1
|
Balanyà-Segura M, Polishchuk A, Just-Borràs L, Cilleros-Mañé V, Silvera C, Jami-ElHirchi M, Pinent M, Ardévol A, Tomàs M, Lanuza MA, Hurtado E, Tomàs J. Protective effects of grape seed procyanidin extract on neurotrophic and muscarinic signaling pathways in the aging neuromuscular junction. Food Funct 2025; 16:3575-3590. [PMID: 40231589 DOI: 10.1039/d5fo00286a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
At the neuromuscular junction (NMJ), which coordinates movement, postsynaptic-derived neurotrophic factors have neuroprotective functions and retrogradely regulate the exocytotic machinery involved in neurotransmitter release. In parallel, presynaptic autocrine muscarinic signaling plays a fundamental modulatory role in this synapse. We previously found that these signaling pathways are impaired in the aged neuromuscular system. In this follow-up study, we investigated an anti-aging strategy using grape seed procyanidin extract (GSPE), a common dietary antioxidant known for its neuroprotective properties in various pathologies, but its effects on the aged neuromuscular system remain unexplored. This study analyses whether GSPE can mitigate age-associated impairments in neurotrophic and muscarinic signaling within the neuromuscular system. We assessed the expression (protein levels) and activation (phosphorylation) of the key proteins in the brain-derived-neurotrophic-factor (BDNF)/neurotrophin 4 (NT-4) and muscarinic pathways in the extensor digitorum longus (EDL) muscles of aged rats, with comparisons to GSPE-treated aged rats and young controls. The results demonstrate that GSPE treatment prevents the most relevant aging-induced changes in neurotrophic and muscarinic receptor isoforms, downstream protein kinases, and their targets in the neurotransmitter exocytotic machinery. Nevertheless, GSPE was less effective at preventing alterations in some other proteins within these pathways, such as calcium channels, and did not modify several other molecules involved in these pathways, which remain unchanged during aging. Overall, this study highlights the neuroprotective potential of GSPE in preventing fundamental age-related molecular changes at the NMJ, which helps improve functionality and may increase the quality of life and lifespan in aged individuals.
Collapse
Affiliation(s)
- Marta Balanyà-Segura
- Universitat Rovira i Virgili, Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Sant Llorenç 21, 43201 Reus, Spain.
| | - Aleksandra Polishchuk
- Universitat Rovira i Virgili, Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Sant Llorenç 21, 43201 Reus, Spain.
| | - Laia Just-Borràs
- Universitat Rovira i Virgili, Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Sant Llorenç 21, 43201 Reus, Spain.
| | - Víctor Cilleros-Mañé
- Universitat Rovira i Virgili, Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Sant Llorenç 21, 43201 Reus, Spain.
| | - Carolina Silvera
- Universitat Rovira i Virgili, Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Sant Llorenç 21, 43201 Reus, Spain.
| | - Meryem Jami-ElHirchi
- Universitat Rovira i Virgili, Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Sant Llorenç 21, 43201 Reus, Spain.
| | - Montserrat Pinent
- Universitat Rovira i Virgili, MoBioFood Research Group, Campus Sescelades, Marcel.lí Domingo 1, 43007 Tarragona, Spain.
| | - Anna Ardévol
- Universitat Rovira i Virgili, MoBioFood Research Group, Campus Sescelades, Marcel.lí Domingo 1, 43007 Tarragona, Spain.
| | - Marta Tomàs
- Universitat Rovira i Virgili, Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Sant Llorenç 21, 43201 Reus, Spain.
| | - Maria A Lanuza
- Universitat Rovira i Virgili, Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Sant Llorenç 21, 43201 Reus, Spain.
| | - Erica Hurtado
- Universitat Rovira i Virgili, Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Sant Llorenç 21, 43201 Reus, Spain.
| | - Josep Tomàs
- Universitat Rovira i Virgili, Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Sant Llorenç 21, 43201 Reus, Spain.
| |
Collapse
|
2
|
Petkova MK, Grozeva NH, Tzanova MT, Todorova MH. A Review of Phytochemical and Pharmacological Studies on Galium verum L., Rubiaceae. Molecules 2025; 30:1856. [PMID: 40333892 PMCID: PMC12029887 DOI: 10.3390/molecules30081856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/04/2025] [Accepted: 04/06/2025] [Indexed: 05/09/2025] Open
Abstract
Galium verum (Yellow Bedstraw) is a rhizomatous perennial herb belonging to the Rubiaceae family. It is native to Eurasia and Africa but has also been introduced to southern Canada and the northern U.S. Widely used in traditional medicine, G. verum has been recognized for its diuretic, anti-inflammatory, antimicrobial, analgesic, and anticancer properties. Phytochemical studies have shown that the plant is rich in significant bioactive compounds, such as flavonoids, phenolic acids, iridoids, anthraquinones, phytosterols, coumarins, and tannins. Research suggests that G. verum exhibits strong antioxidant activity, protecting cells from oxidative stress and inflammation. Its antimicrobial potential has been demonstrated against various bacterial and fungal pathogens, supporting its traditional use in wound healing and infection treatment. Moreover, modern studies indicate its cytotoxic effects on cancer cells, suggesting potential applications in oncology. Additionally, its hepatoprotective and neuroprotective properties highlight its promise for treating metabolic and neurodegenerative disorders. Despite its well-known therapeutic potential, further studies are required to fully clarify its mechanisms of action and ensure its safety for medicinal use. Given the variety of bioactive compounds found in G. verum and their pharmacological benefits, this review emphasizes the importance of this species as a valuable medicinal plant, encouraging further scientific research for its application in pharmacology.
Collapse
Affiliation(s)
- Margarita Koleva Petkova
- Department of Biological Sciences, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Neli Hristova Grozeva
- Department of Biological Sciences, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Milena Tankova Tzanova
- Department of Biological Sciences, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Mima Hristova Todorova
- Department of Plant Breeding, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria;
| |
Collapse
|
3
|
Wu R, Yu H, Xu J, Tan Z, Lan Y, Shi D. Effects of acute low intensity aerobics and blueberry juice on arterial stiffness in young adults. NPJ Sci Food 2025; 9:47. [PMID: 40169604 PMCID: PMC11962078 DOI: 10.1038/s41538-025-00408-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/19/2025] [Indexed: 04/03/2025] Open
Abstract
Arterial stiffness, a cardiovascular disease (CVD) predictor starting from youth, is under-researched in young adults. Low-intensity aerobic exercise (LAE) is generally more accessible than higher-intensity exercise and may be more sustainable for young individuals. Blueberries, renowned for vascular health benefits, may reduce arterial stiffness. This study examines the effects of LAE and blueberry juice on arterial stiffness in 48 young adults. Participants were randomized into LAE, low-, mid-, or high-volume blueberry juice (LB, MB, HB), LAE + LB, LAE + MB, LAE + HB, and control groups. Arterial stiffness was measured at baseline and at 15-, 30-, 45-, and 60 min post-intervention. Blood samples were collected pre-intervention and 30-min post-intervention for metabolomic analysis. Repeated ANOVA revealed LAE + MB significantly reduced arterial stiffness. Metabolomic analysis revealed changes in linoleic acid, sphingolipid, phenylalanine, nicotinate and nicotinamide, glycerophospholipid, and lysine degradation metabolic pathways. These findings suggest a feasible exercise-diet strategy for CVD prevention in young adults and provide metabolic insights into the mechanisms.
Collapse
Affiliation(s)
- Ruisi Wu
- Changchun Normal University, Changchun, Jilin, 130032, China
| | - Huali Yu
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun, 130024, China
| | - Jiayuan Xu
- Tonghua Changbaishan Wild Economic Plant Research Institute, Tonghua, Jilin, 134100, China
| | - Zhiqiang Tan
- Tonghua Changbaishan Wild Economic Plant Research Institute, Tonghua, Jilin, 134100, China
| | - Yongsheng Lan
- Changchun Normal University, Changchun, Jilin, 130032, China.
| | - Dongfang Shi
- Changchun Normal University, Changchun, Jilin, 130032, China.
| |
Collapse
|
4
|
Trang Thuy NN, Men TT. Phytochemical and Bioactive Analysis of Extracted Brown Macroalgae ( Dictyota implexa) Collected in Vietnam. Biochem Res Int 2025; 2025:9461117. [PMID: 40191803 PMCID: PMC11972136 DOI: 10.1155/bri/9461117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 02/26/2025] [Indexed: 04/09/2025] Open
Abstract
Brown algae are considered a marine algae resource for human health. This study investigated ethanol extract's chemical composition and biological activity from brown algae Dictyota implexa. The extract from D. implexa was examined for total contents of quercetin, tannic acid, phenolic, flavonoid, polysaccharides, agar, and fucoidan, and the antioxidant, anti-inflammatory, antibacterial, cytotoxic, and α-amylase inhibitory activities of the crude extract were determined. Results revealed the presence of a source of phenolic (85.95 ± 1.21 mg GAE/g of the sample), flavonoid (245.6 ± 2.83 mg QE/g of the sample), and tannin (172.179 mg/g DW) compounds in the extract. Evaluating antioxidant activity proved the ethanol extract of D. implexa possessed the highest activity on two testing methods of DPPH scavenging capacity and reducing power. Besides, the anti-inflammatory activity was potent in the extract with an IC50 value of 9.95 ± 1.51 μg/mL. Concerning antimicrobial activities, the ethanol extract of D. implexa (70 mg/mL) showed potential inhibitory ability against E. coli and B. cereus. Moreover, the algal extract displayed cytotoxic activity against HeLa cells and inhibited α-amylase activity with an IC50 value of 276.82 μg/mL. The current findings demonstrated that exploring novel natural resources offers a promising avenue for advancements in human health and economic well-being.
Collapse
Affiliation(s)
- Nguyen Ngoc Trang Thuy
- Faculty of Food Technology Biotechnology and Chemical Technology, Can Tho University of Technology, Can Tho, Vietnam
- Institute of Food and Biotechnology, Can Tho University, Can Tho, Vietnam
| | - Tran Thanh Men
- College of Natural Sciences, Can Tho University, Can Tho, Vietnam
| |
Collapse
|
5
|
Tie F, Gao Y, Ren L, Wu Y, Hu N, Dong Q, Wang H. B-Type Trimeric Procyanidins Attenuate Nonalcoholic Hepatic Steatosis Through AMPK/mTOR Signaling Pathway in Oleic Acid-Induced HepG2 Cells and High-Fat Diet- Fed Zebrafish. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2025; 80:44. [PMID: 39847202 PMCID: PMC11758349 DOI: 10.1007/s11130-024-01262-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/29/2024] [Indexed: 01/24/2025]
Abstract
NAFLD is one of the most common and rapidly increasing liver diseases. Procyanidin C1 and procyanidin C2, B-type trimeric procyanidins, show beneficial effects on regulating lipid metabolism. However, the mechanism underlying these effects remain elusive. Therefore, we investigated the anti-NAFLD effects and mechanisms of procyanidin C1 and procyanidin C2 on HFD- induced zebrafish and OA-treated HepG2 cells. Network pharmacology, molecular docking and molecular dynamics simulations were used to predict potential targets and analyze intermolecular forces. The results demonstrated that procyanidin C1 and procyanidin C2 significantly reduce lipid accumulation and oxidative stress in both HFD-induced zebrafish and OA-treated HepG2 cell. And, treatment with procyanidin C1 and procyanidin C2 significantly enhance fatty acid oxidation and improve mitochondria function. Furthermore, procyanidin C1 and procyanidin C2 increased phosphorylated AMPKα levels and inhibited phosphorylated mTOR, along with downstream lipogenic proteins such as SREBP-1c, FAS, ACC, SCD-1 and PPARγ.
Collapse
Affiliation(s)
- Fangfang Tie
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, 810008, P.R. China
| | - Yidan Gao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, 810008, P.R. China
| | - Lichengcheng Ren
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, 810008, P.R. China
| | - Yun Wu
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, 810008, P.R. China
| | - Na Hu
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, 810008, P.R. China
| | - Qi Dong
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, 810008, P.R. China
| | - Honglun Wang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, 810008, P.R. China.
| |
Collapse
|
6
|
Yin Y, Zhang L, Zhang J, Zhong Y, Wang L. MdFC2, a ferrochelatase gene, is a positive regulator of ALA-induced anthocyanin accumulation in apples. JOURNAL OF PLANT PHYSIOLOGY 2025; 304:154381. [PMID: 39612779 DOI: 10.1016/j.jplph.2024.154381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/16/2024] [Accepted: 11/16/2024] [Indexed: 12/01/2024]
Abstract
5-Aminolevulinic acid (ALA), a key biosynthetic precursor of tetrapyrrole compounds, significantly induces anthocyanin accumulation in apple (Malus × domestica Borkh.) as well as other fruits. Although the molecular mechanisms of ALA-induced anthocyanin accumulation have been reported, it remains unknown whether the metabolism of ALA is involved in ALA-induced anthocyanin accumulation. Here, we found that MdFC2, a gene encoding ferrochelatase (MdFC2), which catalyzes the generation of heme from protoporphyrin lX (PPIX), may play an important role in ALA-induced apple anthocyanin accumulation. Exogenous ALA induced the MdFC2 expression as well as anthocyanin accumulation in apple leaves, calli, and isolated fruits. MdFC2 overexpression in apple leaves or calli significantly enhanced anthocyanin accumulation as well as the expression of genes involved in anthocyanin biosynthesis, while RNA interference MdFC2 inhibited anthocyanin accumulation and the expression of genes involved in anthocyanin biosynthesis. When 2,2'-dithiodipyridine, an inhibitor of MdFC2, was added, ALA-induced anthocyanin accumulation was blocked. These results suggest that ALA-induced anthocyanin accumulation of apple may be regulated by heme or its biosynthesis, among which MdFC2 or MdFC2 may play a critical positive regulatory role. This finding provides a novel insight to explore the mechanisms of ALA-regulating physiological processes and better application of ALA in high-quality fruit production.
Collapse
Affiliation(s)
- Yifan Yin
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liuzi Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiangting Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Zhong
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Liangju Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
7
|
Zeng Y, Zhao L, Wang K, Renard CMGC, Le Bourvellec C, Hu Z, Liu X. A-type proanthocyanidins: Sources, structure, bioactivity, processing, nutrition, and potential applications. Compr Rev Food Sci Food Saf 2024; 23:e13352. [PMID: 38634188 DOI: 10.1111/1541-4337.13352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/19/2024]
Abstract
A-type proanthocyanidins (PAs) are a subgroup of PAs that differ from B-type PAs by the presence of an ether bond between two consecutive constitutive units. This additional C-O-C bond gives them a more stable and hydrophobic character. They are of increasing interest due to their potential multiple nutritional effects with low toxicity in food processing and supplement development. They have been identified in several plants. However, the role of A-type PAs, especially their complex polymeric form (degree of polymerization and linkage), has not been specifically discussed and explored. Therefore, recent advances in the physicochemical and structural changes of A-type PAs and their functional properties during extraction, processing, and storing are evaluated. In addition, discussions on the sources, structures, bioactivities, potential applications in the food industry, and future research trends of their derivatives are highlighted. Litchis, cranberries, avocados, and persimmons are all favorable plant sources. Α-type PAs contribute directly or indirectly to human nutrition via the regulation of different degrees of polymerization and bonding types. Thermal processing could have a negative impact on the amount and structure of A-type PAs in the food matrix. More attention should be focused on nonthermal technologies that could better preserve their architecture and structure. The diversity and complexity of these compounds, as well as the difficulty in isolating and purifying natural A-type PAs, remain obstacles to their further applications. A-type PAs have received widespread acceptance and attention in the food industry but have not yet achieved their maximum potential for the future of food. Further research and development are therefore needed.
Collapse
Affiliation(s)
- Yu Zeng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | | | | | - Zhuoyan Hu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
8
|
Kostecka-Gugała A. Quinces ( Cydonia oblonga, Chaenomeles sp., and Pseudocydonia sinensis) as Medicinal Fruits of the Rosaceae Family: Current State of Knowledge on Properties and Use. Antioxidants (Basel) 2024; 13:71. [PMID: 38247495 PMCID: PMC10812678 DOI: 10.3390/antiox13010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024] Open
Abstract
In recent years, the evaluation of many plant-derived compounds as potential new drugs or functional foods has become an active research topic. The morphological characteristics of quinces of the genera Cydonia sp., Chaenomeles sp., and Pseuocydonia sp. are largely similar, which is why these fruits are often confused. Although they have been appreciated in Asia for centuries as a valuable component of local ethnomedicine, they are less known in Western countries, and scientific knowledge about their health benefits remains fragmentary. This literature review summarizes studies on the content of chemical compounds responsible for the health-promoting and functional properties of the quince fruit. It focuses on the content of carotenoids, vitamins, minerals, and carboxylic acids, although the main emphasis is on the content and diversity of bioactive polyphenols, which are extremely abundant in these fruits. The quince fruits are rich in antioxidants and compounds with proven anti-inflammatory, anticancer, antiallergic, and immunomodulatory effects. Their phytochemicals effectively regulate glycemia and improve the blood lipid profile, suggesting potential antidiabetic and cardioprotective benefits. Analysis of chemical characteristics showed that the Chaenomeles fruits. are underestimated as functional food ingredients. Studies on the molecular effects of their bioactive compounds and species-specific genomic analyses are sorely lacking in the scientific literature.
Collapse
Affiliation(s)
- Anna Kostecka-Gugała
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120 Kraków, Poland
| |
Collapse
|
9
|
Guo Y, Li L, Yan S, Shi B. Plant Extracts to Alleviating Heat Stress in Dairy Cows. Animals (Basel) 2023; 13:2831. [PMID: 37760231 PMCID: PMC10525364 DOI: 10.3390/ani13182831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Heat stress (HS) in cows is a critical issue in the dairy industry. Dairy cows accumulate heat from body metabolism, along with that imposed by air temperature, humidity, air flow and solar radiation. HS in animals can occur during hot and humid summers when the ambient temperature is extremely high. Dairy cows have relatively high feed intakes and metabolic heat production and are thus susceptible to HS, leading to reductions in feed intake, lower milk yield, affected milk quality, reduced animal health and even shortening the productive lifespan of cows. Therefore, alleviating HS is a top priority for the dairy industry. Suitable plant extracts have advantages in safety, efficiency and few toxic side effects or residues for applications to alleviate HS in dairy cows. This paper reviews the effects of some plant extract products on alleviating HS in dairy cows and briefly discusses their possible mechanisms of action.
Collapse
Affiliation(s)
| | | | - Sumei Yan
- Key Laboratory of Animal Nutrition and Feed Science at University of Inner Mongolia Autonomous Region, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | | |
Collapse
|
10
|
Laanet PR, Saar-Reismaa P, Jõul P, Bragina O, Vaher M. Phytochemical Screening and Antioxidant Activity of Selected Estonian Galium Species. Molecules 2023; 28:molecules28062867. [PMID: 36985838 PMCID: PMC10056973 DOI: 10.3390/molecules28062867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The aim of the present study was to examine three different Galium species from the native population of Estonia, Galium verum, Galium aparine, and Galium mollugo, to characterise their non-volatile and volatile phytochemical composition and antioxidant activity. The main groups of bioactive compounds in the plants were quantified by colorimetric tests, showing high concentrations of polyphenols (up to 27.2 ± 1.5 mg GAE/g), flavonoids (up to 7.3 ± 0.5 mg QE/g) and iridoids (up to 40.8 ± 2.9 mg AE/g). The species were compared using HPLC-DAD-MS/MS, revealing some key differences in the phytochemical makeup of the extracts. The most abundant compound in the extracts of Galium verum blossoms and herb was found to be asperuloside, in Galium aparine herb, asperulosidic acid, and in Galium mollugo herb, chlorogenic acid. Additionally, the composition of volatile compounds was analysed by SPME-GC-MS. The degree of variability between the samples was high, but three volatiles, hexanal, anethole, and β-caryophyllene, were quantified (≥1%) in all analysed samples. The antioxidative activity of all extracts was evaluated using the ORACFL method, demonstrating that the Galium species from Estonia all exhibit strong antioxidant capacity (up to 9.3 ± 1.2 mg TE/g). Out of the extracts studied, Galium verum blossoms contained the highest amounts of bioactives and had the strongest antioxidant capacity.
Collapse
Affiliation(s)
- Pille-Riin Laanet
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Piret Saar-Reismaa
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
- HAN BioCentre, Laan van Scheut 2, 6525 EM Nijmegen, The Netherlands
| | - Piia Jõul
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Olga Bragina
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
- National Institute for Health Development, Hiiu 42, 11619 Tallinn, Estonia
| | - Merike Vaher
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| |
Collapse
|
11
|
Coupling Hydrophilic Interaction Chromatography and Reverse-Phase Chromatography for Improved Direct Analysis of Grape Seed Proanthocyanidins. Foods 2023; 12:foods12061319. [PMID: 36981246 PMCID: PMC10048310 DOI: 10.3390/foods12061319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/22/2023] Open
Abstract
Acid-catalyzed depolymerization is recognized as the most practical method for analyzing subunit composition and the polymerization degree of proanthocyanidins, involving purification by removing free flavan-3-ols, as well as acid-catalyzed cleavage and the identification of cleavage products. However, after the removal of proanthocyanidins with low molecular weights during purification, the formation of anthocyanidins from the extension subunits accompanying acid-catalyzed cleavage occurred. Thus, grape seed extract other than purified proanthocyanidins was applied to acid-catalyzed depolymerization. Hydrophilic interaction chromatography was developed to quantify free flavan-3-ols in grape seed extract to distinguish them from flavan-3-ols from terminal subunits of proanthocyanidins. Reverse-phase chromatography was used to analyze anthocyanidins and cleavage products at 550 and 280 nm, respectively. It is found that the defects of the recognized method did not influence the results of the subunit composition, but both altered the mean degree of polymerization. The established method was able to directly analyze proanthocyanidins in grape seed extract for higher accuracy and speed than the recognized method.
Collapse
|
12
|
Liu S, Cheng L, Liu Y, Zhan S, Wu Z, Zhang X. Relationship between Dietary Polyphenols and Gut Microbiota: New Clues to Improve Cognitive Disorders, Mood Disorders and Circadian Rhythms. Foods 2023; 12:foods12061309. [PMID: 36981235 PMCID: PMC10048542 DOI: 10.3390/foods12061309] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Cognitive, mood and sleep disorders are common and intractable disorders of the central nervous system, causing great inconvenience to the lives of those affected. The gut-brain axis plays a vital role in studying neurological disorders such as neurodegenerative diseases by acting as a channel for a bidirectional information exchange between the gut microbiota and the nervous system. Dietary polyphenols have received widespread attention because of their excellent biological activity and their wide range of sources, structural diversity and low toxicity. Dietary intervention through the increased intake of dietary polyphenols is an emerging strategy for improving circadian rhythms and treating metabolic disorders. Dietary polyphenols have been shown to play an essential role in regulating intestinal flora, mainly by maintaining the balance of the intestinal flora and enhancing host immunity, thereby suppressing neurodegenerative pathologies. This paper reviewed the bidirectional interactions between the gut microbiota and the brain and their effects on the central nervous system, focusing on dietary polyphenols that regulate circadian rhythms and maintain the health of the central nervous system through the gut-brain axis.
Collapse
Affiliation(s)
- Siyu Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Lu Cheng
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Shengnan Zhan
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
13
|
Redondo-Castillejo R, Garcimartín A, Hernández-Martín M, López-Oliva ME, Bocanegra A, Macho-González A, Bastida S, Benedí J, Sánchez-Muniz FJ. Proanthocyanidins: Impact on Gut Microbiota and Intestinal Action Mechanisms in the Prevention and Treatment of Metabolic Syndrome. Int J Mol Sci 2023; 24:ijms24065369. [PMID: 36982444 PMCID: PMC10049473 DOI: 10.3390/ijms24065369] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
The metabolic syndrome (MS) is a cluster of risk factors, such as central obesity, hyperglycemia, dyslipidemia, and arterial hypertension, which increase the probability of causing premature mortality. The consumption of high-fat diets (HFD) is a major driver of the rising incidence of MS. In fact, the altered interplay between HFD, microbiome, and the intestinal barrier is being considered as a possible origin of MS. Consumption of proanthocyanidins (PAs) has a beneficial effect against the metabolic disturbances in MS. However, there are no conclusive results in the literature about the efficacy of PAs in improving MS. This review allows a comprehensive validation of the diverse effects of the PAs on the intestinal dysfunction in HFD-induced MS, differentiating between preventive and therapeutic actions. Special emphasis is placed on the impact of PAs on the gut microbiota, providing a system to facilitate comparison between the studies. PAs can modulate the microbiome toward a healthy profile and strength barrier integrity. Nevertheless, to date, published clinical trials to verify preclinical findings are scarce. Finally, the preventive consumption of PAs in MS-associated dysbiosis and intestinal dysfunction induced by HFD seems more successful than the treatment strategy.
Collapse
Affiliation(s)
- Rocío Redondo-Castillejo
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Alba Garcimartín
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Marina Hernández-Martín
- Departmental Section of Physiology, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - María Elvira López-Oliva
- Departmental Section of Physiology, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Aránzazu Bocanegra
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: (A.B.); (F.J.S.-M.); Tel.: +34-394-1700 (A.B.); +34-913-941-828 (F.J.S.-M.)
| | - Adrián Macho-González
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Sara Bastida
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Juana Benedí
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Francisco J. Sánchez-Muniz
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: (A.B.); (F.J.S.-M.); Tel.: +34-394-1700 (A.B.); +34-913-941-828 (F.J.S.-M.)
| |
Collapse
|
14
|
Ji L, Deng H, Xue H, Wang J, Hong K, Gao Y, Kang X, Fan G, Huang W, Zhan J, You Y. Research progress regarding the effect and mechanism of dietary phenolic acids for improving nonalcoholic fatty liver disease via gut microbiota. Compr Rev Food Sci Food Saf 2023; 22:1128-1147. [PMID: 36717374 DOI: 10.1111/1541-4337.13106] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 02/01/2023]
Abstract
Phenolic acids (PAs), a class of small bioactive molecules widely distributed in food and mainly found as secondary plant metabolites, present significant advantages such as antioxidant activity and other health benefits. The global epidemic of nonalcoholic fatty liver disease (NAFLD) is becoming a serious public health problem. Existing studies showed that gut microbiota (GM) dysbiosis is highly associated with the occurrence and development of NAFLD. In recent years, progress has been made in the study of the relationship among PA compounds, GM, and NAFLD. PAs can regulate the composition and functions of the GM to promote human health, while GM can increase the dietary sources of PAs and improve its bioavailability. This paper discussed PAs, GM, and their interrelationship while introducing several representative dietary PA sources and examining the absorption and metabolism of PAs mediated by GM. It also summarizes the effect and mechanisms of PAs in improving and regulating NAFLD via GM and their metabolites. This helps to better evaluate the potential preventive effect of PAs on NAFLD via the regulation of GM and expands the utilization of PAs and PA-rich food resources.
Collapse
Affiliation(s)
- Lin Ji
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Huan Deng
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Huimin Xue
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Jiting Wang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Kexin Hong
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Yunxiao Gao
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Xiping Kang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Guanghe Fan
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Weidong Huang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Jicheng Zhan
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Yilin You
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Bioaccessibility and Bioavailability of Diet Polyphenols and Their Modulation of Gut Microbiota. Int J Mol Sci 2023; 24:ijms24043813. [PMID: 36835225 PMCID: PMC9961503 DOI: 10.3390/ijms24043813] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
It is generally accepted that diet-derived polyphenols are bioactive compounds with several potentially beneficial effects on human health. In general, polyphenols have several chemical structures, and the most representative are flavonoids, phenolic acids, and stilbenes. It should be noted that the beneficial effects of polyphenols are closely related to their bioavailability and bioaccessibility, as many of them are rapidly metabolized after administration. Polyphenols-with a protective effect on the gastrointestinal tract-promote the maintenance of the eubiosis of the intestinal microbiota with protective effects against gastric and colon cancers. Thus, the benefits obtained from dietary supplementation of polyphenols would seem to be mediated by the gut microbiota. Taken at certain concentrations, polyphenols have been shown to positively modulate the bacterial component, increasing Lactiplantibacillus spp. and Bifidobacterium spp. involved in the protection of the intestinal barrier and decreasing Clostridium and Fusobacterium, which are negatively associated with human well-being. Based on the diet-microbiota-health axis, this review aims to describe the latest knowledge on the action of dietary polyphenols on human health through the activity of the gut microbiota and discusses micro-encapsulation of polyphenols as a strategy to improve the microbiota.
Collapse
|
16
|
Bell S, Kunz A, Damerow L, Blanke M. [Effect of Soil Contamination on the Reflective Properties of Reflective Groundcovers]. ERWERBS-OBSTBAU 2023; 65:215-229. [PMID: 37006815 PMCID: PMC9812350 DOI: 10.1007/s10341-022-00799-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 11/05/2022] [Indexed: 06/19/2023]
Abstract
The objective of the present work was to study the effects of contamination on the reflective properties of groundcovers used for enhancing fruit colouration in the orchard. Contamination also affects longevity and possible sustainable re-use of materials. A white, woven textile (polypropylene Lumilys™) and silver aluminium foil were experimentally contaminated with soil, similar to the situation after an autumn storm in a fruit orchard. Clean material served as control.Using a spectrophotometer (StellarNet; Tampa, FL, USA), vertically directed (0°) and diffuse (45°) light reflection in the range of 500-850 nm was compared from clean and contaminated groundcover in the laboratory. Reflection from vertically directed aluminium foil exceeded that of Lumilys™; however, the highest reflection in all spectral measurements was at 45° (diffuse) from the clean woven textile, i.e., in all directions, and exceeded that of aluminium foil. In contrast, the contaminated vertically directed (0°) aluminium foil reflected less light than the clear foil but, surprisingly, reflected much more light at 45° than the clean foil. Both materials showed reflection peaks at 625-640 nm; light spectra and peaks remained unchanged irrespective of soil contamination.Light reflection in the visible range (PAR, 400-700 nm) was concomitantly measured in the field at CKA Klein-Altendorf near Bonn (50°N), Germany, at 0.5 m and 1 m height using a portable TRP‑3 light sensor (PP-Systems, Amesbury, MA, USA) on sunny and cloudy days at a solar angle of 49°. Surprisingly, in these field measurements, Lumilys and aluminium foil reflected most light in both directions (0° and 45°) when slightly to moderately contaminated. Only with heavy contamination did the reflection decrease. Both groundcovers reflected more light than the grass in alleyways of fruit orchards or open soil under the trees.UV‑B reflection (280-315 nm) was examined in parallel in the field using an X1 optometer (Gigahertz Optik, Türkenfels, Deutschland), as it enhances anthocyanin biosynthesis and red fruit colouration in combination with PAR and low temperature. Straight (0°) UV‑B reflection from aluminium foil exceeded that from white woven textile (Lumilys™) on both clear and overcast autumn days. As expected, straight (0°) UV‑B reflection from aluminium foil decreased with soil contamination to a certain extent, but it unexpectedly increased from the woven textile with soil contamination.Surface roughness in dependence of contamination was measured non-destructively by a profilometer type VR5200 (Keyence, Osaka, Japan). The roughness index, Sa, increased from 22 to 28 µm with soil contamination of the woven textile and from to 2 to 11 µm with aluminium foil, possibly explaining differences in the observed reflectivity.Overall, the expected severe decline in light reflection (PAR and UV-B) was not seen. In contrast, light (2-3 g soil/m2) and moderate (4-12 g soil/m2) contamination improved light reflection of PAR (400-700 nm) and UV‑B (280-315 nm) by woven textile (Lumilys™) and aluminum foil. Thus, with slight contamination the materials can be reused, whereas severe contamination (24-51 g soil/m2) reduces light reflection.
Collapse
Affiliation(s)
| | | | | | - Michael Blanke
- INRES-Gartenbauwissenschaften, Universität Bonn, Bonn, Deutschland
| |
Collapse
|
17
|
Yang Z, Dong H, Zhang S, Jiang J, Zhu H, Yang H, Li L. Isolation and identification of mycorrhizal helper bacteria of Vaccinium uliginosum and their interaction with mycorrhizal fungi. Front Microbiol 2023; 14:1180319. [PMID: 37143547 PMCID: PMC10151510 DOI: 10.3389/fmicb.2023.1180319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/28/2023] [Indexed: 05/06/2023] Open
Abstract
Mycorrhizal helper bacteria (MHB) can promote mycorrhizal fungal colonization and form mycorrhizal symbiosis structures. To investigate the effect of interactions between mycorrhizal beneficial microorganisms on the growth of blueberry, 45 strains of bacteria isolated from the rhizosphere soil of Vaccinium uliginosum were screened for potential MHB strains using the dry-plate confrontation assay and the bacterial extracellular metabolite promotion method. The results showed that the growth rate of mycelium of Oidiodendron maius 143, an ericoid mycorrhizal fungal strain, was increased by 33.33 and 77.77% for bacterial strains L6 and LM3, respectively, compared with the control in the dry-plate confrontation assay. In addition, the extracellular metabolites of L6 and LM3 significantly promoted the growth of O. maius 143 mycelium with an average growth rate of 40.9 and 57.1%, respectively, the cell wall-degrading enzyme activities and genes of O. maius 143 was significantly increased. Therefore, L6 and LM3 were preliminarily identified as potential MHB strains. In addition, the co-inoculated treatments significantly increased blueberry growth; increased the nitrate reductase, glutamate dehydrogenase, glutamine synthetase, and glutamate synthase activities in the leaves; and promoted nutrient uptake in blueberry. Based on the physiological, and 16S rDNA gene molecular analyses, we initially identified strain L6 as Paenarthrobacter nicotinovorans and LM3 as Bacillus circulans. Metabolomic analysis revealed that mycelial exudates contain large amounts of sugars, organic acids and amino acids, which can be used as substrates to stimulate the growth of MHB. In conclusion, L6 and LM3 and O. maius 143 promote each other's growth, while co-inoculation of L6 and LM3 with O. maius 143 can promote the growth of blueberry seedlings, providing a theoretical basis for further studies on the mechanism of ericoid mycorrhizal fungi-MHB-blueberry interactions. It laid the technical foundation for the exploitation of biocontrol strain resources and the development of biological fertilizer.
Collapse
Affiliation(s)
- Zhiyu Yang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Hui Dong
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Sai Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Jing Jiang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Haifeng Zhu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Hongyi Yang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
- *Correspondence: Hongyi Yang,
| | - Lili Li
- Institute of Forestry Science of Heilongjiang Province, Harbin, China
- Lili Li,
| |
Collapse
|
18
|
Feldman F, Koudoufio M, El-Jalbout R, Sauvé MF, Ahmarani L, Sané AT, Ould-Chikh NEH, N’Timbane T, Patey N, Desjardins Y, Stintzi A, Spahis S, Levy E. Cranberry Proanthocyanidins as a Therapeutic Strategy to Curb Metabolic Syndrome and Fatty Liver-Associated Disorders. Antioxidants (Basel) 2022; 12:antiox12010090. [PMID: 36670951 PMCID: PMC9854780 DOI: 10.3390/antiox12010090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/26/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023] Open
Abstract
While the prevalence of metabolic syndrome (MetS) is steadily increasing worldwide, no optimal pharmacotherapy is readily available to address its multifaceted risk factors and halt its complications. This growing challenge mandates the development of other future curative directions. The purpose of the present study is to investigate the efficacy of cranberry proanthocyanidins (PACs) in improving MetS pathological conditions and liver complications; C57BL/6J mice were fed either a standard chow or a high fat/high sucrose (HFHS) diet with and without PACs (200 mg/kg), delivered by daily gavage for 12 weeks. Our results show that PACs lowered HFHS-induced obesity, insulin resistance, and hyperlipidemia. In conjunction, PACs lessened circulatory markers of oxidative stress (OxS) and inflammation. Similarly, the anti-oxidative and anti-inflammatory capacities of PACs were noted in the liver in association with improved hepatic steatosis. Inhibition of lipogenesis and stimulation of beta-oxidation could account for PACs-mediated decline of fatty liver as evidenced not only by the expression of rate-limiting enzymes but also by the status of AMPKα (the key sensor of cellular energy) and the powerful transcription factors (PPARα, PGC1α, SREBP1c, ChREBP). Likewise, treatment with PACs resulted in the downregulation of critical enzymes of liver gluconeogenesis, a process contributing to increased rates of glucose production in type 2 diabetes. Our findings demonstrate that PACs prevented obesity and improved insulin resistance likely via suppression of OxS and inflammation while diminishing hyperlipidemia and fatty liver disease, as clear evidence for their strength of fighting the cluster of MetS abnormalities.
Collapse
Affiliation(s)
- Francis Feldman
- Research Centre, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada
- Department of Nutrition, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Mireille Koudoufio
- Research Centre, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada
- Department of Nutrition, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Ramy El-Jalbout
- Research Centre, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada
- Department of Radiology, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Mathilde Foisy Sauvé
- Research Centre, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada
- Department of Nutrition, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Lena Ahmarani
- Research Centre, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada
| | - Alain Théophile Sané
- Research Centre, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada
| | | | - Thierry N’Timbane
- Research Centre, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada
| | - Natalie Patey
- Research Centre, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada
- Department of Pathology, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods, Laval University, Quebec, QC G1V 4L3, Canada
| | - Alain Stintzi
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Schohraya Spahis
- Research Centre, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada
- Department of Biochemistry & Molecular Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Emile Levy
- Research Centre, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada
- Department of Nutrition, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Correspondence: ; Tel.: +1-(514)-345-7783
| |
Collapse
|
19
|
Zhao Y, Xie Y, Li X, Song J, Guo M, Xian D, Zhong J. The protective effect of proanthocyanidins on the psoriasis-like cell models via PI3K/AKT and HO-1. Redox Rep 2022; 27:200-211. [PMID: 36178125 PMCID: PMC9542435 DOI: 10.1080/13510002.2022.2123841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background Inflammation and oxidative stress (OS) are important contributors to psoriasis pathogenesis. Proanthocyanidins (PCs) have anti-inflammatory and anti-oxidative activities. Previously, we discovered that PCs alleviated psoriasis-like mice symptoms, likely via mitigating inflammation and OS damage. Objective To elucidate the protective mechanism underlying PCs against the damage of TNF-ɑ-induced psoriasis-like cell models. Methods Psoriasis-like cell models were established with 7.5 ng/mL TNF-ɑ and then subjected to different-concentrations PCs treatment. Finally, inflammatory and oxidative parameters were determined. Besides, LY294002 (PI3K inhibitor) and ZnPP (HO-1 inhibitor) were employed to investigate the roles of PI3K/AKT and HO-1 in PCs against psoriasis-like cell models. Results After TNF-α treatment, cells organized tightly and proliferated greatly (P<0.01); HO-1 expression dropped obviously, along with the increased OS/inflammatory indicators and the decreased antioxidants (P<0.05); consequently, psoriasis-like cell models were well established. In the presence of PCs, nevertheless, the proliferation rate and number of psoriasis-like cells evidently decreased (P<0.01), accompanied with enhanced HO-1 and antioxidants, and lowered OS/inflammatory indicators as well as phosphorylated JAK2/STAT3/PI3/AKT (P<0.01). Similar changes appeared after LY294002 pretreatment, regardless of PCs or not. But after ZnPP pretreatment with or without PCs, the opposite occurred. Conclusion The study reveals that PCs can suppress psoriasis-like cell proliferation and reduce inflammatory/OS damage through PI3K/AKT inhibition and HO-1 activation, thus promising a candidate for PCs in treating psoriasis.
Collapse
Affiliation(s)
- Yangmeng Zhao
- Department of Dermatology, the Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Yuxin Xie
- Department of Dermatology, the Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Xiaolong Li
- Department of Dermatology, the Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Jing Song
- Department of Dermatology, the Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Menglu Guo
- Department of Dermatology, the Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Dehai Xian
- Department of Anatomy, Southwest Medical University, Luzhou, People's Republic of China
| | - Jianqiao Zhong
- Department of Dermatology, the Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| |
Collapse
|
20
|
Panigrahy SK, Kumar A. Biopolymeric nanocarrier: an auspicious system for oral delivery of insulin. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:2145-2164. [PMID: 35773232 DOI: 10.1080/09205063.2022.2096527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Subcutaneous administration of insulin has been practiced for the clinical supervision of diabetes pathogenesis but it is often ineffective to imitate the glucose homeostasis and is always invasive. Therefore, it causes patient discomfort and infection of local tissue. These issues lead to finding an alternative route for insulin delivery that could be effective, promising, and non-invasive. However, delivery of insulin orally is the most suitable route but the rapid breakdown of insulin by the gastrointestinal enzymes becomes a major barrier to this method. Therefore, nanocarriers (which guard insulin against degradation and facilitate its uptake) are preferred for oral insulin delivery. Among various categories of nanocarriers, bio-polymeric nanocarriers draw special attention owing to their hydrophilic, non-toxic, and biodegradable nature. This review provides a detailed overview of insulin-loaded biopolymer-based nanocarriers, which give future direction in the optimization and development of a clinically functional formulation for their effective and safe delivery.
Collapse
Affiliation(s)
- Suchitra Kumari Panigrahy
- Department of Biotechnology, Guru GhasidasVishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, India
| |
Collapse
|
21
|
Steck J, Junker F, Eichhöfer H, Bunzel M. Chemically Different but Often Mistaken Phenolic Polymers of Food Plants: Proanthocyanidins and Lignin in Seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11704-11714. [PMID: 36094402 DOI: 10.1021/acs.jafc.2c03782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Flavonoid based proanthocyanidins and cinnamyl alcohol based lignins are chemically complex phenolic oligomers/polymers that are found in food plants. Although structurally very different, these two biopolymers are often not distinguished, for example, in the (quantitative) compositional analysis of cell walls and dietary fiber. Here, we analytically distinguish lignin and proanthocyanidins in dietary fiber samples by using degradative and nondegradative techniques and provide information about their occurrence, abundance, and structural characteristics in seeds of chokeberries, cranberries, raspberries, red currants, and grapes. These data revealed that the seeds of botanically diverse fruits largely differ in terms of their phenolic fiber polymers. The mostly hardened tissue of the seeds is not necessarily based on lignified cell walls. For example, red currant and chokeberry seeds almost exclusively contain proanthocyanidins, and raspberry seeds were clearly lignified (G-H-lignin) but did not contain proanthocyanidins. Our data also allows for estimating the bias of proanthocyanidins on different approaches of lignin analysis.
Collapse
Affiliation(s)
- Jan Steck
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), Adenauerring 20A, 76131 Karlsruhe, Germany
| | - Florian Junker
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), Adenauerring 20A, 76131 Karlsruhe, Germany
| | - Hendrik Eichhöfer
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), Adenauerring 20A, 76131 Karlsruhe, Germany
| | - Mirko Bunzel
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), Adenauerring 20A, 76131 Karlsruhe, Germany
| |
Collapse
|
22
|
Wang H, Hao W, Yang L, Li T, Zhao C, Yan P, Wei S. Procyanidin B2 Alleviates Heat-Induced Oxidative Stress through the Nrf2 Pathway in Bovine Mammary Epithelial Cells. Int J Mol Sci 2022; 23:ijms23147769. [PMID: 35887117 PMCID: PMC9316217 DOI: 10.3390/ijms23147769] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
The objective of this study was to investigate the protective effects and potential molecular mechanisms of procyanidin B2 (PB2) in MAC-T (mammary alveolar cells-large T antigen) cells during heat stress (HS). The MAC-T cells were divided into three treatment groups: control (37 °C), HS (42 °C), and PB2 + HS (42 °C). Compared with MAC-T cells that were consistently cultured at 37 °C, acute HS treatment remarkably decreased cell viability, reduced activities of catalase (CAT), superoxide dismutase (SOD), and total antioxidant capacity (T-AOC), and elevated intracellular levels of malondialdehyde (MDA) and reactive oxygen species (ROS). Additionally, nuclear factor erythroid 2-related factor 2 (Nrf2) was activated and translocated to the nucleus, in accompaniment with upregulation of Nrf2, heme oxygenase 1 (HO-1), thioredoxin reductase 1 (Txnrd1), and heat shock protein 70 (HSP70). In parallel, both mRNA transcript and actual protein secretion of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), were increased by heat stress. Pretreatment of MAC-T cells with 0~25 μM PB2 alleviated the decline of cell viability by HS in a dose-dependent fashion and protected cells against HS-induced oxidative stress, as evidenced by significantly improved CAT, SOD, and T-AOC activity, as well as with decreased MDA and ROS generation. Furthermore, PB2 further activated the Nrf2 signaling pathway and reversed the inflammatory response induced by HS. Silencing of Nrf2 by si-Nrf2 transfection not only exacerbated HS-induced cell death and provoked oxidative stress and the inflammatory response, but also greatly abolished the cytoprotective effects under HS of PB2. In summary, PB2 protected MAC-T cells against HS-induced cell death, oxidative stress, and inflammatory response, partially by operating at the Nrf2 signal pathway.
Collapse
|
23
|
Oluwole O, Fernando WMADB, Lumanlan J, Jayasena V. Role of phenolic acid, tannins, stilbenes, lignans and flavonoids in human health – a review. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Oluwatoyin Oluwole
- Department of Food Technology Federal Institute of Industrial Research Oshodi Lagos Nigeria
| | - WMAD Binosha Fernando
- Centre of Excellence for Alzheimer's Disease Research and Care School of Medical and Health Sciences Edith Cowan University, SNRI, 8 Verdun St Nedlands Western Australia 6009
| | - Jane Lumanlan
- School of Science Western Sydney University Bourke St Richmond 2753
| | - Vijay Jayasena
- School of Science Western Sydney University Bourke St Richmond 2753
| |
Collapse
|
24
|
Zhang X, Li B, Duan R, Han C, Wang L, Yang J, Wang L, Wang S, Su Y, Xue H. Transcriptome Analysis Reveals Roles of Sucrose in Anthocyanin Accumulation in 'Kuerle Xiangli' ( Pyrus sinkiangensis Yü). Genes (Basel) 2022; 13:genes13061064. [PMID: 35741826 PMCID: PMC9222499 DOI: 10.3390/genes13061064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 12/02/2022] Open
Abstract
Pear (Pyrus L.) is one of the most important temperate fruit crops worldwide, with considerable economic value and significant health benefits. Red-skinned pears have an attractive appearance and relatively high anthocyanin accumulation, and are especially favored by customers. Abnormal weather conditions usually reduce the coloration of red pears. The application of exogenous sucrose obviously promotes anthocyanins accumulation in ‘Kuerle Xiangli’ (Pyrus sinkiangensis Yü); however, the underlying molecular mechanism of sucrose-mediated fruit coloration remains largely unknown. In this study, comprehensive transcriptome analysis was performed to identify the essential regulators and pathways associated with anthocyanin accumulation. The differentially expressed genes enriched in Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes items were analyzed. The transcript levels of some anthocyanin biosynthetic regulatory genes and structural genes were significantly induced by sucrose treatment. Sucrose application also stimulated the expression of some sugar transporter genes. Further RT-qPCR analysis confirmed the induction of anthocyanin biosynthetic genes. Taken together, the results revealed that sucrose promotes pear coloration most likely by regulating sugar metabolism and anthocyanin biosynthesis, and this study provides a comprehensive understanding of the complex molecular mechanisms underlying the coloration of red-skinned pear.
Collapse
Affiliation(s)
- Xiangzhan Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (X.Z.); (B.L.); (R.D.); (C.H.); (L.W.); (J.Y.); (L.W.); (S.W.); (Y.S.)
- Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture and Rural Affairs, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Bo Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (X.Z.); (B.L.); (R.D.); (C.H.); (L.W.); (J.Y.); (L.W.); (S.W.); (Y.S.)
- Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture and Rural Affairs, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Ruiwei Duan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (X.Z.); (B.L.); (R.D.); (C.H.); (L.W.); (J.Y.); (L.W.); (S.W.); (Y.S.)
- Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture and Rural Affairs, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Chunhong Han
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (X.Z.); (B.L.); (R.D.); (C.H.); (L.W.); (J.Y.); (L.W.); (S.W.); (Y.S.)
- Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture and Rural Affairs, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- College of Horticulture and Plant Conservation, Henan University of Science and Technology, Luoyang 471023, China
| | - Lei Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (X.Z.); (B.L.); (R.D.); (C.H.); (L.W.); (J.Y.); (L.W.); (S.W.); (Y.S.)
- Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture and Rural Affairs, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Jian Yang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (X.Z.); (B.L.); (R.D.); (C.H.); (L.W.); (J.Y.); (L.W.); (S.W.); (Y.S.)
- Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture and Rural Affairs, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Long Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (X.Z.); (B.L.); (R.D.); (C.H.); (L.W.); (J.Y.); (L.W.); (S.W.); (Y.S.)
- Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture and Rural Affairs, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Suke Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (X.Z.); (B.L.); (R.D.); (C.H.); (L.W.); (J.Y.); (L.W.); (S.W.); (Y.S.)
- Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture and Rural Affairs, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Yanli Su
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (X.Z.); (B.L.); (R.D.); (C.H.); (L.W.); (J.Y.); (L.W.); (S.W.); (Y.S.)
- Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture and Rural Affairs, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Huabai Xue
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (X.Z.); (B.L.); (R.D.); (C.H.); (L.W.); (J.Y.); (L.W.); (S.W.); (Y.S.)
- Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture and Rural Affairs, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Correspondence:
| |
Collapse
|
25
|
Padilla-González GF, Grosskopf E, Sadgrove NJ, Simmonds MSJ. Chemical Diversity of Flavan-3-Ols in Grape Seeds: Modulating Factors and Quality Requirements. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11060809. [PMID: 35336690 PMCID: PMC8953305 DOI: 10.3390/plants11060809] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 05/24/2023]
Abstract
Grape seeds are a rich source of flavan-3-ol monomers, oligomers, and polymers. The diverse profile of compounds includes mainly B-type procyanidins (especially C4→C8 linked molecules) and the key monomers, catechin, and epicatechin that are positively implicated in the 'French Paradox'. Today grape seed nutraceuticals have become a multi-million-dollar industry. This has created incentives to elucidate the variations in chemistry across cultivars, to identify signs of adulteration, and to understand the intrinsic and extrinsic factors controlling the expression of metabolites in the seeds' metabolome. This review provides a critical overview of the existing literature on grape seed chemistry. Although the biosynthetic pathways for polymeric procyanidins in seeds have not yet been explained, abiotic factors have been shown to modulate associated genes. Research of extrinsic factors has demonstrated that the control of procyanidin expression is strongly influenced, in order of importance, by genotype (species first, then variety) and environment, as claimed anecdotally. Unfortunately, research outcomes on the effects of abiotic factors have low certainty, because effects can be specific to genotype or variety, and there is limited control over physical metrics in the field. Thus, to gain a fuller understanding of the effects of abiotic factors and biosynthetic pathways, and realise potential for optimisation, a more fundamental research approach is needed. Nevertheless, the current synthesis offers insight into the selection of species or varieties according to the profile of polyphenols, as well as for optimisation of horticultural practices, with a view to produce products that contain the compounds that support health claims.
Collapse
|
26
|
Galal TM, Al-Yasi HM, Fawzy MA, Abdelkader TG, Hamza RZ, Eid EM, Ali EF. Evaluation of the Phytochemical and Pharmacological Potential of Taif's Rose ( Rosa damascena Mill var. trigintipetala) for Possible Recycling of Pruning Wastes. Life (Basel) 2022; 12:273. [PMID: 35207560 PMCID: PMC8876584 DOI: 10.3390/life12020273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/08/2023] Open
Abstract
This study investigated the phytochemical contents of Taif's rose pruning wastes and their potential application as phytomedicine, thereby practicing a waste-recycling perspective. In the Al-Shafa highland, four Taif rose farms of various ages were chosen for gathering the pruning wastes (leaves and stems) for phytochemical and pharmacological studies. The leaves and stems included significant amounts of carbohydrates, cardiac glycosides, alkaloids, flavonoids, and other phenolic compounds. The cardiac glycoside and flavonoid contents were higher in Taif rose stems, while the phenolic and alkaloid contents were higher in the plant leaves. Cardiovascular glycosides (2.98-5.69 mg g-1), phenolics (3.14-12.41 mg GAE g-1), flavonoids (5.09-9.33 mg RUE g -1), and alkaloids (3.22-10.96 mg AE g-1) were among the phytoconstituents found in rose tissues. According to the HPLC analysis of the phenolic compounds, Taif's rose contains flavonoid components such as luteolin, apigenin, quercetin, rutin, kaempferol, and chrysoeriol; phenolics such as ellagic acid, catechol, resorcinol, gallic acid, and phloroglucinol; alkaloids such as berbamine, jatrorrhizine, palmatine, reticuline, isocorydine, and boldine. Warm water extract was highly effective against Bacillus subtilis, Escherichia coli, and Proteus vulgaris, whereas methanol and cold water extracts were moderately effective against Aspergillus fumigatus and Candida albicans. The study's findings suggested that Taif's rose wastes could be used for varied medical purposes.
Collapse
Affiliation(s)
- Tarek M. Galal
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (T.M.G.); (H.M.A.-Y.); (M.A.F.); (T.G.A.); (R.Z.H.)
| | - Hatim M. Al-Yasi
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (T.M.G.); (H.M.A.-Y.); (M.A.F.); (T.G.A.); (R.Z.H.)
| | - Mustafa A. Fawzy
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (T.M.G.); (H.M.A.-Y.); (M.A.F.); (T.G.A.); (R.Z.H.)
| | - Tharwat G. Abdelkader
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (T.M.G.); (H.M.A.-Y.); (M.A.F.); (T.G.A.); (R.Z.H.)
| | - Reham Z. Hamza
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (T.M.G.); (H.M.A.-Y.); (M.A.F.); (T.G.A.); (R.Z.H.)
| | - Ebrahem M. Eid
- Biology Department, College of Science, King Khalid University, P.O. Box 9004, Abha 61321, Saudi Arabia;
- Botany Department, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Esmat F. Ali
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (T.M.G.); (H.M.A.-Y.); (M.A.F.); (T.G.A.); (R.Z.H.)
| |
Collapse
|
27
|
Khademi M, Nazarian-Firouzabadi F, Ismaili A. Expression of apple MdMYB10 transcription factor in sugar beet with a screenable marker role and antimicrobial activity. 3 Biotech 2022; 12:52. [PMID: 35127307 PMCID: PMC8801000 DOI: 10.1007/s13205-022-03120-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 01/14/2022] [Indexed: 02/03/2023] Open
Abstract
Selection of transgenic plants by using genes encoding screenable markers of plant origin with health benefit properties, such as anthocyanin is an important aim in plant genetic engineering. In this study, Malus domestica MYB10 (MdMYB10) gene, was used for Agrobacterium tumefaciens-mediated transformation of two SBS-02 and SBS-04 sugar beet lines. The impact of different light regimes on plant tissue culture from a combination of light, dark/light and dark was investigated. The results of this study showed that the MdMYB10 gene was successfully integrated into the selected purple transgenic lines, suggesting that the expression of MdMYB10 gene in sugar beet shoots can be used as a screenable markers for transformation, possibly replacing antibiotic resistant genes. Furthermore, the results of the antibacterial activity of transgenic plants extracts showed that the total extract obtained from transgenic lines significantly (P < 0.01) inhibited the growth and development of Enterococcus faecium and Enterococcus faecalis bacteria compared to the non-transgenic plants. The results of this study showed that the combination of betalain with vancomycin demonstrated a synergistic antimicrobial effect, also, suggesting that the expression of MdMYB10 may play a dual role by accumulating betalain and exhibiting a screenable markers function. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-022-03120-7.
Collapse
Affiliation(s)
- Mitra Khademi
- Production Engineering and Plant Genetics Department, Faculty of Agriculture, Lorestan University, P.O. Box: 465, Khorramabad, Iran
| | - Farhad Nazarian-Firouzabadi
- Production Engineering and Plant Genetics Department, Faculty of Agriculture, Lorestan University, P.O. Box: 465, Khorramabad, Iran
| | - Ahmad Ismaili
- Production Engineering and Plant Genetics Department, Faculty of Agriculture, Lorestan University, P.O. Box: 465, Khorramabad, Iran
| |
Collapse
|
28
|
Cong L, Qu Y, Sha G, Zhang S, Ma Y, Chen M, Zhai R, Yang C, Xu L, Wang Z. PbWRKY75 promotes anthocyanin synthesis by activating PbDFR, PbUFGT, and PbMYB10b in pear. PHYSIOLOGIA PLANTARUM 2021; 173:1841-1849. [PMID: 34418106 DOI: 10.1111/ppl.13525] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 05/24/2023]
Abstract
Anthocyanins are common secondary metabolites in plants that impart red coloration to fruits and flowers. The important WRKY transcription factor family plays multifaceted roles in plant growth and development. In this study, we found a WRKY family gene, Pyrus bretschneideri WRKY75, that may be involved in anthocyanin synthesis in pear. Unlike Arabidopsis thaliana WRKY75, PbWRKY75 may be a positive regulator of anthocyanin synthesis. A transient expression assay indicated that PbWRKY75 promoted pear anthocyanin synthesis. The structural genes (PbANS, PbDFR, and PbUFGT) and positive regulators (PbMYB10 and PbMYB10b) of anthocyanin synthesis were significantly upregulated in the fruitlet skins of PbWRKY75-overexpressing "Zaosu" pears. Subsequently, yeast one-hybrid and dual-luciferase assays indicated that PbWRKY75 promoted PbDFR, PbUFGT, and PbMYB10b expression by activating their promoters. These results revealed that PbWRKY75 may promote the expression of both PbMYB10b and anthocyanin late biosynthetic genes (PbDFR and PbUFGT) by activating their promoters, thereby inducing anthocyanin synthesis in pear. This study enhanced our understanding of the mechanism of pear anthocyanin synthesis, which will be beneficial in the improvement of pear peel color.
Collapse
Affiliation(s)
- Liu Cong
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Yingying Qu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Guangya Sha
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Shichao Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Youfu Ma
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Min Chen
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Rui Zhai
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Chengquan Yang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Lingfei Xu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Zhigang Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, China
| |
Collapse
|
29
|
Polyphenolic QTOF-ESI MS Characterization and the Antioxidant and Cytotoxic Activities of Prunus domestica Commercial Cultivars from Costa Rica. Molecules 2021; 26:molecules26216493. [PMID: 34770900 PMCID: PMC8588404 DOI: 10.3390/molecules26216493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
There is an increased interest in plum research because of their metabolites' potential bioactivities. In this study, the phenolic profiles of Prunus domestica commercial cultivars (Methley, Pisardii and Satsuma) in Costa Rica were determined by Ultra Performance Liquid Chromatography coupled with High Resolution Mass Spectrometry using a quadrupole-time-of-flight analyzer (UPLC-ESI-QTOF MS) on enriched phenolic extracts obtained through Pressurized Liquid Extraction (PLE) under acidic and neutral extraction conditions. In total, 41 different phenolic compounds were identified in the skin and flesh extracts, comprising 11 flavan-3-ols, 14 flavonoids and 16 hydroxycinnamic acids and derivatives. Neutral extractions for the skins and flesh from all of the cultivars yielded a larger number of compounds, and were particularly rich in the number of procyanidin trimers and tetramers when compared to the acid extractions. The total phenolic content (TPC) and antioxidant potential using the DPPH and ORAC methods exhibited better results for neutral extracts with Satsuma skins and Methley flesh, which showed the best values (685.0 and 801.6 mg GAE/g extract; IC50 = 4.85 and 4.39 µg/mL; and 12.55 and 12.22 mmol TE/g extract, respectively). A Two-Way ANOVA for cytotoxicity towards AGS gastric adenocarcinoma and SW620 colon adenocarcinoma indicated a significant difference (p < 0.05) for PLE conditions, with better results for neutral extractions, with Satsuma skin delivering the best results (IC50 = 60.7 and 46.7 µg/mL respectively) along with Methley flesh (IC50 = 76.3 and 60.9 µg/mL, respectively). In addition, a significant positive correlation was found between TPC and ORAC (r = 0.929, p < 0.05), as well as a significant negative correlation (p < 0.05) between TPC and cytotoxicity towards AGS and SW620 cell lines (r = -0.776, and -0.751, respectively). A particularly high, significant, negative correlation (p < 0.05) was found between the number of procyanidins and cytotoxicity against the AGS (r = -0.868) and SW620 (r = -0.855) cell lines. Finally, the PCA clearly corroborated that neutral extracts are a more homogenous group exhibiting higher antioxidant and cytotoxic results regardless of the part or cultivar; therefore, our findings suggest that PLE extracts under neutral conditions would be of interest for further studies on their potential health benefits.
Collapse
|
30
|
Panishcheva D, Motyleva S, Kozak N. The comparison of biochemical composition of Actinidia kolomikta and Actinidia polygama fruits. POTRAVINARSTVO 2021. [DOI: 10.5219/1682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The demand for natural products, which are rich in biologically active compositions, grows constantly. The choice and production of such products can minimize the deficit of importance for human organism components, which are contained only in plant food. The paper contains the laboratory studying results of the chemical composition of the fruits of two Actinidia Lindl. cultivars of Federal State Budgetary Scientific Institution Federal Horticultural Research Center for Breeding, Agrotechnology, and Nursery (FSBSI FSC for Horticulture) genetic collection: Actinidia kolomikta (Rupr. et Maxim.) Maxim. and Actinidia polygama (Siebold et Zucc.) Maxim. All the presented samples are grown in field conditions. The fruits were picked up in the phase of harvest maturity while ripening. The data on antioxidant activity of water and methanol extracts, the content of phenolic compounds sum, soluble solids, and titratable acids in the fruits, and on qualitative composition of secondary metabolites (organic acids, fatty acids, mono-, di- and polysaccharides) are given in the paper. The variation limits of the parameters under study depending on the sample are presented. As a result of the laboratory studies, it was stated that A. kolomikta fruits 10 times exceed A. polygama fruits on all the stated parameters. Only the results on the soluble solids content in the fruits of both cultivars are approximately at the same level (A. kolomikta > A. polygama on 1.16%). The positive correlation between antioxidant activity and the general content of polyphenols is confirmed at both cultivars. Actinidia kolomikta genotypes Chempion and Lakomka and Actinidia polygama ones Tselebnaya and Uzorchataya showed the best results. The correct individual choice of actinidia fruits that are the best ones at the biochemical composition and the content of micronutrients allows supplying the consumers with food products.
Collapse
|
31
|
Santos-Buelga C, González-Manzano S, González-Paramás AM. Wine, Polyphenols, and Mediterranean Diets. What Else Is There to Say? Molecules 2021; 26:5537. [PMID: 34577008 PMCID: PMC8468969 DOI: 10.3390/molecules26185537] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/01/2021] [Accepted: 09/09/2021] [Indexed: 12/21/2022] Open
Abstract
A considerable amount of literature has been published claiming the cardiovascular benefits of moderate (red) wine drinking, which has been considered a distinguishing trait of the Mediterranean diet. Indeed, red wine contains relevant amounts of polyphenols, for which evidence of their biological activity and positive health effects are abundant; however, it is also well-known that alcohol, even at a low level of intake, may have severe consequences for health. Among others, it is directly related to a number of non-communicable diseases, like liver cirrhosis or diverse types of cancer. The IARC classifies alcohol as a Group 1 carcinogen, causally associated with the development of cancers of the upper digestive tract and liver, and, with sufficient evidence, can be positively associated with colorectum and female breast cancer. In these circumstances, it is tricky, if not irresponsible, to spread any message on the benefits of moderate wine drinking, about which no actual consensus exists. It should be further considered that other hallmarks of the Mediterranean diet are the richness in virgin olive oil, fruits, grains, and vegetables, which are also good sources of polyphenols and other phytochemicals, and lack the risks of wine. All of these aspects are reviewed in this article.
Collapse
Affiliation(s)
- Celestino Santos-Buelga
- Grupo de Investigación en Polifenoles (GIP-USAL), Universidad de Salamanca, E-37007 Salamanca, Spain; (S.G.-M.); (A.M.G.-P.)
| | | | | |
Collapse
|
32
|
The Influence of Extracts from Common Houseleek (Sempervivum tectorum) on the Metabolic Activity of Human Melanoma Cells WM-266-4. Processes (Basel) 2021. [DOI: 10.3390/pr9091549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human melanoma cells are known as one of the most aggressive cancer cells, and consequently, melanoma is one of the most incurable cancer diseases. There is intense activity in research and development of potential medicines for malignant diseases, including alternative forms of remedies. Therefore, the purpose of our work was testing extracts from the common houseleek (Sempervivum tectorum) grown in Slovenia to establish its impact on human melanoma cells. Namely, we wanted to verify if the extracts inhibit growth of malignant cells and their metabolic activity. Soxhlet, cold solvent, ultrasound, and supercritical extraction methods were applied to obtain S. tectorum extracts. Polyphenols and proanthocyanins content in acquired extracts was determined as well as their antioxidative potential. For a relevant comparison, Chinese (CHI) dried and Slovenian (SLO) lyophilized S. tectorum was used. Results showed that the highest contents of polyphenols and proanthocyanins were yielded from lyophilized material, which also had the highest antioxidative potential. The focus of our work was on analysis of possible inhibition effects of the extracts on human melanoma cells since no past studies were found regarding the possible effects of S. tectorum on metabolic activity of WM-266-4. We established that in a 24-h incubation period, the extracts inhibited metabolic activity of the cells at their concentrations of 20, 10, 4, 2, 1, 0.2, and 0.02 mg/mL. Extract obtained from SLO S. tectorum (ultrasound extraction with acetone as a solvent), which showed promising results of inhibitory effect on the mentioned cells, was further described since the local plant was the focus of our study. CHI S. tectorum extract (Soxhlet extraction with ehtanol:water mixture = 1:1 as a solvent) showed the highest inhibitory effect on human melanoma cells WM-266-4, although both obtained extracts are suitable for their growth inhibition of this specific cell line. Our results suggest inhibitory ability of S. tectorum extracts on the metabolic activity of WM-266-4 metastatic cell line, suggesting their potential use as an anticancer agent.
Collapse
|
33
|
An G, Chen J. Frequent gain- and loss-of-function mutations of the BjMYB113 gene accounted for leaf color variation in Brassica juncea. BMC PLANT BIOLOGY 2021; 21:301. [PMID: 34187365 PMCID: PMC8240407 DOI: 10.1186/s12870-021-03084-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/04/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND Mustard (Brassica juncea) is an important economic vegetable, and some cultivars have purple leaves and accumulate more anthocyanins than the green. The genetic and evolution of purple trait in mustard has not been well studied. RESULT In this study, free-hand sections and metabolomics showed that the purple leaves of mustard accumulated more anthocyanins than green ones. The gene controlling purple leaves in mustard, Mustard Purple Leaves (MPL), was genetically mapped and a MYB113-like homolog was identified as the candidate gene. We identified three alleles of the MYB113-like gene, BjMYB113a from a purple cultivar, BjMYB113b and BjMYB113c from green cultivars. A total of 45 single nucleotide polymorphisms (SNPs) and 8 InDels were found between the promoter sequences of the purple allele BjMYB113a and the green allele BjMYB113b. On the other hand, the only sequence variation between the purple allele BjMYB113a and the green allele BjMYB113c is an insertion of 1,033-bp fragment in the 3'region of BjMYB113c. Transgenic assay and promoter activity studies showed that the polymorphism in the promoter region was responsible for the up-regulation of the purple allele BjMYB113a and high accumulation of anthocyanin in the purple cultivar. The up-regulation of BjMYB113a increased the expression of genes in the anthocyanin biosynthesis pathway including BjCHS, BjF3H, BjF3'H, BjDFR, BjANS and BjUGFT, and consequently led to high accumulation of anthocyanin. However, the up-regulation of BjMYB113 was compromised by the insertion of 1,033-bp in 3'region of the allele BjMYB113c. CONCLUSIONS Our results contribute to a better understanding of the genetics and evolution of the BjMYB113 gene controlling purple leaves and provide useful information for further breeding programs of mustard.
Collapse
Affiliation(s)
- Guanghui An
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China
| | - Jiongjiong Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China.
| |
Collapse
|
34
|
Chen W, Zheng Q, Li J, Liu Y, Xu L, Zhang Q, Luo Z. DkMYB14 is a bifunctional transcription factor that regulates the accumulation of proanthocyanidin in persimmon fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1708-1727. [PMID: 33835602 DOI: 10.1111/tpj.15266] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 03/18/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
Proanthocyanidins (PAs) are phenolic secondary metabolites that contribute to the protection of plant and human health. Persimmon (Diospyros kaki Thunb.) can accumulate abundant PAs in fruit, which cause a strong sensation of astringency. Proanthocyanidins can be classified into soluble and insoluble PAs; the former cause astringency but the latter do not. Soluble PAs can be converted into insoluble PAs upon interacting with acetaldehydes. We demonstrate here that DkMYB14, which regulates the accumulation of PA in persimmon fruit flesh, is a bifunctional transcription factor that acts as a repressor in PA biosynthesis but becomes an activator when involved in acetaldehyde biosynthesis. Interestingly, both functions contribute to the elimination of astringency by decreasing PA biosynthesis and promoting its insolubilization. We show that the amino acid Gly39 in the R2 domain and the ethylene response factor-associated amphiphilic repression-like motif in the C-terminal of DkMYB14 are essential for the regulation of both PA and acetaldehyde synthesis. The repressive function of DkMYB14 was lost after the mutation of either motif, and all activities of DkMYB14 were eliminated following the mutation of both motifs. Our results demonstrate that DkMYB14 functions as both a transcriptional activator and a repressor, directly repressing biosynthesis of PA and promoting its insolubilization, resulting in non-astringency in persimmon.
Collapse
Affiliation(s)
- Wenxing Chen
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qingyou Zheng
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jinwang Li
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Ying Liu
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Liqing Xu
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qinglin Zhang
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhengrong Luo
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
35
|
Mohd Basri MS, Liew Min Ren B, A. Talib R, Zakaria R, Kamarudin SH. Novel Mangosteen-Leaves-Based Marker Ink: Color Lightness, Viscosity, Optimized Composition, and Microstructural Analysis. Polymers (Basel) 2021; 13:polym13101581. [PMID: 34069259 PMCID: PMC8156445 DOI: 10.3390/polym13101581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 11/25/2022] Open
Abstract
Dry mangosteen leaves are one of the raw materials used to produce marker ink. However, research using this free and abundant resource is rather limited. The less efficient one-factor-at-a-time (OFAT) approach was mostly used in past studies on plant-based marker ink. The use of statistical analysis and the regression coefficient model (mathematical model) was considered essential in predicting the best combination of factors in formulating mangosteen leaf-based marker ink. Ideally, ink should have maximum color lightness, minimum viscosity, and fast-drying speed. The objective of this study to study the effect of glycerol and carboxymethyl cellulose (CMC) on the color lightness and viscosity of mangosteen-leaves-based marker ink. The viscosity, color lightness, and drying properties of the ink were tested, the significant effect of glycerol and CMC (responses) on ink properties was identified and the prediction model on the optimum value of the responses was developed by using response surface methodology (RSM). The microstructure of mangosteen leaves was analyzed to study the surface morphology and cell structure during dye extraction. A low amount of glycerol used was found to increase the value of color lightness. A decrease in CMC amounts resulted in low viscosity of marker ink. The optimum formulation for the ink can be achieved when the weight percents of glycerol, benzalkonium chloride, ferrous sulphate, and CMC are set at 5, 5, 1, and 3, respectively. SEM micrographs showed the greatest amount of cell wall structure collapse on samples boiled with the lowest amount of glycerol.
Collapse
Affiliation(s)
- Mohd Salahuddin Mohd Basri
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (B.L.M.R.); (R.A.T.); (R.Z.)
- Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
- Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
- Correspondence:
| | - Brenda Liew Min Ren
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (B.L.M.R.); (R.A.T.); (R.Z.)
| | - Rosnita A. Talib
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (B.L.M.R.); (R.A.T.); (R.Z.)
| | - Rabitah Zakaria
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (B.L.M.R.); (R.A.T.); (R.Z.)
| | - Siti Hasnah Kamarudin
- School of Industrial Technology, Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Shah Alam 40450, Selangor, Malaysia;
| |
Collapse
|
36
|
Examining the Variables Leading to Apparent Incongruity between Antimethanogenic Potential of Tannins and Their Observed Effects in Ruminants—A Review. SUSTAINABILITY 2021. [DOI: 10.3390/su13052743] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In recent years, several secondary plant metabolites have been identified that possess antimethanogenic properties. Tannin-rich forages have the potential to reduce methane emissions in ruminants while also increasing their nutrient use efficiency and promoting overall animal health. However, results have been highly inconclusive to date, with their antimethanogenic potential and effects on both animal performance and nutrition being highly variable even within a plant species. This variability is attributed to the structural characteristics of the tannins, many of which have been linked to an increased antimethanogenic potential. However, these characteristics are seldom considered in ruminant nutrition studies—often because the analytical techniques are inadequate to identify tannin structure and the focus is mostly on total tannin concentrations. Hence, in this article, we (i) review previous research that illustrate the variability of the antimethanogenic potential of forages; (ii) identify the source of inconsistencies behind these results; and (iii) discuss how these could be optimized to generate comparable and repeatable results. By adhering to this roadmap, we propose that there are clear links between plant metabolome and physiology and their antimethanogenic potential that can be established with the ultimate goal of improving the sustainable intensification of livestock.
Collapse
|
37
|
Rojas-Garbanzo C, Rodríguez L, Pérez AM, Mayorga-Gross AL, Vásquez-Chaves V, Fuentes E, Palomo I. Anti-platelet activity and chemical characterization by UPLC-DAD-ESI-QTOF-MS of the main polyphenols in extracts from Psidium leaves and fruits. Food Res Int 2021; 141:110070. [PMID: 33641960 DOI: 10.1016/j.foodres.2020.110070] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 11/30/2022]
Abstract
In Costa Rica, two species of Psidium fruits, P. guajava and P. friedrichsthalianum, are widely consumed as food and used in folk medicine. Although studies have revealed the health effects of these fruits, there has been little research showing the antiplatelet activity of these species. This work evaluated the antiplatelet potential of aqueous extracts made from leaves and fruits of pink guava and Costa Rican guava. Platelet aggregation was induced by the platelet agonists ADP, TRAP-6, collagen and PMA. Platelet activation and secretion were studied using flow cytometry. The chemical profiles of the four extracts were characterized using UPLC-DAD-ESI-QTOF-MS. The studies revealed that the aqueous extracts of leaves and fruits of P. guajava and P. friedrichsthalianum inhibited platelet aggregation induced by ADP (4 µM), TRAP-6 (5 µM), collagen (1 µg mL-1) and PMA (100 nM), and the effect was dependent on the extract concentration. Extracts of leaves and fruits of pink guava and Costa Rican guava reduced secretion of P-selectin and activation of GP IIb/IIIa. The extracts of leaves and fruits of pink guava and Costa Rican guava proved to be a rich source of phenolic compounds, mainly quercetin aglycones and proanthocyanidins derived from (epi) catechin units. Other compounds such as ellagitannins, and benzophenones were also putatively identified. This research showed that P. guajava and P. friedrichsthalianum could potentially be used for the prevention of thrombotic events.
Collapse
Affiliation(s)
- Carolina Rojas-Garbanzo
- National Center of Food Science and Technology (CITA), University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Lyanne Rodríguez
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, University of Talca, 3460000 Talca, Chile.
| | - Ana M Pérez
- National Center of Food Science and Technology (CITA), University of Costa Rica, 11501-2060 San José, Costa Rica.
| | - Ana Lucía Mayorga-Gross
- National Center of Food Science and Technology (CITA), University of Costa Rica, 11501-2060 San José, Costa Rica.
| | - Víctor Vásquez-Chaves
- Research Center in Natural Products (CIPRONA), University of Costa Rica, 11501-2060 San José, Costa Rica.
| | - Eduardo Fuentes
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, University of Talca, 3460000 Talca, Chile.
| | - Iván Palomo
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, University of Talca, 3460000 Talca, Chile.
| |
Collapse
|
38
|
Hou K, Wang Z. Application of Nanotechnology to Enhance Adsorption and Bioavailability of Procyanidins: A Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1888970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Kexin Hou
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Zhenyu Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
39
|
Grape Seed Procyanidins Inhibit the Growth of Breast Cancer MCF-7 Cells by Down-Regulating the EGFR/VEGF/MMP9 Pathway. Nat Prod Commun 2021. [DOI: 10.1177/1934578x21991691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Breast cancer is the most common invasive cancer in women and the second leading cause of cancer death in women. However, it is not clear about its effective treatments. As a potential anticancer agent, grape seed procyanidins (GSPs) have been shown to inhibit the proliferation of various cancer cells in vitro and in vivo. In this study, it was shown that GSPs significantly inhibit MCF-7 cell proliferation in a concentration/time-dependent manner. The flow cytometric data clearly demonstrated that GSPs cause cell cycle arrest in the G2/M phase, followed by cell apoptosis. Moreover, it also confirmed that growth inhibition mediated by treatment with GSPs is related to the induction of apoptosis due to p53 elevation, purportedly by inhibition of the epidermal growth factor receptor (EGFR)/vascular endothelial growth factor (VEGF)/matrix metalloproteinase 9 (MMP9) pathway. Taken together, these findings suggest that GSPs inhibit MCF-7 cells proliferation and induce cell apoptosis by suppressing EGFR/VEGF/MMP9 pathway.
Collapse
|
40
|
Wine Polyphenol Content and Its Influence on Wine Quality and Properties: A Review. Molecules 2021; 26:molecules26030718. [PMID: 33573150 PMCID: PMC7866523 DOI: 10.3390/molecules26030718] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 11/17/2022] Open
Abstract
Wine is one of the most consumed beverages around the world. It is composed of alcohols, sugars, acids, minerals, proteins and other compounds, such as organic acids and volatile and phenolic compounds (also called polyphenols). Polyphenols have been shown to be highly related to both (i) wine quality (color, flavor, and taste) and (ii) health-promoting properties (antioxidant and cardioprotective among others). Polyphenols can be grouped into two big families: (i) Flavonoids, including anthocyanidins, flavonols, flavanols, hydrolysable and condensed tannins, flavanones, flavones and chalcones; and (ii) Non-flavonoids, including hydroxycinnamic acids, hydroxybenzoic acids, stilbenes, tyrosol and hydroxytyrosol. Each group affects in some way the different properties of wine to a greater or a lesser extent. For that reason, the phenolic composition can be managed to obtain singular wines with specific, desirable characteristics. The current review presents a summary of the ways in which the phenolic composition of wine can be modulated, including (a) invariable factors such as variety, field management or climatic conditions; (b) pre-fermentative strategies such as maceration, thermovinification and pulsed electric field; (c) fermentative strategies such as the use of different yeasts and bacteria; and (d) post-fermentative strategies such as maceration, fining agents and aging. Finally, the different extraction methods and analytical techniques used for polyphenol detection and quantification have been also reviewed.
Collapse
|
41
|
Mutha RE, Tatiya AU, Surana SJ. Flavonoids as natural phenolic compounds and their role in therapeutics: an overview. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021; 7:25. [PMID: 33495733 PMCID: PMC7816146 DOI: 10.1186/s43094-020-00161-8] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/21/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Natural plants and plant-derived formulations have been used by mankind from the ancient period of time. For the past few years, many investigations elaborated the therapeutic potential of various secondary chemicals present in the plants. Literature revealed that the various secondary metabolites, viz. phenolics and flavonoids, are responsible for a variety of therapeutic action in humans. MAIN BODY In the present review, an attempt has been made to compile the exploration of natural phenolic compounds with major emphasis on flavonoids and their therapeutic potential too. Interestingly, long-term intake of many dietary foods (rich in phenolics) proved to be protective against the development and management of diabetes, cancer, osteoporosis, cardiovascular diseases and neurodegenerative diseases, etc. CONCLUSION This review presents an overview of flavonoid compounds to use them as a potential therapeutic alternative in various diseases and disorders. In addition, the present understanding of phenolics and flavonoids will serve as the basis for the next scientific studies.
Collapse
Affiliation(s)
- Rakesh E. Mutha
- Department of Pharmacognosy, R. C. Patel Institute of Pharmaceutical Education and Research, Karwand Naka, Shirpur, Dist., Dhule, Maharashtra 425405 India
| | - Anilkumar U. Tatiya
- Department of Pharmacognosy, R. C. Patel Institute of Pharmaceutical Education and Research, Karwand Naka, Shirpur, Dist., Dhule, Maharashtra 425405 India
| | - Sanjay J. Surana
- Department of Pharmacognosy, R. C. Patel Institute of Pharmaceutical Education and Research, Karwand Naka, Shirpur, Dist., Dhule, Maharashtra 425405 India
| |
Collapse
|
42
|
Li Z, Lei L, Huo M, Liu Z, Yang X, Wang Y, Yuan Y. Interactions and complex stabilities of grape seed procyanidins with zein hydrolysate. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zi‐Zi Li
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou 510006 China
| | - Lei Lei
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou 510006 China
| | - Min‐Xi Huo
- Guangzhou Inspection Testing and Certification Group Co., Ltd Guangzhou 511447 China
| | - Zi‐Rui Liu
- Guangdong Science and Technology Cooperation Center Guangzhou 510033 China
| | - Xin‐Quan Yang
- School of Life Sciences Guangzhou University Guangzhou 510006 China
- Office of Science and Research Guangzhou University Guangzhou 510006 China
| | - Yu‐Lin Wang
- Office of Science and Research Guangzhou University Guangzhou 510006 China
| | - Yang Yuan
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou 510006 China
| |
Collapse
|
43
|
Tiwari R, Siddiqui MH, Mahmood T, Farooqui A, Bagga P, Ahsan F, Shamim A. An exploratory analysis on the toxicity & safety profile of Polyherbal combination of curcumin, quercetin and rutin. CLINICAL PHYTOSCIENCE 2020. [DOI: 10.1186/s40816-020-00228-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Abstract
Background
Curcumin, quercetin and rutin are flavonoids having strong antioxidant potential, individually used in treatment of numerous ailments. The safety assessment of each of them is already established but no toxicological assessment has been done that would guarantee the safe use of these three flavonoids when used as a polyherbal combination (PHC). The aim of this study to evaluate the possible toxicological effect of polyherbal combination of these three flavonoids in female Swiss albino mice.
Methods
In acute toxicity study, the oral dose of poly herbal combination was administered to four groups stepwise in single dose and general behaviour, adverse effects and mortality were determined up to 14 days and compared to normal group. In sub-acute study, the tested poly herbal combination was administered orally for 28 days to the four experimental groups and their body weight was measured each alternate day from the first day of dosing. On 29th day the final body weight was recorded and euthanized by using thiopentone sodium, blood was collected and later haematological, lipid profile, biochemical parameter was evaluated and compared to normal group.
Result
In acute toxicity study, no abnormal general behaviour, adverse effects were reported. No significant changes were reported in body weight, haematological, lipid profile, biochemical parameter in sub-acute toxicity study. No mortality was reported in both the study. Histopathological examination revealed no alterations in clinical signs or organ weight at any dose.
Conclusion
The result concludes that the oral administration of Polyherbal combination did not produce any significant toxic effect in swiss albino mice. Hence, the Polyherbal combination can be utilized safely for therapeutic use.
Collapse
|
44
|
Sintara M, Wang Y, Li L, Liu H, Cunningham DG, Prior RR, Chen P, Chang T, Wu X. Quantification of cranberry proanthocyanidins by normal-phase high-performance liquid chromatography using relative response factors. PHYTOCHEMICAL ANALYSIS : PCA 2020; 31:874-883. [PMID: 32472622 DOI: 10.1002/pca.2952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION American cranberries (Vaccinium macrocarpon) contain primarily A-type proanthocyanidins (PACs), which have been shown to prevent urinary tract infection. Currently, the accurate quantification of cranberry PACs is still lacking. OBJECTIVE A normal-phase high-performance liquid chromatography (NP-HPLC) method using relative response factors was developed and validated to quantify cranberry PAC oligomers and polymers. MATERIALS AND METHODS PAC oligomers with degree of polymerisation (DP) 3-9 and total polymers were isolated from the cranberry juice concentrate. Characterisation of the isolated PAC oligomers was performed by ultra-performance liquid chromatography-high resolution mass spectrometry. The relative response factors of oligomers from DP 2-9 and total polymers were determined against procyanidin A2. Method validation was conducted to assess limit of detection, limit of quantification, the linearity and working range, precision and accuracy. In addition, quantifications of PACs by NP-HPLC using relative response factors and two other commonly used methods were conducted in three cranberry food products. RESULTS Cranberries PACs oligomers contained both A-type and B-type linkage, with epicatechin and epigallocatechin as basic units. Method validation results suggested this method is reliable and reproducible. Quantifications of PACs by NP-HPLC using relative response factors yielded higher values than that by the other two methods. CONCLUSION A NP-HPLC method using the relative response factors was developed and validated. This method provides a more accurate approach in determining cranberry PACs. It can be used to quantify individual oligomers from DP 2-9, total polymers and total PACs in cranberries and cranberry products.
Collapse
Affiliation(s)
| | - Yifei Wang
- Methods and Application of Food Composition Laboratory, USDA, ARS, Beltsville Human Nutrition Research Center, Beltsville, MD, USA
| | - Lin Li
- International Chemistry Testing, Milford, MA, USA
| | | | | | - Ronald R Prior
- Department of Food Science, University of Arkansas, Searcy, AR, USA
| | - Pei Chen
- Methods and Application of Food Composition Laboratory, USDA, ARS, Beltsville Human Nutrition Research Center, Beltsville, MD, USA
| | - Tony Chang
- International Chemistry Testing, Milford, MA, USA
| | - Xianli Wu
- Methods and Application of Food Composition Laboratory, USDA, ARS, Beltsville Human Nutrition Research Center, Beltsville, MD, USA
| |
Collapse
|
45
|
Phytochemical investigation and antioxidant activities of methanol extract, methanol fractions and essential oil of Dillenia suffruticosa leaves. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.07.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
46
|
Shejawal KP, Randive DS, Bhinge SD, Bhutkar MA, Wadkar GH, Jadhav NR. Green synthesis of silver and iron nanoparticles of isolated proanthocyanidin: its characterization, antioxidant, antimicrobial, and cytotoxic activities against COLO320DM and HT29. J Genet Eng Biotechnol 2020; 18:43. [PMID: 32816164 PMCID: PMC7441130 DOI: 10.1186/s43141-020-00058-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/04/2020] [Indexed: 12/19/2022]
Abstract
Background In the current research, we have developed silver and iron nanoparticles of isolated proanthocynidin (PAC) from grape seed by green synthesis and evaluated for antimicrobial, antioxidant activity and in vitro cytotoxicity against colon cancer cell lines. Results One percent solution of isolated proanthocynidin in water was vigorously mixed with 1% silver nitrate and 1% ferric chloride solution and kept for 4 h, to yield PACAgNP and PACFeNP. The synthesized nanoparticles were characterized by UV, FTIR, XRD, and SEM analysis and evaluated for antimicrobial potential against selected microbes. Moreover, the synthesized nanoparticles were studied for DPPH assay and in vitro cytotoxicity using colon cancer cell lines COLO320DM and HT29 (MTT, SRB, and Trypan blue assay). UV spectroscopy confirmed the development of nanoparticles. SEM analysis showed that the particles were aggregated in the size range of 50 to 100 nm. Antimicrobial potential was found to be less against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli, whereas cytotoxicity of PACAgNP and PACFeNP against COLO320DM and HT29 exhibited promising results as compared to the pure PAC. PACAgNP and PACFeNP exhibited 20.83 ± 0.33% and 18.06 ± 0.60% inhibition, respectively, against DPPH radical, whereas pure PAC showed 16.79 ± 0.32% inhibition and standard (ascorbic acid) exhibited 98.73 ± 0.18% inhibition of DPPH radical. Conclusion The silver and iron nanoparticles were successfully developed by green synthesis method using isolated proanthocynidin which is economical and eco-friendly. The use of metal nanoparticles may open up a new opportunity for anticancer therapies to minimize the toxic effects of available anticancer drugs specifically in targeting specific site. Graphical abstract ![]()
Collapse
Affiliation(s)
- Kiran P Shejawal
- Department of Pharmaceutics, Rajarambapu College of Pharmacy, Kasegaon, Walwa, Sangli, Maharashtra, 415404, India
| | - Dheeraj S Randive
- Department of Pharmaceutics, Rajarambapu College of Pharmacy, Kasegaon, Walwa, Sangli, Maharashtra, 415404, India.
| | - Somnath D Bhinge
- Department of Pharmaceutical Chemistry, Rajarambapu College of Pharmacy, Kasegaon, Walwa, Sangli, Maharashtra, 415404, India
| | - Mangesh A Bhutkar
- Department of Pharmaceutics, Rajarambapu College of Pharmacy, Kasegaon, Walwa, Sangli, Maharashtra, 415404, India
| | - Ganesh H Wadkar
- Department of Pharmaceutics, Rajarambapu College of Pharmacy, Kasegaon, Walwa, Sangli, Maharashtra, 415404, India
| | - Namdeo R Jadhav
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, Kolhapur, Maharashtra, 416013, India
| |
Collapse
|
47
|
Sandoval V, Sanz-Lamora H, Arias G, Marrero PF, Haro D, Relat J. Metabolic Impact of Flavonoids Consumption in Obesity: From Central to Peripheral. Nutrients 2020; 12:E2393. [PMID: 32785059 PMCID: PMC7469047 DOI: 10.3390/nu12082393] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
The prevention and treatment of obesity is primary based on the follow-up of a healthy lifestyle, which includes a healthy diet with an important presence of bioactive compounds such as polyphenols. For many years, the health benefits of polyphenols have been attributed to their anti-oxidant capacity as free radical scavengers. More recently it has been described that polyphenols activate other cell-signaling pathways that are not related to ROS production but rather involved in metabolic regulation. In this review, we have summarized the current knowledge in this field by focusing on the metabolic effects of flavonoids. Flavonoids are widely distributed in the plant kingdom where they are used for growing and defensing. They are structurally characterized by two benzene rings and a heterocyclic pyrone ring and based on the oxidation and saturation status of the heterocyclic ring flavonoids are grouped in seven different subclasses. The present work is focused on describing the molecular mechanisms underlying the metabolic impact of flavonoids in obesity and obesity-related diseases. We described the effects of each group of flavonoids in liver, white and brown adipose tissue and central nervous system and the metabolic and signaling pathways involved on them.
Collapse
Affiliation(s)
- Viviana Sandoval
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
| | - Hèctor Sanz-Lamora
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Nutrition and Food Safety of the University of Barcelona (INSA-UB), E-08921 Santa Coloma de Gramenet, Spain
| | - Giselle Arias
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
| | - Pedro F. Marrero
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Biomedicine of the University of Barcelona (IBUB), E-08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Diego Haro
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Biomedicine of the University of Barcelona (IBUB), E-08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Joana Relat
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (V.S.); (H.S.-L.); (G.A.); (P.F.M.)
- Institute of Nutrition and Food Safety of the University of Barcelona (INSA-UB), E-08921 Santa Coloma de Gramenet, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
48
|
Apaya MK, Kuo TF, Yang MT, Yang G, Hsiao CL, Chang SB, Lin Y, Yang WC. Phytochemicals as modulators of β-cells and immunity for the therapy of type 1 diabetes: Recent discoveries in pharmacological mechanisms and clinical potential. Pharmacol Res 2020; 156:104754. [DOI: 10.1016/j.phrs.2020.104754] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/19/2022]
|
49
|
Beneficial effects of lingonberry (Vaccinium vitis-idaea L.) supplementation on metabolic and inflammatory adverse effects induced by high-fat diet in a mouse model of obesity. PLoS One 2020; 15:e0232605. [PMID: 32379797 PMCID: PMC7205235 DOI: 10.1371/journal.pone.0232605] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 04/18/2020] [Indexed: 12/22/2022] Open
Abstract
Obesity is a constantly increasing health problem worldwide. It is associated with a systemic low-grade inflammation, which contributes to the development of metabolic disorders and comorbidities such as type 2 diabetes. Diet has an important role in the prevention of obesity and its adverse health effects; as a part of healthy diet, polyphenol-rich berries, such as lingonberry (Vaccinium vitis-idaea L.) have been proposed to have health-promoting effects. In the present study, we investigated the effects of lingonberry supplementation on high-fat diet induced metabolic and inflammatory changes in a mouse model of obesity. Thirty male C57BL/6N mice were divided into three groups (n = 10/group) to receive low-fat (LF), high-fat (HF) and lingonberry-supplemented high-fat (HF+LGB) diet for six weeks. Low-fat and high-fat diet contained 10% and 46% of energy from fat, respectively. Lingonberry supplementation prevented the high-fat diet induced adverse changes in blood cholesterol and glucose levels and had a moderate effect on the weight and visceral fat gain, which were 26% and 25% lower, respectively, in the lingonberry group than in the high-fat diet control group. Interestingly, lingonberry supplementation also restrained the high-fat diet induced increases in the circulating levels of the proinflammatory adipocytokine leptin (by 36%) and the inflammatory acute phase reactant serum amyloid A (SAA; by 85%). Similar beneficial effects were discovered in the hepatic expression of the inflammatory factors CXCL-14, S100A10 and SAA by lingonberry supplementation. In conclusion, the present results indicate that lingonberry supplementation significantly prevents high-fat diet induced metabolic and inflammatory changes in a murine model of obesity. The results encourage evaluation of lingonberries as a part of healthy diet against obesity and its comorbidities.
Collapse
|
50
|
Wang Y, Harrington PDB, Chen P. Quantitative analysis of proanthocyanidins in cocoa using cysteamine-induced thiolysis and reversed-phase UPLC. Anal Bioanal Chem 2020; 412:4343-4352. [PMID: 32372274 DOI: 10.1007/s00216-020-02669-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 01/13/2023]
Abstract
The thiolysis of B-type proanthocyanidins in cocoa by cysteamine was evaluated and optimized for its application in cocoa proanthocyanidin quantification. Four thiolysis products consisting of epicatechin, catechin, and their thioethers formed with cysteamine were separated and characterized by reversed-phase UPLC with photo diode array (PDA) detection and high-resolution mass spectrometry (HRMS). A thiolysis time of 20 min under 60 °C temperature was determined as the optimal condition for cocoa proanthocyanidin depolymerization. The optimized thiolysis condition was applied to four cocoa bean samples for proanthocyanidin quantification, using commercially available procyanidin B2 dimer as a reference standard. Satisfactory linearity and quantification and detection limits were achieved for the calibration curves, and proanthocyanidin contents determined by thiolysis were found to be higher than those determined by a published method based on normal-phase HPLC with fluorescence detection. Results in this study suggest promising application potential of cysteamine as an odorless thiolysis agent in routine quantitative analysis of B-type proanthocyanidins. Graphical abstract.
Collapse
Affiliation(s)
- Yifei Wang
- Methods and Application of Food Composition Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD, 20705, USA.,Department of Chemistry & Biochemistry, College of Arts and Sciences, Ohio University, Athens, OH, 45701, USA
| | - Peter de B Harrington
- Department of Chemistry & Biochemistry, College of Arts and Sciences, Ohio University, Athens, OH, 45701, USA
| | - Pei Chen
- Methods and Application of Food Composition Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD, 20705, USA.
| |
Collapse
|