1
|
Quaglia A, Roberts EA, Torbenson M. Developmental and Inherited Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:122-294. [DOI: 10.1016/b978-0-7020-8228-3.00003-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
2
|
Gong Y, Lu Q, Xi L, Liu Y, Yang B, Su J, Liu H, Jin J, Zhang Z, Yang Y, Zhu X, Xie S, Han D. F6P/G6P-mediated ChREBP activation promotes the insulin resistance-driven hepatic lipid deposition in zebrafish. J Nutr Biochem 2023; 122:109452. [PMID: 37748621 DOI: 10.1016/j.jnutbio.2023.109452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 08/15/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
Insulin-sensitive lipogenesis dominates the body lipid deposition; however, nonalcoholic fatty liver disease (NAFLD) develops in the insulin-resistant state. The regulation mechanism of insulin resistance-driven NAFLD remains elusive. Using zebrafish model of insulin resistance (ZIR, insrb-/-) and mouse hepatocytes (NCTC 1469), we explored the regulation mechanism of insulin resistance-driven hepatic lipid deposition under the stimulation of carbohydrate diet (CHD). In ZIR model, insulin resistance induced hyperlipidemia and elevated hepatic lipid deposition via elevating the gene/protein expressions of lipogenic enzymes, that was activated by carbohydrate response element binding protein (ChREBP), rather than sterol regulatory element binding proteins 1c (SREBP-1c). The metabolomic analysis in zebrafish and silencing of chrebp in mouse hepatocytes revealed that the increased hepatic frucotose-6-phosphate (F6P) and glucose-6-phosphate (G6P) promoted the ChREBP-mediated lipid deposition. We further identified that F6P alone was sufficient to activate ChREBP-mediated lipid deposition by a SREBP-1c-independent manner. Moreover, we clarified the suppressed hepatic phosphofructokinase/glucose-6-phosphatase functions and the normal glucokinase function preserved by glucose transporter 2 (GLUT2) manipulated the increased F6P/G6P content in ZIR. In conclusion, the present study revealed that insulin resistance promoted hepatic lipid deposition via the F6P/G6P-mediated ChREBP activation. Our findings deciphered the main regulation pathway for the liver lipid deposition in the insulin-resistant state and identified F6P as a new potential regulator for ChREBP.
Collapse
Affiliation(s)
- Yulong Gong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Qisheng Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Longwei Xi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yulong Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bingyuan Yang
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jingzhi Su
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Haokun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Junyan Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhimin Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yunxia Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaoming Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shouqi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Dong Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China; Hubei Hongshan Laboratory, Wuhan, China.
| |
Collapse
|
3
|
Angelidi AM, Filippaios A, Mantzoros CS. Severe insulin resistance syndromes. J Clin Invest 2021; 131:142245. [PMID: 33586681 DOI: 10.1172/jci142245] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Severe insulin resistance syndromes are a heterogeneous group of rare disorders characterized by profound insulin resistance, substantial metabolic abnormalities, and a variety of clinical manifestations and complications. The etiology of these syndromes may be hereditary or acquired, due to defects in insulin potency and action, cellular responsiveness to insulin, and/or aberrations in adipose tissue function or development. Over the past decades, advances in medical technology, particularly in genomic technologies and genetic analyses, have provided insights into the underlying pathophysiological pathways and facilitated the more precise identification of several of these conditions. However, the exact cellular and molecular mechanisms of insulin resistance have not yet been fully elucidated for all syndromes. Moreover, in clinical practice, many of the syndromes are often misdiagnosed or underdiagnosed. The majority of these disorders associate with an increased risk of severe complications and mortality; thus, early identification and personalized clinical management are of the essence. This Review aims to categorize severe insulin resistance syndromes by disease process, including insulin receptor defects, signaling defects, and lipodystrophies. We also highlight several complex syndromes and emphasize the need to identify patients, investigate underlying disease mechanisms, and develop specific treatment regimens.
Collapse
Affiliation(s)
- Angeliki M Angelidi
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Andreas Filippaios
- Department of Medicine, Lowell General Hospital, Lowell, Massachusetts, USA
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.,Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Zhou Q, Yu J, Yuan X, Wang C, Zhu Z, Zhang A, Gu W. Clinical and Functional Characterization of Novel INSR Variants in Two Families With Severe Insulin Resistance Syndrome. Front Endocrinol (Lausanne) 2021; 12:606964. [PMID: 33995269 PMCID: PMC8117416 DOI: 10.3389/fendo.2021.606964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 04/12/2021] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE Defects in the insulin receptor (INSR) gene cause various severe insulin resistance conditions, including Donohue syndrome (DS), Rabson-Mendenhall syndrome (RMS) and type A insulin resistance (type A-IR). This study aimed to investigate the clinical characterization and molecular defects in three Chinese children with INSR-related insulin resistance syndrome. METHODS We reviewed the clinical data of three Chinese children with INSR-related insulin resistance syndrome from two unrelated kindreds. Genetic analysis was performed using whole-exome sequencing and the effects of the novel variants were further assessed by in vitro functional assays. RESULTS The proband with type A-IR presented with acanthosis nigricans, hypertrichosis, and euglycemia with mild insulin resistance in early childhood. His sister presented with features typical of type A-IR and was diagnosed with diabetes mellitus with severe insulin resistance at the age of 9.8 years. The proband with DS showed typical dysmorphic characteristics, severe intrauterine growth retardation, extreme insulin resistance, fasting hypoglycemia and postprandial hyperglycemia from birth. The heterozygote variants c.[3670G>A]; c.[3614C>T] were identified in both siblings with type A-IR; and c.[749_751del]; c.[3355C>T] in the patient with DS. In vitro studies showed that the novel variant c.749_751del [p.(Thr250del)] in the α-subunit, reduced expression of the mature INSR protein and severely impaired INSR function. In contrast, the novel variant c.3670G>A [p.(Val1224Met)] in the β-subunit had no effect on total protein expression and phosphorylation of INSR and Akt, suggesting that the variant p.Val1224Met appeared to be tolerated and was not responsible for the severe insulin resistance. CONCLUSION Our study detailed the clinical features of three patients with type A-IR and DS, and identified two novel variants in the INSR gene. Functional assays indicated the novel variant p.Thr250del was pathogenic. In contrast, the novel variant p.Val1224Met was suggested to be tolerated by our experimental data, even though bioinformatics analyses predicted the variant as deleterious.
Collapse
Affiliation(s)
- Qiaoli Zhou
- Department of Endocrinology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Yu
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xuewen Yuan
- Department of Endocrinology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Chunli Wang
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Ziyang Zhu
- Department of Endocrinology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- *Correspondence: Wei Gu, ; Aihua Zhang,
| | - Wei Gu
- Department of Endocrinology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Wei Gu, ; Aihua Zhang,
| |
Collapse
|
5
|
Paauw ND, Stegeman R, de Vroede MAMJ, Termote JUM, Freund MW, Breur JMPJ. Neonatal cardiac hypertrophy: the role of hyperinsulinism-a review of literature. Eur J Pediatr 2020; 179:39-50. [PMID: 31840185 PMCID: PMC6942572 DOI: 10.1007/s00431-019-03521-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) in neonates is a rare and heterogeneous disorder which is characterized by hypertrophy of heart with histological and functional disruption of the myocardial structure/composition. The prognosis of HCM depends on the underlying diagnosis. In this review, we emphasize the importance to consider hyperinsulinism in the differential diagnosis of HCM, as hyperinsulinism is widely associated with cardiac hypertrophy (CH) which cannot be distinguished from HCM on echocardiographic examination. We supply an overview of the incidence and treatment strategies of neonatal CH in a broad spectrum of hyperinsulinemic diseases. Reviewing the literature, we found that CH is reported in 13 to 44% of infants of diabetic mothers, in approximately 40% of infants with congenital hyperinsulinism, in 61% of infants with leprechaunism and in 48 to 61% of the patients with congenital generalized lipodystrophy. The correct diagnosis is of importance since there is a large variation in prognoses and there are various strategies to treat CH in hyperinsulinemic diseases.Conclusion: The relationship between CH and hyperinsulism has implications for clinical practice as it might help to establish the correct diagnosis in neonates with cardiac hypertrophy which has both prognostic and therapeutic consequences. In addition, CH should be recognized as a potential comorbidity which might necessitate treatment in all neonates with known hyperinsulinism.What is Known:• Hyperinsulinism is currently not acknowledged as a cause of hypertrophic cardiomyopathy (HCM) in textbooks and recent Pediatric Cardiomyopathy Registry publications.What is New:• This article presents an overview of the literature of hyperinsulinism in neonates and infants showing that hyperinsulinism is associated with cardiac hypertrophy (CH) in a broad range of hyperinsulinemic diseases.• As CH cannot be distinguished from HCM on echocardiographic examination, we emphasize the importance to consider hyperinsulinism in the differential diagnosis of HCM/CH as establishing the correct diagnosis has both prognostic and therapeutic consequences.
Collapse
Affiliation(s)
- Nina D. Paauw
- grid.7692.a0000000090126352Department of Obstetrics, Wilhelmina Children’s Hospital Birth Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Raymond Stegeman
- grid.7692.a0000000090126352Department of Pediatric Cardiology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, PO Box 85090, 3508 AB Utrecht, The Netherlands ,grid.7692.a0000000090126352Department of Neonatology, Wilhelmina Children’s Hospital Birth Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Monique A. M. J. de Vroede
- grid.7692.a0000000090126352Department of Pediatric Endocrinology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jacqueline U. M. Termote
- grid.7692.a0000000090126352Department of Neonatology, Wilhelmina Children’s Hospital Birth Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Matthias W. Freund
- grid.5560.60000 0001 1009 3608Department of Pediatric Cardiology, Klinikum Oldenburg, University of Oldenburg, Oldenburg, Germany
| | - Johannes M. P. J. Breur
- grid.7692.a0000000090126352Department of Pediatric Cardiology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, PO Box 85090, 3508 AB Utrecht, The Netherlands
| |
Collapse
|
6
|
Matsushima N, Takatsuka S, Miyashita H, Kretsinger RH. Leucine Rich Repeat Proteins: Sequences, Mutations, Structures and Diseases. Protein Pept Lett 2019; 26:108-131. [PMID: 30526451 DOI: 10.2174/0929866526666181208170027] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 12/18/2022]
Abstract
Mutations in the genes encoding Leucine Rich Repeat (LRR) containing proteins are associated with over sixty human diseases; these include high myopia, mitochondrial encephalomyopathy, and Crohn's disease. These mutations occur frequently within the LRR domains and within the regions that shield the hydrophobic core of the LRR domain. The amino acid sequences of fifty-five LRR proteins have been published. They include Nod-Like Receptors (NLRs) such as NLRP1, NLRP3, NLRP14, and Nod-2, Small Leucine Rich Repeat Proteoglycans (SLRPs) such as keratocan, lumican, fibromodulin, PRELP, biglycan, and nyctalopin, and F-box/LRR-repeat proteins such as FBXL2, FBXL4, and FBXL12. For example, 363 missense mutations have been identified. Replacement of arginine, proline, or cysteine by another amino acid, or the reverse, is frequently observed. The diverse effects of the mutations are discussed based on the known structures of LRR proteins. These mutations influence protein folding, aggregation, oligomerization, stability, protein-ligand interactions, disulfide bond formation, and glycosylation. Most of the mutations cause loss of function and a few, gain of function.
Collapse
Affiliation(s)
- Norio Matsushima
- Center for Medical Education, Sapporo Medical University, Sapporo 060-8556, Japan.,Institute of Tandem Repeats, Noboribetsu 059-0464, Japan
| | - Shintaro Takatsuka
- Center for Medical Education, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Hiroki Miyashita
- Institute of Tandem Repeats, Noboribetsu 059-0464, Japan.,Hokubu Rinsho Co., Ltd, Sapporo 060-0061, Japan
| | - Robert H Kretsinger
- Department of Biology, University of Virginia, Charlottesville, VA 22904, United States
| |
Collapse
|
7
|
Liu S, Li X, Yang J, Zhu R, Fan Z, Xu X, Feng W, Cui J, Sun J, Liu M. Misfolded proinsulin impairs processing of precursor of insulin receptor and insulin signaling in β cells. FASEB J 2019; 33:11338-11348. [PMID: 31311313 PMCID: PMC6766638 DOI: 10.1096/fj.201900442r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Insulin resistance in classic insulin-responsive tissues is a hallmark of type 2 diabetes (T2D). However, the pathologic significance of β-cell insulin resistance and the underlying mechanisms contributing to defective insulin signaling in β cells remain largely unknown. Emerging evidence indicates that proinsulin misfolding is not only the molecular basis of mutant INS-gene–induced diabetes of youth (MIDY) but also an important contributor in the development and progression of T2D. However, the molecular basis of β-cell failure caused by misfolded proinsulin is still incompletely understood. Herein, using Akita mice expressing diabetes-causing mutant proinsulin, we found that misfolded proinsulin abnormally interacted with the precursor of insulin receptor (ProIR) in the endoplasmic reticulum (ER), impaired ProIR maturation to insulin receptor (IR), and decreased insulin signaling in β cells. Importantly, using db/db insulin-resistant mice, we found that oversynthesis of proinsulin led to an increased proinsulin misfolding, which resulted in impairments of ProIR processing and insulin signaling in β cells. These results reveal for the first time that misfolded proinsulin can interact with ProIR in the ER, impairing intracellular processing of ProIR and leading to defective insulin signaling that may contribute to β-cell failure in both MIDY and T2D.—Liu, S., Li, X., Yang, J., Zhu, R., Fan, Z., Xu, X., Feng, W., Cui, J., Sun, J., Liu, M. Misfolded proinsulin impairs processing of precursor of insulin receptor and insulin signaling in β cells.
Collapse
Affiliation(s)
- Shiqun Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Li
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Yang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Ruimin Zhu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhenqian Fan
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoxi Xu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenli Feng
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Jingqiu Cui
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinhong Sun
- Department of Health Management, Tianjin Medical University General Hospital, Tianjin, China
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
8
|
Takasawa K, Tsuji-Hosokawa A, Takishima S, Wada Y, Nagasaki K, Dateki S, Numakura C, Hijikata A, Shirai T, Kashimada K, Morio T. Clinical characteristics of adolescent cases with Type A insulin resistance syndrome caused by heterozygous mutations in the β-subunit of the insulin receptor (INSR) gene. J Diabetes 2019; 11:46-54. [PMID: 29877041 DOI: 10.1111/1753-0407.12797] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/02/2018] [Accepted: 06/01/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Type A insulin resistance (IR) is a rare form of severe congenital IR that is frequently caused by heterozygous mutations in the insulin receptor (INSR) gene. Although Type A IR requires appropriate intervention from the early stages of diabetes, proper diagnosis of this disease is challenging, and accumulation of cases with detailed clinical profiles and genotypes is required. METHODS Herein we report on six peripubertal patients with clinically diagnosed Type A IR, including four patients with an identified INSR mutation. To clarify the clinical features of Type A IR due to INSR mutation, we validated the clinical characteristics of Type A IR patients with identified INSR mutations by comparing them with mutation-negative patients. RESULTS Four heterozygous missense mutations within the β-subunit of INSR were detected: Gly1146Arg, Arg1158Trp, Arg1201Trp, and one novel Arg1201Pro mutation. There were no obvious differences in clinical phenotypes, except for normal lipid metabolism and autosomal dominant inheritance, between Type A IR due to INSR mutations and Type A IR due to other factors. However, our analysis revealed that the extent of growth retardation during the fetal period is correlated with the severity of insulin signaling impairment. CONCLUSIONS The present study details the clinical features of four patients with genetically proven Type A IR. Further accumulation of genetically proven cases and long-term treatment prognoses following early diagnosis are required to further elucidate the dynamics of this disease.
Collapse
Affiliation(s)
- Kei Takasawa
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsumi Tsuji-Hosokawa
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shigeru Takishima
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Pediatrics, Soka Municipal Hospital, Soka, Japan
| | - Yasunori Wada
- Department of Pediatrics, Iwate Medical University School of Medicine, Morioka, Japan
| | - Keisuke Nagasaki
- Division of Pediatrics, Department of Homeostatic Regulation and Development, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Sumito Dateki
- Department of Pediatrics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Chikahiko Numakura
- Department of Pediatrics, Yamagata University School of Medicine, Yamagata, Japan
| | - Atsushi Hijikata
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | - Tsuyoshi Shirai
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | - Kenichi Kashimada
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
9
|
Gong Y, Zhai G, Su J, Yang B, Jin J, Liu H, Yin Z, Xie S, Han D. Different roles of insulin receptor a and b in maintaining blood glucose homeostasis in zebrafish. Gen Comp Endocrinol 2018; 269:33-45. [PMID: 30102881 DOI: 10.1016/j.ygcen.2018.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/20/2018] [Accepted: 08/07/2018] [Indexed: 12/13/2022]
Abstract
An inability of insulin to signal glycolysis and gluconeogenesis would largely result in type 2 diabetes. In this study, the physiological roles of zebrafish insulin receptor a and b in maintaining blood glucose homeostasis were characterized. We observed that, though blood glucose in insra-/- fish and insrb-/- fish were comparable with the control siblings at 0 h postprandium (hpp), the most evident hyperglycemia have been observed in insra-/- fish from 1 hpp to 3 hpp. A mild increase of blood glucose in insrb-/- fish has been seen only at 1.5 hpp. The down-regulated expressions of glycolytic enzymes were observed in insra-/- fish and insrb-/- fish liver and muscle, together with the significantly decreased activities or concentrations of glycolytic enzymes. These results suggest that both Insra and Insrb were critical in glycolysis. Intriguingly, the up-regulated expressions of gluconeogenic enzymes, pck1 and g6pca.1, along with the elevated enzyme activities, were observed in insra-/- fish liver at 1 hpp and 1.5 hpp. Compared with the control fish, the elevated plasma insulin and lowered phosphorylated AKT were observed in insra-/- fish and insrb-/- fish, suggesting that there is an insulin resistance in insra-/- fish and insrb-/- fish. The increased levels of both transcriptions of foxo1a and Foxo1a protein abundance in the insra-/- fish liver have been found. When insra-/- fish treated with the Foxo1 inhibitor, the postprandial blood glucose levels could be normalized, accompanied with the normalized expression levels and enzyme activities of both pck1 and g6pca.1. Therefore, Insra and Insrb demonstrate a similar role in promoting glycolysis, but Insra is involved in inhibiting gluconeogenesis via down-regulating the expression of foxo1a. Our results indicate that Insra and Insrb exhibit diversified functions in maintaining glucose homeostasis in zebrafish.
Collapse
Affiliation(s)
- Yulong Gong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Zhai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jingzhi Su
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Binyuan Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junyan Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Haokun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Shouqi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Dong Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.
| |
Collapse
|
10
|
Yang BY, Zhai G, Gong YL, Su JZ, Peng XY, Shang GH, Han D, Jin JY, Liu HK, Du ZY, Yin Z, Xie SQ. Different physiological roles of insulin receptors in mediating nutrient metabolism in zebrafish. Am J Physiol Endocrinol Metab 2018; 315:E38-E51. [PMID: 29351486 DOI: 10.1152/ajpendo.00227.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Insulin, the most potent anabolic hormone, is critical for somatic growth and metabolism in vertebrates. Type 2 diabetes, which is the primary cause of hyperglycemia, results from an inability of insulin to signal glycolysis and gluconeogenesis. Our previous study showed that double knockout of insulin receptor a ( insra) and b ( insrb) caused β-cell hyperplasia and lethality from 5 to 16 days postfertilization (dpf) (Yang BY, Zhai G, Gong YL, Su JZ, Han D, Yin Z, Xie SQ. Sci Bull (Beijing) 62: 486-492, 2017). In this study, we characterized the physiological roles of Insra and Insrb, in somatic growth and fueling metabolism, respectively. A high-carbohydrate diet was provided for insulin receptor knockout zebrafish from 60 to 120 dpf to investigate phenotype inducement and amplification. We observed hyperglycemia in both insra-/- fish and insrb-/- fish. Impaired growth hormone signaling, increased visceral adiposity, and fatty liver were detected in insrb-/- fish, which are phenotypes similar to the lipodystrophy observed in mammals. More importantly, significantly diminished protein levels of P-PPARα, P-STAT5, and IGF-1 were also observed in insrb-/- fish. In insra-/- fish, we observed increased protein content and decreased lipid content of the whole body. Taken together, although Insra and Insrb show overlapping roles in mediating glucose metabolism through the insulin-signaling pathway, Insrb is more prone to promoting lipid catabolism and protein synthesis through activation of the growth hormone-signaling pathway, whereas Insra primarily acts to promote lipid synthesis via glucose utilization.
Collapse
Affiliation(s)
- Bin-Yuan Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan , China
- University of Chinese Academy of Sciences , Beijing , China
| | - Gang Zhai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan , China
| | - Yu-Long Gong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan , China
- University of Chinese Academy of Sciences , Beijing , China
| | - Jing-Zhi Su
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan , China
- University of Chinese Academy of Sciences , Beijing , China
| | - Xu-Yan Peng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan , China
- University of Chinese Academy of Sciences , Beijing , China
| | - Guo-Hui Shang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan , China
- University of Chinese Academy of Sciences , Beijing , China
| | - Dong Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan , China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province , Wuhan , China
| | - Jun-Yan Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan , China
| | - Hao-Kun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan , China
| | - Zhen-Yu Du
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University , Shanghai , China
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan , China
| | - Shou-Qi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan , China
| |
Collapse
|
11
|
Chen X, Wang H, Wu B, Dong X, Liu B, Chen H, Lu Y, Zhou W, Yang L. One Novel 2.43Kb Deletion and One Single Nucleotide Mutation of the INSR Gene in a Chinese Neonate with Rabson-Mendenhall Syndrome. J Clin Res Pediatr Endocrinol 2018; 10:183-187. [PMID: 29082893 PMCID: PMC5985390 DOI: 10.4274/jcrpe.5080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mutations in the insulin receptor (INSR) gene are responsible for Donohue syndrome (DS) and Rabson-Mendenhall syndrome (RMS). Insulin resistance is a feature of both diseases. Our patient was a Chinese neonate suffering from abnormal glucose homeostasis, hyperinsulinemia, dry skin, heavy hair, growth retardation and an elevated testosterone level. To search for candidate point mutations, small insertions or deletions and copy number variants, 2742 inherited disease-gene panel sequencing was performed. One pathogenic mutation (c.3355C>T, p.Arg1119Trp) and a novel 2.43Kb deletion (chr19:7150507-7152938) in INSR were found. The patient was diagnosed as RMS. Sanger sequencing and real-time quantitative polymerase chain reaction (PCR) confirmed the missense variant and microdeletion, respectively. We therefore supposed that these variants were candidate mutations in this case. We report a novel 2.43Kb deletion in INSR gene and provide further proof of the power of next generation sequencing in rare disease diagnosis.
Collapse
Affiliation(s)
- Xiang Chen
- Children’s Hospital of Fudan University, Clinic of Neonatology, Shanghai, China
| | - Huijun Wang
- Children’s Hospital of Fudan University, Key Laboratory of Birth Defects, Shanghai, China
| | - Bingbing Wu
- Children’s Hospital of Fudan University, Key Laboratory of Birth Defects, Shanghai, China
| | - Xinran Dong
- Children’s Hospital of Fudan University, Key Laboratory of Birth Defects, Shanghai, China
| | - Bo Liu
- Children’s Hospital of Fudan University, Key Laboratory of Birth Defects, Shanghai, China
| | - Hongbo Chen
- Children’s Hospital of Fudan University, Key Laboratory of Birth Defects, Shanghai, China
| | - Yulan Lu
- Children’s Hospital of Fudan University, Key Laboratory of Birth Defects, Shanghai, China
| | - Wenhao Zhou
- Children’s Hospital of Fudan University, Clinic of Neonatology, Shanghai, China,Children’s Hospital of Fudan University, Key Laboratory of Birth Defects, Shanghai, China,Children’s Hospital of Fudan University, Key Laboratory of Neonatal Diseases, Shanghai, China
| | - Lin Yang
- Children’s Hospital of Fudan University, Key Laboratory of Birth Defects, Shanghai, China,Children’s Hospital of Fudan University, Clinic of Endocrinology, Genetics and Metabolic Diseases, Shanghai, China,* Address for Correspondence: Children’s Hospital of Fudan University, Key Laboratory of Birth Defects; Clinic of Endocrinology, Genetics and Metabolic Diseases, Shanghai, China Phone: +86-21-64931003 E-mail:
| |
Collapse
|
12
|
Mecasermin in Insulin Receptor-Related Severe Insulin Resistance Syndromes: Case Report and Review of the Literature. Int J Mol Sci 2018; 19:ijms19051268. [PMID: 29695048 PMCID: PMC5983765 DOI: 10.3390/ijms19051268] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 02/07/2023] Open
Abstract
Mutations in the insulin receptor (INSR) gene underlie rare severe INSR-related insulin resistance syndromes (SIR), including insulin resistance type A, Rabson–Mendenhall syndrome and Donohue syndrome (DS), with DS representing the most severe form of insulin resistance. Treatment of these cases is challenging, with the majority of DS patients dying within the first two years of life. rhIGF-I (mecasermin) has been reported to improve metabolic control and increase lifespan in DS patients. A case report and literature review were completed. We present a case involving a male patient with DS, harbouring a homozygous mutation in the INSR gene (c.591delC). Initial rhIGF-I application via BID (twice daily) injection was unsatisfactory, but continuous subcutaneous rhIGF-I infusion via an insulin pump improved weight development and diabetes control (HbA1c decreased from 10 to 7.6%). However, our patient died at 22 months of age during the course of a respiratory infection in in Libya. Currently available data in the literature comprising more than 30 treated patients worldwide seem to support a trial of rhIGF-I in SIR. rhIGF-I represents a treatment option for challenging SIR cases, but careful consideration of the therapeutic benefits and the burden of the disease is warranted. Continuous application via pump might be advantageous compared to single injections.
Collapse
|
13
|
Quaglia A, Roberts EA, Torbenson M. Developmental and Inherited Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2018:111-274. [DOI: 10.1016/b978-0-7020-6697-9.00003-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
14
|
Falik-Zaccai TC, Barsheshet Y, Mandel H, Segev M, Lorber A, Gelberg S, Kalfon L, Ben Haroush S, Shalata A, Gelernter-Yaniv L, Chaim S, Raviv Shay D, Khayat M, Werbner M, Levi I, Shoval Y, Tal G, Shalev S, Reuveni E, Avitan-Hersh E, Vlodavsky E, Appl-Sarid L, Goldsher D, Bergman R, Segal Z, Bitterman-Deutsch O, Avni O. Sequence variation in PPP1R13L results in a novel form of cardio-cutaneous syndrome. EMBO Mol Med 2017; 9:319-336. [PMID: 28069640 PMCID: PMC5331242 DOI: 10.15252/emmm.201606523] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is a life-threatening disorder whose genetic basis is heterogeneous and mostly unknown. Five Arab Christian infants, aged 4-30 months from four families, were diagnosed with DCM associated with mild skin, teeth, and hair abnormalities. All passed away before age 3. A homozygous sequence variation creating a premature stop codon at PPP1R13L encoding the iASPP protein was identified in three infants and in the mother of the other two. Patients' fibroblasts and PPP1R13L-knocked down human fibroblasts presented higher expression levels of pro-inflammatory cytokine genes in response to lipopolysaccharide, as well as Ppp1r13l-knocked down murine cardiomyocytes and hearts of Ppp1r13l-deficient mice. The hypersensitivity to lipopolysaccharide was NF-κB-dependent, and its inducible binding activity to promoters of pro-inflammatory cytokine genes was elevated in patients' fibroblasts. RNA sequencing of Ppp1r13l-knocked down murine cardiomyocytes and of hearts derived from different stages of DCM development in Ppp1r13l-deficient mice revealed the crucial role of iASPP in dampening cardiac inflammatory response. Our results determined PPP1R13L as the gene underlying a novel autosomal-recessive cardio-cutaneous syndrome in humans and strongly suggest that the fatal DCM during infancy is a consequence of failure to regulate transcriptional pathways necessary for tuning cardiac threshold response to common inflammatory stressors.
Collapse
Affiliation(s)
- Tzipora C Falik-Zaccai
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel .,Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Yiftah Barsheshet
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Hanna Mandel
- Metabolic Disease Unit, Rambam Health Care Campus, Haifa, Israel.,Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Meital Segev
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Avraham Lorber
- Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel.,Department of Pediatric Cardiology, Rambam Health Care Campus, Haifa, Israel
| | - Shachaf Gelberg
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Limor Kalfon
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Shani Ben Haroush
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Adel Shalata
- The Winter Genetic Institute, Bnei Zion Medical Center, Haifa, Israel
| | | | - Sarah Chaim
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Dorith Raviv Shay
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Morad Khayat
- The Genetic Institute, Ha'emek Medical Center, Afula, Israel
| | - Michal Werbner
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Inbar Levi
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Yishay Shoval
- Institute of Human Genetics, Galilee Medical Center, Nahariya, Israel
| | - Galit Tal
- Metabolic Disease Unit, Rambam Health Care Campus, Haifa, Israel.,Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Stavit Shalev
- Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel.,The Genetic Institute, Ha'emek Medical Center, Afula, Israel
| | - Eli Reuveni
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | | | - Eugene Vlodavsky
- Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel.,Department of Pathology, Rambam Health Care Campus, Haifa, Israel
| | - Liat Appl-Sarid
- Department of Pathology, Galilee Medical Center, Nahariya, Israel
| | - Dorit Goldsher
- Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel.,Department of Diagnostic Imaging, Rambam Health Care Campus, Haifa, Israel
| | - Reuven Bergman
- Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel.,Department of Dermatology, Rambam Health Care Campus, Haifa, Israel
| | - Zvi Segal
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel.,Department of Ophthalmology, Galilee Medical Center, Nahariya, Israel
| | - Ora Bitterman-Deutsch
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel.,Dermatology Clinic, Galilee Medical Center, Nahariya, Israel
| | - Orly Avni
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| |
Collapse
|
15
|
Qin L, Li X, Hou Q, Wang H, Lou G, Li T, Wang L, Liu H, Li X, Liao S. Novel heterozygous mutations of the INSR gene in a familial case of Donohue syndrome. Clin Chim Acta 2017; 473:26-31. [DOI: 10.1016/j.cca.2017.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 08/07/2017] [Accepted: 08/09/2017] [Indexed: 10/19/2022]
|
16
|
Depletion of insulin receptors leads to β-cell hyperplasia in zebrafish. Sci Bull (Beijing) 2017; 62:486-492. [PMID: 36659257 DOI: 10.1016/j.scib.2017.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/04/2017] [Accepted: 01/04/2017] [Indexed: 01/21/2023]
Abstract
Hyperglycemia in type 2 diabetes results from an inability of insulin to regulate gluconeogenesis. To characterize the role of the insulin/insulin receptor pathway in glycometabolism and type 2 diabetes, we created a zebrafish model in which insulin receptors a and b (insra and insrb) have been ablated. We first observed that insra and insrb were both expressed abundantly during embryonic development and in various adult tissues. Increased expression of insulin and number of β-cells were observed in insra-/-/insrb-/- fish together with higher glucose in insra-/-, insrb-/-, or insra-/-/insrb-/- fish, indicating that insra and insrb were knocked out effectively. However, compared to the wild-type fish, insra-/-/insrb-/- fish died between 5 and 16days post-fertilization (dpf) with severe pericardial edema and increased level of cell apoptosis, which was not induced by increased total body glucose content. Increased gluconeogenesis and decreased glycolysis were also observed in both single and double knockout fish, but no mortality or malformation was observed in single knockout fish. Given the importance of insulin receptors in glucose homeostasis and embryonic development, transcriptome analysis was used to provide an important model of defective insulin signaling and to study its developmental consequences in zebrafish. The results indicated that both insra and insrb played a pivotal role in glucose metabolism and embryonic development, and insra was more critical than insrb in the insulin signaling pathway.
Collapse
|
17
|
Hwang J, Kim YL, Kang S, Kim S, Kim SO, Lee JH, Han DH. Genetic analysis of hereditary gingival fibromatosis using whole exome sequencing and bioinformatics. Oral Dis 2016; 23:102-109. [DOI: 10.1111/odi.12583] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/14/2016] [Accepted: 08/30/2016] [Indexed: 12/22/2022]
Affiliation(s)
- J Hwang
- Department of IT Convergence and Engineering; Pohang University of Science and Technology; Pohang Korea
| | - Y-L Kim
- Department of Prosthodontics; College of Dentistry; Yonsei University; Seoul Korea
| | - S Kang
- Department of Prosthodontics; College of Dentistry; Yonsei University; Seoul Korea
| | - S Kim
- Department of Life Sciences; Pohang University of Science and Technology; Pohang Korea
| | - S-O Kim
- Department of Pediatric Dentistry; College of Dentistry; Yonsei University; Seoul Korea
| | - JH Lee
- Department of Prosthodontics; College of Dentistry; Yonsei University; Seoul Korea
| | - D-H Han
- Department of Prosthodontics; College of Dentistry; Yonsei University; Seoul Korea
| |
Collapse
|
18
|
Murray PG, Butcher I, Dunn WB, Stevens A, Perchard R, Hanson D, Whatmore A, Westwood M, Clayton PE. Metabolites involved in glycolysis and amino acid metabolism are altered in short children born small for gestational age. Pediatr Res 2016; 80:299-305. [PMID: 27057740 PMCID: PMC4939268 DOI: 10.1038/pr.2016.72] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 02/02/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND Later life metabolic dysfunction is a well-recognized consequence of being born small for gestational age (SGA). This study has applied metabolomics to identify whether there are changes in these pathways in prepubertal short SGA children and aimed to compare the intracellular and extracellular metabolome in fibroblasts derived from healthy children and SGA children with postnatal growth impairment. METHODS Skin fibroblast cell lines were established from eight SGA children (age 1.8-10.3 y) with failure of catch-up growth and from three healthy control children. Confluent cells were incubated in serum-free media and the spent growth medium (metabolic footprint), and intracellular metabolome (metabolic fingerprint) were analyzed by gas-chromatography mass spectrometry. RESULTS Nineteen metabolites were significantly altered between SGA and control cell lines. The greatest fold difference (FD) was seen for alanine (fingerprint FD, SGA: control 0.3, P = 0.01 and footprint FD = 0.19, P = 0.01), aspartic acid (fingerprint FD = 5.21, P = 0.01), and cystine (footprint FD = 1.66, P = 0.02). Network analysis of the differentially expressed metabolites predicted inhibition of insulin as well as growth (ERK) signaling in SGA cells. CONCLUSION This study indicates that changes in cellular metabolism associated with both growth failure and insulin insensitivity are present in prepubertal short children born SGA.
Collapse
Affiliation(s)
- Philip G Murray
- Centres for Paediatrics and Child Health, Institute of Human Development, University of Manchester and Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Royal Manchester Children’s Hospital, Oxford Road, Manchester, M13 9WL, UK.
| | - Imogen Butcher
- Centres for Paediatrics and Child Health, Institute of Human Development, University of Manchester and Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Royal Manchester Children’s Hospital, Oxford Road, Manchester, M13 9WL, UK.
| | - Warwick B Dunn
- Centre for Advanced Discovery & Experimental Therapeutics (CADET), Institute of Human Development, University of Manchester and Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Nowgen Centre, Grafton Street, Manchester, M13 9WU, UK.
,Manchester Centre for Integrative Systems Biology, School of Chemistry, University of Manchester, Princess Street, Manchester, M1 7DN, UK
,School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Adam Stevens
- Centres for Paediatrics and Child Health, Institute of Human Development, University of Manchester and Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Royal Manchester Children’s Hospital, Oxford Road, Manchester, M13 9WL, UK.
| | - Reena Perchard
- Centres for Paediatrics and Child Health, Institute of Human Development, University of Manchester and Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Royal Manchester Children’s Hospital, Oxford Road, Manchester, M13 9WL, UK.
| | - Daniel Hanson
- Centres for Paediatrics and Child Health, Institute of Human Development, University of Manchester and Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Royal Manchester Children’s Hospital, Oxford Road, Manchester, M13 9WL, UK.
| | - Andrew Whatmore
- Centres for Paediatrics and Child Health, Institute of Human Development, University of Manchester and Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Royal Manchester Children’s Hospital, Oxford Road, Manchester, M13 9WL, UK.
| | - Melissa Westwood
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester and Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, St Mary’s Hospital, Manchester, Oxford Road, Manchester, M13 9WL, UK.
| | - Peter E Clayton
- Centres for Paediatrics and Child Health, Institute of Human Development, University of Manchester and Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Royal Manchester Children’s Hospital, Oxford Road, Manchester, M13 9WL, UK.
| |
Collapse
|
19
|
Azzabi O, Jilani H, Rejeb I, Siala N, Elaribi Y, Hizem S, Selmi I, Halioui S, Lascols O, Jemaa LB, Maherzi A. Arg924X homozygous mutation in insulin receptor gene in a Tunisian patient with Donohue syndrome. J Pediatr Endocrinol Metab 2016; 29:753-6. [PMID: 26974131 DOI: 10.1515/jpem-2015-0232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 01/15/2016] [Indexed: 11/15/2022]
Abstract
Donohue syndrome (DS) is a rare and lethal autosomal recessive disease caused by mutations in the insulin receptor (INSR) gene, manifesting marked insulin resistance, severe growth retardation, hypertrichosis, and characteristic dysmorphic features. We describe a new case of Donohue syndrome born at 37 weeks' gestation of unrelated parents and presented with intra-uterine growth retardation, nipple hypertrophy, macropenis, distended abdomen, hirsutism and dysmorphic features. The clinical course showed failure to thrive, and episodes of alternating hypoglycemia and hyperglycemia. Laboratory tests revealed direct hyperbilirubinemia. The diagnosis of Donohue syndrome was established based on the above clinical characteristics and determination of the INSR mutation. He was found to have homozygous nonsense mutation c. 2270 C>T (Arg924X) at exon 14 of the INSR gene. He later developed enterocolitis and died at 3 months old. Prenatal diagnosis was performed for the family via chorionic villous biopsy. We try to explain gastrointestinal dysfunction seen in our patient.
Collapse
|
20
|
Huggard D, Stack T, Satas S, Gorman CO. Donohue syndrome and use of continuous subcutaneous insulin pump therapy. BMJ Case Rep 2015; 2015:bcr-2015-210019. [PMID: 26508115 DOI: 10.1136/bcr-2015-210019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Donohue syndrome is a rare autosomal recessive condition caused by severe loss-of-function mutations in the insulin receptor (INSR) gene. The diagnosis is made on clinical, biochemical and genetic grounds. Mutations are found on chromosome 19p13.2, and code for mutations in the INSR gene. Treatment is challenging and often unsuccessful, and relies on maintaining normoglycaemia and avoiding fasting; in some patients, recombinant human insulin-like growth factor (rhIGF-1) has been trialled. The prognosis is poor, with most babies dying in infancy. Ethically, it is important to consider the benefit versus burden of treatment, the quality of life of the surviving patient and the parents' wishes, when making decisions regarding withholding or withdrawing care.
Collapse
Affiliation(s)
- Dean Huggard
- Department of Neonatology, University Hospital Limerick, Limerick, Ireland
| | - Tom Stack
- Department of Neonatology, University Hospital Limerick, Limerick, Ireland
| | - Saulius Satas
- Department of Neonatology, University Hospital Limerick, Limerick, Ireland
| | - Clodagh O Gorman
- Department of Paediatrics, The Children's Ark, Limerick, Ireland Graduate Entry Medical School, Centre for Interventions in Infection, Inflammation & Immunity (4i), Limerick, Ireland
| |
Collapse
|