, Sun C, Lei Y, Chen G, Li G, Yin Y, Lin Z, Wu L, Li J, Liu W, Peng C, Xie X. Pharmacological activities and pharmacokinetics of liquiritin: A review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115257. [PMID: 35395381 DOI: 10.1016/j.jep.2022.115257] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 05/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liquiritin is a flavonoid derived from Radix et Rhizoma Glycyrrhizae, which is a widely used traditional Chinese medicine with the effects of invigorating spleen qi, clearing heat, resolving toxins, and dispelling phlegm to stop coughs. AIM OF THE STUDY In this review,the pharmacokinetics and pharmacological activities of liquiritin have been summarized. MATERIALS AND METHODS The information on liquiritin up to 2021 was collected from PubMed, Web of Science, Springer Link, and China National Knowledge Infrastructure databases. The key words were "liquiritin", "nerve", "tumor", "cardiac", etc. RESULTS: The absorption mechanism of liquiritin conforms to the passive diffusion and first-order kinetics while with low bioavailability. Liquiritin can penetrate the blood-brain-barrier. Besides, liquiritin displays numerous pharmacological effects including anti-Alzheimer's disease, antidepressant, antitumor, anti-inflammatory, cardiovascular protection, antitussive, hepatoprotection, and skin protective effects. In addition, the novel preparations, new pharmacological effects,and cdusafty of liquiritin are also discussed in this review. CONCLUSION This review provides a comprehensive state of knowledge on the pharmacokinetics and pharmacological activities of liquiritin, and makes a forecast for its research directions and applications in clinic.
Collapse
Affiliation(s)
- Junyuan Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Junren Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Chen Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yu Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Guangru Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Gangming Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yanpeng Yin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ziwei Lin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Liujun Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wenxiu Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
34
|
Study on the Mechanism of Mesaconitine-Induced Hepatotoxicity in Rats Based on Metabonomics and Toxicology Network. Toxins (Basel) 2022; 14:toxins14070486. [PMID: 35878224 PMCID: PMC9322933 DOI: 10.3390/toxins14070486] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 02/05/2023] Open
Abstract
Mesaconitine (MA), one of the main diterpenoid alkaloids in Aconitum, has a variety of pharmacological effects, such as analgesia, anti-inflammation and relaxation of rat aorta. However, MA is a highly toxic ingredient. At present, studies on its toxicity are mainly focused on the heart and central nervous system, and there are few reports on the hepatotoxic mechanism of MA. Therefore, we evaluated the effects of MA administration on liver. SD rats were randomly divided into a normal saline (NS) group, a low-dose MA group (0.8 mg/kg/day) and a high-dose MA group (1.2 mg/kg/day). After 6 days of administration, the toxicity of MA on the liver was observed. Metabolomic and network toxicology methods were combined to explore the effect of MA on the liver of SD rats and the mechanism of hepatotoxicity in this study. Through metabonomics study, the differential metabolites of MA, such as L-phenylalanine, retinyl ester, L-proline and 5-hydroxyindole acetaldehyde, were obtained, which involved amino acid metabolism, vitamin metabolism, glucose metabolism and lipid metabolism. Based on network toxicological analysis, MA can affect HIF-1 signal pathway, MAPK signal pathway, PI3K-Akt signal pathway and FoxO signal pathway by regulating ALB, AKT1, CASP3, IL2 and other targets. Western blot results showed that protein expression of HMOX1, IL2 and caspase-3 in liver significantly increased after MA administration (p < 0.05). Combined with the results of metabonomics and network toxicology, it is suggested that MA may induce hepatotoxicity by activating oxidative stress, initiating inflammatory reaction and inducing apoptosis.
Collapse
|
35
|
An insight into current advances on pharmacology, pharmacokinetics, toxicity and detoxification of aconitine. Biomed Pharmacother 2022; 151:113115. [PMID: 35605296 DOI: 10.1016/j.biopha.2022.113115] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 11/20/2022] Open
Abstract
Aconitine is a diterpenoid alkaloid, which mainly exists in the plants of Aconitum. In the last decade, a plethora of studies on the pharmacological activities of aconitine has been conducted and demonstrated that aconitine possessed an extensive range of pharmacological activities such as anti-tumor, anti-inflammatory, analgesic, local anesthesia, and immunomodulatory effects. Pharmacokinetic studies indicated that aconitine may have the characteristics of poor bioavailability, wide distribution, and slow elimination. However, studies have also found that aconitine has toxic effects on the heart, nerves, embryos, etc. Therefore, we believe that aconitine may not be suitable for heart patients and pregnant women to treat related diseases. It is important to note that all of these pharmacological effects require further high-quality studies to determine the clinical efficacy of aconitine. This review aims to summarize the advances in pharmacological, pharmacokinetics, toxicity, and detoxification of aconitine in the last decade with an emphasis on its anti-tumor and anti-inflammatory activities, to provide researchers with the latest information and point out the limitations of relevant research at the current stage and the aspects that should be strengthened in future research.
Collapse
|
36
|
Yang L, Xie G, Wang Y, Li J, Zheng B, Zhu J, Yuan X, Hong Q, Ma Z, Gao Y. Metabolic Behaviors of Aconitum Alkaloids in Different Concentrations of Aconiti Lateralis Radix Praeparata and Effects of Aconitine in Healthy Human and Long QT Syndrome Cardiomyocytes. Molecules 2022; 27:molecules27134055. [PMID: 35807297 PMCID: PMC9268243 DOI: 10.3390/molecules27134055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Aconiti Lateralis Radix Praeparata (Fu Zi) is the processed lateral root of Aconitum carmichaelii Debx, which is widely used in emergency clinics. Poisoning incidents and adverse reactions occur with the improper intake of Fu Zi. Metabolic characteristics of aconitum alkaloids of Fu Zi may vary, and the effects of Fu Zi in healthy and Long QT syndrome (LQTS) patients is unknown. In this experiment, 24 Sprague Dawley rats were randomly divided into three groups: 2.0, 1.0, and 0.5 g/kg dose groups, and blood samples were collected after the oral administration of Fu Zi extract. We used an ultra-high performance liquid chromatography-tandem mass spectrometry system to detect the concentrations of six aconitum alkaloids. Cell toxicity, calcium imaging, and patch-clamp recordings of human induced pluripotent stem cells-cardiomyocytes (hiPSC-CMs) of aconitine in healthy and LQTS were observed. We found that the AUC(0–48h), Cmax, and t1/2 of the six compounds increased with the multiplicative dosages; those in the high group were significantly higher than those in the low group. Aconitine concentration-dependently decreased the amplitude, which has no significant effect on the cell index of normal hiPSC-CMs. Aconitine at 5.0 μM decreased the cell index between 5–30 min for LQTS hiPSC-CMs. Meanwhile, aconitine significantly increased the frequency of calcium transients in LQTS at 5 μM. Aconitine significantly shortened the action potential duration of human cardiomyocytes in both normal and LQTS groups. These results show metabolic behaviors of aconitum alkaloids in different concentrations of Fu Zi and effects of aconitine in healthy and LQTS patients.
Collapse
Affiliation(s)
- Liang Yang
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230601, China; (L.Y.); (B.Z.); (J.Z.); (X.Y.)
- Beijing Institution of Radiation Medicine, Beijing 100850, China; (G.X.); (Y.W.); (J.L.)
| | - Guanghui Xie
- Beijing Institution of Radiation Medicine, Beijing 100850, China; (G.X.); (Y.W.); (J.L.)
| | - Yuguang Wang
- Beijing Institution of Radiation Medicine, Beijing 100850, China; (G.X.); (Y.W.); (J.L.)
| | - Jian Li
- Beijing Institution of Radiation Medicine, Beijing 100850, China; (G.X.); (Y.W.); (J.L.)
| | - Bin Zheng
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230601, China; (L.Y.); (B.Z.); (J.Z.); (X.Y.)
| | - Jinmiao Zhu
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230601, China; (L.Y.); (B.Z.); (J.Z.); (X.Y.)
| | - Xinsong Yuan
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230601, China; (L.Y.); (B.Z.); (J.Z.); (X.Y.)
| | - Qian Hong
- Huaihai Hospital, Xuzhou Medical University/PLA 71st Group Military Hospital, Xuzhou 221004, China;
| | - Zengchun Ma
- Beijing Institution of Radiation Medicine, Beijing 100850, China; (G.X.); (Y.W.); (J.L.)
- Correspondence: (Z.M.); (Y.G.)
| | - Yue Gao
- Beijing Institution of Radiation Medicine, Beijing 100850, China; (G.X.); (Y.W.); (J.L.)
- Correspondence: (Z.M.); (Y.G.)
| |
Collapse
|
37
|
Jiang H, Zhang Y, Zhang Y, Wang X, Meng X. An Updated Meta-Analysis Based on the Preclinical Evidence of Mechanism of Aconitine-Induced Cardiotoxicity. Front Pharmacol 2022; 13:900842. [PMID: 35754486 PMCID: PMC9213726 DOI: 10.3389/fphar.2022.900842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Most Aconitum species in traditional Chinese medicine have the effect of dispelling wind, dehumidifying, warming the meridian, and relieving pain. Aconitine is the characteristic chemical component with the function of anti-inflammation, analgesic, and heart-strengthening effects. However, improper use will produce cardiotoxicity and neurotoxicity. Currently, the mechanisms of cardiotoxicity caused by aconitine are wheels within wheels without being fully disclosed. The systematic review and meta-analysis were therefore conducted to summarize the available evidence of myocardial toxicity caused by aconitine. Methods: We searched PubMed, Embase, Web of Science, National Knowledge Infrastructure, WANFANG, and VIP information database for relevant preclinical studies. All the data were analyzed by RevMan version 5.3. Results: Thirty-two studies met the final inclusion criteria, including both in vivo and in vitro study types. After aconitine treatment, the heart rate of animals was obviously abnormal, and the morphology and function of myocardial cells were significantly changed. Aconitine can induce changes in the electrophysiological activity of cardiac myocytes by regulating Na+, Ca2+, and K+ currents. Meanwhile, the mechanisms of cardiotoxicity of aconitine may be related to triggering mitochondrial dysfunction by inducing mitochondrial apoptosis and autophagy. It should not be ignored that the overactivation of NLRP3 inflammasome also exacerbates aconitine's cardiotoxicity. Conclusion: The altered ion channels and mitochondrial function, as well as the signaling pathways interacting with NLRP3, may deserve further study for aconitine-induced cardiotoxicity.
Collapse
Affiliation(s)
- Hong Jiang
- School of Pharmacy, and Research Institute of Integrated TCM and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yating Zhang
- School of Pharmacy, and Research Institute of Integrated TCM and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Zhang
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaobo Wang
- School of Pharmacy, and Research Institute of Integrated TCM and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- School of Pharmacy, and Research Institute of Integrated TCM and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Ethnic Medicine Academic Heritage Innovation Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
38
|
Several Alkaloids in Chinese Herbal Medicine Exert Protection in Acute Kidney Injury: Focus on Mechanism and Target Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2427802. [PMID: 35602100 PMCID: PMC9122709 DOI: 10.1155/2022/2427802] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/03/2022] [Accepted: 04/21/2022] [Indexed: 12/13/2022]
Abstract
Objectives Acute kidney injury (AKI) is a loose set of kidney diseases accompanied by a variety of syndromes, which is a serious threat to human life and health. Some alkaloids are derived from various Chinese herbs have been widely concerned in the improvement of AKI. This review provides the research progress of alkaloids in AKI experimental models and discusses the related molecular mechanisms. Key Findings. Alkaloids can protect AKI through various mechanisms including antioxidant stress, improvement of mitochondrial damage, reduction of cell death, induction of autophagy, and inhibition of inflammation. These mechanisms are mainly related to the activation of Nrf2/HO-1 signaling pathway, inhibition of ferroptosis and apoptosis, regulation of PINK1/Parkin pathway, inhibition of TLR4/NF-κB pathway and NLRP3 inflammatory bodies, upregulation of Klotho protein level and so on. In addition, there are a few alkaloids that have certain toxicity on the kidney. Conclusion Alkaloids have been shown to significantly improve AKI, but only in pharmacological studies. This paper summarizes the main experimental models currently used in AKI research and describes some representative alkaloids based on recent research. Their potential roles in the prevention and treatment of AKI through different mechanisms are highlighted.
Collapse
|
39
|
Zhou J, Peng C, Li Q, Yan X, Yang L, Li M, Cao X, Xie X, Chen D, Rao C, Huang S, Peng F, Pan X. Dopamine Homeostasis Imbalance and Dopamine Receptors-Mediated AC/cAMP/PKA Pathway Activation are Involved in Aconitine-Induced Neurological Impairment in Zebrafish and SH-SY5Y Cells. Front Pharmacol 2022; 13:837810. [PMID: 35370746 PMCID: PMC8971779 DOI: 10.3389/fphar.2022.837810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/25/2022] [Indexed: 11/25/2022] Open
Abstract
Aconitine is one of the main bioactive and toxic ingredients of Aconitum species. Increasingly, aconitine has been reported to induce neurotoxicity. However, whether aconitine has effects on the dopaminergic nervous system remains unclear. In this study, zebrafish embryos at 6-days postfertilization were exposed to aconitine at doses of 0.5, 1, and 2 μM for 24 h, and SH-SY5Y cells were treated with 50, 100, and 200 μM of aconitine for 24 h. Results demonstrated that aconitine treatment induced deformities and enhanced the swimming behavior of zebrafish larvaes. Aconitine exposure suppressed cell proliferation and increased the number of reactive oxygen species and apoptosis in zebrafish larvaes and SH-SY5Y cells. Aconitine altered the levels of dopamine and its metabolites by regulating the expression of genes and proteins related to dopamine synthesis, storage, degradation, and reuptake in vivo and in vitro. Moreover, aconitine activated the AC/cAMP/PKA pathway by activating the dopamine D1 receptor (D1R) and inhibiting the dopamine D2 receptor (D2R) to disturb intracellular calcium homeostasis, eventually leading to the damage of nerve cells. Furthermore, the D1R antagonist SCH23390 and D2R agonist sumanirole pretreatment effectively attenuated the excitatory state of larvaes. Sumanirole and PKA antagonist H-89 pretreatment effectively decreased intracellular Ca2+ accumulation induced by aconitine in vivo. SCH23390 and sumanirole also reduced aconitine-induced cytotoxicity by inhibiting the AC/cAMP/PKA pathway in vitro. These results suggested that dopamine homeostasis imbalance and dopamine receptors (DRs)-mediated AC/cAMP/PKA pathway activation might be vital mechanisms underlying aconitine-induced neurological injury.
Collapse
Affiliation(s)
- Jie Zhou
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuju Li
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Yan
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liang Yang
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mengting Li
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Cao
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Xie
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dayi Chen
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chaolong Rao
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sizhou Huang
- Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, School of Basic Medicine, Chengdu Medical College, Chengdu, China
| | - Fu Peng
- West China School of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Fu Peng, ; Xiaoqi Pan,
| | - Xiaoqi Pan
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Fu Peng, ; Xiaoqi Pan,
| |
Collapse
|
40
|
Wang A, Zhao W, Yan K, Huang P, Zhang H, Zhang Z, Zhang D, Ma X. Mechanisms and Efficacy of Traditional Chinese Medicine in Heart Failure. Front Pharmacol 2022; 13:810587. [PMID: 35281941 PMCID: PMC8908244 DOI: 10.3389/fphar.2022.810587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Heart failure (HF) is one of the main public health problems at present. Although some breakthroughs have been made in the treatment of HF, the mortality rate remains very high. However, we should also pay attention to improving the quality of life of patients with HF. Traditional Chinese medicine (TCM) has a long history of being used to treat HF. To demonstrate the clinical effects and mechanisms of TCM, we searched published clinical trial studies and basic studies. The search results showed that adjuvant therapy with TCM might benefit patients with HF, and its mechanism may be related to microvascular circulation, myocardial energy metabolism, oxidative stress, and inflammation.
Collapse
Affiliation(s)
- Anzhu Wang
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China.,Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Zhao
- Yidu Central Hospital of Weifang, Weifang, China
| | - Kaituo Yan
- Yidu Central Hospital of Weifang, Weifang, China
| | - Pingping Huang
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China.,Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongwei Zhang
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China.,Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhibo Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Xiyuan Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Dawu Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Xiaochang Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| |
Collapse
|
41
|
Weijie W, Xiaonan Y, Yilin W, Hudan P, Liang L. Study on the compatibility principle of Wutou Decoction based on network pharmacology. DIGITAL CHINESE MEDICINE 2022. [DOI: 10.1016/j.dcmed.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
42
|
Wang W, Jiang J, Huang Y, Peng F, Hu T, Wu J, Pan X, Rao C. Aconitine induces autophagy via activating oxidative DNA damage-mediated AMPK/ULK1 signaling pathway in H9c2 cells. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114631. [PMID: 34520828 DOI: 10.1016/j.jep.2021.114631] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aconitum species, with a medicinal history of 2000 years, was traditionally used in the treatment of rheumatism, arthritis, bruises, and pains. However, many studies have reported that Aconitum species can cause arrhythmia in experimental animals, resulting in myocardial fibrosis and cardiomyocyte damage. Cardiotoxicity is the main toxic effect of aconitine, but the detailed mechanism remains unclear. AIM OF THE STUDY This study aimed to explore the effects and underlying mechanism of autophagy in H9c2 cardiomyocytes induced by aconitine. MATERIALS AND METHODS H9c2 cells were incubated with different concentrations of aconitine for 24 h, and the intervention sections were pretreated with various inhibitors for 1 h. The effects of aconitine on the oxidative DNA damage, autophagy and viability of H9c2 cells were evaluated by flow cytometry, confocal microscopy, enzyme-linked immunosorbent assay and Western blot. RESULTS In H9c2 cells, the cell viability declined, LDH release rate, the number of autophagosomes, protein expression levels of LC3 and Beclin-1 increased significantly after 24 h of aconitine incubation. The pretreatment of autophagy inhibitor 3-MA decreased markedly autophagosomes and protein expression levels of LC3 and Beclin-1, which suggested that aconitine could induce cell autophagy. The significant increase of ROS and 8-OHdG showed that aconitine could cause oxidative DNA damage through ROS accumulation. Meanwhile, treatment of aconitine dramatically increased AMPKThr172 and ULK1Ser317 phosphorylation, and Compound C inhibited AMPKThr172 and ULK1Ser317 phosphorylation, which proved that aconitine induced autophagy via AMPK activation mediated ULK1 phosphorylation. Antioxidant NAC significantly reduced LDH, ROS and 8-OHdG, inhibited the phosphorylation of AMPKThr172 and ULK1Ser317, and down-regulated autophagosomes and proteins expression levels of LC3 and Beclin-1. Consequently, the inhibition of oxidative DNA damage and AMPK/ULK1 signaling pathway alleviated the aconitine-induced autophagic death of H9c2 cells. CONCLUSIONS These results showed that aconitine induces autophagy of H9c2 cardiomyocytes by activating AMPK/ULK1 signaling pathway mediated by oxidative DNA damage. The autophagy induced by aconitine in cardiomyocytes is dependent on the activation of the AMPK pathway, which may provide novel insights into the prevention of aconitine-related toxicity.
Collapse
Affiliation(s)
- Wenlin Wang
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu City, Sichuan Province, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, Chengdu University of Traditional Chinese Medicine, Chengdu City, Sichuan Province, 611137, China.
| | - Jialuo Jiang
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu City, Sichuan Province, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, Chengdu University of Traditional Chinese Medicine, Chengdu City, Sichuan Province, 611137, China.
| | - Yan Huang
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu City, Sichuan Province, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, Chengdu University of Traditional Chinese Medicine, Chengdu City, Sichuan Province, 611137, China.
| | - Fu Peng
- West China School of Pharmacy, West China School of Public Health, Sichuan University, Chengdu City, Sichuan Province, 610041, China.
| | - Tingting Hu
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu City, Sichuan Province, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, Chengdu University of Traditional Chinese Medicine, Chengdu City, Sichuan Province, 611137, China.
| | - Jiayang Wu
- West China School of Pharmacy, West China School of Public Health, Sichuan University, Chengdu City, Sichuan Province, 610041, China.
| | - Xiaoqi Pan
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu City, Sichuan Province, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, Chengdu University of Traditional Chinese Medicine, Chengdu City, Sichuan Province, 611137, China.
| | - Chaolong Rao
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu City, Sichuan Province, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, Chengdu University of Traditional Chinese Medicine, Chengdu City, Sichuan Province, 611137, China.
| |
Collapse
|
43
|
Feng W, Liu J, Zhang D, Tan Y, Cheng H, Peng C. Revealing the efficacy-toxicity relationship of Fuzi in treating rheumatoid arthritis by systems pharmacology. Sci Rep 2021; 11:23083. [PMID: 34845218 PMCID: PMC8630009 DOI: 10.1038/s41598-021-02167-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/09/2021] [Indexed: 12/22/2022] Open
Abstract
In recent decades, herbal medicines have played more and more important roles in the healthcare system in the world because of the good efficacy. However, with the increasing use of herbal medicines, the toxicity induced by herbal medicines has become a global issue. Therefore, it is needed to investigate the mechanism behind the efficacy and toxicity of herbal medicines. In this study, using Aconiti Lateralis Radix Praeparata (Fuzi) as an example, we adopted a systems pharmacology approach to investigate the mechanism of Fuzi in treating rheumatoid arthritis and in inducing cardiac toxicity and neurotoxicity. The results showed that Fuzi has 25 bioactive compounds that act holistically on 61 targets and 27 pathways to treat rheumatoid arthritis, and modulation of inflammation state is one of the main mechanisms of Fuzi. In addition, the toxicity of Fuzi is linked to 32 compounds that act on 187 targets and 4 pathways, and the targets and pathways can directly modulate the flow of Na+, Ca2+, and K+. We also found out that non-toxic compounds such as myristic acid can act on targets of toxic compounds and therefore may influence the toxicity. The results not only reveal the efficacy and toxicity mechanism of Fuzi, but also add new concept for understanding the toxicity of herbal medicines, i.e., the compounds that are not directly toxic may influence the toxicity as well.
Collapse
Affiliation(s)
- Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Juan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Yuzhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| |
Collapse
|
44
|
Lin L, Gu X, Chen L, Zhang T, Wang C, Wang Z, You Q, Ji L. Study on the alleviation of Fengshi Gutong capsule on rheumatoid arthritis through integrating network pharmacology and experimental exploration. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114471. [PMID: 34329717 DOI: 10.1016/j.jep.2021.114471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fengshi Gutong (FSGT) capsule, a traditional Chinese medicine formula, has effects including warming meridians and dispersing cold, and relieving pain by dredging collaterals. FSGT is generally used for the treatment of rheumatoid arthritis (RA) in clinic in China. AIM OF THE STUDY This study aims to investigate the alleviation provided by FSGT capsule on RA in vivo and the engaged mechanism. MATERIALS AND METHODS The collagen-induced arthritis (CIA) mouse model was used to evaluate the alleviation of FSGT capsule on RA in vivo. Network pharmacology was used to find the potential involved molecular targets. Western-blot, Real-time polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) were conducted. Wound healing assay was performed in human umbilical vein endothelial cells (HUVECs). RESULTS FSGT capsule (300, 900 mg/kg) alleviated RA in CIA mice with no obvious side effects. The results from network pharmacology showed that the top 6 molecular targets involved in the FSGT-provided alleviation on RA were interleukin 6 (IL-6), tumor necrosis factor α (TNFα), C-C motif chemokine 2 (CCL2), vascular endothelial growth factor (VEGF), intercellular cell adhesion molecule-1 (ICAM-1), interleukin 1β (IL-1β), and these results imply the critical participation of inhibiting inflammation or angiogenesis. Next, FSGT capsule decreased the elevated serum contents of rheumatoid factor (RF) and VEGF, and some pro-inflammatory cytokines like TNFα and IL-6. Moreover, FSGT capsule also reduced the elevated protein expression of ICAM1, IL-1β and phosphorylated protein kinase B (Akt) in synovium from CIA mice. Further in vitro results showed that totally 13 compounds from FSGT reduced the enhanced IL-1β and inducible nitric oxide synthase (iNOS) mRNA expression in RAW264.7 macrophages stimulated by lipopolysaccharide (LPS). Meanwhile, 7 compounds from FSGT decreased the VEGF-induced HUVEC migration. Among those compounds, benzoylhypaconine (BHA), pseudoephedrine hydrochloride (PSE), glycyrrhetnic acid (GA), isoliquiritigenin (ISL), quercetin (QUER) and kaempferol (KAE) were found to inhibit both inflammation and angiogenesis in vitro. CONCLUSION FSGT capsule ameliorates RA in CIA mice by reducing inflammation, abrogating angiogenesis and relieving pain. Some compounds in FSGT, including BHA, GA, PSE, ISL, QUER and KAE, reduced both inflammation and angiogenesis in vitro, which suggests that those compounds may contribute to the FSGT capsule-provided alleviation on RA.
Collapse
Affiliation(s)
- Li Lin
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xinnan Gu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Liangni Chen
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Tianyu Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Changhong Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Qingling You
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
45
|
Zhao X, Ni S, Liang N, Huang Q, Pan Z, Zhang L, Song J, Fu Y. Clinical application of Aconitum carmichaelii Debx. (Fu Zi in Chinese) by traditional Chinese medicine physicians--A cross-sectional questionnaire survey in Beijing. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2021. [DOI: 10.1016/j.jtcms.2021.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
46
|
Wu T, Zhu C, Wang X, Kong Q, Guo T, He Z, He Y, Ruan S, Ruan H, Pei L, Zhang Y, Feng N. Cholesterol and phospholipid-free multilamellar niosomes regulate transdermal permeation of a hydrophobic agent potentially administrated for treating diseases in deep hair follicles. J Pharm Sci 2021; 111:1785-1797. [PMID: 34418454 DOI: 10.1016/j.xphs.2021.08.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/15/2021] [Accepted: 08/15/2021] [Indexed: 12/27/2022]
Abstract
We designed cholesterol- and phospholipid-free multilamellar niosomes (MLNs) structured by glyceryl monooleate (GMO) and poloxamer 407 (F127), and evaluated their capacity for transdermal drug delivery. The optimized MLNs had a mean size of 97.88 ± 63.25 nm and an encapsulation efficiency of 82.68% ± 2.14%. Notably, the MLNs exhibited a remarkable sustained cargo release. Compared with the tincture, lower transdermal flux but higher skin deposition of aconitine in vitro were achieved in the MLN group (p < 0.05). We further found that MLNs improved the permeability of the stratum corneum. Additionally, both water-soluble rhodamine B- and liposoluble coumarin 6-labeled MLNs were found to penetrate deeply into the skin through the hair follicles and could be internalized by fibroblasts (CCC-ESF-1). The MLNs possessed greater wettability, and the study focused on delivery to deeper hair follicles and up to the outer hair sheath, which showed advantages for treating diseases of hair follicles, and was potentially superior to the hydrophobic PLGA nanoparticles (diameter: 637.87 ± 22.77 nm) which mainly accumulated in superficial hair follicles. Hair follicles were therefore demonstrated to be an important way to enhance skin permeability, and MLNs are a promising alternative for topical and transdermal drug delivery.
Collapse
Affiliation(s)
- Tong Wu
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chunyun Zhu
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiang Wang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qingyue Kong
- School of acupuncture and massage, Shangdong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Teng Guo
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zehui He
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuanzhi He
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shuyao Ruan
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hang Ruan
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lixia Pei
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine.
| | - Yongtai Zhang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
47
|
Design, Synthesis, Biological Evaluation and Silico Prediction of Novel Sinomenine Derivatives. Molecules 2021; 26:molecules26113466. [PMID: 34200341 PMCID: PMC8200971 DOI: 10.3390/molecules26113466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 12/20/2022] Open
Abstract
Sinomenine is a morphinan alkaloid with a variety of biological activities. Its derivatives have shown significant cytotoxic activity against different cancer cell lines in many studies. In this study, two series of sinomenine derivatives were designed and synthesized by modifying the active positions C1 and C4 on the A ring of sinomenine. Twenty-three compounds were synthesized and characterized by spectroscopy (IR, 1H-NMR, 13C-NMR, and HRMS). They were further evaluated for their cytotoxic activity against five cancer cell lines, MCF-7, Hela, HepG2, SW480 and A549, and a normal cell line, Hek293, using MTT and CCK8 methods. The chlorine-containing compounds exhibited significant cytotoxic activity compared to the nucleus structure of sinomenine. Furthermore, we searched for cancer-related core targets and verified their interaction with derivatives through molecular docking. The chlorine-containing compounds 5g, 5i, 5j, 6a, 6d, 6e, and 6g exhibited the best against four core targets AKT1, EGFR, HARS and KARS. The molecular docking results were consistent with the cytotoxic results. Overall, results indicate that chlorine-containing derivatives might be a promising lead for the development of new anticancer agents.
Collapse
|