1
|
Lin S, Gade AR, Wang HG, Niemeyer JE, Galante A, DiStefano I, Towers P, Nunez J, Matsui M, Schwartz TH, Rajadhyaksha AM, Pitt GS. Interneuron FGF13 regulates seizure susceptibility via a sodium channel-independent mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590019. [PMID: 38659789 PMCID: PMC11042350 DOI: 10.1101/2024.04.18.590019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Developmental and Epileptic Encephalopathies (DEEs), a class of devastating neurological disorders characterized by recurrent seizures and exacerbated by disruptions to excitatory/inhibitory balance in the brain, are commonly caused by mutations in ion channels. Disruption of, or variants in, FGF13 were implicated as causal for a set of DEEs, but the underlying mechanisms were clouded because FGF13 is expressed in both excitatory and inhibitory neurons, FGF13 undergoes extensive alternative splicing producing multiple isoforms with distinct functions, and the overall roles of FGF13 in neurons are incompletely cataloged. To overcome these challenges, we generated a set of novel cell type-specific conditional knockout mice. Interneuron-targeted deletion of Fgf13 led to perinatal mortality associated with extensive seizures and impaired the hippocampal inhibitory/excitatory balance while excitatory neuron-targeted deletion of Fgf13 caused no detectable seizures and no survival deficits. While best studied as a voltage-gated sodium channel (Nav) regulator, we observed no effect of Fgf13 ablation in interneurons on Navs but rather a marked reduction in K+ channel currents. Re-expressing different Fgf13 splice isoforms could partially rescue deficits in interneuron excitability and restore K+ channel current amplitude. These results enhance our understanding of the molecular mechanisms that drive the pathogenesis of Fgf13-related seizures and expand our understanding of FGF13 functions in different neuron subsets.
Collapse
Affiliation(s)
- Susan Lin
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| | - Aravind R. Gade
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| | - Hong-Gang Wang
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| | - James E. Niemeyer
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, NY
| | - Allison Galante
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| | | | - Patrick Towers
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| | - Jorge Nunez
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| | - Maiko Matsui
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| | - Theodore H. Schwartz
- Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, NY
| | - Anjali M. Rajadhyaksha
- Department of Pediatrics, Division of Pediatric Neurology, Weill Cornell Medicine, New York, NY; Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY
| | - Geoffrey S. Pitt
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
| |
Collapse
|
2
|
Berg AT, Thompson CH, Myers LS, Anderson E, Evans L, Kaiser AJE, Paltell K, Nili AN, DeKeyser JML, Abramova TV, Nesbitt G, Egan SM, Vanoye CG, George AL. Expanded clinical phenotype spectrum correlates with variant function in SCN2A-related disorders. Brain 2024; 147:2761-2774. [PMID: 38651838 PMCID: PMC11292900 DOI: 10.1093/brain/awae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/04/2024] [Accepted: 03/24/2024] [Indexed: 04/25/2024] Open
Abstract
SCN2A-related disorders secondary to altered function in the voltage-gated sodium channel Nav1.2 are rare, with clinically heterogeneous expressions that include epilepsy, autism and multiple severe to profound impairments and other conditions. To advance understanding of the clinical phenotypes and their relationship to channel function, 81 patients (36 female, 44%, median age 5.4 years) with 69 unique SCN2A variants were systematically phenotyped and their Nav1.2 channel function systematically assessed. Participants were recruited through the FamileSCN2A Foundation. Primary phenotype (epilepsy of neonatal onset, n = 27; infant onset, n = 18; and later onset n = 24; and autism without seizures, n = 12) was strongly correlated with a non-seizure severity index (P = 0.002), which was based on presence of severe impairments in gross motor, fine motor, communication abilities, gastrostomy tube dependence and diagnosis of cortical visual impairment and scoliosis. Non-seizure severity was greatest in the neonatal-onset group and least in the autism group (P = 0.002). Children with the lowest severity indices were still severely impaired, as reflected by an average Vineland Adaptive Behavior composite score of 49.5 (>3 standard deviations below the norm-referenced mean of the test). Epileptic spasms were significantly more common in infant-onset (67%) than in neonatal (22%) or later-onset (29%) epilepsy (P = 0.007). Primary phenotype was also strongly correlated with variant function (P < 0.0001); gain-of-function and mixed function variants predominated in neonatal-onset epilepsy, shifting to moderate loss of function in infant-onset epilepsy and to severe and complete loss of function in later-onset epilepsy and autism groups. Exploratory cluster analysis identified five groups, representing: (i) primarily later-onset epilepsy with moderate loss-of-function variants and low severity indices; (ii) mostly infant-onset epilepsy with moderate loss-of-function variants but higher severity indices; and (iii) late-onset and autism only, with the lowest severity indices (mostly zero) and severe/complete loss-of-function variants. Two exclusively neonatal clusters were distinguished from each other largely on non-seizure severity scores and secondarily on variant function. The relationship between primary phenotype and variant function emphasizes the role of developmental factors in the differential clinical expression of SCN2A variants based on their effects on Nav1.2 channel function. The non-seizure severity of SCN2A disorders depends on a combination of the age at seizure onset (primary phenotype) and variant function. As precision therapies for SCN2A-related disorders advance towards clinical trials, knowledge of the relationship between variant function and clinical disease expression will be valuable for identifying appropriate patients for these trials and in selecting efficient clinical outcomes.
Collapse
Affiliation(s)
- Anne T Berg
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- FamilieSCN2A Foundation, Longmeadow, MA 10116, USA
| | - Christopher H Thompson
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | - Erica Anderson
- Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL 60611, USA
| | - Lindsey Evans
- Department of Psychology, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Ariela J E Kaiser
- Department of Psychology, University of Illinois Chicago, Chicago, IL 60616, USA
| | - Katherine Paltell
- Department of Psychology, University of Illinois Chicago, Chicago, IL 60616, USA
| | - Amanda N Nili
- Department of Medical and Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jean-Marc L DeKeyser
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Tatiana V Abramova
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | - Shawn M Egan
- FamilieSCN2A Foundation, Longmeadow, MA 10116, USA
| | - Carlos G Vanoye
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
3
|
Mao M, Mattei C, Rollo B, Byars S, Cuddy C, Berecki G, Heighway J, Pachernegg S, Menheniott T, Apted D, Jia L, Dalby K, Nemiroff A, Mullen S, Reid CA, Maljevic S, Petrou S. Distinctive In Vitro Phenotypes in iPSC-Derived Neurons From Patients With Gain- and Loss-of-Function SCN2A Developmental and Epileptic Encephalopathy. J Neurosci 2024; 44:e0692232023. [PMID: 38148154 PMCID: PMC10883610 DOI: 10.1523/jneurosci.0692-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 12/28/2023] Open
Abstract
SCN2A encodes NaV1.2, an excitatory neuron voltage-gated sodium channel and a major monogenic cause of neurodevelopmental disorders, including developmental and epileptic encephalopathies (DEE) and autism. Clinical presentation and pharmocosensitivity vary with the nature of SCN2A variant dysfunction and can be divided into gain-of-function (GoF) cases with pre- or peri-natal seizures and loss-of-function (LoF) patients typically having infantile spasms after 6 months of age. We established and assessed patient induced pluripotent stem cell (iPSC) - derived neuronal models for two recurrent SCN2A DEE variants with GoF R1882Q and LoF R853Q associated with early- and late-onset DEE, respectively. Two male patient-derived iPSC isogenic pairs were differentiated using Neurogenin-2 overexpression yielding populations of cortical-like glutamatergic neurons. Functional properties were assessed using patch clamp and multielectrode array recordings and transcriptomic profiles obtained with total mRNA sequencing after 2-4 weeks in culture. At 3 weeks of differentiation, increased neuronal activity at cellular and network levels was observed for R1882Q iPSC-derived neurons. In contrast, R853Q neurons showed only subtle changes in excitability after 4 weeks and an overall reduced network activity after 7 weeks in vitro. Consistent with the reported efficacy in some GoF SCN2A patients, phenytoin (sodium channel blocker) reduced the excitability of neurons to the control levels in R1882Q neuronal cultures. Transcriptomic alterations in neurons were detected for each variant and convergent pathways suggested potential shared mechanisms underlying SCN2A DEE. In summary, patient iPSC-derived neuronal models of SCN2A GoF and LoF pathogenic variants causing DEE show specific functional and transcriptomic in vitro phenotypes.
Collapse
Affiliation(s)
- Miaomiao Mao
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Cristiana Mattei
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Ben Rollo
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3052, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria 3800, Australia
| | - Sean Byars
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Claire Cuddy
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Geza Berecki
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Jacqueline Heighway
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Svenja Pachernegg
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3052, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
| | - Trevelyan Menheniott
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
| | - Danielle Apted
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Linghan Jia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Kelley Dalby
- Rogcon Biosciences, Cambridge, MA 02142
- Praxis Precision Medicines, Inc., Cambridge, MA 02142
| | - Alex Nemiroff
- Rogcon Biosciences, Cambridge, MA 02142
- Praxis Precision Medicines, Inc., Cambridge, MA 02142
| | - Saul Mullen
- Austin Health, University of Melbourne, Melbourne, Victoria 3084, Australia
| | - Christopher A Reid
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Snezana Maljevic
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Steven Petrou
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3052, Australia
- Praxis Precision Medicines, Inc., Cambridge, MA 02142
| |
Collapse
|
4
|
Hu X, Jing M, Wang Y, Liu Y, Hua Y. Functional analysis of a novel de novo SCN2A variant in a patient with seizures refractory to oxcarbazepine. Front Mol Neurosci 2023; 16:1159649. [PMID: 37152433 PMCID: PMC10158977 DOI: 10.3389/fnmol.2023.1159649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/29/2023] [Indexed: 05/09/2023] Open
Abstract
Objective We admitted a female patient with infantile onset epilepsy (<3-month-old). The use of oxcarbazepine exacerbated epileptic seizures in the patient. In the present study, we aimed to identify the genetic basis of the infantile onset epilepsy in the patient, and determine the correlations among genotype, phenotype, and clinical drug response. Methods We described the clinical characteristics of an infant with refractory epilepsy. Whole exome sequencing (WES) was used to screen for the pathogenic variant. Whole-cell patch-clamp was performed to determine functional outcomes of the variant. Results WES identified a novel de novo SCN2A variant (c.468 G > C, p.K156N) in the patient. In comparison with wildtype, electrophysiology revealed that SCN2A-K156N variant in transfected cells demonstrated reduced sodium current density, delayed activation and accelerated inactivation process of Na+ channel, all of which suggested a loss-of-function (LOF) of Nav1.2 channel. Conclusion We showed the importance of functional analysis for a SCN2A variant with unknown significance to determine pathogenicity, drug reactions, and genotype-phenotype correlations. For patients suffering from early infantile epilepsies, the use of oxcarbazepine in some SCN2A-related epilepsies requires vigilance to assess the possibility of epilepsy worsening.
Collapse
Affiliation(s)
- Xiaoyue Hu
- Department of Neurology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
| | - Miao Jing
- Department of Neurology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
| | - Yanping Wang
- Department of Neurology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
| | - Yanshan Liu
- Department of Pediatric Laboratory, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
- *Correspondence: Yanshan Liu,
| | - Ying Hua
- Department of Neurology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
- Ying Hua,
| |
Collapse
|
5
|
Zeng Q, Yang Y, Duan J, Niu X, Chen Y, Wang D, Zhang J, Chen J, Yang X, Li J, Yang Z, Jiang Y, Liao J, Zhang Y. SCN2A-Related Epilepsy: The Phenotypic Spectrum, Treatment and Prognosis. Front Mol Neurosci 2022; 15:809951. [PMID: 35431799 PMCID: PMC9005871 DOI: 10.3389/fnmol.2022.809951] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/14/2022] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE The aim of this study was to analyze the phenotypic spectrum, treatment, and prognosis of 72 Chinese children with SCN2A variants. METHODS The SCN2A variants were detected by next-generation sequencing. All patients were followed up at a pediatric neurology clinic in our hospital or by telephone. RESULTS In 72 patients with SCN2A variants, the seizure onset age ranged from the first day of life to 2 years and 6 months. The epilepsy phenotypes included febrile seizures (plus) (n = 2), benign (familial) infantile epilepsy (n = 9), benign familial neonatal-infantile epilepsy (n = 3), benign neonatal epilepsy (n = 1), West syndrome (n = 16), Ohtahara syndrome (n = 15), epilepsy of infancy with migrating focal seizures (n = 2), Dravet syndrome (n = 1), early infantile epileptic encephalopathy (n = 15), and unclassifiable developmental and epileptic encephalopathy (n = 8). Approximately 79.2% (57/72) patients had varying degrees of developmental delay. All patients had abnormal MRI findings with developmental delay. 91.7% (55/60) patients with de novo SCN2A variants had development delay, while only 16.7% (2/12) patients with inherited SCN2A variants had abnormal development. 83.9% (26/31) SCN2A variants that were located in transmembrane regions of the protein were detected in patients with development delay. Approximately 69.2% (9/13) SCN2A variants detected in patients with normal development were located in the non-transmembrane regions. Approximately 54.2% (39/72) patients were seizure-free at a median age of 8 months. Oxcarbazepine has been used by 38 patients, and seizure-free was observed in 11 of them (11/38, 28.9%), while 6 patients had seizure worsening by oxcarbazepine. All 3 patients used oxcarbazepine and with seizure onset age > 1 year presented seizure exacerbation after taking oxcarbazepine. Valproate has been used by 53 patients, seizure-free was observed in 22.6% (12/53) of them. CONCLUSION The phenotypic spectrum of SCN2A-related epilepsy was broad, ranging from benign epilepsy in neonate and infancy to severe epileptic encephalopathy. Oxcarbazepine and valproate were the most effective drugs in epilepsy patients with SCN2A variants. Sodium channel blockers often worsen seizures in patients with seizure onset beyond 1 year of age. Abnormal brain MRI findings and de novo variations were often related to poor prognosis. Most SCN2A variants located in transmembrane regions were related to patients with developmental delay.
Collapse
Affiliation(s)
- Qi Zeng
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Ying Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jing Duan
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Xueyang Niu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yi Chen
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Dan Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jing Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jiaoyang Chen
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xiaoling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jinliang Li
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Zhixian Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jianxiang Liao
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, China
- *Correspondence: Jianxiang Liao,
| | - Yuehua Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Yuehua Zhang,
| |
Collapse
|
6
|
Spoto G, Saia MC, Amore G, Gitto E, Loddo G, Mainieri G, Nicotera AG, Di Rosa G. Neonatal Seizures: An Overview of Genetic Causes and Treatment Options. Brain Sci 2021; 11:brainsci11101295. [PMID: 34679360 PMCID: PMC8534058 DOI: 10.3390/brainsci11101295] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/16/2021] [Accepted: 09/26/2021] [Indexed: 01/04/2023] Open
Abstract
Seizures are the most frequent neurological clinical symptoms of the central nervous system (CNS) during the neonatal period. Neonatal seizures may be ascribed to an acute event or symptomatic conditions determined by genetic, metabolic or structural causes, outlining the so-called 'Neonatal Epilepsies'. To date, three main groups of neonatal epilepsies are recognised during the neonatal period: benign familial neonatal epilepsy (BFNE), early myoclonic encephalopathy (EME) and 'Ohtahara syndrome' (OS). Recent advances showed the role of several genes in the pathogenesis of these conditions, such as KCNQ2, KCNQ3, ARX, STXBP1, SLC25A22, CDKL5, KCNT1, SCN2A and SCN8A. Herein, we reviewed the current knowledge regarding the pathogenic variants most frequently associated with neonatal seizures, which should be considered when approaching newborns affected by these disorders. In addition, we considered the new possible therapeutic strategies reported in these conditions.
Collapse
Affiliation(s)
- Giulia Spoto
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.S.); (M.C.S.); (G.A.); (G.D.R.)
| | - Maria Concetta Saia
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.S.); (M.C.S.); (G.A.); (G.D.R.)
| | - Greta Amore
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.S.); (M.C.S.); (G.A.); (G.D.R.)
| | - Eloisa Gitto
- Unit of Neonatal Intensive Care, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | | | - Greta Mainieri
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, 40138 Bologna, Italy;
| | - Antonio Gennaro Nicotera
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.S.); (M.C.S.); (G.A.); (G.D.R.)
- Correspondence: ; Tel.: +39-090-221-2911
| | - Gabriella Di Rosa
- Unit of Child Neurology and Psychiatry, Department of Human Pathology of the Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.S.); (M.C.S.); (G.A.); (G.D.R.)
| |
Collapse
|
7
|
Johannessen Landmark C, Potschka H, Auvin S, Wilmshurst JM, Johannessen SI, Kasteleijn-Nolst Trenité D, Wirrell EC. The role of new medical treatments for the management of developmental and epileptic encephalopathies: Novel concepts and results. Epilepsia 2021; 62:857-873. [PMID: 33638459 DOI: 10.1111/epi.16849] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 12/20/2022]
Abstract
Developmental and epileptic encephalopathies (DEEs) are among the most challenging of all epilepsies to manage, given the exceedingly frequent and often severe seizure types, pharmacoresistance to conventional antiseizure medications, and numerous comorbidities. During the past decade, efforts have focused on development of new treatment options for DEEs, with several recently approved in the United States or Europe, including cannabidiol as an orphan drug in Dravet and Lennox-Gastaut syndromes and everolimus as a possible antiepileptogenic and precision drug for tuberous sclerosis complex, with its impact on the mammalian target of rapamycin pathway. Furthermore, fenfluramine, an old drug, was repurposed as a novel therapy in the treatment of Dravet syndrome. The evolution of new insights into pathophysiological processes of various DEEs provides possibilities to investigate novel and repurposed drugs and to place them into the context of their role in future management of these patients. The purpose of this review is to provide an overview of these new medical treatment options for the DEEs and to discuss the clinical implications of these results for improved treatment.
Collapse
Affiliation(s)
- Cecilie Johannessen Landmark
- Program for Pharmacy, Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway.,National Center for Epilepsy, Oslo University Hospital, Oslo, Norway.,Section for Clinical Pharmacology, Department of Pharmacology, Oslo University Hospital, Oslo, Norway
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Stéphane Auvin
- Pediatric Neurology Department, Robert Debré Hospital, Public Hospital Network of Paris, Paris, France.,Mixed Unit of Research NeuroDiderot U1141, University of Paris, Paris, France
| | - Jo M Wilmshurst
- Paediatric Neurology Department, Red Cross War Memorial Children's Hospital, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Svein I Johannessen
- National Center for Epilepsy, Oslo University Hospital, Oslo, Norway.,Section for Clinical Pharmacology, Department of Pharmacology, Oslo University Hospital, Oslo, Norway
| | | | - Elaine C Wirrell
- Divisions of Child and Adolescent Neurology and Epilepsy, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
8
|
Miao P, Tang S, Ye J, Wang J, Lou Y, Zhang B, Xu X, Chen X, Li Y, Feng J. Electrophysiological features: The next precise step for SCN2A developmental epileptic encephalopathy. Mol Genet Genomic Med 2020; 8:e1250. [PMID: 32400968 PMCID: PMC7336724 DOI: 10.1002/mgg3.1250] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 03/01/2020] [Accepted: 03/05/2020] [Indexed: 12/19/2022] Open
Abstract
Background To investigate the relationships among phenotypes, genotypes, and funotypes of SCN2A‐related developmental epileptic encephalopathy (DEE). Methods We enrolled five DEE patients with five de novo variants of the SCN2A. Functional analysis and pharmacological features of Nav1.2 channel protein expressed in HEK293T cells were characterized by whole‐cell patch‐clamp recording. Results The phenotypes of c.4712T>C(p. I1571T), c.2995G>A(p.E999K), and c.4015A>G(p. N1339D) variants showed similar characteristics, including early seizure onset with severe to profound intellectual disability. Electrophysiological recordings revealed a hyperpolarizing shift in the voltage dependence of the activation curve and smaller recovery time constants of fast‐inactivation than in wild type, indicating a prominent gain of function (GOF). Moreover, pharmacological electrophysiology showed that phenytoin inhibited over a 70% peak current and was more effective than oxcarbazepine and carbamazepine. In contrast, c.4972C>T (p.P1658S) and c.5317G>A (p.A1773T) led to loss of function (LOF) changes, showing reduced current density and enhanced fast inactivation. Both showed seizure onset after 3 months of age with moderate development delay. Interestingly, we discovered that choreoathetosis was a specific phenotype feature. Conclusion These findings provided the insights into the phenotype–genotype–funotype relationships of SCN2A‐related DEE. The preliminary evaluation using the distinct hints of GOF and LOF helped plan the treatment, and the next precise step should be electrophysiological study.
Collapse
Affiliation(s)
- Pu Miao
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Siyang Tang
- Children's Hospital and Department of Biophysics, National Clinical Research Center for Child Health, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Ye
- Children's Hospital and Department of Biophysics, National Clinical Research Center for Child Health, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianda Wang
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuting Lou
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bijun Zhang
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxiao Xu
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoquan Chen
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuezhou Li
- Children's Hospital and Department of Biophysics, National Clinical Research Center for Child Health, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhua Feng
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|