1
|
Stenshorne I, Syvertsen MR, Ramm-Pettersen A, Selmer KK, Koht J, Henriksen MW. Impact of genetic testing in developmental and epileptic encephalopathy- parents' perspective. Epilepsy Behav 2024; 163:110174. [PMID: 39709846 DOI: 10.1016/j.yebeh.2024.110174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND Developmental and epileptic encephalopathies (DEEs) are a group of severe and heterogeneous epilepsies. Most of the affected patients have treatment refractory seizures, intellectual disability (ID), and multiple comorbidities. The condition has a negative impact on quality of life, both for the patients and their families. In recent decades, genetic testing has become an important part of the diagnostic routine investigation of patients with DEE. However, there are few quantitative studies on parental experiences and their perspectives on the genetic testing of their children. The aim of the present study was to describe parental experiences and perspectives concerning genetic testing, to investigate the importance of receiving an etiologic diagnosis, and consider the emotional impact of test results on parents. METHODS Based on a systematic literature search, a semi-quantitative questionnaire was designed to investigate the experiences of caregivers of patients with DEE, focusing on the period of genetic investigation. Eligible participants were caregivers of patients with epilepsy and intellectual disability or psychomotor delay (DEE) who had been through genetic investigation. Participants were consecutively recruited at Drammen Hospital (Norway) and through online recruitment in 2022-2023. The study was explorative and descriptive, and statistical analyses were performed with STATA. RESULTS Among the 60 responding caregivers, 59 were biological parents (32-75 years old) of children with DEE (1-43 years old) and were included in the statistical analyses. Among them, 67 % had a child with a genetic diagnosis. Knowing the etiology of the child's DEE was important for 91 %. Prior to genetic diagnostics, 62 % thought that knowing the cause of disease would make it easier to handle the epilepsy and other medical challenges. A large proportion (71 %) reported having had concerns about the cause of their child's disease before a potential genetic diagnosis was established, and, among these, 67 % suspected that something had happened during pregnancy or birth. The result of the genetic test led to a significantly higher degree of self-reported relief, grief, sadness, loneliness, and despair for the parents of a child that received a specific genetic diagnosis, compared to those who did not receive a diagnosis. While 24 % of parents had felt guilt concerning their child's epileptic condition (at any time), only 8,6% reported feeling guilt when receiving the result of the genetic test. CONCLUSIONS This study provides insight into the parental experiences of genetic testing in children with DEE. It is important for the parents of a child with DEE to know the cause of disease. Parents of children with DEE who received a genetic diagnosis experienced relief, but also negative feelings associated with receiving the result of the genetic test. Support and follow-up after a conclusive diagnostic test should therefore be prioritized.
Collapse
Affiliation(s)
- Ida Stenshorne
- Institute of Clinical Medicine, University of Oslo, P.O. Box 1171 Blindern, 0318 Oslo, Norway; Department of Children and Adolescents, Drammen Hospital, Vestre Viken Hospital Trust, Dronninggata 28, 3004 Drammen, Norway.
| | - Marte Roa Syvertsen
- Department of Neurology, Drammen Hospital, Vestre Viken Hospital Trust, Dronninggata 28, 3004 Drammen, Norway.
| | - Anette Ramm-Pettersen
- Institute of Clinical Medicine, University of Oslo, P.O. Box 1171 Blindern, 0318 Oslo, Norway; Department of Pediatric Neurology, Oslo University Hospital, P.O. Box 4956 Nydalen, N-0424 Oslo, Norway.
| | - Kaja K Selmer
- National Center for Epilepsy, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424 Oslo, Norway; Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, P.O. Box 4956 Nydalen, N-0424 Oslo, Norway.
| | - Jeanette Koht
- Institute of Clinical Medicine, University of Oslo, P.O. Box 1171 Blindern, 0318 Oslo, Norway; Department of Neurology, Oslo University Hospital, P.O. Box 4956 Nydalen, N-0424 Oslo, Norway.
| | - Mari Wold Henriksen
- Department of Neurology, Drammen Hospital, Vestre Viken Hospital Trust, Dronninggata 28, 3004 Drammen, Norway.
| |
Collapse
|
2
|
Li C, Wang Y, Zeng C, Huang B, Chen Y, Xue C, Liu L, Rong S, Lin Y. Trio-whole exome sequencing reveals the importance of de novo variants in children with intellectual disability and developmental delay. Sci Rep 2024; 14:27590. [PMID: 39528574 PMCID: PMC11555314 DOI: 10.1038/s41598-024-79431-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
Understanding the genetic basis of developmental delay (DD) and intellectual disability (ID) remains a considerable clinical challenge. This study evaluated the clinical application of trio whole exome sequencing (WES) in children diagnosed with DD/ID. The study comprised 173 children with unexplained DD/ID. The participants underwent trio-WES and their demographic, clinical, and genetic characteristics were evaluated. Based on their clinical features, the participants were classified into two groups for further analysis: a syndromic DD/ID group and a non-syndromic DD/ID group. The genetic diagnostic yield of the 173 children diagnosed with DD/ID was 49.7% (86/173). This included 58 pathogenic or likely pathogenic single nucleotide variants (SNVs) in 41 genes identified across 54 individuals (31.2%) through trio-WES. Among these, 22 SNVs had not been previously reported. Additionally, 30 copy number variations (CNVs) were detected in 36 individuals (20.8%). The diagnostic yield in the syndromic DD/ID group was higher than that in the non-syndromic DD/ID group (57.8% vs. 47.2%, P < 0.001). Within the syndromic DD/ID subgroup, the diagnostic yield of the DD/ID with epilepsy subgroup (83.9%) was significantly higher than those of the other subgroups (P < 0.001). Based on the analysis of the individuals' clinical phenotypes, the individuals with facial dysmorphism shown a higher diagnostic yield (68.2%, P < 0.001). The diagnostic yield of SNVs was higher in the individuals with DD/ID accompanied by epilepsy, whereas the diagnostic yield of CNVs was higher in the DD/ID without epilepsy group. Similarly, the diagnostic yield of de novo SNVs was higher in the DD/ID with epilepsy group, while the diagnostic yield of de novo CNVs was higher in the DD/ID without epilepsy group (all P < 0.001). Trio-WES is a crucial tool for the genetic diagnosis of DD/ID, demonstrating a diagnostic yield of up to 49.7%. De novo variants in autosomal dominant genes are significant contributors to DD/ID, particularly in non-consanguineous families.
Collapse
Affiliation(s)
- Chengyan Li
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, No. 57, Renmin Avenue (South), Xiashan, Zhanjiang, 524000, Guangdong Province, People's Republic of China
| | - You Wang
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, No. 57, Renmin Avenue (South), Xiashan, Zhanjiang, 524000, Guangdong Province, People's Republic of China
| | - Cizheng Zeng
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, No. 57, Renmin Avenue (South), Xiashan, Zhanjiang, 524000, Guangdong Province, People's Republic of China
| | - Binglong Huang
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, No. 57, Renmin Avenue (South), Xiashan, Zhanjiang, 524000, Guangdong Province, People's Republic of China
| | - Yinhui Chen
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, No. 57, Renmin Avenue (South), Xiashan, Zhanjiang, 524000, Guangdong Province, People's Republic of China
| | - Chupeng Xue
- Department of Pediatrics, Shantou Central Hospital, ShanTou, 515000, Guangdong Province, People's Republic of China
| | - Ling Liu
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, No. 57, Renmin Avenue (South), Xiashan, Zhanjiang, 524000, Guangdong Province, People's Republic of China
| | - Shiwen Rong
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, No. 57, Renmin Avenue (South), Xiashan, Zhanjiang, 524000, Guangdong Province, People's Republic of China
| | - Yongwen Lin
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, No. 57, Renmin Avenue (South), Xiashan, Zhanjiang, 524000, Guangdong Province, People's Republic of China.
| |
Collapse
|
3
|
Abbott M, Ryan M, Hernández R, McKenzie L, Heidenreich S, Hocking L, Clark C, Ansari M, Moore D, Lampe A, McGowan R, Berg J, Miedzybrodzka Z. Should Scotland provide genome-wide sequencing for the diagnosis of rare developmental disorders? A cost-effectiveness analysis. THE EUROPEAN JOURNAL OF HEALTH ECONOMICS : HEPAC : HEALTH ECONOMICS IN PREVENTION AND CARE 2024:10.1007/s10198-024-01717-8. [PMID: 39249625 DOI: 10.1007/s10198-024-01717-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 08/07/2024] [Indexed: 09/10/2024]
Abstract
AIMS This study aims to evaluate the cost effectiveness of genetic and genomic testing strategies for the diagnosis of rare developmental disorders in NHS Scotland. METHODS Six genetic and genomic testing strategies were evaluated using a decision tree model. First-line, second-line and last-resort trio genome sequencing (GS), and second-line and last-resort trio exome sequencing (ES) were compared with standard genetic testing. The cost effectiveness of each strategy was expressed in terms of incremental cost per additional diagnosis. The impact of uncertainty on cost-effectiveness results was explored using deterministic and probabilistic sensitivity analysis. RESULTS 2nd-line ES was a cost-saving option, increasing diagnostic yield by 13.9% and decreasing cost by £1027 per trio compared to standard genetic testing. Compared to ES, strategies involving GS increased costs significantly, with only a moderate or zero improvement in diagnostic yield. Sensitivity analysis indicated that significant reductions in cost or improvements in diagnostic yield are required before 1st-line GS becomes cost effective. CONCLUSION 2nd-line ES (after chromosomal microarray; replacing gene panel testing) for the diagnosis of developmental disorders is a cost-saving option for the Scottish NHS. Ongoing economic evaluation is required to monitor the evolving cost and diagnostic yield of GS and ES over time.
Collapse
Affiliation(s)
- Michael Abbott
- Health Economics Research Unit, University of Aberdeen, Aberdeen, UK.
| | - Mandy Ryan
- Health Economics Research Unit, University of Aberdeen, Aberdeen, UK
| | - Rodolfo Hernández
- Health Economics Research Unit, University of Aberdeen, Aberdeen, UK
| | - Lynda McKenzie
- Health Economics Research Unit, University of Aberdeen, Aberdeen, UK
| | | | - Lynne Hocking
- Department of Medical Genetics, University of Aberdeen, Aberdeen, UK
- NHS Grampian Regional Genetics Service, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Caroline Clark
- NHS Grampian Regional Genetics Service, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Morad Ansari
- South East Scotland Genetic Service, NHS Lothian, Edinburgh, UK
| | - David Moore
- South East Scotland Genetic Service, NHS Lothian, Edinburgh, UK
| | - Anne Lampe
- South East Scotland Genetic Service, NHS Lothian, Edinburgh, UK
| | - Ruth McGowan
- West of Scotland Centre for Genomic Medicine, QEUH, Glasgow, UK
| | | | - Zosia Miedzybrodzka
- Department of Medical Genetics, University of Aberdeen, Aberdeen, UK
- NHS Grampian Regional Genetics Service, Aberdeen Royal Infirmary, Aberdeen, UK
| |
Collapse
|
4
|
Scheffer IE, Zuberi S, Mefford HC, Guerrini R, McTague A. Developmental and epileptic encephalopathies. Nat Rev Dis Primers 2024; 10:61. [PMID: 39237642 DOI: 10.1038/s41572-024-00546-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/07/2024]
Abstract
Developmental and epileptic encephalopathies, the most severe group of epilepsies, are characterized by seizures and frequent epileptiform activity associated with developmental slowing or regression. Onset typically occurs in infancy or childhood and includes many well-defined epilepsy syndromes. Patients have wide-ranging comorbidities including intellectual disability, psychiatric features, such as autism spectrum disorder and behavioural problems, movement and musculoskeletal disorders, gastrointestinal and sleep problems, together with an increased mortality rate. Problems change with age and patients require substantial support throughout life, placing a high psychosocial burden on parents, carers and the community. In many patients, the aetiology can be identified, and a genetic cause is found in >50% of patients using next-generation sequencing technologies. More than 900 genes have been identified as monogenic causes of developmental and epileptic encephalopathies and many cell components and processes have been implicated in their pathophysiology, including ion channels and transporters, synaptic proteins, cell signalling and metabolism and epigenetic regulation. Polygenic risk score analyses have shown that common variants also contribute to phenotypic variability. Holistic management, which encompasses antiseizure therapies and care for multimorbidities, is determined both by epilepsy syndrome and aetiology. Identification of the underlying aetiology enables the development of precision medicines to improve the long-term outcome of patients with these devastating diseases.
Collapse
Affiliation(s)
- Ingrid E Scheffer
- Epilepsy Research Centre, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia.
- Florey and Murdoch Children's Research Institutes, Melbourne, Victoria, Australia.
- Department of Paediatrics, The University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia.
| | - Sameer Zuberi
- Paediatric Neurosciences Research Group, School of Health & Wellbeing, University of Glasgow, Glasgow, UK
- Paediatric Neurosciences, Royal Hospital for Children, Glasgow, UK
| | - Heather C Mefford
- Center for Paediatric Neurological Disease Research, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Renzo Guerrini
- Neuroscience Department, Children's Hospital Meyer IRCCS, Florence, Italy
- University of Florence, Florence, Italy
| | - Amy McTague
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| |
Collapse
|
5
|
Finnegan R, O'Regan M, White M, Cavalleri G, Delanty N, Benson K, Greally M. Similarity of Phenotype in Three Male Patients With the c.320A>G Variant in ALG13: Possible Genotype-Phenotype Correlation. Mol Genet Genomic Med 2024; 12:e70010. [PMID: 39311797 PMCID: PMC11418404 DOI: 10.1002/mgg3.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND Congenital disorders of glycosylation (CDG) are a group of neurometabolic diseases that result from genetic defects in the glycosylation of proteins and/or lipids. Multiple pathogenic genes contribute to the varying reported phenotypes of individuals with CDG-1 syndromes, most of which are inherited as autosomal recessive traits, although X-linked inheritance has also been reported. Pathogenic variants in the asparagine-linked glycosylation 13 homolog (ALG13) gene have been implicated in the aetiology of developmental and epileptic encephalopathy (DEE) 36 (OMIM:*300776, DEE36). The NM_001099922.3:c.320A>G; p.(Asn107Ser) variant is the most frequently described pathogenic variant in ALG13, with 59 females and 2 males with this variant reported to date. METHODS We report on a male with a de novo, hemizygous variant in ALG13: c.320A>G; p.(Asn107Ser), whose phenotype resembles that of two previously reported males with the same variant. RESULTS All three males have a de novo mutation, infantile spasms, DEE, drug-resistant epilepsy, intellectual disability, dysmorphic findings, recurrent infections, skeletal anomalies, brain abnormalities and a movement disorder: a phenotype not consistently reported in males with other pathogenic variants in ALG13. CONCLUSION The similarity of phenotype in the three males with the c.320A>G variant in ALG13, suggests a possible genotype-phenotype correlation.
Collapse
Affiliation(s)
- Rebecca Finnegan
- Department of Paediatric NeurologyChildren's Health Ireland at CrumlinDublinIreland
| | - Mary O'Regan
- Department of Paediatric NeurologyChildren's Health Ireland at CrumlinDublinIreland
| | - Máire White
- School of Pharmacy and Biomolecular SciencesRoyal College of Surgeons in IrelandDublinIreland
- FutureNeuro Research CentreRoyal College of Surgeons in IrelandDublinIreland
| | - Gianpiero L. Cavalleri
- School of Pharmacy and Biomolecular SciencesRoyal College of Surgeons in IrelandDublinIreland
- FutureNeuro Research CentreRoyal College of Surgeons in IrelandDublinIreland
| | - Norman Delanty
- School of Pharmacy and Biomolecular SciencesRoyal College of Surgeons in IrelandDublinIreland
- FutureNeuro Research CentreRoyal College of Surgeons in IrelandDublinIreland
- Department of NeurologyBeaumont HospitalDublinIreland
| | - Katherine A. Benson
- School of Pharmacy and Biomolecular SciencesRoyal College of Surgeons in IrelandDublinIreland
- FutureNeuro Research CentreRoyal College of Surgeons in IrelandDublinIreland
| | - Marie T. Greally
- FutureNeuro Research CentreRoyal College of Surgeons in IrelandDublinIreland
- Department of Clinical GeneticsChildren's Health Ireland at CrumlinDublinIreland
| |
Collapse
|
6
|
LaFlamme CW, Rastin C, Sengupta S, Pennington HE, Russ-Hall SJ, Schneider AL, Bonkowski ES, Almanza Fuerte EP, Allan TJ, Zalusky MPG, Goffena J, Gibson SB, Nyaga DM, Lieffering N, Hebbar M, Walker EV, Darnell D, Olsen SR, Kolekar P, Djekidel MN, Rosikiewicz W, McConkey H, Kerkhof J, Levy MA, Relator R, Lev D, Lerman-Sagie T, Park KL, Alders M, Cappuccio G, Chatron N, Demain L, Genevieve D, Lesca G, Roscioli T, Sanlaville D, Tedder ML, Gupta S, Jones EA, Weisz-Hubshman M, Ketkar S, Dai H, Worley KC, Rosenfeld JA, Chao HT, Neale G, Carvill GL, Wang Z, Berkovic SF, Sadleir LG, Miller DE, Scheffer IE, Sadikovic B, Mefford HC. Diagnostic utility of DNA methylation analysis in genetically unsolved pediatric epilepsies and CHD2 episignature refinement. Nat Commun 2024; 15:6524. [PMID: 39107278 PMCID: PMC11303402 DOI: 10.1038/s41467-024-50159-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 06/28/2024] [Indexed: 08/09/2024] Open
Abstract
Sequence-based genetic testing identifies causative variants in ~ 50% of individuals with developmental and epileptic encephalopathies (DEEs). Aberrant changes in DNA methylation are implicated in various neurodevelopmental disorders but remain unstudied in DEEs. We interrogate the diagnostic utility of genome-wide DNA methylation array analysis on peripheral blood samples from 582 individuals with genetically unsolved DEEs. We identify rare differentially methylated regions (DMRs) and explanatory episignatures to uncover causative and candidate genetic etiologies in 12 individuals. Using long-read sequencing, we identify DNA variants underlying rare DMRs, including one balanced translocation, three CG-rich repeat expansions, and four copy number variants. We also identify pathogenic variants associated with episignatures. Finally, we refine the CHD2 episignature using an 850 K methylation array and bisulfite sequencing to investigate potential insights into CHD2 pathophysiology. Our study demonstrates the diagnostic yield of genome-wide DNA methylation analysis to identify causal and candidate variants as 2% (12/582) for unsolved DEE cases.
Collapse
Affiliation(s)
- Christy W LaFlamme
- Center for Pediatric Neurological Disease Research, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Cassandra Rastin
- Department of Pathology & Laboratory Medicine, Western University, London, ON, N5A 3K7, Canada
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, N6A 5W9, Canada
| | - Soham Sengupta
- Center for Pediatric Neurological Disease Research, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Helen E Pennington
- Center for Pediatric Neurological Disease Research, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Mathematics & Statistics, Rhodes College, Memphis, TN, 38112, USA
| | - Sophie J Russ-Hall
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, 3084, Australia
| | - Amy L Schneider
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, 3084, Australia
| | - Emily S Bonkowski
- Center for Pediatric Neurological Disease Research, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Edith P Almanza Fuerte
- Center for Pediatric Neurological Disease Research, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Talia J Allan
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, 3084, Australia
| | - Miranda Perez-Galey Zalusky
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, 98195, USA
| | - Joy Goffena
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, 98195, USA
| | - Sophia B Gibson
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, 98195, USA
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Denis M Nyaga
- Department of Paediatrics and Child Health, University of Otago, Wellington, 6242, New Zealand
| | - Nico Lieffering
- Department of Paediatrics and Child Health, University of Otago, Wellington, 6242, New Zealand
| | - Malavika Hebbar
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, 98195, USA
| | - Emily V Walker
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital Memphis, Memphis, TN, 38105, USA
| | - Daniel Darnell
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital Memphis, Memphis, TN, 38105, USA
| | - Scott R Olsen
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital Memphis, Memphis, TN, 38105, USA
| | - Pandurang Kolekar
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Mohamed Nadhir Djekidel
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Wojciech Rosikiewicz
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, N6A 5W9, Canada
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, N6A 5W9, Canada
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, N6A 5W9, Canada
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, N6A 5W9, Canada
| | - Dorit Lev
- Institute of Medical Genetics, Wolfson Medical Center, Holon, 58100, Israel
| | - Tally Lerman-Sagie
- Fetal Neurology Clinic, Pediatric Neurology Unit, Wolfson Medical Center, Holon, 58100, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Kristen L Park
- Departments of Pediatrics and Neurology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Marielle Alders
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
| | - Gerarda Cappuccio
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| | - Nicolas Chatron
- Department of Medical Genetics, Member of the ERN EpiCARE, University Hospital of Lyon and Claude Bernard Lyon I University, Lyon, France
- Pathophysiology and Genetics of Neuron and Muscle (PNMG), UCBL, CNRS UMR5261 - INSERM, U1315, Lyon, France
| | - Leigh Demain
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - David Genevieve
- Montpellier University, Inserm Unit 1183, Reference Center for Rare Diseases Developmental Anomaly and Malformative Syndrome, Clinical Genetic Department, CHU Montpellier, Montpellier, France
| | - Gaetan Lesca
- Department of Medical Genetics, Member of the ERN EpiCARE, University Hospital of Lyon and Claude Bernard Lyon I University, Lyon, France
- Pathophysiology and Genetics of Neuron and Muscle (PNMG), UCBL, CNRS UMR5261 - INSERM, U1315, Lyon, France
| | - Tony Roscioli
- Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Damien Sanlaville
- Department of Medical Genetics, Member of the ERN EpiCARE, University Hospital of Lyon and Claude Bernard Lyon I University, Lyon, France
- Pathophysiology and Genetics of Neuron and Muscle (PNMG), UCBL, CNRS UMR5261 - INSERM, U1315, Lyon, France
| | | | - Sachin Gupta
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Elizabeth A Jones
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Monika Weisz-Hubshman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Texas Children's Hospital, Genetic Department, Houston, TX, 77030, USA
| | - Shamika Ketkar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hongzheng Dai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kim C Worley
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hsiao-Tuan Chao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pediatrics, Section of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
- Cain Pediatric Neurology Research Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
- Texas Children's Hospital, Houston, TX, 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
- McNair Medical Institute, The Robert and Janice McNair Foundation, Houston, TX, 77030, USA
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital Memphis, Memphis, TN, 38105, USA
| | - Gemma L Carvill
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zhaoming Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, 3084, Australia
| | - Lynette G Sadleir
- Department of Paediatrics and Child Health, University of Otago, Wellington, 6242, New Zealand
| | - Danny E Miller
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, 3084, Australia
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, VIC, Australia
- Florey Institute and Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Bekim Sadikovic
- Department of Pathology & Laboratory Medicine, Western University, London, ON, N5A 3K7, Canada.
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, N6A 5W9, Canada.
| | - Heather C Mefford
- Center for Pediatric Neurological Disease Research, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
7
|
Watson S, Ngo KJ, Stevens HA, Wong DY, Kim J, Song Y, Han B, Hyun SI, Khang R, Ryu SW, Lee E, Seo G, Lee H, Lajonchere C, Fogel BL. Cross-Sectional Analysis of Exome Sequencing Diagnosis in Patients With Neurologic Phenotypes Facing Barriers to Clinical Testing. Neurol Genet 2024; 10:e200133. [PMID: 38617022 PMCID: PMC11010248 DOI: 10.1212/nxg.0000000000200133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/19/2024] [Indexed: 04/16/2024]
Abstract
Background and Objectives Exome sequencing (ES) demonstrates a 20-50 percent diagnostic yield for patients with a suspected monogenic neurologic disease. Despite the proven efficacy in achieving a diagnosis for such patients, multiple barriers for obtaining exome sequencing remain. This study set out to assess the efficacy of ES in patients with primary neurologic phenotypes who were appropriate candidates for testing but had been unable to pursue clinical testing. Methods A total of 297 patients were identified from the UCLA Clinical Neurogenomics Research Center Biobank, and ES was performed, including bioinformatic assessment of copy number variation and repeat expansions. Information regarding demographics, clinical indication for ES, and reason for not pursuing ES clinically were recorded. To assess diagnostic efficacy, variants were interpreted by a multidisciplinary team of clinicians, bioinformaticians, and genetic counselors in accordance with the American College of Medical Genetics and Genomics variant classification guidelines. We next examined the specific barriers to testing for these patients, including how frequently insurance-related barriers such as coverage denials and inadequate coverage of cost were obstacles to pursuing exome sequencing. Results The cohort primarily consisted of patients with sporadic conditions (n = 126, 42.4%) of adult-onset (n = 239, 80.5%). Cerebellar ataxia (n = 225, 75.8%) was the most common presenting neurologic phenotype. Our study found that in this population of mostly adult patients with primary neurologic phenotypes that were unable to pursue exome sequencing clinically, 47 (15.8%) had diagnostic results while an additional 24 patients (8.1%) had uncertain results. Of the 297 patients, 206 were initially recommended for clinical exome but 88 (42.7%) could not pursue ES because of insurance barriers, of whom 14 (15.9%) had diagnostic findings, representing 29.8% of all patients with diagnostic findings. In addition, the incorporation of bioinformatic repeat expansion testing was valuable, identifying a total of 8 pathogenic repeat expansions (17.0% of all diagnostic findings) including 3 of the common spinocerebellar ataxias and 2 patients with Huntington disease. Discussion These findings underscore the importance and value of clinical ES as a diagnostic tool for neurogenetic disease and highlight key barriers that prevent patients from receiving important clinical information with potential treatment and psychosocial implications for patients and family members.
Collapse
Affiliation(s)
- Sonya Watson
- From the Department of Neurology (S.W., K.J.N., H.A.S., D.Y.W., C.L., B.L.F.), the Clinical Neurogenomics Research Center (S.W., H.A.S., D.Y.W., C.L., B.L.F.), the Institute for Precision Health (S.W., C.L., B.L.F.), and the Department of Human Genetics (S.W., B.L.F.), David Geffen School of Medicine, University of California at Los Angeles (UCLA); 3billion, Inc. (J.K., Y.S., B.H., S.-I.H., R.K., S.W.R., E.L., G.S., H.L.)
| | - Kathie J Ngo
- From the Department of Neurology (S.W., K.J.N., H.A.S., D.Y.W., C.L., B.L.F.), the Clinical Neurogenomics Research Center (S.W., H.A.S., D.Y.W., C.L., B.L.F.), the Institute for Precision Health (S.W., C.L., B.L.F.), and the Department of Human Genetics (S.W., B.L.F.), David Geffen School of Medicine, University of California at Los Angeles (UCLA); 3billion, Inc. (J.K., Y.S., B.H., S.-I.H., R.K., S.W.R., E.L., G.S., H.L.)
| | - Hannah A Stevens
- From the Department of Neurology (S.W., K.J.N., H.A.S., D.Y.W., C.L., B.L.F.), the Clinical Neurogenomics Research Center (S.W., H.A.S., D.Y.W., C.L., B.L.F.), the Institute for Precision Health (S.W., C.L., B.L.F.), and the Department of Human Genetics (S.W., B.L.F.), David Geffen School of Medicine, University of California at Los Angeles (UCLA); 3billion, Inc. (J.K., Y.S., B.H., S.-I.H., R.K., S.W.R., E.L., G.S., H.L.)
| | - Darice Y Wong
- From the Department of Neurology (S.W., K.J.N., H.A.S., D.Y.W., C.L., B.L.F.), the Clinical Neurogenomics Research Center (S.W., H.A.S., D.Y.W., C.L., B.L.F.), the Institute for Precision Health (S.W., C.L., B.L.F.), and the Department of Human Genetics (S.W., B.L.F.), David Geffen School of Medicine, University of California at Los Angeles (UCLA); 3billion, Inc. (J.K., Y.S., B.H., S.-I.H., R.K., S.W.R., E.L., G.S., H.L.)
| | - Jihye Kim
- From the Department of Neurology (S.W., K.J.N., H.A.S., D.Y.W., C.L., B.L.F.), the Clinical Neurogenomics Research Center (S.W., H.A.S., D.Y.W., C.L., B.L.F.), the Institute for Precision Health (S.W., C.L., B.L.F.), and the Department of Human Genetics (S.W., B.L.F.), David Geffen School of Medicine, University of California at Los Angeles (UCLA); 3billion, Inc. (J.K., Y.S., B.H., S.-I.H., R.K., S.W.R., E.L., G.S., H.L.)
| | - Yongjun Song
- From the Department of Neurology (S.W., K.J.N., H.A.S., D.Y.W., C.L., B.L.F.), the Clinical Neurogenomics Research Center (S.W., H.A.S., D.Y.W., C.L., B.L.F.), the Institute for Precision Health (S.W., C.L., B.L.F.), and the Department of Human Genetics (S.W., B.L.F.), David Geffen School of Medicine, University of California at Los Angeles (UCLA); 3billion, Inc. (J.K., Y.S., B.H., S.-I.H., R.K., S.W.R., E.L., G.S., H.L.)
| | - Beomman Han
- From the Department of Neurology (S.W., K.J.N., H.A.S., D.Y.W., C.L., B.L.F.), the Clinical Neurogenomics Research Center (S.W., H.A.S., D.Y.W., C.L., B.L.F.), the Institute for Precision Health (S.W., C.L., B.L.F.), and the Department of Human Genetics (S.W., B.L.F.), David Geffen School of Medicine, University of California at Los Angeles (UCLA); 3billion, Inc. (J.K., Y.S., B.H., S.-I.H., R.K., S.W.R., E.L., G.S., H.L.)
| | - Seong-In Hyun
- From the Department of Neurology (S.W., K.J.N., H.A.S., D.Y.W., C.L., B.L.F.), the Clinical Neurogenomics Research Center (S.W., H.A.S., D.Y.W., C.L., B.L.F.), the Institute for Precision Health (S.W., C.L., B.L.F.), and the Department of Human Genetics (S.W., B.L.F.), David Geffen School of Medicine, University of California at Los Angeles (UCLA); 3billion, Inc. (J.K., Y.S., B.H., S.-I.H., R.K., S.W.R., E.L., G.S., H.L.)
| | - Rin Khang
- From the Department of Neurology (S.W., K.J.N., H.A.S., D.Y.W., C.L., B.L.F.), the Clinical Neurogenomics Research Center (S.W., H.A.S., D.Y.W., C.L., B.L.F.), the Institute for Precision Health (S.W., C.L., B.L.F.), and the Department of Human Genetics (S.W., B.L.F.), David Geffen School of Medicine, University of California at Los Angeles (UCLA); 3billion, Inc. (J.K., Y.S., B.H., S.-I.H., R.K., S.W.R., E.L., G.S., H.L.)
| | - Seung Woo Ryu
- From the Department of Neurology (S.W., K.J.N., H.A.S., D.Y.W., C.L., B.L.F.), the Clinical Neurogenomics Research Center (S.W., H.A.S., D.Y.W., C.L., B.L.F.), the Institute for Precision Health (S.W., C.L., B.L.F.), and the Department of Human Genetics (S.W., B.L.F.), David Geffen School of Medicine, University of California at Los Angeles (UCLA); 3billion, Inc. (J.K., Y.S., B.H., S.-I.H., R.K., S.W.R., E.L., G.S., H.L.)
| | - Eugene Lee
- From the Department of Neurology (S.W., K.J.N., H.A.S., D.Y.W., C.L., B.L.F.), the Clinical Neurogenomics Research Center (S.W., H.A.S., D.Y.W., C.L., B.L.F.), the Institute for Precision Health (S.W., C.L., B.L.F.), and the Department of Human Genetics (S.W., B.L.F.), David Geffen School of Medicine, University of California at Los Angeles (UCLA); 3billion, Inc. (J.K., Y.S., B.H., S.-I.H., R.K., S.W.R., E.L., G.S., H.L.)
| | - Gohun Seo
- From the Department of Neurology (S.W., K.J.N., H.A.S., D.Y.W., C.L., B.L.F.), the Clinical Neurogenomics Research Center (S.W., H.A.S., D.Y.W., C.L., B.L.F.), the Institute for Precision Health (S.W., C.L., B.L.F.), and the Department of Human Genetics (S.W., B.L.F.), David Geffen School of Medicine, University of California at Los Angeles (UCLA); 3billion, Inc. (J.K., Y.S., B.H., S.-I.H., R.K., S.W.R., E.L., G.S., H.L.)
| | - Hane Lee
- From the Department of Neurology (S.W., K.J.N., H.A.S., D.Y.W., C.L., B.L.F.), the Clinical Neurogenomics Research Center (S.W., H.A.S., D.Y.W., C.L., B.L.F.), the Institute for Precision Health (S.W., C.L., B.L.F.), and the Department of Human Genetics (S.W., B.L.F.), David Geffen School of Medicine, University of California at Los Angeles (UCLA); 3billion, Inc. (J.K., Y.S., B.H., S.-I.H., R.K., S.W.R., E.L., G.S., H.L.)
| | - Clara Lajonchere
- From the Department of Neurology (S.W., K.J.N., H.A.S., D.Y.W., C.L., B.L.F.), the Clinical Neurogenomics Research Center (S.W., H.A.S., D.Y.W., C.L., B.L.F.), the Institute for Precision Health (S.W., C.L., B.L.F.), and the Department of Human Genetics (S.W., B.L.F.), David Geffen School of Medicine, University of California at Los Angeles (UCLA); 3billion, Inc. (J.K., Y.S., B.H., S.-I.H., R.K., S.W.R., E.L., G.S., H.L.)
| | - Brent L Fogel
- From the Department of Neurology (S.W., K.J.N., H.A.S., D.Y.W., C.L., B.L.F.), the Clinical Neurogenomics Research Center (S.W., H.A.S., D.Y.W., C.L., B.L.F.), the Institute for Precision Health (S.W., C.L., B.L.F.), and the Department of Human Genetics (S.W., B.L.F.), David Geffen School of Medicine, University of California at Los Angeles (UCLA); 3billion, Inc. (J.K., Y.S., B.H., S.-I.H., R.K., S.W.R., E.L., G.S., H.L.)
| |
Collapse
|
8
|
Azuelos C, Marquis MA, Laberge AM. A systematic review of the assessment of the clinical utility of genomic sequencing: Implications of the lack of standard definitions and measures of clinical utility. Eur J Med Genet 2024; 68:104925. [PMID: 38432472 DOI: 10.1016/j.ejmg.2024.104925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/31/2023] [Accepted: 02/11/2024] [Indexed: 03/05/2024]
Abstract
PURPOSE Exome sequencing (ES) and genome sequencing (GS) are diagnostic tests for rare genetic diseases. Studies report clinical utility of ES/GS. The goal of this systematic review is to establish how clinical utility is defined and measured in studies evaluating the impacts of ES/GS results for pediatric patients. METHODS Relevant articles were identified in PubMed, Medline, Embase, and Web of Science. Eligible studies assessed clinical utility of ES/GS for pediatric patients published before 2021. Other relevant articles were added based on articles' references. Articles were coded to assess definitions and measures of clinical utility. RESULTS Of 1346 articles, 83 articles met eligibility criteria. Clinical utility was not clearly defined in 19% of studies and 92% did not use an explicit measure of clinical utility. When present, definitions of clinical utility diverged from recommended definitions and varied greatly, from narrow (diagnostic yield of ES/GS) to broad (including decisions about withdrawal of care/palliative care and/or impacts on other family members). CONCLUSION Clinical utility is used to guide policy and practice decisions about test use. The lack of a standard definition of clinical utility of ES/GS may lead to under- or overestimations of clinical utility, complicating policymaking and raising ethical issues.
Collapse
Affiliation(s)
- Claudia Azuelos
- Medical Genetics, Dept of Pediatrics, CHU Sainte-Justine and Université de Montréal, Canada.
| | - Marc-Antoine Marquis
- Palliative Care, Dept of Pediatrics, CHU Sainte-Justine and Université de Montréal, Canada
| | - Anne-Marie Laberge
- Medical Genetics, Dept of Pediatrics, CHU Sainte-Justine and Université de Montréal, Canada.
| |
Collapse
|
9
|
Habela CW, Schatz K, Kelley SA. Genetic Testing in Epilepsy: Improving Outcomes and Informing Gaps in Research. Epilepsy Curr 2024:15357597241232881. [PMID: 39554273 PMCID: PMC11562134 DOI: 10.1177/15357597241232881] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
While the diagnosis of epilepsy relies on the presence of seizures, it encompasses a group of phenotypically and etiologically diverse disorders in which seizures may only be one of a constellation of symptoms. There are genetic, structural, and metabolic causes, but most epilepsy syndromes have some genetic predisposition. The importance of genetics in the diagnosis and management of epilepsy has been increasingly recognized over the past 2 decades. With increased access to testing tools and new recommendations that all patients with unexplained epilepsy get genetic testing, it is becoming part of routine clinical care. Increased testing has resulted in an explosion in the number of genes and genetic changes identified and it is changing our understanding of the mechanisms of epileptogenesis. Advances in both clinical genetics and scientific discovery are expanding our potential to impact patient care as well as creating dilemmas. This brief review will highlight where we are regarding our ability to obtain a genetic diagnosis, how diagnoses impact patient care, and the next likely frontiers in diagnosis and management.
Collapse
Affiliation(s)
- Christa W. Habela
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Krista Schatz
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah A. Kelley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
10
|
Fasaludeen A, McTague A, Jose M, Banerjee M, Sundaram S, Madhusoodanan UK, Radhakrishnan A, Menon RN. Genetic variant interpretation for the neurologist - A pragmatic approach in the next-generation sequencing era in childhood epilepsy. Epilepsy Res 2024; 201:107341. [PMID: 38447235 DOI: 10.1016/j.eplepsyres.2024.107341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/14/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
Genetic advances over the past decade have enhanced our understanding of the genetic landscape of childhood epilepsy. However a major challenge for clinicians ha been understanding the rationale and systematic approach towards interpretation of the clinical significance of variant(s) detected in their patients. As the clinical paradigm evolves from gene panels to whole exome or whole genome testing including rapid genome sequencing, the number of patients tested and variants identified per patient will only increase. Each step in the process of variant interpretation has limitations and there is no single criterion which enables the clinician to draw reliable conclusions on a causal relationship between the variant and disease without robust clinical phenotyping. Although many automated online analysis software tools are available, these carry a risk of misinterpretation. This guideline provides a pragmatic, real-world approach to variant interpretation for the child neurologist. The focus will be on ascertaining aspects such as variant frequency, subtype, inheritance pattern, structural and functional consequence with regard to genotype-phenotype correlations, while refraining from mere interpretation of the classification provided in a genetic test report. It will not replace the expert advice of colleagues in clinical genetics, however as genomic investigations become a first-line test for epilepsy, it is vital that neurologists and epileptologists are equipped to navigate this landscape.
Collapse
Affiliation(s)
- Alfiya Fasaludeen
- Dept of Neurology, Sree Chitra Tirunal Institute for Medical Sciences & Technology (SCTIMST), Thiruvananthapuram, Kerala, India
| | - Amy McTague
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, United Kingdom; Department of Neurology, Great Ormond Street Hospital, London, United Kingdom
| | - Manna Jose
- Dept of Neurology, Sree Chitra Tirunal Institute for Medical Sciences & Technology (SCTIMST), Thiruvananthapuram, Kerala, India
| | - Moinak Banerjee
- Human Molecular Genetics Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Soumya Sundaram
- Dept of Neurology, Sree Chitra Tirunal Institute for Medical Sciences & Technology (SCTIMST), Thiruvananthapuram, Kerala, India
| | - U K Madhusoodanan
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences & Technology (SCTIMST), Thiruvananthapuram, Kerala, India
| | - Ashalatha Radhakrishnan
- Dept of Neurology, Sree Chitra Tirunal Institute for Medical Sciences & Technology (SCTIMST), Thiruvananthapuram, Kerala, India
| | - Ramshekhar N Menon
- Dept of Neurology, Sree Chitra Tirunal Institute for Medical Sciences & Technology (SCTIMST), Thiruvananthapuram, Kerala, India.
| |
Collapse
|
11
|
Snyder HE, Jain P, RamachandranNair R, Jones KC, Whitney R. Genetic Advancements in Infantile Epileptic Spasms Syndrome and Opportunities for Precision Medicine. Genes (Basel) 2024; 15:266. [PMID: 38540325 PMCID: PMC10970414 DOI: 10.3390/genes15030266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 06/15/2024] Open
Abstract
Infantile epileptic spasms syndrome (IESS) is a devastating developmental epileptic encephalopathy (DEE) consisting of epileptic spasms, as well as one or both of developmental regression or stagnation and hypsarrhythmia on EEG. A myriad of aetiologies are associated with the development of IESS; broadly, 60% of cases are thought to be structural, metabolic or infectious in nature, with the remainder genetic or of unknown cause. Epilepsy genetics is a growing field, and over 28 copy number variants and 70 single gene pathogenic variants related to IESS have been discovered to date. While not exhaustive, some of the most commonly reported genetic aetiologies include trisomy 21 and pathogenic variants in genes such as TSC1, TSC2, CDKL5, ARX, KCNQ2, STXBP1 and SCN2A. Understanding the genetic mechanisms of IESS may provide the opportunity to better discern IESS pathophysiology and improve treatments for this condition. This narrative review presents an overview of our current understanding of IESS genetics, with an emphasis on animal models of IESS pathogenesis, the spectrum of genetic aetiologies of IESS (i.e., chromosomal disorders, single-gene disorders, trinucleotide repeat disorders and mitochondrial disorders), as well as available genetic testing methods and their respective diagnostic yields. Future opportunities as they relate to precision medicine and epilepsy genetics in the treatment of IESS are also explored.
Collapse
Affiliation(s)
- Hannah E. Snyder
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada (R.R.)
| | - Puneet Jain
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1E8, Canada
| | - Rajesh RamachandranNair
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada (R.R.)
| | - Kevin C. Jones
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada (R.R.)
| | - Robyn Whitney
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada (R.R.)
| |
Collapse
|
12
|
Vetri L, Calì F, Saccone S, Vinci M, Chiavetta NV, Carotenuto M, Roccella M, Costanza C, Elia M. Whole Exome Sequencing as a First-Line Molecular Genetic Test in Developmental and Epileptic Encephalopathies. Int J Mol Sci 2024; 25:1146. [PMID: 38256219 PMCID: PMC10816140 DOI: 10.3390/ijms25021146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Developmental and epileptic encephalopathies (DEE) are severe neurodevelopmental disorders characterized by recurrent, usually early-onset, epileptic seizures accompanied by developmental impairment often related to both underlying genetic etiology and abnormal epileptiform activity. Today, next-generation sequencing technologies (NGS) allow us to sequence large portions of DNA quickly and with low costs. The aim of this study is to evaluate the use of whole-exome sequencing (WES) as a first-line molecular genetic test in a sample of subjects with DEEs characterized by early-onset drug-resistant epilepsies, associated with global developmental delay and/or intellectual disability (ID). We performed 82 WESs, identifying 35 pathogenic variants with a detection rate of 43%. The identified variants were highlighted on 29 different genes including, 3 new candidate genes (KCNC2, STXBP6, DHRS9) for DEEs never identified before. In total, 23 out of 35 (66%) de novo variants were identified. The most frequently identified type of inheritance was autosomal dominant de novo (60%) followed by autosomal recessive in homozygosity (17%) and heterozygosity (11%), autosomal dominant inherited from parental mosaicism (6%) and X-linked dominant de novo (6%). The most frequent mutations identified were missense (75%) followed by frameshift deletions (16%), frameshift duplications (5%), and splicing mutations (3%). Considering the results obtained in the present study we support the use of WES as a form of first-line molecular genetic testing in DEEs.
Collapse
Affiliation(s)
- Luigi Vetri
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (L.V.); (M.V.); (N.V.C.); (M.E.)
| | - Francesco Calì
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (L.V.); (M.V.); (N.V.C.); (M.E.)
| | - Salvatore Saccone
- Department Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy
| | - Mirella Vinci
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (L.V.); (M.V.); (N.V.C.); (M.E.)
| | | | - Marco Carotenuto
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy;
| | - Michele Roccella
- Department of Psychology, Educational Science and Human Movement, University of Palermo, 90141 Palermo, Italy; (M.R.); (C.C.)
| | - Carola Costanza
- Department of Psychology, Educational Science and Human Movement, University of Palermo, 90141 Palermo, Italy; (M.R.); (C.C.)
| | - Maurizio Elia
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (L.V.); (M.V.); (N.V.C.); (M.E.)
| |
Collapse
|
13
|
McLean A, Tchan M, Devery S, Smyth R, Shrestha R, Kumar KR, Tomlinson S, Tisch S, Wu KHC. Informing a value care model: lessons from an integrated adult neurogenomics clinic. Intern Med J 2023; 53:2198-2207. [PMID: 37092903 DOI: 10.1111/imj.16103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND Advances in genomics provide improved opportunities for diagnosis of complex neurogenetic disorders, yet the optimal approach to translate these benefits to the outpatient clinic is unclear. AIMS We retrospectively reviewed referral indications and outcomes of an integrated multidisciplinary team (MDT) clinic pathway for adults with suspected neurogenetic disorders. The associated cost implications were estimated. METHODS Consecutive patients who attended the neurogenomics clinic from January 2017 to April 2020 were included. The clinic comprised neurologists, clinical geneticists and genetic counsellors, who assessed each patient concurrently. RESULTS Ninety-nine new patients were referred spanning 45 different clinical diagnoses. Following MDT clinical assessment, 23% (23/99) of referral diagnoses were revised prior to molecular testing. Eighty-one patients (82%) underwent genetic testing, including 43 exome-based panels, 15 whole-genome sequencing, 14 single gene tests, 27 repeat-primed polymerase chain reaction testing and two chromosomal microarrays. Overall, 33/99 patients (33%) received a diagnosis, either a molecular diagnosis (n = 24, of which 22 were diagnostic and two were predictive) or a clinical diagnosis (n = 9). Of the clinical diagnosis cohort, five patients received a diagnosis without molecular testing and four patients whose negative testing (one diagnostic and three predictive) allowed exclusion of genetic differentials and, hence, confirmation of clinical diagnoses. The diagnostic rate following MDT and diagnostic testing was 30% (28/94), excluding the five predictive testing cases. MDT assessment aligned with eventual molecular diagnoses in 96% of cases. The estimated average costs were AU$1386 per patient undergoing MDT assessment and AU$4159 per diagnosis achieved. CONCLUSIONS We present an integrated multidisciplinary neurogenomics clinic pathway providing a diagnostic yield of 33% (30% excluding predictive testing cases), with costing implications. The relatively high diagnostic yield may be attributed to multidisciplinary input integrating accurate phenotyping of complex disorders and interpretation of genomic findings.
Collapse
Affiliation(s)
- Alison McLean
- St Vincent's Clinical School, UNSW, Sydney, New South Wales, Australia
- St Vincent's Clinical Genomics, St Vincent's Hospital, New South Wales, Sydney, Australia
| | - Michel Tchan
- St Vincent's Clinical Genomics, St Vincent's Hospital, New South Wales, Sydney, Australia
- Department of Genetic Medicine, Westmead Hospital, Sydney, New South Wales, Australia
- Discipline of Genetic Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Sophie Devery
- St Vincent's Clinical Genomics, St Vincent's Hospital, New South Wales, Sydney, Australia
| | - Renee Smyth
- St Vincent's Clinical Genomics, St Vincent's Hospital, New South Wales, Sydney, Australia
| | - Rupendra Shrestha
- Centre for Economic Impacts of Genomic Medicine, Macquarie University, Sydney, New South Wales, Australia
| | - Kishore R Kumar
- St Vincent's Clinical Genomics, St Vincent's Hospital, New South Wales, Sydney, Australia
- Molecular Medicine in Neurology, Concord Repatriation General Hospital and the University of Sydney, Sydney, New South Wales, Australia
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Susan Tomlinson
- School of Medicine, University of Notre Dame, Sydney, New South Wales, Australia
- Department of Neurology, St Vincent's Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Stephen Tisch
- St Vincent's Clinical School, UNSW, Sydney, New South Wales, Australia
- School of Medicine, University of Notre Dame, Sydney, New South Wales, Australia
- Department of Neurology, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Kathy H C Wu
- St Vincent's Clinical School, UNSW, Sydney, New South Wales, Australia
- St Vincent's Clinical Genomics, St Vincent's Hospital, New South Wales, Sydney, Australia
- Discipline of Genetic Medicine, University of Sydney, Sydney, New South Wales, Australia
- School of Medicine, University of Notre Dame, Sydney, New South Wales, Australia
| |
Collapse
|
14
|
Dulsamphan T, Juntama P, Suwanpanich C, Isaranuwatchai W, Silzle M, Poonmaksatit S, Boonsimma P, Shotelersuk V, Visudtibhan A, Lusawat A, Kamolvisit W, Kapol N, Lochid-amnuay S, Sribundit N, Samprasit N, Morton A, Teerawattananon Y. Can knowledgeable experts assess costs and outcomes as if they were ignorant? An experiment within precision medicine evaluation. Int J Technol Assess Health Care 2023; 40:e4. [PMID: 37973547 PMCID: PMC10859837 DOI: 10.1017/s0266462323002714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/08/2023] [Accepted: 09/22/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVES The purpose of this study is to evaluate the validity of the standard approach in expert judgment for evaluating precision medicines, in which experts are required to estimate outcomes as if they did not have access to diagnostic information, whereas in fact, they do. METHODS Fourteen clinicians participated in an expert judgment task to estimate the cost and medical outcomes of the use of exome sequencing in pediatric patients with intractable epilepsy in Thailand. Experts were randomly assigned to either an "unblind" or "blind" group; the former was provided with the exome sequencing results for each patient case prior to the judgment task, whereas the latter was not provided with the exome sequencing results. Both groups were asked to estimate the outcomes for the counterfactual scenario, in which patients had not been tested by exome sequencing. RESULTS Our study did not show significant results, possibly due to the small sample size of both participants and case studies. CONCLUSIONS A comparison of the unblind and blind approach did not show conclusive evidence that there is a difference in outcomes. However, until further evidence suggests otherwise, we recommend the blind approach as preferable when using expert judgment to evaluate precision medicines because this approach is more representative of the counterfactual scenario than the unblind approach.
Collapse
Affiliation(s)
- Thamonwan Dulsamphan
- Health Intervention and Technology Assessment Program, Ministry of Public Health, Nonthaburi, Thailand
| | - Parntip Juntama
- Health Intervention and Technology Assessment Program, Ministry of Public Health, Nonthaburi, Thailand
| | - Chotika Suwanpanich
- Health Intervention and Technology Assessment Program, Ministry of Public Health, Nonthaburi, Thailand
| | - Wanrudee Isaranuwatchai
- Health Intervention and Technology Assessment Program, Ministry of Public Health, Nonthaburi, Thailand
| | - Madison Silzle
- Health Intervention and Technology Assessment Program, Ministry of Public Health, Nonthaburi, Thailand
| | - Sathida Poonmaksatit
- Division of Neurology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ponghatai Boonsimma
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Anannit Visudtibhan
- Division of Neurology, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | - Wuttichart Kamolvisit
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Nattiya Kapol
- Department of Health Consumer Protection and Pharmacy Administration, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| | - Surasit Lochid-amnuay
- Department of Health Consumer Protection and Pharmacy Administration, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| | - Namfon Sribundit
- Department of Health Consumer Protection and Pharmacy Administration, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| | | | - Alec Morton
- Department of Management Science, Strathclyde Business School, University of Strathclyde, Glasgow, UK
| | - Yot Teerawattananon
- Health Intervention and Technology Assessment Program, Ministry of Public Health, Nonthaburi, Thailand
| |
Collapse
|
15
|
van der Veen S, Tse GTW, Ferretti A, Garone G, Post B, Specchio N, Fung VSC, Trivisano M, Scheffer IE. Movement Disorders in Patients With Genetic Developmental and Epileptic Encephalopathies. Neurology 2023; 101:e1884-e1892. [PMID: 37748886 PMCID: PMC10663013 DOI: 10.1212/wnl.0000000000207808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/17/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Movement disorders (MDs) are underrecognized in the developmental and epileptic encephalopathies (DEEs). There are now more than 800 genes implicated in causing the DEEs; relatively few of these rare genetic diseases are known to be associated with MDs. We identified patients with genetic DEEs who had MDs, classified the nature of their MDs, and asked whether specific patterns correlated with the underlying mechanism. METHODS We classified the type of MDs associated with specific genetic DEEs in a large international cohort of patients and analyzed whether specific patterns of MDs reflected the underlying biological dysfunction. RESULTS Our cohort comprised 77 patients with a genetic DEE with a median age of 9 (range 1-38) years. Stereotypies (37/77, 48%) and dystonia (34/77, 44%) were the most frequent MDs, followed by chorea (18/77, 23%), myoclonus (14/77, 18%), ataxia (9/77, 12%), tremor (7/77, 9%), and hypokinesia (6/77, 8%). In 47% of patients, a combination of MDs was seen. The MDs were first observed at a median age of 18 months (range day 2-35 years). Dystonia was more likely to be observed in nonambulatory patients, while ataxia was less likely. In 46% of patients, therapy was initiated with medication (34/77, 44%), deep brain stimulation (1/77, 1%), or intrathecal baclofen (1/77, 1%). We found that patients with channelopathies or synaptic vesicle trafficking defects were more likely to experience dystonia; whereas, stereotypies were most frequent in individuals with transcriptional defects. DISCUSSION MDs are often underrecognized in patients with genetic DEEs, but recognition is critical for the management of these complex neurologic diseases. Distinguishing MDs from epileptic seizures is important in tailoring patient treatment. Understanding which MDs occur with different biological mechanisms will inform early diagnosis and management.
Collapse
Affiliation(s)
- Sterre van der Veen
- From the University Medical Center Groningen (S.v.d.V.), the Netherlands; Austin Health (G.T.W.T.), Melbourne, Australia; Bambino Gesù Children's Hospital (A.F., M.T.); Bambino Gesù Children's Hospital (G.G.), Tor Vergata University, Rome, Italy; Radboud UMC (B.P.), Nijmegen, the Netherlands; Ospedale Pediatrico Bambino Gesù (N.S.), Rome, Italy; Westmead Hospital (V.S.C.F.); and University of Melbourne, Austin Health and Royal Children's Hospital (I.E.S.), Australia
| | - Gabrielle T W Tse
- From the University Medical Center Groningen (S.v.d.V.), the Netherlands; Austin Health (G.T.W.T.), Melbourne, Australia; Bambino Gesù Children's Hospital (A.F., M.T.); Bambino Gesù Children's Hospital (G.G.), Tor Vergata University, Rome, Italy; Radboud UMC (B.P.), Nijmegen, the Netherlands; Ospedale Pediatrico Bambino Gesù (N.S.), Rome, Italy; Westmead Hospital (V.S.C.F.); and University of Melbourne, Austin Health and Royal Children's Hospital (I.E.S.), Australia
| | - Alessandro Ferretti
- From the University Medical Center Groningen (S.v.d.V.), the Netherlands; Austin Health (G.T.W.T.), Melbourne, Australia; Bambino Gesù Children's Hospital (A.F., M.T.); Bambino Gesù Children's Hospital (G.G.), Tor Vergata University, Rome, Italy; Radboud UMC (B.P.), Nijmegen, the Netherlands; Ospedale Pediatrico Bambino Gesù (N.S.), Rome, Italy; Westmead Hospital (V.S.C.F.); and University of Melbourne, Austin Health and Royal Children's Hospital (I.E.S.), Australia
| | - Giacomo Garone
- From the University Medical Center Groningen (S.v.d.V.), the Netherlands; Austin Health (G.T.W.T.), Melbourne, Australia; Bambino Gesù Children's Hospital (A.F., M.T.); Bambino Gesù Children's Hospital (G.G.), Tor Vergata University, Rome, Italy; Radboud UMC (B.P.), Nijmegen, the Netherlands; Ospedale Pediatrico Bambino Gesù (N.S.), Rome, Italy; Westmead Hospital (V.S.C.F.); and University of Melbourne, Austin Health and Royal Children's Hospital (I.E.S.), Australia
| | - Bart Post
- From the University Medical Center Groningen (S.v.d.V.), the Netherlands; Austin Health (G.T.W.T.), Melbourne, Australia; Bambino Gesù Children's Hospital (A.F., M.T.); Bambino Gesù Children's Hospital (G.G.), Tor Vergata University, Rome, Italy; Radboud UMC (B.P.), Nijmegen, the Netherlands; Ospedale Pediatrico Bambino Gesù (N.S.), Rome, Italy; Westmead Hospital (V.S.C.F.); and University of Melbourne, Austin Health and Royal Children's Hospital (I.E.S.), Australia
| | - Nicola Specchio
- From the University Medical Center Groningen (S.v.d.V.), the Netherlands; Austin Health (G.T.W.T.), Melbourne, Australia; Bambino Gesù Children's Hospital (A.F., M.T.); Bambino Gesù Children's Hospital (G.G.), Tor Vergata University, Rome, Italy; Radboud UMC (B.P.), Nijmegen, the Netherlands; Ospedale Pediatrico Bambino Gesù (N.S.), Rome, Italy; Westmead Hospital (V.S.C.F.); and University of Melbourne, Austin Health and Royal Children's Hospital (I.E.S.), Australia
| | - Victor S C Fung
- From the University Medical Center Groningen (S.v.d.V.), the Netherlands; Austin Health (G.T.W.T.), Melbourne, Australia; Bambino Gesù Children's Hospital (A.F., M.T.); Bambino Gesù Children's Hospital (G.G.), Tor Vergata University, Rome, Italy; Radboud UMC (B.P.), Nijmegen, the Netherlands; Ospedale Pediatrico Bambino Gesù (N.S.), Rome, Italy; Westmead Hospital (V.S.C.F.); and University of Melbourne, Austin Health and Royal Children's Hospital (I.E.S.), Australia
| | - Marina Trivisano
- From the University Medical Center Groningen (S.v.d.V.), the Netherlands; Austin Health (G.T.W.T.), Melbourne, Australia; Bambino Gesù Children's Hospital (A.F., M.T.); Bambino Gesù Children's Hospital (G.G.), Tor Vergata University, Rome, Italy; Radboud UMC (B.P.), Nijmegen, the Netherlands; Ospedale Pediatrico Bambino Gesù (N.S.), Rome, Italy; Westmead Hospital (V.S.C.F.); and University of Melbourne, Austin Health and Royal Children's Hospital (I.E.S.), Australia
| | - Ingrid E Scheffer
- From the University Medical Center Groningen (S.v.d.V.), the Netherlands; Austin Health (G.T.W.T.), Melbourne, Australia; Bambino Gesù Children's Hospital (A.F., M.T.); Bambino Gesù Children's Hospital (G.G.), Tor Vergata University, Rome, Italy; Radboud UMC (B.P.), Nijmegen, the Netherlands; Ospedale Pediatrico Bambino Gesù (N.S.), Rome, Italy; Westmead Hospital (V.S.C.F.); and University of Melbourne, Austin Health and Royal Children's Hospital (I.E.S.), Australia.
| |
Collapse
|
16
|
LaFlamme CW, Rastin C, Sengupta S, Pennington HE, Russ-Hall SJ, Schneider AL, Bonkowski ES, Almanza Fuerte EP, Galey M, Goffena J, Gibson SB, Allan TJ, Nyaga DM, Lieffering N, Hebbar M, Walker EV, Darnell D, Olsen SR, Kolekar P, Djekidel N, Rosikiewicz W, McConkey H, Kerkhof J, Levy MA, Relator R, Lev D, Lerman-Sagie T, Park KL, Alders M, Cappuccio G, Chatron N, Demain L, Genevieve D, Lesca G, Roscioli T, Sanlaville D, Tedder ML, Hubshman MW, Ketkar S, Dai H, Worley KC, Rosenfeld JA, Chao HT, Neale G, Carvill GL, Wang Z, Berkovic SF, Sadleir LG, Miller DE, Scheffer IE, Sadikovic B, Mefford HC. Diagnostic Utility of Genome-wide DNA Methylation Analysis in Genetically Unsolved Developmental and Epileptic Encephalopathies and Refinement of a CHD2 Episignature. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.11.23296741. [PMID: 37873138 PMCID: PMC10592992 DOI: 10.1101/2023.10.11.23296741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Sequence-based genetic testing currently identifies causative genetic variants in ∼50% of individuals with developmental and epileptic encephalopathies (DEEs). Aberrant changes in DNA methylation are implicated in various neurodevelopmental disorders but remain unstudied in DEEs. Rare epigenetic variations ("epivariants") can drive disease by modulating gene expression at single loci, whereas genome-wide DNA methylation changes can result in distinct "episignature" biomarkers for monogenic disorders in a growing number of rare diseases. Here, we interrogate the diagnostic utility of genome-wide DNA methylation array analysis on peripheral blood samples from 516 individuals with genetically unsolved DEEs who had previously undergone extensive genetic testing. We identified rare differentially methylated regions (DMRs) and explanatory episignatures to discover causative and candidate genetic etiologies in 10 individuals. We then used long-read sequencing to identify DNA variants underlying rare DMRs, including one balanced translocation, three CG-rich repeat expansions, and two copy number variants. We also identify pathogenic sequence variants associated with episignatures; some had been missed by previous exome sequencing. Although most DEE genes lack known episignatures, the increase in diagnostic yield for DNA methylation analysis in DEEs is comparable to the added yield of genome sequencing. Finally, we refine an episignature for CHD2 using an 850K methylation array which was further refined at higher CpG resolution using bisulfite sequencing to investigate potential insights into CHD2 pathophysiology. Our study demonstrates the diagnostic yield of genome-wide DNA methylation analysis to identify causal and candidate genetic causes as ∼2% (10/516) for unsolved DEE cases.
Collapse
|
17
|
Harms FL, Weiss D, Lisfeld J, Alawi M, Kutsche K. A deep intronic variant in DNM1 in a patient with developmental and epileptic encephalopathy creates a splice acceptor site and affects only transcript variants including exon 10a. Neurogenetics 2023; 24:171-180. [PMID: 37039969 DOI: 10.1007/s10048-023-00716-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/28/2023] [Indexed: 04/12/2023]
Abstract
DNM1 developmental and epileptic encephalopathy (DEE) is characterized by severe to profound intellectual disability, hypotonia, movement disorder, and refractory epilepsy, typically presenting with infantile spasms. Most of the affected individuals had de novo missense variants in DNM1. DNM1 undergoes alternative splicing that results in expression of six different transcript variants. One alternatively spliced region affects the tandemly arranged exons 10a and 10b, producing isoforms DNM1A and DNM1B, respectively. Pathogenic variants in the DNM1 coding region affect all transcript variants. Recently, a de novo DNM1 NM_001288739.1:c.1197-8G > A variant located in intron 9 has been reported in several unrelated individuals with DEE that causes in-frame insertion of two amino acids and leads to disease through a dominant-negative mechanism. We report on a patient with DEE and a de novo DNM1 variant NM_001288739.2:c.1197-46C > G in intron 9, upstream of exon 10a. By RT-PCR and Sanger sequencing using fibroblast-derived cDNA of the patient, we identified aberrantly spliced DNM1 mRNAs with exon 9 spliced to the last 45 nucleotides of intron 9 followed by exon 10a (NM_001288739.2:r.1196_1197ins[1197-1_1197-45]). The encoded DNM1A mutant is predicted to contain 15 novel amino acids between Ile398 and Arg399 [NP_001275668.1:p.(Ile398_Arg399ins15)] and likely functions in a dominant-negative manner, similar to other DNM1 mutants. Our data confirm the importance of the DNM1 isoform A for normal human brain function that is underscored by previously reported predominant expression of DMN1A transcripts in pediatric brain, functional differences of the mouse Dnm1a and Dnm1b isoforms, and the Dnm1 fitful mouse, an epilepsy mouse model.
Collapse
Affiliation(s)
- Frederike L Harms
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Deike Weiss
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jasmin Lisfeld
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Malik Alawi
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
18
|
Henry OJ, Stödberg T, Båtelson S, Rasi C, Stranneheim H, Wedell A. Individualised human phenotype ontology gene panels improve clinical whole exome and genome sequencing analytical efficacy in a cohort of developmental and epileptic encephalopathies. Mol Genet Genomic Med 2023; 11:e2167. [PMID: 36967109 PMCID: PMC10337286 DOI: 10.1002/mgg3.2167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND The majority of genetic epilepsies remain unsolved in terms of specific genotype. Phenotype-based genomic analyses have shown potential to strengthen genomic analysis in various ways, including improving analytical efficacy. METHODS We have tested a standardised phenotyping method termed 'Phenomodels' for integrating deep-phenotyping information with our in-house developed clinical whole exome/genome sequencing analytical pipeline. Phenomodels includes a user-friendly epilepsy phenotyping template and an objective measure for selecting which template terms to include in individualised Human Phenotype Ontology (HPO) gene panels. In a pilot study of 38 previously solved cases of developmental and epileptic encephalopathies, we compared the sensitivity and specificity of the individualised HPO gene panels with the clinical epilepsy gene panel. RESULTS The Phenomodels template showed high sensitivity for capturing relevant phenotypic information, where 37/38 individuals' HPO gene panels included the causative gene. The HPO gene panels also had far fewer variants to assess than the epilepsy gene panel. CONCLUSION We have demonstrated a viable approach for incorporating standardised phenotype information into clinical genomic analyses, which may enable more efficient analysis.
Collapse
Affiliation(s)
- Olivia J. Henry
- Department of Molecular Medicine and SurgeryKarolinska InstitutetStockholmSweden
| | - Tommy Stödberg
- Department of Women's and Children's HealthKarolinska InstitutetStockholmSweden
- Department of Pediatric NeurologyKarolinska University HospitalStockholmSweden
| | - Sofia Båtelson
- Department of Pediatric NeurologyKarolinska University HospitalStockholmSweden
| | - Chiara Rasi
- Science for Life Laboratory, Department of Microbiology, Tumour and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Henrik Stranneheim
- Department of Molecular Medicine and SurgeryKarolinska InstitutetStockholmSweden
- Science for Life Laboratory, Department of Microbiology, Tumour and Cell BiologyKarolinska InstitutetStockholmSweden
- Centre for Inherited Metabolic DiseasesKarolinska University HospitalStockholmSweden
| | - Anna Wedell
- Department of Molecular Medicine and SurgeryKarolinska InstitutetStockholmSweden
- Centre for Inherited Metabolic DiseasesKarolinska University HospitalStockholmSweden
| |
Collapse
|
19
|
Grether A, Ivanovski I, Russo M, Begemann A, Steindl K, Abela L, Papik M, Zweier M, Oneda B, Joset P, Rauch A. The current benefit of genome sequencing compared to exome sequencing in patients with developmental or epileptic encephalopathies. Mol Genet Genomic Med 2023; 11:e2148. [PMID: 36785910 PMCID: PMC10178799 DOI: 10.1002/mgg3.2148] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/16/2023] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND As the technology of next generation sequencing rapidly develops and costs are constantly reduced, the clinical availability of whole genome sequencing (WGS) increases. Thereby, it remains unclear what exact advantage WGS offers in comparison to whole exome sequencing (WES) for the diagnosis of genetic diseases using current technologies. METHODS Trio-WGS was conducted for 20 patients with developmental or epileptic encephalopathies who remained undiagnosed after WES and chromosomal microarray analysis. RESULTS A diagnosis was reached for four patients (20%). However, retrospectively all pathogenic variants could have been detected in a WES analysis conducted with today's methods and knowledge. CONCLUSION The additional diagnostic yield of WGS versus WES is currently largely explained by new scientific insights and the general technological progress. Nevertheless, it is noteworthy that whole genome sequencing has greater potential for the analysis of small copy number and copy number neutral variants not seen with WES as well as variants in noncoding regions, especially as potentially more knowledge of the function of noncoding regions arises. We, therefore, conclude that even though today the added value of WGS versus WES seems to be limited, it may increase substantially in the future.
Collapse
Affiliation(s)
- Anna Grether
- Institute of Medical GeneticsUniversity of ZurichZurichSwitzerland
| | - Ivan Ivanovski
- Institute of Medical GeneticsUniversity of ZurichZurichSwitzerland
| | - Martina Russo
- Institute of Medical GeneticsUniversity of ZurichZurichSwitzerland
| | - Anaïs Begemann
- Institute of Medical GeneticsUniversity of ZurichZurichSwitzerland
| | | | - Lucia Abela
- Division of Child NeurologyUniversity Children's Hospital ZurichZurichSwitzerland
| | - Michael Papik
- Institute of Medical GeneticsUniversity of ZurichZurichSwitzerland
| | - Markus Zweier
- Institute of Medical GeneticsUniversity of ZurichZurichSwitzerland
| | - Beatrice Oneda
- Institute of Medical GeneticsUniversity of ZurichZurichSwitzerland
| | - Pascal Joset
- Medical Genetics, Institute of Medical Genetics and PathologyUniversity Hospital BaselBaselSwitzerland
| | - Anita Rauch
- Institute of Medical GeneticsUniversity of ZurichZurichSwitzerland
- University Children's Hospital ZurichZurichSwitzerland
- University of Zurich Clinical Research Priority Program (CRPP) Praeclare – Personalized prenatal and reproductive medicineZurichSwitzerland
- University of Zurich Research Priority Program (URPP) AdaBD: Adaptive Brain Circuits in Development and LearningZurichSwitzerland
- University of Zurich Research Priority Program (URPP) ITINERARE: Innovative Therapies in Rare DiseasesZurichSwitzerland
| |
Collapse
|
20
|
Ge WR, Fu PP, Zhang WN, Zhang B, Ding YX, Yang G. Case report: Genotype and phenotype of DYNC1H1-related malformations of cortical development: a case report and literature review. Front Neurol 2023; 14:1163803. [PMID: 37181555 PMCID: PMC10167015 DOI: 10.3389/fneur.2023.1163803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Background Mutations in the dynein cytoplasmic 1 heavy chain 1 (DYNC1H1) gene are linked to malformations of cortical development (MCD), which may be accompanied by central nervous system (CNS) manifestations. Here, we present the case of a patient with MCD harboring a variant of DYNC1H1 and review the relevant literature to explore genotype-phenotype relationships. Case presentation A girl having infantile spasms, was unsuccessfully administered multiple antiseizure medications and developed drug-resistant epilepsy. Brain magnetic resonance imaging (MRI) at 14 months-of-age revealed pachygyria. At 4 years-of-age, the patient exhibited severe developmental delay and mental retardation. A de novo heterozygous mutation (p.Arg292Trp) in the DYNC1H1 gene was identified. A search of multiple databases, including PubMed and Embase, using the search strategy DYNC1H1 AND [malformations of cortical development OR seizure OR intellectual OR clinical symptoms] up to June 2022, identified 129 patients from 43 studies (including the case presented herein). A review of these cases showed that patients with DYNC1H1-related MCD had higher risks of epilepsy (odds ratio [OR] = 33.67, 95% confidence interval [CI] = 11.59, 97.84) and intellectual disability/developmental delay (OR = 52.64, 95% CI = 16.27, 170.38). Patients with the variants in the regions encoding the protein stalk or microtubule-binding domain had the most prevalence of MCD (95%). Conclusion MCD, particularly pachygyria, is a common neurodevelopmental disorder in patients with DYNC1H1 mutations. Literature searches reveales that most (95%) patients who carried mutations in the protein stalk or microtubule binding domains exhibited DYNC1H1-related MCD, whereas almost two-thirds of patients (63%) who carried mutations in the tail domain did not display MCD. Patients with DYNC1H1 mutations may experience central nervous system (CNS) manifestations due to MCD.
Collapse
Affiliation(s)
- Wen-Rong Ge
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Pei-Pei Fu
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wei-Na Zhang
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bo Zhang
- Department of Neurology and ICCTR Biostatistics and Research Design Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ying-Xue Ding
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Guang Yang
- Senior Department of Pediatrics, The Seventh Medical Center of People's Liberation Army General Hospital, Beijing, China
- Department of Pediatrics, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
21
|
Liu W, Cheng M, Zhu Y, Chen Y, Yang Y, Chen H, Niu X, Tian X, Yang X, Zhang Y. DYNC1H1-related epilepsy: Genotype-phenotype correlation. Dev Med Child Neurol 2023; 65:534-543. [PMID: 36175372 DOI: 10.1111/dmcn.15414] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/03/2022]
Abstract
AIM To explore the phenotypic spectrum and refine the genotype-phenotype correlation of DYNC1H1-related epilepsy. METHOD The clinical data of 15 patients with epilepsy in our cohort and 50 patients with epilepsy from 24 published studies with the DYNC1H1 variants were evaluated. RESULTS In our cohort, 13 variants were identified from 15 patients (seven males, eight females). Twelve variants were de novo and seven were new. Age at seizure onset ranged from 3 months to 4 years 5 months (median age 1 year). Common seizure types were epileptic spasms, focal seizures, tonic seizures, and myoclonic seizures. Mild-to-severe developmental delay was present in all patients. Six patients were diagnosed with West syndrome and one was diagnosed with epileptic encephalopathy with continuous spikes and waves during slow sleep (CSWS). Collectively, in our cohort and published studies, 17% had ophthalmic diseases, 31% of variants were located in the stalk domain, and 92% patients with epilepsy had a malformation of cortical development (MCD). INTERPRETATION The phenotypes of DYNC1H1-related epilepsy included multiple seizure types; the most common epileptic syndrome was West syndrome. CSWS is a new phenotype of DYNC1H1-related epilepsy. One-third of the variants in patients with epilepsy were located in the stalk domain. Most patients had a MCD and developmental delay. WHAT THIS PAPER ADDS Nearly 40% of patients with DYNC1H1 variants had epilepsy. Ninety-two percent of patients with DYNC1H1-related epilepsy had malformation of cortical development. More than 10% of patients with DYNC1H1-related epilepsy were diagnosed with West syndrome. Continuous spikes and waves during slow sleep could be a new phenotype of DYNC1H1 variants. One-third of the variants in patients with epilepsy were located in the stalk domain.
Collapse
Affiliation(s)
- Wenwei Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Miaomiao Cheng
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ying Zhu
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Yi Chen
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ying Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hui Chen
- Department of Neurology, Chengdu Women and Children's Central Hospital, Chengdu, China
| | - Xueyang Niu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xiaojuan Tian
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xiaoling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yuehua Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
22
|
Carter MT, Srour M, Au PYB, Buhas D, Dyack S, Eaton A, Inbar-Feigenberg M, Howley H, Kawamura A, Lewis SME, McCready E, Nelson TN, Vallance H. Genetic and metabolic investigations for neurodevelopmental disorders: position statement of the Canadian College of Medical Geneticists (CCMG). J Med Genet 2023; 60:523-532. [PMID: 36822643 DOI: 10.1136/jmg-2022-108962] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/27/2023] [Indexed: 02/25/2023]
Abstract
PURPOSE AND SCOPE The aim of this position statement is to provide recommendations for clinicians regarding the use of genetic and metabolic investigations for patients with neurodevelopmental disorders (NDDs), specifically, patients with global developmental delay (GDD), intellectual disability (ID) and/or autism spectrum disorder (ASD). This document also provides guidance for primary care and non-genetics specialists caring for these patients while awaiting consultation with a clinical geneticist or metabolic specialist. METHODS OF STATEMENT DEVELOPMENT A multidisciplinary group reviewed existing literature and guidelines on the use of genetic and metabolic investigations for the diagnosis of NDDs and synthesised the evidence to make recommendations relevant to the Canadian context. The statement was circulated for comment to the Canadian College of Medical Geneticists (CCMG) membership-at-large and to the Canadian Pediatric Society (Mental Health and Developmental Disabilities Committee); following incorporation of feedback, it was approved by the CCMG Board of Directors on 1 September 2022. RESULTS AND CONCLUSIONS Chromosomal microarray is recommended as a first-tier test for patients with GDD, ID or ASD. Fragile X testing should also be done as a first-tier test when there are suggestive clinical features or family history. Metabolic investigations should be done if there are clinical features suggestive of an inherited metabolic disease, while the patient awaits consultation with a metabolic physician. Exome sequencing or a comprehensive gene panel is recommended as a second-tier test for patients with GDD or ID. Genetic testing is not recommended for patients with NDDs in the absence of GDD, ID or ASD, unless accompanied by clinical features suggestive of a syndromic aetiology or inherited metabolic disease.
Collapse
Affiliation(s)
| | - Myriam Srour
- Division of Neurology, McGill University Health Centre, Montreal, Québec, Canada
- Department of Pediatrics, McGill University, Montréal, QC, Canada
| | - Ping-Yee Billie Au
- Department of Medical Genetics, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Daniela Buhas
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, McGill University, Montreal, Québec, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Sarah Dyack
- Division of Medical Genetics, IWK Health Centre, Halifax, Nova Scotia, Canada
- Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| | - Alison Eaton
- Department of Medical Genetics, Stollery Children's Hospital, Edmonton, Alberta, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Michal Inbar-Feigenberg
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Heather Howley
- Office of Research Services, CHEO Research Institute, Ottawa, Ontario, Canada
| | - Anne Kawamura
- Division of Developmental Pediatrics, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
- Mental Health and Developmental Disability Committee, Canadian Pediatric Society, Ottawa, ON, Canada
- Canadian Paediatric Society, Toronto, Ontario, Canada
| | - Suzanne M E Lewis
- Department of Medical Genetics, BC Children's and Women's Hospital, Vancouver, British Columbia, Canada
| | - Elizabeth McCready
- Department of Pathology and Molecular Medicine, McMaster University, McMaster University, Hamilton, ON, Canada, Hamilton, Ontario, Canada
- Hamilton Regional Laboratory Medicine Program, Hamilton Health Sciences Centre, Hamilton, ON, Canada
| | - Tanya N Nelson
- Department of Pathology and Laboratory Medicine, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hilary Vallance
- Department of Pathology and Laboratory Medicine, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
23
|
Evaluation of Individuals with Non-Syndromic Global Developmental Delay and Intellectual Disability. CHILDREN 2023; 10:children10030414. [PMID: 36979972 PMCID: PMC10047567 DOI: 10.3390/children10030414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023]
Abstract
Global Developmental Delay (GDD) and Intellectual Disability (ID) are two of the most common presentations encountered by physicians taking care of children. GDD/ID is classified into non-syndromic GDD/ID, where GDD/ID is the sole evident clinical feature, or syndromic GDD/ID, where there are additional clinical features or co-morbidities present. Careful evaluation of children with GDD and ID, starting with detailed history followed by a thorough examination, remain the cornerstone for etiologic diagnosis. However, when initial history and examination fail to identify a probable underlying etiology, further genetic testing is warranted. In recent years, genetic testing has been shown to be the single most important diagnostic modality for clinicians evaluating children with non-syndromic GDD/ID. In this review, we discuss different genetic testing currently available, review common underlying copy-number variants and molecular pathways, explore the recent evidence and recommendations for genetic evaluation and discuss an approach to the diagnosis and management of children with non-syndromic GDD and ID.
Collapse
|
24
|
Rezapour A, Souresrafil A, Barzegar M, Sheikhy-Chaman M, Tatarpour P. Economic evaluation of next-generation sequencing techniques in diagnosis of genetic disorders: A systematic review. Clin Genet 2023; 103:513-528. [PMID: 36808726 DOI: 10.1111/cge.14313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/23/2023]
Abstract
In recent years, massively parallel sequencing or next generation sequencing (NGS) has considerably changed both the research and diagnostic fields, and rapid developments have led to the combination of NGS techniques in clinical practice, ease of analysis, and detection of genetic mutations. This article aimed at reviewing the economic evaluation studies of the NGS techniques in the diagnosis of genetic diseases. In this systematic review, scientific databases (PubMed, EMBASE, Web of Science, Cochrane, Scopus, and CEA registry) were searched from 2005 to 2022 to identify the related literature on the economic evaluation of NGS techniques in the diagnosis of genetic diseases. Full-text reviews and data extraction were all performed by two independent researchers. The quality of all the articles included in this study was evaluated using the Checklist of Quality of Health Economic Studies (QHES). Out of 20 521 screened abstracts, 36 studies met the inclusion criteria. The mean score of the QHES checklist for the studies was 0.78 (high quality). Seventeen studies were conducted based on modeling. Cost-effectiveness analysis, cost-utility analysis, and cost-minimization analysis were done in 26 studies, 13 studies, and 1 study, respectively. Based on the available evidence and findings, exome sequencing, which is one of the NGS techniques, could have the potential to be used as a cost-effective genomic test to diagnose children with suspected genetic diseases. The results of the present study support the cost-effectiveness of exome sequencing in diagnosing suspected genetic disorders. However, the use of exome sequencing as a first- or second-line diagnostic test is still controversial. Most studies have been conducted in high-income countries, and research on the cost-effectiveness of NGS methods is recommended in low- and middle-income countries.
Collapse
Affiliation(s)
- Aziz Rezapour
- Health Management and Economics Research Center, Health Management Research Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Aghdas Souresrafil
- Department of Health Services and Health Promotion, School of Health, Occupational Environment Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Barzegar
- Department of English Language, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Sheikhy-Chaman
- Department of Health Economics, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Parvin Tatarpour
- School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Graifman JL, Lippa NC, Mulhern MS, Bergner AL, Sands TT. Clinical utility of exome sequencing in a pediatric epilepsy cohort. Epilepsia 2023; 64:986-997. [PMID: 36740579 DOI: 10.1111/epi.17534] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Exome sequencing (ES) has played an important role in the identification of causative variants for individuals with epilepsy and has proven to be a valuable diagnostic tool. Less is known about its clinical utility once a diagnosis is received. This study systematically reviewed the impact of ES results on clinical decision-making and patient care in a pediatric epilepsy cohort at a tertiary care medical center. METHODS Pediatric patients with unexplained epilepsy were referred by their neurologist, and informed consent was obtained through an institutional review board-approved research ES protocol. For patients who received a genetic diagnosis, a retrospective chart review was completed of the probands and their relatives' medical records prior to and after genetic diagnosis. The following outcomes were explored: provider management recommendations, changes in care actually implemented, and anticipatory guidance provided regarding the proband's condition. RESULTS Fifty-three probands met the inclusion criteria. Genetic diagnosis led to at least one provider recommendation in 41.5% families (22/53). Recommendations were observed in the following categories: medication, screening for non-neurological comorbidities/referrals to specialists, referrals to clinical research/trials, and cascade testing. Anticipatory guidance including information about molecular diagnosis, prognosis, and relevant foundations/advocacy groups was also observed. SIGNIFICANCE Results demonstrate the clinical utility of ES for individuals with epilepsy across multiple aspects of patient care, including anti-seizure medication (ASM) selection; screening for non-neurological comorbidities and referrals to appropriate medical specialists; referral to reproductive genetic counseling; and access to research, information, and support resources. To our knowledge, this is the first study to evaluate the clinical utility of ES for a pediatric epilepsy cohort with broad epilepsy phenotypes. This work supports the implementation of ES as part of clinical care in this population.
Collapse
Affiliation(s)
- Jordana L Graifman
- Genetic Counseling Graduate Program, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Natalie C Lippa
- Genetic Counseling Graduate Program, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA.,Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, USA.,Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Maureen S Mulhern
- Genetic Counseling Graduate Program, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA.,Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA.,Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Amanda L Bergner
- Genetic Counseling Graduate Program, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA.,Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Tristan T Sands
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, USA.,Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
26
|
Scheffer IE, Bennett CA, Gill D, de Silva MG, Boggs K, Marum J, Baker N, Palmer EE, Howell KB. Exome sequencing for patients with developmental and epileptic encephalopathies in clinical practice. Dev Med Child Neurol 2023; 65:50-57. [PMID: 35701389 PMCID: PMC10952465 DOI: 10.1111/dmcn.15308] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/07/2022] [Accepted: 05/02/2022] [Indexed: 11/28/2022]
Abstract
AIM To assess the clinical utility of exome sequencing for patients with developmental and epileptic encephalopathies (DEEs). METHOD Over 2 years, patients with DEEs were recruited for singleton exome sequencing. Parental segregation was performed where indicated. RESULTS Of the 103 patients recruited (54 males, 49 females; aged 2 weeks-17 years), the genetic aetiology was identified in 36 out of 103 (35%) with management implications in 13 out of 36. Exome sequencing revealed pathogenic or likely pathogenic variants in 30 out of 103 (29%) patients, variants of unknown significance in 39 out of 103 (38%), and 34 out of 103 (33%) were negative on exome analysis. After the description of new genetic diseases, a molecular diagnosis was subsequently made for six patients or through newly available high-density chromosomal microarray testing. INTERPRETATION We demonstrate the utility of exome sequencing in routine clinical care of children with DEEs. We highlight that molecular diagnosis often leads to changes in management and informs accurate prognostic and reproductive counselling. Our findings reinforce the need for ongoing analysis of genomic data to identify the aetiology in patients in whom the cause is unknown. The implementation of genomic testing in the care of children with DEEs should become routine in clinical practice. WHAT THIS PAPER ADDS The cause was identified in 35% of patients with developmental and epileptic encephalopathies. KCNQ2, CDKL5, SCN1A, and STXBP1 were the most frequently identified genes. Reanalysis of genomic data found the cause in an additional six patients. Genetic aetiology was identified in 41% of children with seizure onset under 2 years, compared to 18% with older onset. Finding the molecular cause led to management changes in 36% of patients with DEEs.
Collapse
Affiliation(s)
- Ingrid E. Scheffer
- Epilepsy Research Centre, Department of Medicine, Austin HealthThe University of MelbourneHeidelbergVictoria
- Department of PaediatricsThe University of MelbourneVictoria
- Florey Institute of Neuroscience and Mental HealthHeidelbergVictoria
- Murdoch Children's Research InstituteParkvilleVictoria
| | - Caitlin A. Bennett
- Epilepsy Research Centre, Department of Medicine, Austin HealthThe University of MelbourneHeidelbergVictoria
| | - Deepak Gill
- TY Nelson Department of Neurology and NeurosurgeryThe Children's Hospital at WestmeadNew South Wales
| | - Michelle G. de Silva
- Victorian Clinical Genetics Services, Murdoch Children's Research InstituteRoyal Children's HospitalParkvilleVictoria
- Australian Genomics Health AllianceMelbourne
| | - Kirsten Boggs
- Australian Genomics Health AllianceMelbourne
- Sydney Children's Hospitals NetworkSydney
| | - Justine Marum
- Victorian Clinical Genetics Services, Murdoch Children's Research InstituteRoyal Children's HospitalParkvilleVictoria
| | - Naomi Baker
- Department of PaediatricsThe University of MelbourneVictoria
- Victorian Clinical Genetics Services, Murdoch Children's Research InstituteRoyal Children's HospitalParkvilleVictoria
| | | | - Katherine B. Howell
- Department of PaediatricsThe University of MelbourneVictoria
- Murdoch Children's Research InstituteParkvilleVictoria
- Department of NeurologyThe Royal Children's HospitalParkvilleVictoriaAustralia
| |
Collapse
|
27
|
Liu LY, Lu Q, Wang QH, Wang YY, Zhang B, Zou LP. Diagnostic yield of a multi-strategy genetic testing procedure in a nationwide cohort of 728 patients with infantile spasms in China. Seizure 2022; 103:51-57. [DOI: 10.1016/j.seizure.2022.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/27/2022] Open
|
28
|
Gordon LG, Elliott TM, Bennett C, Hollway G, Waddell N, Vadlamudi L. Early cost-utility analysis of genetically guided therapy for patients with drug-resistant epilepsy. Epilepsia 2022; 63:3111-3121. [PMID: 36082520 DOI: 10.1111/epi.17408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Existing gene panels were developed to understand the etiology of epilepsy, and further benefits will arise from an effective pharmacogenomics panel for personalizing therapy and achieving seizure control. Our study assessed the cost-effectiveness of a pharmacogenomics panel for patients with drug-resistant epilepsy, compared with usual care. METHODS A cost-utility analysis was employed using a discrete event simulation model. The microsimulation model aggregated the costs and benefits of genetically guided treatment versus usual care for 5000 simulated patients. The 10-year model combined data from various sources including genomic databases on prevalence of variants, population-level pharmaceutical claims on antiseizure medications, published long-term therapy retention rates, patient-level cost data, and systematic reviews. Incremental cost per quality-adjusted life-year (QALY) gained was computed. Deterministic and probabilistic sensitivity analyses were undertaken to address uncertainty in model parameters. RESULTS The mean cost of the genetically guided treatment option was AU$98 199 compared with AU$95 386 for usual care. Corresponding mean QALYs were 4.67 compared with 4.28 for genetically guided and usual care strategies, respectively. The incremental cost per QALY gained was AU$7381. In probabilistic sensitivity analyses, the incremental cost per QALY gained was AU$6321 (95% uncertainty interval = AU$3604-AU$9621), with a 100% likelihood of being cost-effective in the Australian health care system. The most influential drivers of the findings were the monthly health care costs associated with reduced seizures, costs when seizures continued, and the quality-of-life estimates under genetically guided and usual care strategies. SIGNIFICANCE This early economic evaluation of a pharmacogenomics panel to guide treatment for drug-resistant epilepsy could potentially be cost-effective in the Australian health care system. Clinical trial evidence is necessary to confirm these findings.
Collapse
Affiliation(s)
- Louisa G Gordon
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,School of Nursing and Cancer and Palliative Care Outcomes Centre, Queensland University of Technology, Brisbane, Queensland, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Thomas M Elliott
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Carmen Bennett
- University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, Queensland, Australia
| | - Georgina Hollway
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia.,genomiQa, Brisbane, Queensland, Australia
| | - Nicola Waddell
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia.,genomiQa, Brisbane, Queensland, Australia
| | - Lata Vadlamudi
- University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, Queensland, Australia.,Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
29
|
Smith L, Malinowski J, Ceulemans S, Peck K, Walton N, Sheidley BR, Lippa N. Genetic testing and counseling for the unexplained epilepsies: An evidence‐based practice guideline of the National Society of Genetic Counselors. J Genet Couns 2022; 32:266-280. [PMID: 36281494 DOI: 10.1002/jgc4.1646] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 11/10/2022]
Abstract
Epilepsy, defined by the occurrence of two or more unprovoked seizures or one unprovoked seizure with a propensity for others, affects 0.64% of the population and can lead to significant morbidity and mortality. A majority of unexplained epilepsy (seizures not attributed to an acquired etiology, such as trauma or infection) is estimated to have an underlying genetic etiology. Despite rapid progress in understanding of the genetic underpinnings of the epilepsies, there are no recent evidence-based guidelines for genetic testing and counseling for this population. This practice guideline provides evidence-based recommendations for approaching genetic testing in the epilepsies using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) Evidence to Decision framework. We used evidence from a recent systematic evidence review and meta-analysis of diagnostic yield of genetic tests in patients with epilepsy. We also compiled data from other sources, including recently submitted conference abstracts and peer-reviewed journal articles. We identified and prioritized outcomes of genetic testing as critical, important or not important and based our recommendations on outcomes deemed critical and important. We considered the desirable and undesirable effects, value and acceptability to relevant stakeholders, impact on health equity, cost-effectiveness, certainty of evidence, and feasibility of the interventions in individuals with epilepsy. Taken together, we generated two clinical recommendations: (1) Genetic testing is strongly recommended for all individuals with unexplained epilepsy, without limitation of age, with exome/genome sequencing and/or a multi-gene panel (>25 genes) as first-tier testing followed by chromosomal microarray, with exome/genome sequencing conditionally recommended over multi-gene panel. (2) It is strongly recommended that genetic tests be selected, ordered, and interpreted by a qualified healthcare provider in the setting of appropriate pre-test and post-test genetic counseling. Incorporation of genetic counselors into neurology practices and/or referral to genetics specialists are both useful models for supporting providers without genetics expertise to implement these recommendations.
Collapse
Affiliation(s)
- Lacey Smith
- Epilepsy Genetics Program, Department of Neurology Boston Children's Hospital Boston Massachusetts USA
| | | | - Sophia Ceulemans
- Department of Genetics, Department of Neurology Rady Children's Hospital San Diego California USA
| | - Katlin Peck
- Department of Laboratory Management eviCore Healthcare Bluffton South Carolina USA
| | - Nephi Walton
- Intermountain Precision Genomics Intermountain Healthcare St. George Utah USA
| | - Beth Rosen Sheidley
- Epilepsy Genetics Program, Department of Neurology Boston Children's Hospital Boston Massachusetts USA
| | - Natalie Lippa
- Instititute for Genomic Medicine Columbia University Irving Medical Center New York New York USA
| |
Collapse
|
30
|
Krey I, Platzer K, Esterhuizen A, Berkovic SF, Helbig I, Hildebrand MS, Lerche H, Lowenstein D, Møller RS, Poduri A, Sadleir L, Sisodiya SM, Weckhuysen S, Wilmshurst JM, Weber Y, Lemke JR. Current practice in diagnostic genetic testing of the epilepsies. Epileptic Disord 2022; 24:765-786. [PMID: 35830287 PMCID: PMC10752379 DOI: 10.1684/epd.2022.1448] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/10/2022] [Indexed: 01/19/2023]
Abstract
Epilepsy genetics is a rapidly developing field, in which novel disease-associated genes, novel mechanisms associated with epilepsy, and precision medicine approaches are continuously being identified. In the past decade, advances in genomic knowledge and analysis platforms have begun to make clinical genetic testing accessible for, in principle, people of all ages with epilepsy. For this reason, the Genetics Commission of the International League Against Epilepsy (ILAE) presents this update on clinical genetic testing practice, including current techniques, indications, yield of genetic testing, recommendations for pre- and post-test counseling, and follow-up after genetic testing is completed. We acknowledge that the resources vary across different settings but highlight that genetic diagnostic testing for epilepsy should be prioritized when the likelihood of an informative finding is high. Results of genetic testing, in particular the identification of causative genetic variants, are likely to improve individual care. We emphasize the importance of genetic testing for individuals with epilepsy as we enter the era of precision therapy.
Collapse
Affiliation(s)
- Ilona Krey
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Alina Esterhuizen
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa
| | - Samuel F. Berkovic
- Epilepsy Research Centre, Department of Medicine, University of Melbourne (Austin Health), Heidelberg, VIC, Australia
| | - Ingo Helbig
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Christian-Albrechts-University, Building C, Arnold-Heller-Straße 3, 24105 Kiel, Germany
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, 19104 USA
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104 USA
| | - Michael S. Hildebrand
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg and Murdoch Children’s Research Institute, Royal Children’s Hospital, Victoria, Australia
| | - Holger Lerche
- Department of Epileptology and Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Daniel Lowenstein
- Department of Neurology, University of California, San Francisco, USA
| | - Rikke S. Møller
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark
- Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Annapurna Poduri
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Lynette Sadleir
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | - Sanjay M. Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology London, UK and Chalfont Centre for Epilepsy, Buckinghamshire, UK
| | - Sarah Weckhuysen
- Center for Molecular Neurology, VIB-University of Antwerp, VIB, Antwerp, Belgium; Department of Neurology, University Hospital Antwerp, Antwerp, Belgium
| | - Jo M. Wilmshurst
- Department of Paediatric Neurology, Paediatric and Child Health, Red Cross War Memorial Children’s Hospital, Neuroscience Institute, University of Cape Town, South Africa
| | - Yvonne Weber
- Department of Epileptology and Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
- Department of Epileptology and Neurology, University of Aachen, Germany
| | - Johannes R. Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
31
|
Ferket BS, Baldwin Z, Murali P, Pai A, Mittendorf KF, Russell HV, Chen F, Lynch FL, Lich KH, Hindorff LA, Savich R, Slavotinek A, Smith HS, Gelb BD, Veenstra DL. Cost-effectiveness frameworks for comparing genome and exome sequencing versus conventional diagnostic pathways: A scoping review and recommended methods. Genet Med 2022; 24:2014-2027. [PMID: 35833928 PMCID: PMC9997042 DOI: 10.1016/j.gim.2022.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 01/21/2023] Open
Abstract
PURPOSE Methodological challenges have limited economic evaluations of genome sequencing (GS) and exome sequencing (ES). Our objective was to develop conceptual frameworks for model-based cost-effectiveness analyses (CEAs) of diagnostic GS/ES. METHODS We conducted a scoping review of economic analyses to develop and iterate with experts a set of conceptual CEA frameworks for GS/ES for prenatal testing, early diagnosis in pediatrics, diagnosis of delayed-onset disorders in pediatrics, genetic testing in cancer, screening of newborns, and general population screening. RESULTS Reflecting on 57 studies meeting inclusion criteria, we recommend the following considerations for each clinical scenario. For prenatal testing, performing comparative analyses of costs of ES strategies and postpartum care, as well as genetic diagnoses and pregnancy outcomes. For early diagnosis in pediatrics, modeling quality-adjusted life years (QALYs) and costs over ≥20 years for rapid turnaround GS/ES. For hereditary cancer syndrome testing, modeling cumulative costs and QALYs for the individual tested and first/second/third-degree relatives. For tumor profiling, not restricting to treatment uptake or response and including QALYs and costs of downstream outcomes. For screening, modeling lifetime costs and QALYs and considering consequences of low penetrance and GS/ES reanalysis. CONCLUSION Our frameworks can guide the design of model-based CEAs and ultimately foster robust evidence for the economic value of GS/ES.
Collapse
Affiliation(s)
- Bart S Ferket
- Institute for Healthcare Delivery Science, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY.
| | - Zach Baldwin
- The Comparative Health Outcomes, Policy and Economics (CHOICE) Institute, School of Pharmacy, University of Washington, Seattle, WA
| | - Priyanka Murali
- Division of Medical Genetics, Department of Medicine, University of Washington Medical Center, University of Washington, Seattle, WA
| | - Akila Pai
- Institute for Healthcare Delivery Science, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Kathleen F Mittendorf
- Department of Translational and Applied Genomics (TAG), Kaiser Permanente Center for Health Research, Kaiser Permanente Northwest, Portland, Oregon; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
| | - Heidi V Russell
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX; Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX
| | - Flavia Chen
- Program in Bioethics, University of California San Francisco, San Francisco, CA; Institute for Human Genetics, University of California San Francisco, San Francisco, CA
| | | | - Kristen Hassmiller Lich
- Department of Health Policy and Management, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Lucia A Hindorff
- Division of Genomic Medicine, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Renate Savich
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS; Division of Neonatology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Anne Slavotinek
- Department of Pediatrics, University of California San Francisco, San Francisco, CA
| | - Hadley Stevens Smith
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX
| | - Bruce D Gelb
- Departments of Pediatrics and Genetics & Genomic Sciences, Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - David L Veenstra
- The Comparative Health Outcomes, Policy and Economics (CHOICE) Institute, School of Pharmacy, University of Washington, Seattle, WA
| |
Collapse
|
32
|
Campbell C, Leu C, Feng YCA, Wolking S, Moreau C, Ellis C, Ganesan S, Martins H, Oliver K, Boothman I, Benson K, Molloy A, Brody L, Michaud JL, Hamdan FF, Minassian BA, Lerche H, Scheffer IE, Sisodiya S, Girard S, Cosette P, Delanty N, Lal D, Cavalleri GL. The role of common genetic variation in presumed monogenic epilepsies. EBioMedicine 2022; 81:104098. [PMID: 35679801 PMCID: PMC9188960 DOI: 10.1016/j.ebiom.2022.104098] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/11/2022] [Accepted: 05/20/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The developmental and epileptic encephalopathies (DEEs) are the most severe group of epilepsies which co-present with developmental delay and intellectual disability (ID). DEEs usually occur in people without a family history of epilepsy and have emerged as primarily monogenic, with damaging rare mutations found in 50% of patients. Little is known about the genetic architecture of patients with DEEs in whom no pathogenic variant is identified. Polygenic risk scoring (PRS) is a method that measures a person's common genetic burden for a trait or condition. Here, we used PRS to test whether genetic burden for epilepsy is relevant in individuals with DEEs, and other forms of epilepsy with ID. METHODS Genetic data on 2,759 cases with DEEs, or epilepsy with ID presumed to have a monogenic basis, and 447,760 population-matched controls were analysed. We compared PRS for 'all epilepsy', 'focal epilepsy', and 'genetic generalised epilepsy' (GGE) between cases and controls. We performed pairwise comparisons between cases stratified for identifiable rare deleterious genetic variants and controls. FINDINGS Cases of presumed monogenic severe epilepsy had an increased PRS for 'all epilepsy' (p<0.0001), 'focal epilepsy' (p<0.0001), and 'GGE' (p=0.0002) relative to controls, which explain between 0.08% and 3.3% of phenotypic variance. PRS was increased in cases both with and without an identified deleterious variant of major effect, and there was no significant difference in PRS between the two groups. INTERPRETATION We provide evidence that common genetic variation contributes to the aetiology of DEEs and other forms of epilepsy with ID, even when there is a known pathogenic variant of major effect. These results provide insight into the genetic underpinnings of the severe epilepsies and warrant a shift in our understanding of the aetiology of the DEEs as complex, rather than monogenic, disorders. FUNDING Science foundation Ireland, Human Genome Research Institute; National Heart, Lung, and Blood Institute; German Research Foundation.
Collapse
Affiliation(s)
- Ciarán Campbell
- The SFI FutureNeuro Research Centre, RCSI Dublin, Republic of Ireland; The School of Pharmacy and Biomolecular Sciences, RCSI Dublin, Republic of Ireland
| | - Costin Leu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America; UCL Queen Square Institute of Neurology, London WC1N 3BG and Chalfont Centre for Epilepsy, Bucks, United Kingdom; Stanley Center for Psychiatric Research, Broad Institute of Harvard and M.I.T, Cambridge, MA, United States of America
| | - Yen-Chen Anne Feng
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and M.I.T, Cambridge, MA, United States of America; Division of Biostatistics, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Stefan Wolking
- Department of Neurology & Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Department of Epileptology and Neurology, University of Aachen, Aachen, Germany; Axe Neurosciences, Centre de recherche de l'Université de Montréal, Université de Montréal, Montréal, Canada
| | - Claudia Moreau
- Centre Intersectoriel en Santé Durable, Université du Québec à Chicoutimi, Saguenay, Canada
| | - Colin Ellis
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Shiva Ganesan
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA 19146, USA; The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Helena Martins
- UCL Queen Square Institute of Neurology, London WC1N 3BG and Chalfont Centre for Epilepsy, Bucks, United Kingdom
| | - Karen Oliver
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Isabelle Boothman
- The SFI FutureNeuro Research Centre, RCSI Dublin, Republic of Ireland; The School of Pharmacy and Biomolecular Sciences, RCSI Dublin, Republic of Ireland
| | - Katherine Benson
- The SFI FutureNeuro Research Centre, RCSI Dublin, Republic of Ireland; The School of Pharmacy and Biomolecular Sciences, RCSI Dublin, Republic of Ireland
| | - Anne Molloy
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin 2, Republic of Ireland
| | - Lawrence Brody
- Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Fadi F Hamdan
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Berge A Minassian
- Department of Pediatrics, Hospital for Sick Children and University of Toronto, Toronto, Canada
| | - Holger Lerche
- Department of Neurology & Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Ingrid E Scheffer
- University of Melbourne, Austin and Royal Children's Hospitals, Melbourne, Australia; Florey Institute and Murdoch Children's Research Institute, Melbourne, Australia
| | - Sanjay Sisodiya
- UCL Queen Square Institute of Neurology, London WC1N 3BG and Chalfont Centre for Epilepsy, Bucks, United Kingdom
| | - Simon Girard
- Centre Intersectoriel en Santé Durable, Université du Québec à Chicoutimi, Saguenay, Canada
| | - Patrick Cosette
- Department of Medicine, Neurology Division, Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Norman Delanty
- The School of Pharmacy and Biomolecular Sciences, RCSI Dublin, Republic of Ireland; Department of Neurology, Beaumont Hospital, Dublin, Republic of Ireland
| | - Dennis Lal
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America; Stanley Center for Psychiatric Research, Broad Institute of Harvard and M.I.T, Cambridge, MA, United States of America; Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA; Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Gianpiero L Cavalleri
- The SFI FutureNeuro Research Centre, RCSI Dublin, Republic of Ireland; The School of Pharmacy and Biomolecular Sciences, RCSI Dublin, Republic of Ireland.
| |
Collapse
|
33
|
Lavelle TA, Feng X, Keisler M, Cohen JT, Neumann PJ, Prichard D, Schroeder BE, Salyakina D, Espinal PS, Weidner SB, Maron JL. Cost-effectiveness of exome and genome sequencing for children with rare and undiagnosed conditions. Genet Med 2022; 24:1349-1361. [PMID: 35396982 DOI: 10.1016/j.gim.2022.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 12/14/2022] Open
Abstract
PURPOSE This study aimed to estimate the cost-effectiveness of exome sequencing (ES) and genome sequencing (GS) for children. METHODS We modeled costs, diagnoses, and quality-adjusted life years (QALYs) for diagnostic strategies for critically ill infants (aged <1 year) and children (aged <18 years) with suspected genetic conditions: (1) standard of care (SOC) testing, (2) ES, (3) GS, (4) SOC followed by ES, (5) SOC followed by GS, (6) ES followed by GS, and (7) SOC followed by ES followed by GS. We calculated the 10-year incremental cost per additional diagnosis, and lifetime incremental cost per QALY gained, from a health care perspective. RESULTS First-line GS costs $15,048 per diagnosis vs SOC for infants and $27,349 per diagnosis for children. If GS is unavailable, ES represents the next most efficient option compared with SOC ($15,543 per diagnosis for infants and $28,822 per diagnosis for children). Other strategies provided the same or fewer diagnoses at a higher incremental cost per diagnosis. Lifetime results depend on the patient's assumed long-term prognosis after diagnosis. For infants, GS ranged from cost-saving (vs all alternatives) to $18,877 per QALY (vs SOC). For children, GS (vs SOC) ranged from $119,705 to $490,047 per QALY. CONCLUSION First-line GS may be the most cost-effective strategy for diagnosing infants with suspected genetic conditions. For all children, GS may be cost-effective under certain assumptions. ES is nearly as efficient as GS and hence is a viable option when GS is unavailable.
Collapse
Affiliation(s)
- Tara A Lavelle
- Center for the Evaluation of Value and Risk in Health (CEVR), Tufts Medical Center, Boston, MA.
| | - Xue Feng
- Center for the Evaluation of Value and Risk in Health (CEVR), Tufts Medical Center, Boston, MA
| | - Marlena Keisler
- Center for the Evaluation of Value and Risk in Health (CEVR), Tufts Medical Center, Boston, MA
| | - Joshua T Cohen
- Center for the Evaluation of Value and Risk in Health (CEVR), Tufts Medical Center, Boston, MA
| | - Peter J Neumann
- Center for the Evaluation of Value and Risk in Health (CEVR), Tufts Medical Center, Boston, MA
| | | | | | - Daria Salyakina
- Personalized Medicine and Health Outcomes Research, Nicklaus Children's Hospital, Miami, FL
| | - Paula S Espinal
- Personalized Medicine and Health Outcomes Research, Nicklaus Children's Hospital, Miami, FL
| | - Samuel B Weidner
- Center for the Evaluation of Value and Risk in Health (CEVR), Tufts Medical Center, Boston, MA
| | - Jill L Maron
- Women & Infants Hospital of Rhode Island, Care New England Health System, Providence, RI
| |
Collapse
|
34
|
Amore G, Butera A, Spoto G, Valentini G, Saia MC, Salpietro V, Calì F, Di Rosa G, Nicotera AG. KCNQ2-Related Neonatal Epilepsy Treated With Vitamin B6: A Report of Two Cases and Literature Review. Front Neurol 2022; 13:826225. [PMID: 35401395 PMCID: PMC8992372 DOI: 10.3389/fneur.2022.826225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Potassium Voltage-Gated Channel Subfamily Q Member 2 (KCNQ2) gene has been initially associated with "Benign familial neonatal epilepsy" (BFNE). Amounting evidence arising by next-generation sequencing techniques have led to the definition of new phenotypes, such as neonatal epileptic encephalopathy (NEE), expanding the spectrum of KCNQ2-related epilepsies. Pyridoxine (PN) dependent epilepsies (PDE) are a heterogeneous group of autosomal recessive disorders associated with neonatal-onset seizures responsive to treatment with vitamin B6 (VitB6). Few cases of neonatal seizures due to KCNQ2 pathogenic variants have been reported as successfully responding to VitB6. We reported two cases of KCNQ2-related neonatal epilepsies involving a 5-year-old male with a paternally inherited heterozygous mutation (c.1639C>T; p.Arg547Trp), and a 10-year-old female with a de novo heterozygous mutation (c.740C>T; p.Ser247Leu). Both children benefited from VitB6 treatment. Although the mechanisms explaining the efficacy of VitB6 in such patients remain unclear, this treatment option in neonatal-onset seizures is easily taken into account in Neonatal Intensive Care Units (NICUs). Further studies should be conducted to better define clinical guidelines and treatment protocols.
Collapse
Affiliation(s)
- Greta Amore
- Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", Unit of Child Neurology and Psychiatry, University of Messina, Messina, Italy
| | - Ambra Butera
- Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", Unit of Child Neurology and Psychiatry, University of Messina, Messina, Italy
| | - Giulia Spoto
- Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", Unit of Child Neurology and Psychiatry, University of Messina, Messina, Italy
| | - Giulia Valentini
- Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", Unit of Child Neurology and Psychiatry, University of Messina, Messina, Italy
| | - Maria Concetta Saia
- Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", Unit of Child Neurology and Psychiatry, University of Messina, Messina, Italy
| | - Vincenzo Salpietro
- Department of Neuromuscular Disorders, Institute of Neurology, University College London, London, United Kingdom.,Pediatric Neurology and Muscular Diseases Unit, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) Istituto Giannina Gaslini, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Francesco Calì
- Oasi Research Institute-Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Troina, Italy
| | - Gabriella Di Rosa
- Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", Unit of Child Neurology and Psychiatry, University of Messina, Messina, Italy
| | - Antonio Gennaro Nicotera
- Department of Human Pathology of the Adult and Developmental Age "Gaetano Barresi", Unit of Child Neurology and Psychiatry, University of Messina, Messina, Italy
| |
Collapse
|
35
|
Hieu NLT, Thu NTM, Ngan LTA, Van LTK, Huy DP, Linh PTT, Mai NTQ, Hien HTD, Hang DTT. Genetic analysis using targeted exome sequencing of 53 Vietnamese children with developmental and epileptic encephalopathies. Am J Med Genet A 2022; 188:2048-2060. [PMID: 35365919 DOI: 10.1002/ajmg.a.62741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 01/14/2022] [Accepted: 03/13/2022] [Indexed: 11/07/2022]
Abstract
Developmental and epileptic encephalopathies (DEE) refers to a group of rare and severe neurodevelopmental disorders where genetic etiologies can play a major role. This study aimed to elucidate the genetic etiologies of a cohort of 53 Vietnamese patients with DEE. All patients were classified into known electroclinical syndromes where possible. Exome sequencing (ES) followed by a targeted analysis on 294 DEE-related genes was then performed. Patients with identified causative variants were followed for 6 months to determine the impact of genetic testing on their treatment. The diagnostic yield was 38.0% (20/53), which was significantly higher in the earlier onset group (<12 months) than in the later onset group (≥12 months). The 19 identified variants belonged to 11 genes with various cellular functions. Genes encoding ion channels especially sodium voltage-gated channel were the most frequently involved. Most variants were missense variants and located in key protein functional domains. Four variants were novel and four had been reported previously but in different phenotypes. Within 6 months of further follow-up, treatment changes were applied for six patients based on the identified disease-causing variants, with five patients showing a positive impact. This is the first study in Vietnam to analyze the genetics of DEE. This study confirms the strong involvement of genetic etiologies in DEE, especially early onset DEE. The study also contributes to clarify the genotype-phenotype correlations of DEE and highlights the efficacy of targeted ES in the diagnosis and treatment of DEE.
Collapse
Affiliation(s)
- Nguyen Le Trung Hieu
- Neurology Department, Children Hospital 2, Ho Chi Minh City, Vietnam.,University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam
| | | | - Le Tran Anh Ngan
- Neurology Department, Children Hospital 2, Ho Chi Minh City, Vietnam
| | - Le Thi Khanh Van
- Neurology Department, Children Hospital 2, Ho Chi Minh City, Vietnam
| | - Do Phuoc Huy
- Medical Genetics Institute, Ho Chi Minh City, Vietnam
| | - Pham Thi Truc Linh
- Functional Genomic Unit, DNA Medical Technology Company, Ho Chi Minh City, Vietnam
| | - Nguyen Thi Quynh Mai
- Research Center for Genetics and Reproductive Health, School of Medicine, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Huynh Thi Dieu Hien
- Research Center for Genetics and Reproductive Health, School of Medicine, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Do Thi Thu Hang
- Research Center for Genetics and Reproductive Health, School of Medicine, Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
36
|
Schuler BA, Nelson ET, Koziura M, Cogan JD, Hamid R, Phillips JA. Lessons learned: next-generation sequencing applied to undiagnosed genetic diseases. J Clin Invest 2022; 132:e154942. [PMID: 35362483 PMCID: PMC8970663 DOI: 10.1172/jci154942] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rare genetic disorders, when considered together, are relatively common. Despite advancements in genetics and genomics technologies as well as increased understanding of genomic function and dysfunction, many genetic diseases continue to be difficult to diagnose. The goal of this Review is to increase the familiarity of genetic testing strategies for non-genetics providers. As genetic testing is increasingly used in primary care, many subspecialty clinics, and various inpatient settings, it is important that non-genetics providers have a fundamental understanding of the strengths and weaknesses of various genetic testing strategies as well as develop an ability to interpret genetic testing results. We provide background on commonly used genetic testing approaches, give examples of phenotypes in which the various genetic testing approaches are used, describe types of genetic and genomic variations, cover challenges in variant identification, provide examples in which next-generation sequencing (NGS) failed to uncover the variant responsible for a disease, and discuss opportunities for continued improvement in the application of NGS clinically. As genetic testing becomes increasingly a part of all areas of medicine, familiarity with genetic testing approaches and result interpretation is vital to decrease the burden of undiagnosed disease.
Collapse
Affiliation(s)
- Bryce A. Schuler
- Division of Medical Genetics and Genomics and
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Erica T. Nelson
- Division of Medical Genetics and Genomics and
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mary Koziura
- Division of Medical Genetics and Genomics and
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Joy D. Cogan
- Division of Medical Genetics and Genomics and
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rizwan Hamid
- Division of Medical Genetics and Genomics and
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John A. Phillips
- Division of Medical Genetics and Genomics and
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
37
|
The Genetic Diagnosis of Ultrarare DEEs: An Ongoing Challenge. Genes (Basel) 2022; 13:genes13030500. [PMID: 35328054 PMCID: PMC8953579 DOI: 10.3390/genes13030500] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
Epileptic encephalopathies (EEs) and developmental and epileptic encephalopathies (DEEs) are a group of severe early-onset neurodevelopmental disorders (NDDs). In recent years, next-generation equencing (NGS) technologies enabled the discovery of numerous genes involved in these conditions. However, more than 50% of patients remained undiagnosed. A major obstacle lies in the high degree of genetic heterogeneity and the wide phenotypic variability that has characterized these disorders. Interpreting a large amount of NGS data is also a crucial challenge. This study describes a dynamic diagnostic procedure used to investigate 17 patients with DEE or EE with previous negative or inconclusive genetic testing by whole-exome sequencing (WES), leading to a definite diagnosis in about 59% of participants. Biallelic mutations caused most of the diagnosed cases (50%), and a pathogenic somatic mutation resulted in 10% of the subjects. The high diagnostic yield reached highlights the relevance of the scientific approach, the importance of the reverse phenotyping strategy, and the involvement of a dedicated multidisciplinary team. The study emphasizes the role of recessive and somatic variants, new genetic mechanisms, and the complexity of genotype–phenotype associations. In older patients, WES results could end invasive diagnostic procedures and allow a more accurate transition. Finally, an early pursued diagnosis is essential for comprehensive care of patients, precision approach, knowledge of prognosis, patient and family planning, and quality of life.
Collapse
|
38
|
Cali E, Rocca C, Salpietro V, Houlden H. Epileptic Phenotypes Associated With SNAREs and Related Synaptic Vesicle Exocytosis Machinery. Front Neurol 2022; 12:806506. [PMID: 35095745 PMCID: PMC8792400 DOI: 10.3389/fneur.2021.806506] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/16/2021] [Indexed: 01/29/2023] Open
Abstract
SNAREs (soluble N-ethylmaleimide sensitive factor attachment protein receptor) are an heterogeneous family of proteins that, together with their key regulators, are implicated in synaptic vesicle exocytosis and synaptic transmission. SNAREs represent the core component of this protein complex. Although the specific mechanisms of the SNARE machinery is still not completely uncovered, studies in recent years have provided a clearer understanding of the interactions regulating the essential fusion machinery for neurotransmitter release. Mutations in genes encoding SNARE proteins or SNARE complex associated proteins have been associated with a variable spectrum of neurological conditions that have been recently defined as “SNAREopathies.” These include neurodevelopmental disorder, autism spectrum disorder (ASD), movement disorders, seizures and epileptiform abnormalities. The SNARE phenotypic spectrum associated with seizures ranges from simple febrile seizures and infantile spasms, to severe early-onset epileptic encephalopathies. Our study aims to review and delineate the epileptic phenotypes associated with dysregulation of synaptic vesicle exocytosis and transmission, focusing on the main proteins of the SNARE core complex (STX1B, VAMP2, SNAP25), tethering complex (STXBP1), and related downstream regulators.
Collapse
Affiliation(s)
- Elisa Cali
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Clarissa Rocca
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Vincenzo Salpietro
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Henry Houlden
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
39
|
Johnson K, Saylor KW, Guynn I, Hicklin K, Berg JS, Lich KH. A systematic review of the methodological quality of economic evaluations in genetic screening and testing for monogenic disorders. Genet Med 2022; 24:262-288. [PMID: 34906467 PMCID: PMC8900524 DOI: 10.1016/j.gim.2021.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 10/19/2022] Open
Abstract
PURPOSE Understanding the value of genetic screening and testing for monogenic disorders requires high-quality, methodologically robust economic evaluations. This systematic review sought to assess the methodological quality among such studies and examined opportunities for improvement. METHODS We searched PubMed, Cochrane, Embase, and Web of Science for economic evaluations of genetic screening/testing (2013-2019). Methodological rigor and adherence to best practices were systematically assessed using the British Medical Journal checklist. RESULTS Across the 47 identified studies, there were substantial variations in modeling approaches, reporting detail, and sophistication. Models ranged from simple decision trees to individual-level microsimulations that compared between 2 and >20 alternative interventions. Many studies failed to report sufficient detail to enable replication or did not justify modeling assumptions, especially for costing methods and utility values. Meta-analyses, systematic reviews, or calibration were rarely used to derive parameter estimates. Nearly all studies conducted some sensitivity analysis, and more sophisticated studies implemented probabilistic sensitivity/uncertainty analysis, threshold analysis, and value of information analysis. CONCLUSION We describe a heterogeneous body of work and present recommendations and exemplar studies across the methodological domains of (1) perspective, scope, and parameter selection; (2) use of uncertainty/sensitivity analyses; and (3) reporting transparency for improvement in the economic evaluation of genetic screening/testing.
Collapse
Affiliation(s)
- Karl Johnson
- Department of Health Policy and Management, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Katherine W Saylor
- Department of Public Policy, College of Arts and Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Isabella Guynn
- Department of Health Policy and Management, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Karen Hicklin
- Department of Health Policy and Management, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jonathan S Berg
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Kristen Hassmiller Lich
- Department of Health Policy and Management, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC.
| |
Collapse
|
40
|
Su T, Yan Y, Hu Q, Liu Y, Xu S. De novo
DYNC1H1
mutation causes infantile developmental and epileptic encephalopathy with brain malformations. Mol Genet Genomic Med 2022; 10:e1874. [PMID: 35099838 PMCID: PMC8922968 DOI: 10.1002/mgg3.1874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/24/2021] [Accepted: 01/06/2022] [Indexed: 11/11/2022] Open
Abstract
Background The human dynein cytoplasmic 1 heavy chain 1 (DYNC1H1) gene encodes a large subunit of the cytoplasmic dynein complex. DYNC1H1 mutations are associated with various neurological diseases involving both the peripheral and central nervous systems. Methods The clinical characteristics and genetic data of an infant carrying the de novo DYNC1H1 variant identified by trio exome sequencing were analyzed. Patients with epilepsy with DYNC1H1 mutations were summarized by reviewing the literature. Results We first identified an infant presenting with epileptic spasms harboring a de novo missense mutation in DYNC1H1 (c.874C>T; p. Arg292Trp), once reported in an adult case, and further summarized another 54 patients with seizures or epilepsy caused by DYNC1H1 pathogenic variants in the literature. Refractory epilepsy, intellectual disability, and cortical developmental malformations are crucial characteristics of patients with developmental and epileptic encephalopathy (DEE) caused by DYNC1H1 variants. Notably, epileptic spasms in this case were resistant to multiple anti‐seizure medications, corticosteroids, ketogenic diet, and vagus nerve stimulation treatment. The child also showed cortical gyrus malformation and global developmental delay. Conclusion DYNC1H1 variants can cause infantile developmental and epileptic encephalopathy, in which Arg292Trp is a mutation hotspot of the DYNC1H1 gene. Epileptic seizures in this type of DYNC1H1‐related DEE are mostly resistant to multiple antiepileptic strategies and need to explore optimized treatments.
Collapse
Affiliation(s)
- Tangfeng Su
- Department of Pediatrics Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Yu Yan
- Department of Neurology People's Hospital of Dongxihu District Wuhan China
| | - Qingqing Hu
- Department of Pediatrics Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Yan Liu
- Department of Pediatrics Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Sanqing Xu
- Department of Pediatrics Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
41
|
Zanus C, Carrozzi M, Costa P, Musante L, Faletra F. Encefalopatie epilettiche e dello sviluppo: dalla pratica alla genetica, andata e ritorno. MEDICO E BAMBINO 2022; 41:33-40. [DOI: 10.53126/meb41033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
In the last decades the research on the genetics of epilepsy has greatly expanded, supported by the development of effective next-generation sequencing (NGS) methods. In particular, the studies in Developmental and Epileptic Encephalopathies (DEEs) discover an everyday increasing number of new epilepsy-associated genes and provide information with positive effects on genetic counselling and treatment choice. Thanks to NGS, genetics is becoming a first line diagnostic test in DEEs but a consensus on who should receive genetic testing, on the best testing strategy and on the utility of genetic testing is still lacking. Many patients are being studied with research sequencing and analysis. The participation in a study on the genetic causes of DEE led to share some considerations about this topic and the most relevant aspects of the described experience.
Collapse
Affiliation(s)
- Caterina Zanus
- SC di Neuropsichiatria Infantile, RCCS Materno-Infantile “Burlo Garofolo”, Trieste
| | - Marco Carrozzi
- SC di Neuropsichiatria Infantile, RCCS Materno-Infantile “Burlo Garofolo”, Trieste
| | - Paola Costa
- SC di Neuropsichiatria Infantile, RCCS Materno-Infantile “Burlo Garofolo”, Trieste
| | - Luciana Musante
- SC di Genetica Medica, IRCCS Materno-Infantile “Burlo Garofolo”, Trieste
| | - Flavio Faletra
- SC di Genetica Medica, IRCCS Materno-Infantile “Burlo Garofolo”, Trieste
| |
Collapse
|
42
|
Whole-exome sequencing with targeted analysis and epilepsy after acute symptomatic neonatal seizures. Pediatr Res 2022; 91:896-902. [PMID: 33846556 PMCID: PMC9064802 DOI: 10.1038/s41390-021-01509-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 02/02/2021] [Accepted: 03/18/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND The contribution of pathogenic gene variants with development of epilepsy after acute symptomatic neonatal seizures is not known. METHODS Case-control study of 20 trios in children with a history of acute symptomatic neonatal seizures: 10 with and 10 without post-neonatal epilepsy. We performed whole-exome sequencing (WES) and identified pathogenic de novo, transmitted, and non-transmitted variants from established and candidate epilepsy association genes and correlated prevalence of these variants with epilepsy outcomes. We performed a sensitivity analysis with genes associated with coronary artery disease (CAD). We analyzed variants throughout the exome to evaluate for differential enrichment of functional properties using exploratory KEGG searches. RESULTS Querying 200 established and candidate epilepsy genes, pathogenic variants were identified in 5 children with post-neonatal epilepsy yet in only 1 child without subsequent epilepsy. There was no difference in the number of trios with non-transmitted pathogenic variants in epilepsy or CAD genes. An exploratory KEGG analysis demonstrated a relative enrichment in cell death pathways in children without subsequent epilepsy. CONCLUSIONS In this pilot study, children with epilepsy after acute symptomatic neonatal seizures had a higher prevalence of coding variants with a targeted epilepsy gene sequencing analysis compared to those patients without subsequent epilepsy. IMPACT We performed whole-exome sequencing (WES) in 20 trios, including 10 children with epilepsy and 10 without epilepsy, both after acute symptomatic neonatal seizures. Children with post-neonatal epilepsy had a higher burden of pathogenic variants in epilepsy-associated genes compared to those without post-neonatal epilepsy. Future studies evaluating this association may lead to a better understanding of the risk of epilepsy after acute symptomatic neonatal seizures and elucidate molecular pathways that are dysregulated after brain injury and implicated in epileptogenesis.
Collapse
|
43
|
Shah M, Selvanathan A, Baynam G, Berman Y, Boughtwood T, Freckmann M, Parasivam G, White SM, Grainger N, Kirk EP, Ma ASL, Sachdev R. Paediatric genomic testing: Navigating genomic reports for the general paediatrician. J Paediatr Child Health 2022; 58:8-15. [PMID: 34427008 PMCID: PMC9292248 DOI: 10.1111/jpc.15703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 11/28/2022]
Abstract
Monogenic rare disorders contribute significantly to paediatric morbidity and mortality, and elucidation of the underlying genetic cause may have benefits for patients, families and clinicians. Advances in genomic technology have enabled diagnostic yields of up to 50% in some paediatric cohorts. This has led to an increase in the uptake of genetic testing across paediatric disciplines. This can place an increased burden on paediatricians, who may now be responsible for interpreting and explaining test results to patients. However, genomic results can be complex, and sometimes inconclusive for the ordering paediatrician. Results may also cause uncertainty and anxiety for patients and their families. The paediatrician's genetic literacy and knowledge of genetic principles are therefore critical to inform discussions with families and guide ongoing patient care. Here, we present four hypothetical case vignettes where genomic testing is undertaken, and discuss possible results and their implications for paediatricians and families. We also provide a list of key terms for paediatricians.
Collapse
Affiliation(s)
- Margit Shah
- Centre for Clinical GeneticsSydney Children's Hospital, Sydney Children's Hospitals NetworkSydneyNew South WalesAustralia,Department of Clinical GeneticsChildren's Hospital at Westmead, Sydney Children's Hospitals NetworkSydneyNew South WalesAustralia,Faculty of Health and Medical ScienceUniversity of SydneySydneyNew South WalesAustralia
| | - Arthavan Selvanathan
- Genetic Metabolic Disorders ServiceSydney Children's Hospitals NetworkSydneyNew South WalesAustralia
| | - Gareth Baynam
- Genetic Services of Western AustraliaKing Edward Memorial HospitalPerthWestern AustraliaAustralia,Western Australian Register of Developmental AnomaliesKing Edward Memorial HospitalPerthWestern AustraliaAustralia
| | - Yemima Berman
- Department of Clinical GeneticsRoyal North Shore HospitalSydneyNew South WalesAustralia,Sydney Medical SchoolUniversity of SydneySydneyNew South WalesAustralia
| | - Tiffany Boughtwood
- Australian GenomicsMelbourneVictoriaAustralia,Murdoch Children’s Research InstituteMelbourneVictoriaAustralia
| | - Mary‐Louise Freckmann
- Department of Clinical GeneticsRoyal North Shore HospitalSydneyNew South WalesAustralia,ACT Genetics ServiceThe Canberra HospitalCanberraAustralian Capital TerritoryAustralia
| | - Gayathri Parasivam
- NSW Health Centre for Genetics EducationRoyal North Shore HospitalSydneyNew South WalesAustralia,Present address:
Women's and Children's HospitalAdelaideSouth AustraliaAustralia
| | - Susan M White
- Victorian Clinical Genetics ServicesMelbourneVictoriaAustralia,Department of PaediatricsUniversity of MelbourneMelbourneVictoriaAustralia
| | - Natalie Grainger
- NSW Health Centre for Genetics EducationRoyal North Shore HospitalSydneyNew South WalesAustralia
| | - Edwin P Kirk
- Centre for Clinical GeneticsSydney Children's Hospital, Sydney Children's Hospitals NetworkSydneyNew South WalesAustralia,School of Women's and Children's HealthUniversity of New South WalesSydneyNew South WalesAustralia,NSW Health Pathology Randwick Genomics LaboratorySydneyNew South WalesAustralia
| | - Alan SL Ma
- Department of Clinical GeneticsChildren's Hospital at Westmead, Sydney Children's Hospitals NetworkSydneyNew South WalesAustralia,Specialty of Genomic MedicineUniversity of SydneySydneyNew South WalesAustralia
| | - Rani Sachdev
- Centre for Clinical GeneticsSydney Children's Hospital, Sydney Children's Hospitals NetworkSydneyNew South WalesAustralia,School of Women's and Children's HealthUniversity of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
44
|
Stenshorne I, Syvertsen M, Ramm-Pettersen A, Henning S, Weatherup E, Bjørnstad A, Brüggemann N, Spetalen T, Selmer KK, Koht J. Monogenic developmental and epileptic encephalopathies of infancy and childhood, a population cohort from Norway. Front Pediatr 2022; 10:965282. [PMID: 35979408 PMCID: PMC9376386 DOI: 10.3389/fped.2022.965282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/07/2022] [Indexed: 12/01/2022] Open
Abstract
INTRODUCTION Developmental and epileptic encephalopathies (DEE) is a group of epilepsies where the epileptic activity, seizures and the underlying neurobiology contributes to cognitive and behavioral impairments. Uncovering the causes of DEE is important in order to develop guidelines for treatment and follow-up. The aim of the present study was to describe the clinical picture and to identify genetic causes in a patient cohort with DEE without known etiology, from a Norwegian regional hospital. METHODS Systematic searches of medical records were performed at Drammen Hospital, Vestre Viken Health Trust, to identify patients with epilepsy in the period 1999-2018. Medical records were reviewed to identify patients with DEE of unknown cause. In 2018, patients were also recruited consecutively from treating physicians. All patients underwent thorough clinical evaluation and updated genetic diagnostic analyses. RESULTS Fifty-five of 2,225 patients with epilepsy had DEE of unknown etiology. Disease-causing genetic variants were found in 15/33 (45%) included patients. Three had potentially treatable metabolic disorders (SLC2A1, COQ4 and SLC6A8). Developmental comorbidity was higher in the group with a genetic diagnosis, compared to those who remained undiagnosed. Five novel variants in known genes were found, and the patient phenotypes are described. CONCLUSION The results from this study illustrate the importance of performing updated genetic investigations and/or analyses in patients with DEE of unknown etiology. A genetic cause was identified in 45% of the patients, and three of these patients had potentially treatable conditions where available targeted therapy may improve patient outcome.
Collapse
Affiliation(s)
- Ida Stenshorne
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Children and Adolescents, Drammen Hospital, Vestre Viken Health Trust, Drammen, Norway
| | - Marte Syvertsen
- Department of Neurology, Drammen Hospital, Vestre Viken Health Trust, Drammen, Norway
| | - Anette Ramm-Pettersen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Clinical Neurosciences for Children, Oslo University Hospital, Oslo, Norway
| | - Susanne Henning
- Department of Children and Adolescents, Drammen Hospital, Vestre Viken Health Trust, Drammen, Norway
| | - Elisabeth Weatherup
- Department of Children and Adolescents, Drammen Hospital, Vestre Viken Health Trust, Drammen, Norway
| | - Alf Bjørnstad
- Department of Children and Adolescents, Stavanger University Hospital, Stavanger Health Trust, Stavanger, Norway
| | - Natalia Brüggemann
- Department of Children and Adolescents, Drammen Hospital, Vestre Viken Health Trust, Drammen, Norway
| | - Torstein Spetalen
- Department of Neurology, Drammen Hospital, Vestre Viken Health Trust, Drammen, Norway
| | - Kaja K Selmer
- National Center for Epilepsy, Oslo University Hospital, Oslo, Norway.,Division of Clinical Neuroscience, Department of Research and Innovation, Oslo University Hospital, Oslo, Norway
| | - Jeanette Koht
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
45
|
Sheidley BR, Malinowski J, Bergner AL, Bier L, Gloss DS, Mu W, Mulhern MM, Partack EJ, Poduri A. Genetic testing for the epilepsies: A systematic review. Epilepsia 2021; 63:375-387. [PMID: 34893972 DOI: 10.1111/epi.17141] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Numerous genetic testing options for individuals with epilepsy have emerged over the past decade without clear guidelines regarding optimal testing strategies. We performed a systematic evidence review (SER) and conducted meta-analyses of the diagnostic yield of genetic tests commonly utilized for patients with epilepsy. We also assessed nonyield outcomes (NYOs) such as changes in treatment and/or management, prognostic information, recurrence risk determination, and genetic counseling. METHODS We performed an SER, in accordance with PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses), using PubMed, Embase, CINAHL, and Cochrane Central through December of 2020. We included studies that utilized genome sequencing (GS), exome sequencing (ES), multigene panel (MGP), and/or genome-wide comparative genomic hybridization/chromosomal microarray (CGH/CMA) in cohorts (n ≥ 10) ascertained for epilepsy. Quality assessment was undertaken using ROBINS-I (Risk of Bias in Non-Randomized Studies of Interventions). We estimated diagnostic yields and 95% confidence intervals with random effects meta-analyses and narratively synthesized NYOs. RESULTS From 5985 nonduplicated articles published through 2020, 154 met inclusion criteria and were included in meta-analyses of diagnostic yield; 43 of those were included in the NYO synthesis. The overall diagnostic yield across all test modalities was 17%, with the highest yield for GS (48%), followed by ES (24%), MGP (19%), and CGH/CMA (9%). The only phenotypic factors that were significantly associated with increased yield were (1) the presence of developmental and epileptic encephalopathy and/or (2) the presence of neurodevelopmental comorbidities. Studies reporting NYOs addressed clinical and personal utility of testing. SIGNIFICANCE This comprehensive SER, focused specifically on the literature regarding patients with epilepsy, provides a comparative assessment of the yield of clinically available tests, which will help shape clinician decision-making and policy regarding insurance coverage for genetic testing. We highlight the need for prospective assessment of the clinical and personal utility of genetic testing for patients with epilepsy and for standardization in reporting patient characteristics.
Collapse
Affiliation(s)
- Beth R Sheidley
- Epilepsy Genetics Program, Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | | | - Amanda L Bergner
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Louise Bier
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - David S Gloss
- Department of Neurology, Charleston Area Medical Center, Charleston, West Virginia, USA
| | - Weiyi Mu
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Maureen M Mulhern
- Department of Pathology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA.,Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Emily J Partack
- Genomics Services, Quest Diagnostics, Marlborough, Massachusetts, USA
| | - Annapurna Poduri
- Epilepsy Genetics Program, Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
46
|
Yang H, Gong P, Jiao X, Niu Y, Zhou Q, Zhang Y, Yang Z. De Novo Variants in the DYNC1H1 Gene Associated With Infantile Spasms. Front Neurol 2021; 12:733178. [PMID: 34803881 PMCID: PMC8603382 DOI: 10.3389/fneur.2021.733178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/06/2021] [Indexed: 12/01/2022] Open
Abstract
Objective: The DYNC1H1 gene is related to a variety of diseases, including spinal muscular atrophy with lower extremity-predominant 1, Charcot-Marie-Tooth disease type 2O, and mental retardation, autosomal dominant13 (MRD13). Some patients with DYNC1H1 variant also had epilepsy. This study aimed to detect DYNC1H1 variants in Chinese patients with infantile spasms (ISs). Methods: We reviewed clinical information, video electroencephalogram (V-EEG), and neuroimaging of a newly identified cohort of five patients with de novo DYNC1H1gene variants. Results: Five patients with four DYNC1H1variants from four families were included. All patients had epileptic spasms (ESs), the median age at seizure onset was 7.5 months (range from 5 months to 2 years 7 months), and the interictal V-EEG results were hypsarrhythmia. Four of five patients had brain magnetic resonance imaging (MRI) abnormalities. Four de novo DYNC1H1 variants were identified, including two novel variants (p.N1117K, p.M3405L) and two reported variants (p.R1962C, p.F1093S). As for the variant site, two variants are located in the tail domain, one variant is located in the motor domain, and one variant is located in the stalk domain. All patients had tried more than five kinds of antiepileptic drugs. One patient has been controlled well by vigabatrin (VGB) for 4 years, and another patient by VGB and steroids for 1.5 years. The other three patients still had frequent ESs. All patients had severe intellectual disability and development delays. Significance: IS was one of the phenotypes of DYNC1H1 variants. Most patients had non-specific brain MRI abnormality. Two of four DYNC1H1 variants were novel, expanding the variant spectrum. The IS phenotype was related to the variant's domains of DYNC1H1 variant sites. All patients were drug-refractory and showed development delays.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhixian Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
47
|
Olde Keizer RACM, Henneman L, Ploos van Amstel JK, Vissers LELM, Frederix GWJ. Economic evaluations of exome and genome sequencing in pediatric genetics: considerations towards a consensus strategy. J Med Econ 2021; 24:60-70. [PMID: 34915793 DOI: 10.1080/13696998.2021.2009725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Next Generation Sequencing (NGS) is increasingly used for the diagnosis of rare genetic disorders. The aim of this study is to review the different approaches for economic evaluations of Next Generation Sequencing (NGS) in pediatric care used to date, to identify all costs, effects, and time horizons taken into account. METHODS A systematic literature review was conducted to identify published economic evaluations of NGS applications in pediatric diagnostics, i.e. exome sequencing (ES) and/or genome sequencing (GS). Information regarding methodological approach, costs, effects, and time horizon was abstracted from these publications. RESULTS Twenty-eight economic evaluations of ES/GS within pediatrics were identified. Costs included were mainly restricted to direct in-hospital healthcare costs and varied widely in inclusion of sort of costs and time-horizon. Nineteen studies included diagnostic yield and eight studies included cost-effectiveness as outcome measures. Studies varied greatly in terms of included sort of costs data, effects, and time horizon. CONCLUSION Large differences in inclusion of cost and effect parameters were identified between studies. Validity of outcomes can therefore be questioned, which hinders valid comparison and widespread generalization of conclusions. In addition to current health economic guidance, specific guidance for evaluations in pediatric care is therefore necessary to improve the validity of outcomes and furthermore facilitate comparable decision-making for implementing novel NGS-based diagnostic modalities in pediatric genetics and beyond.
Collapse
Affiliation(s)
- Richelle A C M Olde Keizer
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Lidewij Henneman
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | | | - Lisenka E L M Vissers
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Gerardus W J Frederix
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Genetics, Utrecht University Medical Center, Utrecht, The Netherlands
| |
Collapse
|
48
|
Ding FJ, Lyu GZ, Zhang VW, Jin H. Missense mutation in DYNC1H1 gene caused psychomotor developmental delay and muscle weakness: A case report. World J Clin Cases 2021; 9:9302-9309. [PMID: 34786417 PMCID: PMC8567516 DOI: 10.12998/wjcc.v9.i30.9302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/09/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The DYNC1H1 gene encodes a part of the dynamic protein, and the protein mutations may further affect the growth and development of neurons, resulting in degeneration of anterior horn cells of the spinal cord, and a variety of clinical phenotypes finally resulting in axonal Charcot-Marie-Tooth disease type 20 (CMT20), mental retardation 13 (MRD13) and spinal muscular atrophy with lower extremity predominant 1 (SMA-LED). The incidence of the disease is low, and it is difficult to diagnose, especially in children. Here, we report a case of DYNC1H1 gene mutation and review the related literature to improve the pediatrician’s understanding of DYNC1H1 gene-related disease to make an early correct diagnosis and provide better services for children.
CASE SUMMARY A 4-mo-old Chinese female child with adducted thumbs, high arch feet, and epileptic seizure presented slow response, delayed development, and low limb muscle strength. Electroencephalogram showed abnormal waves, a large number of multifocal sharp waves, sharp slow waves, and multiple spasms with a series of attacks. High-throughput sequencing and Sanger sequencing identified a heterozygous mutation, c.5885G>A (p.R1962H), in the DYNC1H1 gene (NM_001376) of the proband, which was not identified in her parents. Combined with the clinical manifestations and pedigree of this family, this mutation is likely pathogenic based on the American Academy of Medical Genetics and Genomics guidelines. The child was followed when she was 1 year and 2 mo old. The magnetic resonance imaging result was consistent with the findings of white matter myelinated dysplasia and congenital giant gyrus. The extensive neurogenic damage to the extremities was considered, as the results of electromyography showed that the motor conduction velocity and sensory conduction of the nerves of the extremities were not abnormal, and the degree of fit of the children with severe contraction was poor. At present, the child is 80 cm in length and 9 kg in weight, with slender limbs and low muscle strength, and still does not raise her head. She cannot sit or speak. Speech, motor, and mental development was significantly delayed. There is still no effective treatment for this disease.
CONCLUSION We herein report a de novo variant of DYNC1H1 gene, c.5885G>A (p.R1962H), leading to overlapping phenotypes (seizure, general growth retardation, and muscle weakness) of CMT20, MRD13, and SMA-LED, but there is no effective treatment for such condition. Our case enriches the DYNC1H1 gene mutation spectrum and provides an important basis for clinical diagnosis and treatment and genetic counseling.
Collapse
Affiliation(s)
- Feng-Juan Ding
- Prenatal Diagnosis Center, Jinan Maternal and Child Health Hospital, Jinan 250001, Shandong Province, China
| | - Gui-Zhen Lyu
- AmCare Genomics lab (Guangzhou), Guangzhou 510300, Guangdong Province, China
| | - Victor Wei Zhang
- AmCare Genomics lab (Guangzhou), Guangzhou 510300, Guangdong Province, China
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77001, United States
| | - Hua Jin
- Prenatal Diagnosis Center, Jinan Maternal and Child Health Hospital, Jinan 250001, Shandong Province, China
| |
Collapse
|
49
|
Salinas V, Martínez N, Maturo JP, Rodriguez-Quiroga SA, Zavala L, Medina N, Amartino H, Sfaello I, Agosta G, Serafín EM, Morón DG, Kauffman MA, Vega P. Clinical next generation sequencing in developmental and epileptic encephalopathies: Diagnostic relevance of data re-analysis and variants re-interpretation. Eur J Med Genet 2021; 64:104363. [PMID: 34673242 DOI: 10.1016/j.ejmg.2021.104363] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 11/26/2022]
Abstract
Developmental and epileptic encephalopathies (DEE) are complex pediatric epilepsies, in which heterogeneous pathogenic factors play an important role. Next-generation-sequencing based tools have shown excellent effectiveness. The constant increase in the number of new genotype-phenotype associations suggests the periodic need for re-interpretation and re-analysis of genetic studies without positive results. In this study, we report the diagnostic utility of targeted gene panel sequencing and whole exome sequencing in 55 Argentine subjects with DEE, focusing on the utility of re-interpretation and re-analysis of undetermined and negative genetic diagnoses. The new information in biomedical literature and databases was used for the re-interpretation. For re-analysis, sequencing data processing was repeated using updated bioinformatics tools. Initially, pathogenic variants were detected in 21 subjects (38%). After an average time of 29 months, 25% of the subjects without a genetic diagnosis were re-categorized as diagnosed. Finally, the overall diagnostic yield increased to 53% (29 subjects). In consequence of the re-interpretation and re-analysis, we identified novel variants in the genes: CHD2, COL4A1, FOXG1, GABRA1, GRIN2B, HNRNPU, KCNQ2, MECP2, PCDH19, SCN1A, SCN2A, SCN8A, SLC6A1, STXBP1 and WWOX. Our results expand the diagnostic yield of this subgroup of infantile and childhood seizures and demonstrate the importance of re-evaluation of genetic tests in subjects without an identified causative etiology.
Collapse
Affiliation(s)
- Valeria Salinas
- Neurogenetics Unit, Hospital JM Ramos Mejía, Buenos Aires, Argentina; Precision Medicine and Clinical Genomics Group, Translational Medicine Research Institute-CONICET, Faculty of Biomedical Sciences, Universidad Austral, Buenos Aires, Argentina.
| | - Nerina Martínez
- Neurogenetics Unit, Hospital JM Ramos Mejía, Buenos Aires, Argentina.
| | - Josefina Pérez Maturo
- Neurogenetics Unit, Hospital JM Ramos Mejía, Buenos Aires, Argentina; Precision Medicine and Clinical Genomics Group, Translational Medicine Research Institute-CONICET, Faculty of Biomedical Sciences, Universidad Austral, Buenos Aires, Argentina.
| | | | - Lucia Zavala
- Neurogenetics Unit, Hospital JM Ramos Mejía, Buenos Aires, Argentina.
| | - Nancy Medina
- Neurogenetics Unit, Hospital JM Ramos Mejía, Buenos Aires, Argentina.
| | - Hernán Amartino
- Paediatric Neurology Unit, Hospital Universitario Austral, Buenos Aires, Argentina.
| | - Ignacio Sfaello
- CETES, Instituto de Neurología Infanto-Juvenil, Córdoba, Argentina.
| | - Guillermo Agosta
- Paediatric Neurology Unit, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina.
| | | | | | - Marcelo A Kauffman
- Neurogenetics Unit, Hospital JM Ramos Mejía, Buenos Aires, Argentina; Precision Medicine and Clinical Genomics Group, Translational Medicine Research Institute-CONICET, Faculty of Biomedical Sciences, Universidad Austral, Buenos Aires, Argentina.
| | - Patricia Vega
- Neurogenetics Unit, Hospital JM Ramos Mejía, Buenos Aires, Argentina.
| |
Collapse
|
50
|
Myers KA, Scheffer IE. Precision Medicine Approaches for Infantile-Onset Developmental and Epileptic Encephalopathies. Annu Rev Pharmacol Toxicol 2021; 62:641-662. [PMID: 34579535 DOI: 10.1146/annurev-pharmtox-052120-084449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epilepsy is an etiologically heterogeneous condition; however, genetic factors are thought to play a role in most patients. For those with infantile-onset developmental and epileptic encephalopathy (DEE), a genetic diagnosis is now obtained in more than 50% of patients. There is considerable motivation to utilize these molecular diagnostic data to help guide treatment, as children with DEEs often have drug-resistant seizures as well as developmental impairment related to cerebral epileptiform activity. Precision medicine approaches have the potential to dramatically improve the quality of life for these children and their families. At present, treatment can be targeted for patients with diagnoses in many genetic causes of infantile-onset DEE, including genes encoding sodium or potassium channel subunits, tuberous sclerosis, and congenital metabolic diseases. Precision medicine may refer to more intelligent choices of conventional antiseizure medications, repurposed agents previously used for other indications, novel compounds, enzyme replacement, or gene therapy approaches. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Kenneth A Myers
- Research Institute of the McGill University Health Centre, Division of Child Neurology, Department of Pediatrics, and Department of Neurology and Neurosurgery, Montreal Children's Hospital, McGill University, Montreal, Quebec H4A 3J1, Canada;
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria 3084, Australia; .,Department of Paediatrics, Royal Children's Hospital, The University of Melbourne, Parkville, Victoria 3052, Australia.,The Florey Institute of Neuroscience and Mental Health and Murdoch Children's Research Institute, Parkville, Victoria 3052, Australia
| |
Collapse
|