1
|
Bava R, Puteo C, Lombardi R, Garcea G, Lupia C, Spano A, Liguori G, Palma E, Britti D, Castagna F. Antimicrobial Properties of Hive Products and Their Potential Applications in Human and Veterinary Medicine. Antibiotics (Basel) 2025; 14:172. [PMID: 40001416 DOI: 10.3390/antibiotics14020172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/29/2024] [Revised: 01/30/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Hive products, encompassing honey, propolis, bee venom, royal jelly, and pollen, are recognized for their antimicrobial and therapeutic properties. This review examines their chemical composition, explores their mechanisms of action, and discusses their potential applications in both human and veterinary medicine, particularly in addressing the challenge of antimicrobial resistance. This study utilized a comprehensive literature search strategy, gathering data from Google Scholar, MEDLINE PubMed, SciELO, and SCOPUS databases. Relevant search terms were employed to ensure a thorough retrieval of the pertinent literature. Honey, rich in bioactive compounds such as hydrogen peroxide and methylglyoxal, effectively disrupts biofilms and combats multi-drug-resistant pathogens, showing promise in treating a range of infections. Propolis, with its flavonoids and phenolic acids, demonstrates synergistic effects when used in conjunction with antibiotics. Bee venom, particularly its component melittin, exhibits antibacterial and immunomodulatory properties, although further research is needed to address toxicity concerns. Pollen and royal jelly demonstrate broad-spectrum antimicrobial activity, which is particularly relevant to animal health. Existing pre-clinical and clinical data support the therapeutic potential of these hive products. Hive products represent a vast and largely untapped natural resource for combating antimicrobial resistance and developing sustainable therapies, particularly in the field of veterinary medicine. However, challenges remain due to the inherent variability in their composition and the lack of standardized protocols for their preparation and application. Further research is essential to fully elucidate their mechanisms of action, optimize formulations for enhanced efficacy, and establish standardized protocols to ensure their safe and effective clinical use.
Collapse
Affiliation(s)
- Roberto Bava
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88054 Catanzaro, Italy
| | - Claudio Puteo
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy
| | | | - Giuseppe Garcea
- Catanzaro Veterinary Centre (CeVeCa), 88100 Catanzaro, Italy
| | - Carmine Lupia
- Mediterranean Ethnobotanical Conservatory, 88054 Catanzaro, Italy
| | - Angelica Spano
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, 70121 Bari, Italy
| | | | - Ernesto Palma
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88054 Catanzaro, Italy
| | - Domenico Britti
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88054 Catanzaro, Italy
| | - Fabio Castagna
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88054 Catanzaro, Italy
| |
Collapse
|
2
|
Noble AS, Abbaszadeh J, Lee CK. Host selection is not a universal driver of phyllosphere community assembly among ecologically similar native New Zealand plant species. MICROBIOME 2025; 13:35. [PMID: 39891234 PMCID: PMC11786578 DOI: 10.1186/s40168-024-02000-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/09/2024] [Accepted: 12/06/2024] [Indexed: 02/03/2025]
Abstract
BACKGROUND A growing body of evidence demonstrates that host-associated microbial communities of plant leaf surfaces (i.e. the phyllosphere) can influence host functional traits. However, it remains unclear whether host selection is a universal driver of phyllosphere community assembly. We targeted mānuka (Leptospermum scoparium) and three neighbouring non-mānuka plant species along an 1800-m transect in a New Zealand native bush to conduct a hypothesis-driven investigation of the relative influence of host species identity and stochastic dispersal on the composition of natural phyllosphere bacterial communities. RESULTS We detected significant correlations between host species identity and mānuka phyllosphere communities that are consistent with a dominant role of host selection in the assembly of the mānuka phyllosphere microbiome. In contrast, the phyllosphere community compositions of neighbouring, ecologically similar native plants were highly variable, suggesting that stochastic processes, such as dispersal, had a stronger influence on the phyllosphere microbiomes of those non-mānuka plants compared to the phyllosphere microbiome of mānuka. Furthermore, the distribution of phyllosphere taxa among plant species was congruent with a scenario in which microorganisms had dispersed from mānuka to non-mānuka phyllosphere microbiomes. CONCLUSIONS We conclude that host selection of phyllosphere communities is not and should not be presumed to be a universal trait across plant species. The specificity of the mānuka phyllosphere microbiome suggests the presence of functionally significant bacteria that are under direct, possibly chemically mediated, selection by the host. Furthermore, we propose that phyllosphere microbiomes under strong host selection, such as that of mānuka, may act as a source of microorganisms for the phyllosphere microbiomes of neighbouring plants. Video Abstract.
Collapse
Affiliation(s)
- Anya S Noble
- School of Science, University of Waikato, Hamilton, New Zealand
| | | | - Charles K Lee
- School of Science, University of Waikato, Hamilton, New Zealand.
| |
Collapse
|
3
|
Martinotti S, Bonsignore G, Patrone M, Ranzato E. Correlation between Honey Parameters and Wound Healing Properties: The Case of Piedmont (Italy) Samples. Curr Pharm Biotechnol 2025; 26:302-311. [PMID: 39238381 DOI: 10.2174/0113892010328741240828093859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/21/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 09/07/2024]
Abstract
INTRODUCTION Honey possesses several positive properties, making it effective in wound healing mechanisms. However, very little information is available on the different honey types for wound healing activity. METHOD In the first "Academy of Sciences", a public engagement project with high school students, we assessed the properties of thirteen kinds of honey from the Piedmont area (Nord West Italy). In particular, we characterized the color intensity (by Pfund scale), total phenolic content (TPC), total flavonoid content (TFC), H2O2 production, and wound closure rate. RESULTS Then, we tried to verify the presence of a correlation between these parameters, finding a positive correlation between H2O2 and wound closure rate. CONCLUSION These data pave the way to characterize different types of Italian honey to completely understand its potential.
Collapse
Affiliation(s)
- Simona Martinotti
- DiSIT- Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Gregorio Bonsignore
- DiSIT- Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Mauro Patrone
- DiSIT- Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Elia Ranzato
- DiSIT- Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy
| |
Collapse
|
4
|
Grabek-Lejko D, Miłek M, Dżugan M. The comparison of the antioxidant, antibacterial and antiviral potential of Polish fir honeydew and Manuka honeys. Sci Rep 2024; 14:31170. [PMID: 39732871 DOI: 10.1038/s41598-024-82429-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/06/2024] [Accepted: 12/05/2024] [Indexed: 12/30/2024] Open
Abstract
The aim of the present study was to compare the antioxidant, antibacterial and antiviral activities of Podkarpackie coniferous honeydew honey and Manuka honey. The quality of tested honey samples (honeydew-12 and Manuka-4) regarding honey standard was evaluated as well as additional indicators (methylglyoxal, total phenolics and HPTLC phenolic profile, antioxidant potential, glucose oxidase activity, and hydrogen peroxide) were compared. Antibacterial potential was analyzed against Gram-positive (S. aureus and B. cereus) and Gram-negative (E. coli and S. enterica) bacteria. Antiviral activity against different RNA (phi6, MS2) and DNA (T7, phiX174) bacteriophages considered as "viral surrogates" was determined. Based on the determined physicochemical parameters the good quality of tested honeys was confirmed, excluding two samples. The content of polyphenolic compounds in honeydew honey ranged from 583.87 to 1102.42 mg of gallic acid/kg and was strongly correlated with the antioxidant properties. Moreover, for samples with the strongest activity these parameters were comparable to Manuka honey. However, the obtained HPTLC polyphenolic profiles were completely different for honeydew than for Manuka honey which exhibited additional bands (Rf = 0.74 and 0.52). Honeydew honeys were characterized by a strong antiviral and antibacterial properties most of all against Gram-positive bacteria. The MICs (minimal inhibitory concentrations) for S. aureus and B. cereus ranged 15-35% and 8-15% for honeydew and Manuka honeys, respectively. The strongest antiviral properties of honeydew honey were demonstrated mainly against RNA bacteriophages (phi6, MS2) which was even higher than for Manuka honey, especially against MS2 virus. The obtained results suggest that Podkarpackie honeydew honey with the controlled glucose oxidase activity may be a natural substance used to combat viral and bacterial diseases.
Collapse
Affiliation(s)
- Dorota Grabek-Lejko
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, Zelwerowicza 4 Street, Rzeszow, 35-601, Poland.
| | - Michał Miłek
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 1a St, Rzeszow, 35-601, Poland
| | - Małgorzata Dżugan
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 1a St, Rzeszow, 35-601, Poland
| |
Collapse
|
5
|
Jain SK, Narang S, Kacker V. An Interventional Study of Application of Manuka Honey in Post Mastoidectomy Surgery. Indian J Otolaryngol Head Neck Surg 2024; 76:5272-5276. [PMID: 39559033 PMCID: PMC11569056 DOI: 10.1007/s12070-024-04962-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/14/2024] [Accepted: 07/31/2024] [Indexed: 11/20/2024] Open
Abstract
The aim of present study was to observe the effect of topical application of manuka honey in healing in the healing of postoperative mastoid cavity. A total of 100 patients diagnosed with chronic suppurative otitis media with cholesteatoma underwent canal wall down mastoidectomy, Manuka honey-soaked roller gauze pack was placed on Day 10 and was removed on day 17 and manuka honey was applied on day 17. Cavity was assessed on day 47 and day 90 on follow-up. Otoendoscopy was done on every visit to assess mastoid cavity. The primary outcome measure was the creation of a dry cavity as measured by a semi-quantitative scale as described by Merchant et al. Then Mastoid Cavity Healing Score was calculated on every visit and scoring was done at the end. On intragroup comparison it appeared that both the treatment methods exhibited improvised merchant grade score with the course of time (p-value = < 0.001). At 47th day and 90th day, the healing score in Group A was significantly higher than in Group B [p-value = < 0.001 and 0.001] respectively. We recommend Manuka honey as an adjunct to achieve a safe, dry ear in view of faster epithelization after mastoidectomy.
Collapse
Affiliation(s)
- Satish Kumar Jain
- Otorhinolaryngology and Head & Neck Surgery, Jain ENT Hospital, Jaipur, Rajasthan India 23-24, Satya Vihar Colony, Pankaj Singhavi Marg, Nr. Vidhan Sabha,Lal Kothi, 302015
| | - Shivam Narang
- Otorhinolaryngology and Head & Neck Surgery, Jain ENT Hospital, Jaipur, Rajasthan India 23-24, Satya Vihar Colony, Pankaj Singhavi Marg, Nr. Vidhan Sabha,Lal Kothi, 302015
| | - Varun Kacker
- Otorhinolaryngology and Head & Neck Surgery, Jain ENT Hospital, Jaipur, Rajasthan India 23-24, Satya Vihar Colony, Pankaj Singhavi Marg, Nr. Vidhan Sabha,Lal Kothi, 302015
| |
Collapse
|
6
|
Yeoh MF, Sommerfield A, Sommerfield D, von Ungern-Sternberg BS. The use of honey in the perioperative care of tonsillectomy patients-A narrative review. Paediatr Anaesth 2024; 34:988-998. [PMID: 38803119 DOI: 10.1111/pan.14938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/30/2023] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
Tonsillectomy is one of the most common surgical procedures in childhood. While generally safe, it often is associated with a difficult early recovery phase with poor oral intake, dehydration, difficult or painful swallowing, postoperative bleeding, infection and/or otalgia. Better pain management and the availability of more child friendly medications are within the top consumer priorities in perioperative medicine, highlighting the importance of alternative pain treatments. This review focuses on the potential role of honey in the postoperative setting, its effects, and mechanisms of action. While the application of honey post-tonsillectomy may offer analgesic and healing benefits, it may also reduce postoperative bleeding. A systematic search was carried out using the search terms honey, tonsillectomy. Filters were applied to human studies and English. No other search terms were used or age filters applied to yield a broader range of results. Seven pediatric, four adult, and two studies of mixed pediatric and adult patients with sample sizes ranging from 8 to 52 patients were included in this review. Effect sizes ranged from small to huge across the studies. While the application of honey post-tonsillectomy may offer analgesic and healing benefits, it may also reduce postoperative bleeding. However, while there are potential benefits based on the chemical composition of honey, the current literature is of variable quality and there is need for high quality clinical trials.
Collapse
Affiliation(s)
- Mei F Yeoh
- Department of Anaesthesia and Pain Medicine, Fiona Stanley Fremantle Hospital Groups, Murdoch, Australia
- Department of Anaesthesia and Pain Medicine, Perth Children's Hospital, Nedlands, Australia
| | - Aine Sommerfield
- Department of Anaesthesia and Pain Medicine, Perth Children's Hospital, Nedlands, Australia
- Perioperative Medicine Team, Perioperative Care Program, Telethon Kids Institute, Nedlands, Australia
- Institute for Paediatric Perioperative Excellence, The University of Western Australia, Perth, Australia
- Division of Emergency Medicine, Anaesthesia and Pain Medicine, The University of Western Australia, Perth, Australia
| | - David Sommerfield
- Department of Anaesthesia and Pain Medicine, Perth Children's Hospital, Nedlands, Australia
- Perioperative Medicine Team, Perioperative Care Program, Telethon Kids Institute, Nedlands, Australia
- Institute for Paediatric Perioperative Excellence, The University of Western Australia, Perth, Australia
- Division of Emergency Medicine, Anaesthesia and Pain Medicine, The University of Western Australia, Perth, Australia
| | - Britta S von Ungern-Sternberg
- Department of Anaesthesia and Pain Medicine, Perth Children's Hospital, Nedlands, Australia
- Perioperative Medicine Team, Perioperative Care Program, Telethon Kids Institute, Nedlands, Australia
- Institute for Paediatric Perioperative Excellence, The University of Western Australia, Perth, Australia
- Division of Emergency Medicine, Anaesthesia and Pain Medicine, The University of Western Australia, Perth, Australia
| |
Collapse
|
7
|
Hellwig M, Diel P, Eisenbrand G, Grune T, Guth S, Henle T, Humpf HU, Joost HG, Marko D, Raupbach J, Roth A, Vieths S, Mally A. Dietary glycation compounds - implications for human health. Crit Rev Toxicol 2024; 54:485-617. [PMID: 39150724 DOI: 10.1080/10408444.2024.2362985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/26/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 08/17/2024]
Abstract
The term "glycation compounds" comprises a wide range of structurally diverse compounds that are formed endogenously and in food via the Maillard reaction, a chemical reaction between reducing sugars and amino acids. Glycation compounds produced endogenously are considered to contribute to a range of diseases. This has led to the hypothesis that glycation compounds present in food may also cause adverse effects and thus pose a nutritional risk to human health. In this work, the Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG) summarized data on formation, occurrence, exposure and toxicity of glycation compounds (Part A) and systematically assessed potential associations between dietary intake of defined glycation compounds and disease, including allergy, diabetes, cardiovascular and renal disease, gut/gastrotoxicity, brain/cognitive impairment and cancer (Part B). A systematic search in Pubmed (Medline), Scopus and Web of Science using a combination of keywords defining individual glycation compounds and relevant disease patterns linked to the subject area of food, nutrition and diet retrieved 253 original publications relevant to the research question. Of these, only 192 were found to comply with previously defined quality criteria and were thus considered suitable to assess potential health risks of dietary glycation compounds. For each adverse health effect considered in this assessment, however, only limited numbers of human, animal and in vitro studies were identified. While studies in humans were often limited due to small cohort size, short study duration, and confounders, experimental studies in animals that allow for controlled exposure to individual glycation compounds provided some evidence for impaired glucose tolerance, insulin resistance, cardiovascular effects and renal injury in response to oral exposure to dicarbonyl compounds, albeit at dose levels by far exceeding estimated human exposures. The overall database was generally inconsistent or inconclusive. Based on this systematic review, the SKLM concludes that there is at present no convincing evidence for a causal association between dietary intake of glycation compounds and adverse health effects.
Collapse
Affiliation(s)
- Michael Hellwig
- Chair of Special Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Patrick Diel
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | | | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
| | - Sabine Guth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Thomas Henle
- Chair of Food Chemistry, TU Dresden, Dresden, Germany
| | | | - Hans-Georg Joost
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Jana Raupbach
- Institute of Food Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Angelika Roth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | | | - Angela Mally
- Department of Toxicology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
8
|
Bose D, Famurewa AC, Akash A, Othman EM. The Therapeutic Mechanisms of Honey in Mitigating Toxicity from Anticancer Chemotherapy Toxicity: A Review. J Xenobiot 2024; 14:1109-1129. [PMID: 39189178 PMCID: PMC11348124 DOI: 10.3390/jox14030063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/17/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 08/28/2024] Open
Abstract
Within the domain of conventional oncochemotherapeutics, anticancer chemotherapy (AC) has emerged as a potent strategy for the treatment of cancers. AC is the mainstay strategy for solid and non-solid cancer treatment. Its mechanistic action targets the blockage of DNA transcription and the dysregulation of cell cycle machinery in cancer cells, leading to the activation of death pathways. However, the attendant side effect of toxicity inflicted by AC on healthy tissues presents a formidable challenge. The crucial culprit in the AC side effect of toxicity is unknown, although oxidative stress, mitochondrial impairment, inflammatory cascades, autophagy dysregulation, apoptosis, and certain aberrant signaling have been implicated. Honey is a natural bee product with significant health benefits and pharmacological properties. Interestingly, the literature reports that honey may proffer a protection mechanism for delicate tissue/organs against the side effect of toxicity from AC. Thus, this review delves into the prospective role of honey as an alleviator of the AC side effect of toxicity; it provides an elucidation of the mechanisms of AC toxicity and honey's molecular mechanisms of mitigation. The review endeavors to unravel the specific molecular cascades by which honey orchestrates its mitigating effects, with the overarching objective of refining its application as an adjuvant natural product. Honey supplementation prevents AC toxicity via the inhibition of oxidative stress, NF-κB-mediated inflammation, and caspase-dependent apoptosis cascades. Although there is a need for increased mechanistic studies, honey is a natural product that could mitigate the various toxicities induced by AC.
Collapse
Affiliation(s)
- Debalina Bose
- P.K. Sinha Centre for Bioenergy and Renewables, Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur 721302, West Bengal, India;
| | - Ademola C. Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Alex Ekwueme Federal University, Ndufu-Alike Ikwo, P.M.B. 1010, Abakaliki 482131, Nigeria
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Aman Akash
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany;
| | - Eman M. Othman
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany;
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Cancer Therapy Research Center (CTRC), Department of Biochemistry-I, Biocenter, University of Wuerzburg, Theodor-Boveri-Weg 1, 97074 Wuerzburg, Germany
| |
Collapse
|
9
|
Clare J, Lindley MR, Ratcliffe E. The Potential of Fish Oil Components and Manuka Honey in Tackling Chronic Wound Treatment. Microorganisms 2024; 12:1593. [PMID: 39203434 PMCID: PMC11356504 DOI: 10.3390/microorganisms12081593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/27/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Chronic wounds are becoming an increasing burden on healthcare services, as they have extended healing times and are susceptible to infection, with many failing to heal, which can lead ultimately to amputation. Due to the additional rise in antimicrobial resistance and emergence of difficult-to-treat Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. (ESKAPE pathogens), novel treatments will soon be required asides from traditional antibiotics. Many natural substances have been identified as having the potential to aid in both preventing infection and increasing the speed of wound closure processes. Manuka honey is already in some cases used as a topical treatment in the form of ointments, which in conjunction with dressings and fish skin grafts are an existing US Food and Drug Administration-approved treatment option. These existing treatment options indicate that fatty acids from fish oil and manuka honey are well tolerated by the body, and if the active components of the treatments were better understood, they could make valuable additions to topical treatment options. This review considers two prominent natural substances with established manufacturing and global distribution-marine based fatty acids (including their metabolites) and manuka honey-their function as antimicrobials and how they can aid in wound repair, two important aspects leading to resolution of chronic wounds.
Collapse
Affiliation(s)
- Jenna Clare
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK
| | - Martin R. Lindley
- School of Health Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney 2052, Australia;
| | - Elizabeth Ratcliffe
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK
| |
Collapse
|
10
|
Shin CJ, O'Connor TJ. Novel induction of broad-spectrum antibiotics by the human pathogen Legionella. mSphere 2024; 9:e0012024. [PMID: 38888300 PMCID: PMC11288058 DOI: 10.1128/msphere.00120-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/14/2024] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
The majority of antibiotics are natural products, with microorganism-generated molecules and their derivatives being the most prevalent source of drugs to treat infections. Thus, identifying natural products remains the most valuable resource for novel therapeutics. Here, we report the discovery of a series of dormant bacteria in honey that have bactericidal activity toward Legionella, a bacterial pathogen that causes respiratory disease in humans. We show that, in response to bacterial products secreted by Legionella, the honey bacteria release diffusible antimicrobial molecules. Remarkably, the honey bacteria only produce these molecules in response to Legionella spp., when compared to a panel of 24 bacterial pathogens from different genera. However, the molecules induced by Legionella have broad activity against several clinically important pathogens, including many high-priority pathogens. Thus, Legionella spp. are potent drivers of antimicrobial molecule production by uncharacterized bacteria isolated from honey, providing access to new antimicrobial products and an unprecedented strategy for discovering novel antibiotics. IMPORTANCE Natural products generated by microorganisms remain the most viable and abundant source of new antibiotics. However, their discovery depends on the ability to isolate and culture the producing organisms and to identify conditions that promote antibiotic production. Here, we identify a series of previously undescribed bacteria isolated from raw honey and specific culture conditions that induce the production of antimicrobial molecules that are active against a wide variety of pathogenic bacteria.
Collapse
Affiliation(s)
- Carson J. Shin
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tamara J. O'Connor
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Tang Y, Chen L, Ran X. Efficacy and Safety of Honey Dressings in the Management of Chronic Wounds: An Updated Systematic Review and Meta-Analysis. Nutrients 2024; 16:2455. [PMID: 39125335 PMCID: PMC11314015 DOI: 10.3390/nu16152455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/01/2024] [Revised: 07/08/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Chronic wounds impose a substantial economic burden on healthcare systems and result in decreased productivity. Honey possesses diverse properties, rendering it a promising, cost-effective, and efficacious intervention strategy for the management of chronic wounds. However, the findings are controversial. We have presented an updated and comprehensive systematic review and meta-analysis to evaluate the efficacy and safety of honey dressings in the management of chronic wounds. Nine electronic databases were systematically searched to identify relevant studies published prior to 22 March 2024. A total of eight studies, including 906 individuals that met the inclusion criteria, were incorporated. The findings demonstrated a significant acceleration in wound healing time with honey dressings (MD = -17.13, 95% CI -26.37 to -7.89, p = 0.0003) and an increase in the percentage of wound healing (MD = 18.31, 95% CI 8.86 to 27.76, p = 0.0001). No statistically significant differences were observed in the healing rate (RR = 2.00, 95% CI 0.78 to 5.10, p = 0.15), clearance time of bacteria (MD = -11.36, 95% CI: -25.91 to 3.18, p = 0.13) and hospital stay duration. Honey may decrease the VAS score but may increase the incidence of painful discomfort during treatment. The topical application of honey is an effective therapeutic approach for managing chronic wounds, but the quality of the evidence was very low due to the quality of risk of bias, inconsistency, and publication bias, highlighting the necessity for larger-scale studies with adequately powered RCTs to ensure the safety and efficacy of honey dressings in chronic wound healing.
Collapse
Affiliation(s)
- Ying Tang
- Department of Endocrinology & Metabolism, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.T.); (L.C.)
- Innovation Center for Wound Repair, Diabetic Foot Care Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lihong Chen
- Department of Endocrinology & Metabolism, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.T.); (L.C.)
- Innovation Center for Wound Repair, Diabetic Foot Care Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xingwu Ran
- Department of Endocrinology & Metabolism, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.T.); (L.C.)
- Innovation Center for Wound Repair, Diabetic Foot Care Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Márquez-Garbán DC, Yanes CD, Llarena G, Elashoff D, Hamilton N, Hardy M, Wadehra M, McCloskey SA, Pietras RJ. Manuka Honey Inhibits Human Breast Cancer Progression in Preclinical Models. Nutrients 2024; 16:2369. [PMID: 39064812 PMCID: PMC11279598 DOI: 10.3390/nu16142369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/11/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Manuka honey (MH) exhibits potential antitumor activity in preclinical models of a number of human cancers. Treatment in vitro with MH at concentrations ranging from 0.3 to 5.0% (w/v) led to significant dose-dependent inhibition of proliferation of human breast cancer MCF-7 cells, but anti-proliferative effects of MH were less pronounced in MDA-MB-231 breast cancer cells. Effects of MH were also tested on non-malignant human mammary epithelial cells (HMECs) at 2.5% w/v, and it was found that MH reduced the proliferation of MCF-7 cells but not that of HMECs. Notably, the antitumor activity of MH was in the range of that exerted by treatment of MCF-7 cells with the antiestrogen tamoxifen. Further, MH treatment stimulated apoptosis of MCF-7 cells in vitro, with most cells exhibiting acute and significant levels of apoptosis that correlated with PARP activation. Additionally, the effects of MH induced the activation of AMPK and inhibition of AKT/mTOR downstream signaling. Treatment of MCF7 cells with increased concentrations of MH induced AMPK phosphorylation in a dose-dependent manner that was accompanied by inhibition of phosphorylation of AKT and mTOR downstream effector protein S6. In addition, MH reduced phosphorylated STAT3 levels in vitro, which may correlate with MH and AMPK-mediated anti-inflammatory properties. Further, in vivo, MH administered alone significantly inhibited the growth of established MCF-7 tumors in nude mice by 84%, resulting in an observable reduction in tumor volume. Our findings highlight the need for further research into the use of natural compounds, such as MH, for antitumor efficacy and potential chemoprevention and investigation of molecular pathways underlying these actions.
Collapse
Affiliation(s)
- Diana C. Márquez-Garbán
- Division of Hematology-Oncology, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA (R.J.P.)
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA; (D.E.); (M.H.)
| | - Cristian D. Yanes
- Division of Hematology-Oncology, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA (R.J.P.)
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA; (D.E.); (M.H.)
| | - Gabriela Llarena
- Division of Hematology-Oncology, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA (R.J.P.)
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA; (D.E.); (M.H.)
| | - David Elashoff
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA; (D.E.); (M.H.)
- Division of General Internal Medicine, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Nalo Hamilton
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA; (D.E.); (M.H.)
- School of Nursing, UCLA, Los Angeles, CA 90095, USA
| | - Mary Hardy
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA; (D.E.); (M.H.)
- Division of General Internal Medicine, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Madhuri Wadehra
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA; (D.E.); (M.H.)
- Department of Pathology and Laboratory Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Susan A. McCloskey
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA; (D.E.); (M.H.)
- Department of Radiation Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Richard J. Pietras
- Division of Hematology-Oncology, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA (R.J.P.)
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA; (D.E.); (M.H.)
| |
Collapse
|
13
|
Kaźmierczak-Barańska J, Karwowski BT. The Antioxidant Potential of Commercial Manuka Honey from New Zealand-Biochemical and Cellular Studies. Curr Issues Mol Biol 2024; 46:6366-6376. [PMID: 39057022 PMCID: PMC11275220 DOI: 10.3390/cimb46070380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/17/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Manuka honey (MH) is considered a superfood mainly because of its various health-promoting properties, including its anti-cancer, anti-inflammatory, and clinically proven antibacterial properties. A unique feature of Manuka honey is the high content of methylglyoxal, which has antibacterial potential. Additionally, it contains bioactive and antioxidant substances such as polyphenols that contribute to its protective effects against oxidative stress. In this study, commercially available Manuka honey was tested for its total polyphenol content and DPPH radical scavenging ability. It was then tested in vitro on human fibroblast cells exposed to UV radiation to assess its potential to protect cells against oxidative stress. The results showed that the honey itself significantly interfered with cell metabolism, and its presence only slightly alleviated the effects of UV exposure. This study also suggested that the MGO content has a minor impact on reducing oxidative stress in UV-irradiated cells and efficiency in scavenging the DPPH radical.
Collapse
Affiliation(s)
| | - Bolesław T. Karwowski
- DNA Damage Laboratory of Food Science Department, Faculty of Pharmacy, Medical University of Lodz, Ul. Muszynskiego 1, 90-151 Lodz, Poland;
| |
Collapse
|
14
|
Onyango LA, Liang J. Manuka honey as a non-antibiotic alternative against Staphylococcus spp. and their small colony variant (SCVs) phenotypes. Front Cell Infect Microbiol 2024; 14:1380289. [PMID: 38868298 PMCID: PMC11168119 DOI: 10.3389/fcimb.2024.1380289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/01/2024] [Accepted: 03/21/2024] [Indexed: 06/14/2024] Open
Abstract
The antibiotic resistance (ABR) crisis is an urgent global health priority. Staphylococci are among the problematic bacteria contributing to this emergency owing to their recalcitrance to many clinically important antibiotics. Staphylococcal pathogenesis is further complicated by the presence of small colony variants (SCVs), a bacterial subpopulation displaying atypical characteristics including retarded growth, prolific biofilm formation, heightened antibiotic tolerance, and enhanced intracellular persistence. These capabilities severely impede current chemotherapeutics, resulting in chronic infections, poor patient outcomes, and significant economic burden. Tackling ABR requires alternative measures beyond the conventional options that have dominated treatment regimens over the past 8 decades. Non-antibiotic therapies are gaining interest in this arena, including the use of honey, which despite having ancient therapeutic roots has now been reimagined as an alternative treatment beyond just traditional topical use, to include the treatment of an array of difficult-to-treat staphylococcal infections. This literature review focused on Manuka honey (MH) and its efficacy as an anti-staphylococcal treatment. We summarized the studies that have used this product and the technologies employed to study the antibacterial mechanisms that render MH a suitable agent for the management of problematic staphylococcal infections, including those involving staphylococcal SCVs. We also discussed the status of staphylococcal resistance development to MH and other factors that may impact its efficacy as an alternative therapy to help combat ABR.
Collapse
Affiliation(s)
- Laura A. Onyango
- Department of Biology, Trinity Western University, Langley, BC, Canada
| | | |
Collapse
|
15
|
Demiraslan Y, Gürbüz İ, Özbek M, Şahan Yapicier Ö, Karaca H, Özgel Ö, Öner H. Cadaver preservative properties of a solution composed of honey, ethyl alcohol, liquid paraffin, distilled water and citric acid: Experiments on rabbit cadavers. Anat Histol Embryol 2024; 53:e13032. [PMID: 38525664 DOI: 10.1111/ahe.13032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/29/2024] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 03/26/2024]
Abstract
The objective of this study is to assess the efficacy of a solution including honey, ethyl alcohol, liquid paraffin, distilled water and citric acid (HEFS) as a preservative for rabbit cadavers, serving as a potential substitute for formaldehyde. The cadavers underwent preservation using three distinct solutions: 10% formalin, 35% alcohol and HEFS. The cadavers were subjected to a total of four sampling events, occurring at 4-month intervals, in order to collect specimens for microanatomical, histological, microbiological, mycological, colourimetric, texture and odour analysis. In terms of hardness, suitability for dissection and joint mobility metrics, the cadavers fixed with HEFS had superior qualities to those fixed with formalin. The fixation quality of HEFS for histological analyses was deemed acceptable, except kidney and intestinal tissues. In texture analysis, differences only in the elasticity parameter (p < 0.05) in the same sampling period. A total of 10 (13.9) bacteria isolates were identified among which, Metasolibacillus meyeri 3 (30%) was predominantly followed by Staphylococcus aureus 2 (20%), Bacillus siamensis, Bacillus subtilis, Pseudarthrobacter oxydans, Bacillus licheniformis, Bacillus subtilis subsp. subtilis with a proportion of 1 (10%), respectively, by both microbiological and molecular analysis. However, no anaerobic bacteria and fungi were isolated. A considerable percentage of the students had the perception that HEFS was appropriate for utilization in laboratory settings due to its absence of unpleasant odours and detrimental impact on ocular and respiratory functions. In conclusion, we consider that HEFS may serve as a viable substitute for formalin solution in the preservation of rabbit cadavers.
Collapse
Affiliation(s)
- Yasin Demiraslan
- Department of Anatomy, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - İftar Gürbüz
- Department of Anatomy, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Mehmet Özbek
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Özlem Şahan Yapicier
- Republic of Turkey Ministry of Agriculture and Forestry Veterinary Control, Central Research Institute, Bacteriology Diagnostic Laboratory, Ankara, Turkey
| | - Harun Karaca
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Özcan Özgel
- Department of Anatomy, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Hakan Öner
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| |
Collapse
|
16
|
Clare J, Lindley MR, Ratcliffe E. The Antimicrobial and Antibiofilm Abilities of Fish Oil Derived Polyunsaturated Fatty Acids and Manuka Honey. Microorganisms 2024; 12:778. [PMID: 38674722 PMCID: PMC11052219 DOI: 10.3390/microorganisms12040778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/18/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Both honey and fish oil have been historically used in medicine and identified as having antimicrobial properties. Although analyses of the substances have identified different components within them, it is not fully understood how these components interact and contribute to the observed effect. With the increase in multi-drug resistant strains of bacteria found in infections, new treatment options are needed. This study aimed to assess the antimicrobial abilities of fish oil components, including docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and derived resolvins (RvE1, RvD2, and RvD3), as well as two varieties of manuka honey, against a panel of medically relevant microorganisms and antimicrobial resistant organisms, such as Methicillin Resistant Staphylococcus aureus (MRSA) and carbapenem-resistant Escherichia coli. Minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) were identified; further minimum biofilm eradication concentrations (MBEC) were investigated for responsive organisms, including S. aureus, E. coli, Staphylococcus epidermidis, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Concurrent with the existing literature, manuka honey was found to be a broad-spectrum antimicrobial with varied potency according to methylglyoxal content. DHA and EPA were both effective against Gram-positive and negative bacteria, but some drug-resistant strains or pathogens were not protected by a capsule. Only E. coli was inhibited by the resolvins.
Collapse
Affiliation(s)
- Jenna Clare
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK
| | - Martin R. Lindley
- School of Health Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney 2052, Australia;
| | - Elizabeth Ratcliffe
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK
| |
Collapse
|
17
|
Nyarko K, Greenlief CM. Investigations of Major α-Dicarbonyl Content in U.S. Honey of Different Geographical Origins. Molecules 2024; 29:1588. [PMID: 38611866 PMCID: PMC11013281 DOI: 10.3390/molecules29071588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/19/2024] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
α-Dicarbonyls are significant degradation products resulting from the Maillard reaction during food processing. Their presence in foods can indicate the extent of heat exposure, processing treatments, and storage conditions. Moreover, they may be useful in providing insights into the potential antibacterial and antioxidant activity of U.S. honey. Despite their importance, the occurrence of α-dicarbonyls in honey produced in the United States has not been extensively studied. This study aims to assess the concentrations of α-dicarbonyls in honey samples from different regions across the United States. The identification and quantification of α-dicarbonyls were conducted using reverse-phase liquid chromatography after derivatization with o-phenylenediamine (OPD) and detected using ultraviolet (UV) and mass spectrometry methods. This study investigated the effects of pH, color, and derivatization reagent on the presence of α-dicarbonyls in honey. The quantification method was validated by estimating the linearity, precision, recovery, method limit of detection, and quantification using known standards for GO, MGO, and 3-DG, respectively. Three major OPD-derivatized α-dicarbonyls including methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone (3-DG), were quantified in all the honey samples. 3-Deoxyglucosone (3-DG) was identified as the predominant α-dicarbonyl in all the U.S. honey samples, with concentrations ranging from 10.80 to 50.24 mg/kg. The total α-dicarbonyl content ranged from 16.81 to 55.74 mg/kg, with the highest concentration measured for Southern California honey. Our results showed no significant correlation between the total α-dicarbonyl content and the measured pH solutions. Similarly, we found that lower amounts of the OPD reagent are optimal for efficient derivatization of MGO, GO, and 3-DG in honey. Our results also indicated that darker types of honey may contain higher α-dicarbonyl content compared with lighter ones. The method validation results yielded excellent recovery rates for 3-DG (82.5%), MGO (75.8%), and GO (67.0%). The method demonstrated high linearity with a limit of detection (LOD) and limit of quantitation (LOQ) ranging from 0.0015 to 0.002 mg/kg and 0.005 to 0.008 mg/kg, respectively. Our results provide insights into the occurrence and concentrations of α-dicarbonyl compounds in U.S. honey varieties, offering valuable information on their quality and susceptibility to thermal processing effects.
Collapse
|
18
|
Grierson ERP, Thrimawithana AH, van Klink JW, Lewis DH, Carvajal I, Shiller J, Miller P, Deroles SC, Clearwater MJ, Davies KM, Chagné D, Schwinn KE. A phosphatase gene is linked to nectar dihydroxyacetone accumulation in mānuka (Leptospermum scoparium). THE NEW PHYTOLOGIST 2024. [PMID: 38532557 DOI: 10.1111/nph.19714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/06/2023] [Accepted: 03/06/2024] [Indexed: 03/28/2024]
Abstract
Floral nectar composition beyond common sugars shows great diversity but contributing genetic factors are generally unknown. Mānuka (Leptospermum scoparium) is renowned for the antimicrobial compound methylglyoxal in its derived honey, which originates from the precursor, dihydroxyacetone (DHA), accumulating in the nectar. Although this nectar trait is highly variable, genetic contribution to the trait is unclear. Therefore, we investigated key gene(s) and genomic regions underpinning this trait. We used RNAseq analysis to identify nectary-associated genes differentially expressed between high and low nectar DHA genotypes. We also used a mānuka high-density linkage map and quantitative trait loci (QTL) mapping population, supported by an improved genome assembly, to reveal genetic regions associated with nectar DHA content. Expression and QTL analyses both pointed to the involvement of a phosphatase gene, LsSgpp2. The expression pattern of LsSgpp2 correlated with nectar DHA accumulation, and it co-located with a QTL on chromosome 4. The identification of three QTLs, some of the first reported for a plant nectar trait, indicates polygenic control of DHA content. We have established plant genetics as a key influence on DHA accumulation. The data suggest the hypothesis of LsSGPP2 releasing DHA from DHA-phosphate and variability in LsSgpp2 gene expression contributing to the trait variability.
Collapse
Affiliation(s)
- Ella R P Grierson
- The New Zealand Institute for Plant and Food Research Limited (PFR), Palmerston North, 4472, New Zealand
- Te Aka Mātuatua - School of Science, University of Waikato, Hamilton, 3216, New Zealand
| | | | - John W van Klink
- PFR, Chemistry Department, University of Otago, Dunedin, 9016, New Zealand
| | - David H Lewis
- The New Zealand Institute for Plant and Food Research Limited (PFR), Palmerston North, 4472, New Zealand
| | | | - Jason Shiller
- PFR, Te Puke Research Centre, Te Puke, 3182, New Zealand
| | - Poppy Miller
- PFR, Te Puke Research Centre, Te Puke, 3182, New Zealand
| | | | - Michael J Clearwater
- Te Aka Mātuatua - School of Science, University of Waikato, Hamilton, 3216, New Zealand
| | - Kevin M Davies
- The New Zealand Institute for Plant and Food Research Limited (PFR), Palmerston North, 4472, New Zealand
| | - David Chagné
- The New Zealand Institute for Plant and Food Research Limited (PFR), Palmerston North, 4472, New Zealand
| | - Kathy E Schwinn
- The New Zealand Institute for Plant and Food Research Limited (PFR), Palmerston North, 4472, New Zealand
| |
Collapse
|
19
|
Magdas TM, David M, Hategan AR, Filip GA, Magdas DA. Geographical Origin Authentication-A Mandatory Step in the Efficient Involvement of Honey in Medical Treatment. Foods 2024; 13:532. [PMID: 38397509 PMCID: PMC10887874 DOI: 10.3390/foods13040532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/15/2024] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Nowadays, in people's perceptions, the return to roots in all aspects of life is an increasing temptation. This tendency has also been observed in the medical field, despite the availability of high-level medical services with many years of research, expertise, and trials. Equilibrium is found in the combination of the two tendencies through the inclusion of the scientific experience with the advantages and benefits provided by nature. It is well accepted that the nutritional and medicinal properties of honey are closely related to the botanical origin of the plants at the base of honey production. Despite this, people perceive honey as a natural and subsequently a simple product from a chemical point of view. In reality, honey is a very complex matrix containing more than 200 compounds having a high degree of compositional variability as function of its origin. Therefore, when discussing the nutritional and medicinal properties of honey, the importance of the geographical origin and its link to the honey's composition, due to potential emerging contaminants such as Rare Earth Elements (REEs), should also be considered. This work offers a critical view on the use of honey as a natural superfood, in a direct relationship with its botanical and geographical origin.
Collapse
Affiliation(s)
- Tudor Mihai Magdas
- Department of Anatomy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 3-5 Clinicilor Street, 400006 Cluj-Napoca, Romania; (T.M.M.); (G.A.F.)
| | - Maria David
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca, Romania; (M.D.); (A.R.H.)
| | - Ariana Raluca Hategan
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca, Romania; (M.D.); (A.R.H.)
| | - Gabriela Adriana Filip
- Department of Anatomy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 3-5 Clinicilor Street, 400006 Cluj-Napoca, Romania; (T.M.M.); (G.A.F.)
| | - Dana Alina Magdas
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca, Romania; (M.D.); (A.R.H.)
| |
Collapse
|
20
|
Lohuis PJFM, Maldonado-Chapa F, Santos-Santillana KM, Filipović B, Dirven R, Karakullukcku MB, Karssemakers L, Schreuder WH, Zuur CL, Timmermans J. Optimizing Wound Care after Surgery of the Head and Neck: A Review of Dressing Materials. Facial Plast Surg 2024; 40:68-79. [PMID: 36878677 DOI: 10.1055/a-2047-6356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 03/08/2023] Open
Abstract
Wound healing is a complex biological process subject to complications that might jeopardize the patient's postoperative care. Appropriately approaching surgical wounds after head and neck surgery positively influences the quality and speed of wound healing and increases patient comfort. A large variety of dressing materials currently exist that allow the care of different types of wounds. Nevertheless, there is limited literature on the most suitable types of dressings after head and neck surgery. The objective of the present article is to review the most commonly used wound dressings, their benefits, indications, and disadvantages, and to provide a systematic approach for wound care within the head and neck. The Woundcare Consultant Society distinguishes wounds into three groups: black, yellow, and red. Each type of wound represents distinctive underlying pathophysiological processes with unique needs. Utilizing this classification along with the TIME model allows a proper characterization of wounds and the identification of potential healing barriers. This evidence-based and systematic approach can facilitate and guide the head and neck surgeon in selecting a wound dressing upon acknowledging their properties, which are herein reviewed and exemplified with representative cases.
Collapse
Affiliation(s)
- Peter J F M Lohuis
- Department of Head and Neck Surgery and Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Facial Plastic and Reconstructive Surgery, Lohuis-Filipović Medial Group, Zagreb, Croatia
- Department of Facial Plastic and Reconstructive Surgery, Bergman Clinics, Hilversum, The Netherlands
- Department of Sleep Medicine, Ruysdael Clinics, Amsterdam, The Netherlands
| | - Felix Maldonado-Chapa
- Department of Head and Neck Surgery and Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Facial Plastic and Reconstructive Surgery, Lohuis-Filipović Medial Group, Zagreb, Croatia
| | - Karla M Santos-Santillana
- Department of Facial Plastic and Reconstructive Surgery, Lohuis-Filipović Medial Group, Zagreb, Croatia
| | - Boris Filipović
- Department of Head and Neck Surgery and Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Facial Plastic and Reconstructive Surgery, Lohuis-Filipović Medial Group, Zagreb, Croatia
| | - Richard Dirven
- Department of Head and Neck Surgery and Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - M Baris Karakullukcku
- Department of Head and Neck Surgery and Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Luc Karssemakers
- Department of Head and Neck Surgery and Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Willem H Schreuder
- Department of Head and Neck Surgery and Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Charlotte L Zuur
- Department of Head and Neck Surgery and Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jacqueline Timmermans
- Department of Head and Neck Surgery and Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Marglani OA, Simsim RF. Emerging Therapies in the Medical Management of Allergic Fungal Rhinosinusitis. Indian J Otolaryngol Head Neck Surg 2024; 76:277-287. [PMID: 38440667 PMCID: PMC10909043 DOI: 10.1007/s12070-023-04143-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 03/06/2024] Open
Abstract
A non-invasive type of chronic sinusitis named allergic fungal rhinosinusitis (AFRS), which is a variant of allergic bronchopulmonary aspergillosis with nasal obstruction, was first described in 1976. The goal of this article was to provide an overview of various treatment approaches and how they can be used to control AFRS. Since this is an inflammatory disease rather than an invasive fungal infection, the treatment tries to modulate inflammation and reduce disease burden. A comprehensive treatment strategy must incorporate medicinal, surgical, biological, and immunological techniques. Owing to the chronic nature of allergic fungal rhinosinusitis and its high propensity for flare-ups and recurrence, multiple procedures are frequently required. The most likely method of establishing a long-term disease control for AFRS is a comprehensive management strategy that integrates medical, surgical, and immunological care. However, there are still disagreements regarding the exact combinations. In this review, we have mentioned different modalities in the management of AFRS, such as monoclonal antibodies, probiotic Manuka honey, and aPDT among others, some of which are promising but require further research.
Collapse
Affiliation(s)
- Osama A. Marglani
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Rehab F. Simsim
- Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
22
|
Gouletsou PG, Zacharopoulou T, Skampardonis V, Georgiou SG, Doukas D, Galatos AD, Flouraki E, Dermisiadou E, Margeti C, Barbagianni M, Sideri A, Tsioli V. First-Intention Incisional Wound Healing in Dogs and Cats: A Controlled Trial of Dermapliq and Manuka Honey. Vet Sci 2024; 11:64. [PMID: 38393082 PMCID: PMC10892332 DOI: 10.3390/vetsci11020064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/01/2023] [Revised: 01/14/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
This study aimed to compare incisional wound healing in cats and dogs after the topical application of Μanuka honey and a new medical device, Dermapliq. Comparisons were made between each treatment and control, between the two treatments, and between dogs and cats. Twelve cats and twelve dogs were included in this study, and the impact of the two substances was examined through cosmetic, clinical, ultrasonographical, and histological evaluation. The use of Dermapliq in first-intention wound healing achieved a significantly better cosmetic evaluation score and better total clinical score at days 20-41, compared to the control, in both dogs and cats. The ultrasonographically estimated wound area was smaller with Dermapliq compared to the control. Wounds treated with Dermapliq showed histologically less inflammation compared to the control. The use of Manuka honey did not show a significantly better cosmetic score compared to the control. Skin thickening was significantly higher after using Manuka honey compared to the control and so was the total clinical score. However, the median wound area, as was evaluated ultrasonographically, was significantly smaller when wounds were treated with Manuka honey, the difference being more apparent in dogs. Dermapliq was proven to be a better choice in achieving favorable wound healing than Manuka honey in dogs and cats in first-intention healing. In our study, cats had a statistically better cosmetic score and less skin thickening and scar width compared to dogs. Histologically, cats showed significantly less edema, higher inflammation and angiogenesis scores, and lower fibroblast and epidermis thickening scores when compared to dogs.
Collapse
Affiliation(s)
- Pagona G. Gouletsou
- Clinic of Obstetrics and Reproduction, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece
| | - Theodora Zacharopoulou
- Clinic of Surgery, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece; (T.Z.); (S.G.G.); (A.D.G.); (E.F.); (E.D.); (C.M.); (M.B.); (A.S.); (V.T.)
| | - Vassilis Skampardonis
- Laboratory of Epidemiology, Biostatistics and Animal Health Economics, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece;
| | - Stefanos G. Georgiou
- Clinic of Surgery, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece; (T.Z.); (S.G.G.); (A.D.G.); (E.F.); (E.D.); (C.M.); (M.B.); (A.S.); (V.T.)
| | - Dimitrios Doukas
- Laboratory of Pathology, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece;
| | - Apostolos D. Galatos
- Clinic of Surgery, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece; (T.Z.); (S.G.G.); (A.D.G.); (E.F.); (E.D.); (C.M.); (M.B.); (A.S.); (V.T.)
| | - Eugenia Flouraki
- Clinic of Surgery, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece; (T.Z.); (S.G.G.); (A.D.G.); (E.F.); (E.D.); (C.M.); (M.B.); (A.S.); (V.T.)
| | - Eleftheria Dermisiadou
- Clinic of Surgery, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece; (T.Z.); (S.G.G.); (A.D.G.); (E.F.); (E.D.); (C.M.); (M.B.); (A.S.); (V.T.)
| | - Chryssoula Margeti
- Clinic of Surgery, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece; (T.Z.); (S.G.G.); (A.D.G.); (E.F.); (E.D.); (C.M.); (M.B.); (A.S.); (V.T.)
| | - Mariana Barbagianni
- Clinic of Surgery, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece; (T.Z.); (S.G.G.); (A.D.G.); (E.F.); (E.D.); (C.M.); (M.B.); (A.S.); (V.T.)
| | - Aikaterini Sideri
- Clinic of Surgery, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece; (T.Z.); (S.G.G.); (A.D.G.); (E.F.); (E.D.); (C.M.); (M.B.); (A.S.); (V.T.)
| | - Vassiliki Tsioli
- Clinic of Surgery, Faculty of Veterinary Science, School of Health Sciences, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece; (T.Z.); (S.G.G.); (A.D.G.); (E.F.); (E.D.); (C.M.); (M.B.); (A.S.); (V.T.)
| |
Collapse
|
23
|
Gośliński M, Nowak D, Mindykowski R, Kulewski W, Popławski C. Application of Manuka honey in treatment patients with GERD. Food Sci Nutr 2024; 12:172-179. [PMID: 38268884 PMCID: PMC10804081 DOI: 10.1002/fsn3.3748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/08/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 01/26/2024] Open
Abstract
Gastro-esophageal reflux disease has systematically increase in Western countries over recent years. Health benefits of Manuka honey allows to use it for medical purposes, for example reduction of inflammation of gastrointestinal mucosa. Thus, the aim of research was the application of Manuka honey in treatment patients with Gastro-esophageal reflux disease (GERD). The study was conducted on a group of 30 patients, which consumed Manuka honey or placebo for a period of 4 weeks. The gastroscopy and histology has been made twice, that is before and after experiment. Furthermore, the symptoms reports and nutritional interviews have been collected. The endoscopical examination showed that in Manuka group the improvement was 73.3%. In the sub-groups of esophagitis-A and esophagitis-B the improvement rate was 81.8%, and 50%, respectively. However, in the placebo group, the general improvement rate was much lower. The results have been confirmed in the histopathological examination. Moreover, it is worth noticing, that in sub-group declaring non-medication, the improvement was only for patients consuming Manuka honey. Changes of symptoms in subjective assessment of patients were evaluated after 2 and 4 weeks. The improvement rate in Manuka group was 86.7% and 100%, while in Placebo group it was only 26.7% and 40%, respectively. Manuka honey seems to be effective in GERD, which have been confirmed by subjective feelings of patients and by endoscopic and histopathologic examination. Our research is a pilot study before administration of Manuka honey to larger population. The results are promising and may facilitate the quality of life of patients with GERD.
Collapse
Affiliation(s)
- Michał Gośliński
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in BydgoszczNicolaus Copernicus University in ToruńBydgoszczPoland
| | - Dariusz Nowak
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in BydgoszczNicolaus Copernicus University in ToruńBydgoszczPoland
| | - Roman Mindykowski
- Department of Gastrointestinal EndoscopyUniversity Hospital No. 1 in BydgoszczBydgoszczPoland
| | - Wojciech Kulewski
- Department of Gastrointestinal EndoscopyUniversity Hospital No. 1 in BydgoszczBydgoszczPoland
| | - Cezary Popławski
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in BydgoszczNicolaus Copernicus University in ToruńBydgoszczPoland
- Department of Gastrointestinal EndoscopyUniversity Hospital No. 1 in BydgoszczBydgoszczPoland
| |
Collapse
|
24
|
Khataybeh B, Jaradat Z, Ababneh Q. Anti-bacterial, anti-biofilm and anti-quorum sensing activities of honey: A review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116830. [PMID: 37400003 DOI: 10.1016/j.jep.2023.116830] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/15/2023] [Revised: 05/31/2023] [Accepted: 06/20/2023] [Indexed: 07/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Man has used honey to treat diseases since ancient times, perhaps even before the history of medicine itself. Several civilizations have utilized natural honey as a functional and therapeutic food to ward off infections. Recently, researchers worldwide have been focusing on the antibacterial effects of natural honey against antibiotic-resistant bacteria. AIM OF THE STUDY This review aims to summarize research on the use of honey properties and constituents with their anti-bacterial, anti-biofilm, and anti-quorum sensing mechanisms of action. Further, honey's bacterial products, including probiotic organisms and antibacterial agents which are produced to curb the growth of other competitor microorganisms is addressed. MATERIALS AND METHODS In this review, we have provided a comprehensive overview of the antibacterial, anti-biofilm, and anti-quorum sensing activities of honey and their mechanisms of action. Furthermore, the review addressed the effects of antibacterial agents of honey from bacterial origin. Relevant information on the antibacterial activity of honey was obtained from scientific online databases such as Web of Science, Google Scholar, ScienceDirect, and PubMed. RESULTS Honey's antibacterial, anti-biofilm, and anti-quorum sensing activities are mostly attributed to four key components: hydrogen peroxide, methylglyoxal, bee defensin-1, and phenolic compounds. The performance of bacteria can be altered by honey components, which impact their cell cycle and cell morphology. To the best of our knowledge, this is the first review that specifically summarizes every phenolic compound identified in honey along with their potential antibacterial mechanisms of action. Furthermore, certain strains of beneficial lactic acid bacteria such as Bifidobacterium, Fructobacillus, and Lactobacillaceae, as well as Bacillus species can survive and even grow in honey, making it a potential delivery system for these agents. CONCLUSION Honey could be regarded as one of the best complementary and alternative medicines. The data presented in this review will enhance our knowledge of some of honey's therapeutic properties as well as its antibacterial activities.
Collapse
Affiliation(s)
- Batool Khataybeh
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ziad Jaradat
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Qutaiba Ababneh
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
25
|
Magoshi IB, Nekhumbe AW, Ibrahim MA, Serem JC, Bester MJ. Gastrointestinal Effects on the Antioxidant and Immunomodulatory Properties of South African Fynbos Honey. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2023; 2023:2553197. [PMID: 38045104 PMCID: PMC10691895 DOI: 10.1155/2023/2553197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 03/08/2023] [Revised: 10/20/2023] [Accepted: 11/02/2023] [Indexed: 12/05/2023]
Abstract
The Fynbos biome, Western Cape Province, South Africa, produces a unique honey from Apis mellifera capensis. The bioactivity of Fynbos (FB1-FB6) honeys and Manuka, unique manuka factor 15+ (MAN UMF15+) honey subjected to simulated in vitro digestion, was compared. The effect of each phase of digestion on the antioxidant properties and nitric oxide- (NO-) associated immunomodulatory effects was determined. The total phenolic content of MAN (UMF15+) was higher than that of FB honeys, and following digestion, the percentage bioaccessibility (BA) was 68.6% and 87.1 ± 27.0%, respectively. With the Trolox equivalent antioxidant capacity assay, the activity of FB1 and FB6 was similar to MAN (UMF15+) but reduced for FB2, FB3, FB4, and FB5 with a %BA of 77.9% for MAN (UMF15+) and 78.2 ± 13.4% for FB. The oxygen radical absorbance capacity of MAN (UMF15+) and FB honeys was similar and unaltered with digestion. In a cellular environment, using colon adenocarcinoma (Caco-2) cells, both undigested and the gastric digested honey reduced 2,2'-azobis-(2-amidinopropane) dihydrochloride- (AAPH-) mediated peroxyl radical formation. In contrast, following gastroduodenal digestion, the formation of reactive oxygen species (ROS) was increased. In murine macrophage (RAW 264.7) cells, all honeys induced different levels of NO which was significantly increased with digestion for MAN (UMF15+) and FB1. In LPS/IFN-γ stimulated RAW 264.7 macrophages, only undigested MAN (UMF15+) effectively reduced NO levels, and with digestion, NO scavenging activity of MAN (UMF15+) was reduced but increased for FB5 and FB6. In a noncellular environment, MAN (UMF15+), FB1, FB2, and FB6 scavenged NO, and with digestion, this activity was maintained. This study has identified that undigested and gastric-digested FB honey has antioxidant properties with strong potential anticancer effects following gastroduodenal digestion, related to ROS formation. MAN (UMF15+) had anti-inflammatory effects which were lost postdigestion, and in contrast, FB5 and FB6 had anti-inflammatory effects postdigestion.
Collapse
Affiliation(s)
| | | | | | - June Cheptoo Serem
- Department of Anatomy, University of Pretoria, Pretoria 002, South Africa
| | - Megan Jean Bester
- Department of Anatomy, University of Pretoria, Pretoria 002, South Africa
| |
Collapse
|
26
|
Du Y, Zhu H, Qiao J, Zhang Y, Guo S, Chen W, Xu H, Dong J, Zhang G, Zhang H. Characteristic Components and Authenticity Evaluation of Chinese Honeys from Three Different Botanical Sources. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37921636 DOI: 10.1021/acs.jafc.3c03281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/04/2023]
Abstract
We aimed to identify the characteristic phytochemicals of safflower, Chinese sumac, and bauhinia honeys to assess their authenticity. We discovered syringaldehyde, riboflavin, lumiflavin, lumichrome, rhusin [(1E,4E)-1,5-diphenylpenta-1,4-dien-3-one-O-cinnamoyl oxime], bitterin {4-hydroxy-4-[3-(1-hydroxyethyl) oxiran-2-yl]-3,5,5-trimethylcyclohex-2-en-1-one}, and unedone as characteristic phytochemicals of these three types of honeys. The average contents of syringaldehyde, riboflavin, lumiflavin, or lumichrome in safflower honey were 41.20, 5.24, 24.72, and 36.72 mg/kg; lumiflavin, lumichrome, and rhusin in Chinese sumac honey were 39.66, 40.55, and 2.65 mg/kg; bitterin, unedone, and lumichrome in bauhinia honey were 8.42, 26.33, and 8.68 mg/kg, respectively. To our knowledge, the simultaneous presence of riboflavin, lumichrome, and lumiflavin in honey is a novel finding responsible for the bright-yellow color of honey. Also, it is the first time that lumiflavin, rhusin, and bitterin have been reported in honey. We effectively distinguish pure honeys from adulterations, based on characteristic components and high-performance liquid chromatography fingerprints; thus, we seem to provide intrinsic markers and reliable assessment criteria to assess honey authenticity.
Collapse
Affiliation(s)
- Yinan Du
- College of Food Engineering, Harbin University of Commerce, Harbin 155023, China
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Hequan Zhu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Jiangtao Qiao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Yu Zhang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Jiangsu Beevip Biotechnology Co., LTD, Taizhou 225300, China
| | - Shunyue Guo
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Wentian Chen
- Xinjiang AAFUD Agriculture CO., LTD, Changji 831100, China
| | - Huabin Xu
- Hunan Mingyuan Apiculture Co., LTD, Changsha 410000, China
| | - Jie Dong
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Gengsheng Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 155023, China
| | - Hongcheng Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 155023, China
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| |
Collapse
|
27
|
Bucekova M, Godocikova J, Gueyte R, Chambrey C, Majtan J. Characterisation of physicochemical parameters and antibacterial properties of New Caledonian honeys. PLoS One 2023; 18:e0293730. [PMID: 37906561 PMCID: PMC10617706 DOI: 10.1371/journal.pone.0293730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/27/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023] Open
Abstract
Honey is an attractive natural product with various health benefits. A few honey-based commercial products have successfully been adopted in clinics to improve wound healing. However, screening of other potential sources of medical-grade honey, in particular, honeys from territories with high floral species diversity and high endemicity, is highly needed. The goal of this study was to characterise the physicochemical and antibacterial properties of New Caledonian honey samples (n = 33) and to elucidate the major mechanism of their antibacterial action. Inhibitory antibacterial activity of honeys against Staphylococcus aureus and Pseudomonas aeruginosa was determined with a minimum inhibitory concentration (MIC) assay. Enzymatic activity of glucose oxidase and the content of hydrogen peroxide (H2O2) in honey samples were analysed. Furthermore, total protein content of honeys together with their electrophoretic protein profiles were also determined in the study. The antibacterial efficacy of 24% of the tested honey samples was slightly superior to that of manuka honey with unique manuka factor 15+. The antibacterial activity of catalase-treated honey sample solutions was significantly reduced, suggesting that H2O2 is a key antibacterial compound of diluted honeys. However, the kinetic profiles of H2O2 production in most potent honeys at a MIC value of 6% was not uniform. Under the experimental conditions, we found that a H2O2 concentration of 150 μM in diluted honeys is a critical concentration for inhibiting the growth of S. aureus. In contrast, 150 μM H2O2 in artificial honey solution was not able to inhibit bacterial growth, suggesting a role of phytochemicals in the antibacterial activity of natural honey. In addition, the continuous generation of H2O2 in diluted honey demonstrated an ability to counteract additional bacteria in re-inoculation experiments. In conclusion, the tested New Caledonian honey samples showed strong antibacterial activity, primarily based on H2O2 action, and therefore represent a suitable source for medical-grade honey.
Collapse
Affiliation(s)
- Marcela Bucekova
- Laboratory of Apidology and Apitherapy, Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jana Godocikova
- Laboratory of Apidology and Apitherapy, Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Romain Gueyte
- Beekeeping Center, ADECAL Technopole, Noumea Cedex, New Caledonia
| | - Céline Chambrey
- Beekeeping Center, ADECAL Technopole, Noumea Cedex, New Caledonia
| | - Juraj Majtan
- Laboratory of Apidology and Apitherapy, Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Microbiology, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| |
Collapse
|
28
|
Liang J, Adeleye M, Onyango LA. Combinatorial efficacy of Manuka honey and antibiotics in the in vitro control of staphylococci and their small colony variants. Front Cell Infect Microbiol 2023; 13:1219984. [PMID: 37928190 PMCID: PMC10622673 DOI: 10.3389/fcimb.2023.1219984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/09/2023] [Accepted: 09/04/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction Staphylococci are among the list of problematic bacteria contributing to the global antibiotic resistance (ABR) crisis. Their ability to adopt the small colony variant (SCV) phenotype, induced by prolonged antibiotic chemotherapy, complicates staphylococcal infection control options. Novel and alternative approaches are needed to tackle staphylococcal infections and curb ABR. Manuka honey (MH), a non-antibiotic alternative is recognized for its unique antibacterial activity based on its methylglyoxal (MGO) component. Methods In this study, MH (MGO 830+) was tested in combination with gentamicin (GEN), rifampicin (RIF), or vancomycin (VA) against staphylococcal wildtype (WT) and SCVs. To our knowledge, there are no current studies in the literature documenting the effects of MH on staphylococcal SCVs. While Staphylococcus aureus is well-studied for its international ABR burden, limited data exists demonstrating the effects of MH on S. epidermidis and S. lugdunensis whose pathogenic relevance and contribution to ABR is also rising. Results & discussion The three staphylococci were most susceptible to RIF (0.06-0.24 μg/ml), then GEN (0.12-0.49 μg/ml), and lastly VA (0.49-0.96 μg/ml). The MICs of MH were 7%, 7-8%, and 6-7% (w/v), respectively. Fractional inhibitory concentration (FIC) evaluations showed that the combined MH + antibiotic effect was either additive (FICI 1-2), or partially synergistic (FICI >0.5-1). While all three antibiotics induced SCVs in vitro, stable SCVs were observed in GEN treatments only. The addition of MH to these GEN-SCV-induction analyses resulted in complete suppression of SCVs (p<0.001) in all three staphylococci, suggesting that MH's antibacterial properties interfered with GEN's SCV induction mechanisms. Moreover, the addition of MH to growth cultures of recovered stable SCVs resulted in the inhibition of SCV growth by at least 99%, indicating MH's ability to prevent subsequent SCV growth. These in vitro analyses demonstrated MH's broad-spectrum capabilities not only in improving WT staphylococci susceptibility to the three antibiotics, but also mitigated the development and subsequent growth of their SCV phenotypes. MH in combination with antibiotics has the potential to not only resensitize staphylococci to antibiotics and consequently require less antibiotic usage, but in instances where prolonged chemotherapy is employed, the development and growth of SCVs would be hampered, providing a better clinical outcome, all of which mitigate ABR.
Collapse
|
29
|
Thierig M, Siegel E, Henle T. Formation of Protein-Bound Maillard Reaction Products during the Storage of Manuka Honey. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15261-15269. [PMID: 37796058 DOI: 10.1021/acs.jafc.3c03446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 10/06/2023]
Abstract
Honey from the nectar of the Manuka tree (Leptospermum scoparium) grown in New Zealand contains high amounts of antibacterial methylglyoxal (MGO). MGO can react with proteins to form peptide-bound Maillard reaction products (MRPs) such as Nε-carboxyethyllysine (CEL) and "methylglyoxal-derived hydroimidazolone 1" (MG-H1). To study the reactions of MGO with honey proteins during storage, three manuka honeys with varying amounts of MGO and a kanuka honey (Kunzea ericoides) spiked with various MGO concentrations up to 700 mg/kg have been stored at 37 °C for 10 weeks, and the formation of protein-bound MRPs has been analyzed via high-performance liquid chromatography-mass spectrometry (HPLC-MS/MS) following isolation of the protein fraction and enzymatic hydrolysis. During storage, contents of protein-bound CEL and MG-H1 increased continuously, directly depending on the MGO content. For honeys with large amounts of MGO, a slower formation of Nε-fructosyllysine (FL) was observed, indicating competing reactions of glucose and MGO with lysine. Furthermore, the lysine modification increased with storage independently from the MGO concentration. Up to 58-61% of the observed lysine modification was explainable with the formation of CEL and FL, indicating that other reactions, most likely the formation of Heyns products from lysine and fructose, may play an important role. Our results can contribute to the authentication of manuka honey.
Collapse
Affiliation(s)
- Marcus Thierig
- Chair of Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Eva Siegel
- Chair of Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Thomas Henle
- Chair of Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
| |
Collapse
|
30
|
Sęk A, Porębska A, Szczęsna T. Quality of Commercially Available Manuka Honey Expressed by Pollen Composition, Diastase Activity, and Hydroxymethylfurfural Content. Foods 2023; 12:2930. [PMID: 37569199 PMCID: PMC10417702 DOI: 10.3390/foods12152930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Manuka honey plays a significant role in modern medical applications as an antibacterial, antiviral, and antibiotic agent. However, although the importance of manuka honey is well documented in the literature, information regarding its physicochemical characteristics remains limited. Moreover, so far, only a few papers address this issue in conjunction with the examination of the pollen composition of manuka honey samples. Therefore, in this study, two parameters crucial for honey quality control-the diastase number (DN) and the hydroxymethylfurfural (HMF) content-as well as the melissopalynological analysis of manuka honey, were examined. The research found a large variation in the percentage of Leptospermum scoparium pollen in honeys labeled and sold as manuka honeys. Furthermore, a significant proportion of these honeys was characterized by a low DN. However, since low diastase activity was not associated with low HMF content, manuka honey should not be considered as a honey with naturally low enzymatic activity. Overall, the DN and HMF content results indicate that the quality of commercially available manuka honey is questionable.
Collapse
Affiliation(s)
- Alicja Sęk
- The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland; (A.P.); (T.S.)
| | | | | |
Collapse
|
31
|
Çatak J, Özdoğan N, Ede-Cintesun E, Demirci M, Yaman M. Investigation of the effects of sugar type on the formation of α-dicarbonyl compounds in jams under in vitro digestive system model. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 04/07/2023]
|
32
|
Ahmed A, Tul-Noor Z, Lee D, Bajwah S, Ahmed Z, Zafar S, Syeda M, Jamil F, Qureshi F, Zia F, Baig R, Ahmed S, Tayyiba M, Ahmad S, Ramdath D, Tsao R, Cui S, Kendall CWC, de Souza RJ, Khan TA, Sievenpiper JL. Effect of honey on cardiometabolic risk factors: a systematic review and meta-analysis. Nutr Rev 2023; 81:758-774. [PMID: 36379223 PMCID: PMC10251304 DOI: 10.1093/nutrit/nuac086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/01/2025] Open
Abstract
CONTEXT Excess calories from free sugars are implicated in the epidemics of obesity and type 2 diabetes. Honey is a free sugar but is generally regarded as healthy. OBJECTIVE The effect of honey on cardiometabolic risk factors was assessed via a systematic review and meta-analysis of controlled trials using the GRADE (Grading of Recommendations, Assessment, Development, and Evaluation) approach. DATA SOURCES MEDLINE, Embase, and the Cochrane Library databases were searched up to January 4, 2021, for controlled trials ≥1 week in duration that assessed the effect of oral honey intake on adiposity, glycemic control, lipids, blood pressure, uric acid, inflammatory markers, and markers of nonalcoholic fatty liver disease. DATA EXTRACTION Independent reviewers extracted data and assessed risk of bias. Data were pooled using the inverse variance method and expressed as mean differences (MDs) with 95%CIs. Certainty of evidence was assessed using GRADE. DATA ANALYSIS A total of 18 controlled trials (33 trial comparisons, N = 1105 participants) were included. Overall, honey reduced fasting glucose (MD = -0.20 mmol/L, 95%CI, -0.37 to -0.04 mmol/L; low certainty of evidence), total cholesterol (MD = -0.18 mmol/L, 95%CI, -0.33 to -0.04 mmol/L; low certainty), low-density lipoprotein cholesterol (MD = -0.16 mmol/L, 95%CI, -0.30 to -0.02 mmol/L; low certainty), fasting triglycerides (MD = -0.13 mmol/L, 95%CI, -0.20 to -0.07 mmol/L; low certainty), and alanine aminotransferase (MD = -9.75 U/L, 95%CI, -18.29 to -1.21 U/L; low certainty) and increased high-density lipoprotein cholesterol (MD = 0.07 mmol/L, 95%CI, 0.04-0.10 mmol/L; high certainty). There were significant subgroup differences by floral source and by honey processing, with robinia honey, clover honey, and raw honey showing beneficial effects on fasting glucose and total cholesterol. CONCLUSION Honey, especially robinia, clover, and unprocessed raw honey, may improve glycemic control and lipid levels when consumed within a healthy dietary pattern. More studies focusing on the floral source and the processing of honey are required to increase certainty of the evidence. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration number CRD42015023580.
Collapse
Affiliation(s)
- Amna Ahmed
- are with the Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- are with the Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition, St Michael’s Hospital, Toronto, Ontario, Canada
- are with the Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, Toronto, Ontario, Canada
| | - Zujaja Tul-Noor
- are with the Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition, St Michael’s Hospital, Toronto, Ontario, Canada
- are with the Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, Toronto, Ontario, Canada
| | - Danielle Lee
- are with the Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- are with the Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition, St Michael’s Hospital, Toronto, Ontario, Canada
- are with the Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, Toronto, Ontario, Canada
| | - Shamaila Bajwah
- are with the Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition, St Michael’s Hospital, Toronto, Ontario, Canada
- are with the Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, Toronto, Ontario, Canada
| | - Zara Ahmed
- are with the Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition, St Michael’s Hospital, Toronto, Ontario, Canada
- are with the Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, Toronto, Ontario, Canada
| | - Shanza Zafar
- are with the Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition, St Michael’s Hospital, Toronto, Ontario, Canada
- are with the Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, Toronto, Ontario, Canada
| | - Maliha Syeda
- are with the Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition, St Michael’s Hospital, Toronto, Ontario, Canada
- are with the Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, Toronto, Ontario, Canada
| | - Fakeha Jamil
- are with the Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition, St Michael’s Hospital, Toronto, Ontario, Canada
- are with the Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, Toronto, Ontario, Canada
| | - Faizaan Qureshi
- are with the Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition, St Michael’s Hospital, Toronto, Ontario, Canada
- are with the Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, Toronto, Ontario, Canada
- is with the Faculty of Science, York University, Toronto, Ontario, Canada
| | - Fatima Zia
- are with the Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition, St Michael’s Hospital, Toronto, Ontario, Canada
- are with the Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, Toronto, Ontario, Canada
| | - Rumsha Baig
- are with the Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition, St Michael’s Hospital, Toronto, Ontario, Canada
- are with the Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, Toronto, Ontario, Canada
| | - Saniya Ahmed
- are with the Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition, St Michael’s Hospital, Toronto, Ontario, Canada
- are with the Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, Toronto, Ontario, Canada
| | - Mobushra Tayyiba
- are with the Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition, St Michael’s Hospital, Toronto, Ontario, Canada
- are with the Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, Toronto, Ontario, Canada
| | - Suleman Ahmad
- are with the Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition, St Michael’s Hospital, Toronto, Ontario, Canada
- are with the Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, Toronto, Ontario, Canada
| | - Dan Ramdath
- are with the Guelph Research & Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Rong Tsao
- are with the Guelph Research & Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Steve Cui
- are with the Guelph Research & Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Cyril W C Kendall
- are with the Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- are with the Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition, St Michael’s Hospital, Toronto, Ontario, Canada
- are with the Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, Toronto, Ontario, Canada
- is with the College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Russell J de Souza
- is with Department of Health Research Methods, Evidence, and Impact, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada, and the Population Health Research Institute, Hamilton Health Sciences Corporation, Hamilton, Ontario, Canada
| | - Tauseef A Khan
- are with the Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- are with the Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition, St Michael’s Hospital, Toronto, Ontario, Canada
- are with the Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, Toronto, Ontario, Canada
| | - John L Sievenpiper
- are with the Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- are with the Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition, St Michael’s Hospital, Toronto, Ontario, Canada
- are with the Clinical Nutrition and Risk Factor Modification Centre, St Michael's Hospital, Toronto, Ontario, Canada
- is with the Division of Endocrinology and Metabolism, St Michael's Hospital, Toronto, Ontario, Canada
- is with the Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Obeng-Darko SA, Sloan J, Binks RM, Brooks PR, Veneklaas EJ, Finnegan PM. Dihydroxyacetone in the Floral Nectar of Ericomyrtus serpyllifolia (Turcz.) Rye (Myrtaceae) and Verticordia chrysantha Endl. (Myrtaceae) Demonstrates That This Precursor to Bioactive Honey Is Not Restricted to the Genus Leptospermum (Myrtaceae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7703-7709. [PMID: 37191313 DOI: 10.1021/acs.jafc.3c00673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/17/2023]
Abstract
Ma̅nuka honey is known for its strong bioactivity, which arises from the autocatalytic conversion of 1,3-dihydroxyacetone (dihydroxyacetone, DHA) in the floral nectar of Leptospermum scoparium (Myrtaceae) to the non-peroxide antibacterial compound methylglyoxal during honey maturation. DHA is also a minor constituent of the nectar of several other Leptospermum species. This study used high-performance liquid chromatography to test whether DHA was present in the floral nectar of five species in other genera of the family Myrtaceae: Ericomyrtus serpyllifolia (Turcz.) Rye, Chamelaucium sp. Bendering (T.J. Alford 110), Kunzea pulchella (Lindl.) A.S. George, Verticordia chrysantha Endl., and Verticordia picta Endl. DHA was found in the floral nectar of two of the five species: E. serpyllifolia and V. chrysantha. The average amount of DHA detected was 0.08 and 0.64 μg per flower, respectively. These findings suggest that the accumulation of DHA in floral nectar is a shared trait among several genera within the family Myrtaceae. Consequently, non-peroxide-based bioactive honey may be sourced from floral nectar outside the genus Leptospermum.
Collapse
Affiliation(s)
- Sylvester A Obeng-Darko
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
- CRC for Honey Bee Products, 128 Yanchep Beach Road, Yanchep 6035, Australia
| | - Jean Sloan
- CRC for Honey Bee Products, 128 Yanchep Beach Road, Yanchep 6035, Australia
| | - Rachel M Binks
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
- CRC for Honey Bee Products, 128 Yanchep Beach Road, Yanchep 6035, Australia
- Department of Biodiversity, Conservation and Attractions, Biodiversity and Conservation Science, Locked Bag 104, Bentley Delivery Centre, Bentley, Western Australia 6983, Australia
| | - Peter R Brooks
- CRC for Honey Bee Products, 128 Yanchep Beach Road, Yanchep 6035, Australia
- School of Sciences, Technology and Engineering, University of the Sunshine Coast, Maroochydore, Queensland 4558, Australia
| | - Erik J Veneklaas
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Patrick M Finnegan
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| |
Collapse
|
34
|
Hossain ML, Lim LY, Hammer K, Hettiarachchi D, Locher C. Design, Preparation, and Physicochemical Characterisation of Alginate-Based Honey-Loaded Topical Formulations. Pharmaceutics 2023; 15:pharmaceutics15051483. [PMID: 37242724 DOI: 10.3390/pharmaceutics15051483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/05/2023] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Honey has widespread use as a nutritional supplement and flavouring agent. Its diverse bioactivities, including antioxidant, antimicrobial, antidiabetic, anti-inflammatory, and anticancer properties, have also made it an aspirant natural product for therapeutic applications. Honey is highly viscous and very sticky, and its acceptance as a medicinal product will require formulation into products that are not only effective but also convenient for consumers to use. This study presents the design, preparation, and physicochemical characterisation of three types of alginate-based topical formulations incorporating a honey. The honeys applied were from Western Australia, comprising a Jarrah honey, two types of Manuka honeys, and a Coastal Peppermint honey. A New Zealand Manuka honey served as comparator honey. The three formulations were a pre-gel solution consisting of 2-3% (w/v) sodium alginate solution with 70% (w/v) honey, as well as a wet sheet and a dry sheet. The latter two formulations were obtained by further processing the respective pre-gel solutions. Physical properties of the different honey-loaded pre-gel solutions (i.e., pH, colour profile, moisture content, spreadability, and viscosity), wet sheets (i.e., dimension, morphology, and tensile strength) and dry sheets (i.e., dimension, morphology, tensile strength, and swelling index) were determined. High-Performance Thin-Layer Chromatography was applied to analyse selected non-sugar honey constituents to assess the impacts of formulation on the honey chemical composition. This study demonstrates that, irrespective of the honey type utilised, the developed manufacturing techniques yielded topical formulations with high honey content while preserving the integrity of the honey constituents. A storage stability study was conducted on formulations containing the WA Jarrah or Manuka 2 honey. The samples, appropriately packaged and stored over 6 months at 5, 30, and 40 °C, were shown to retain all physical characteristics with no loss of integrity of the monitored honey constituents.
Collapse
Affiliation(s)
- Md Lokman Hossain
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley, WA 6009, Australia
| | - Lee Yong Lim
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley, WA 6009, Australia
| | - Katherine Hammer
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
- Cooperative Research Centre for Honey Bee Products Limited, 128 Yanchep Beach Road, Yanchep, WA 6035, Australia
| | - Dhanushka Hettiarachchi
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley, WA 6009, Australia
| | - Cornelia Locher
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley, WA 6009, Australia
- Cooperative Research Centre for Honey Bee Products Limited, 128 Yanchep Beach Road, Yanchep, WA 6035, Australia
| |
Collapse
|
35
|
Russo N, Di Rosa AR, Pino A, Mazzeo G, Liotta L, Caggia C, Randazzo CL. Assessment of sensory properties and in vitro antimicrobial activity of monofloral Sicilian honey. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/05/2023]
|
36
|
Thierig M, Raupbach J, Wolf D, Mascher T, Subramanian K, Henle T. 3-Phenyllactic Acid and Polyphenols Are Substances Enhancing the Antibacterial Effect of Methylglyoxal in Manuka Honey. Foods 2023; 12:foods12051098. [PMID: 36900615 PMCID: PMC10000891 DOI: 10.3390/foods12051098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/23/2023] [Revised: 02/03/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Manuka honey is known for its unique antibacterial activity, which is due to methylglyoxal (MGO). After establishing a suitable assay for measuring the bacteriostatic effect in a liquid culture with a time dependent and continuous measurement of the optical density, we were able to show that honey differs in its growth retardingeffect on Bacillus subtilis despite the same content of MGO, indicating the presence of potentially synergistic compounds. In model studies using artificial honey with varying amounts of MGO and 3-phenyllactic acid (3-PLA), it was shown that 3-PLA in concentrations above 500 mg/kg enhances the bacteriostatic effect of the model honeys containing 250 mg/kg MGO or more. It has been shown that the effect correlates with the contents of 3-PLA and polyphenols in commercial manuka honey samples. Additionally, yet unknown substances further enhance the antibacterial effect of MGO in manuka honey. The results contribute to the understanding of the antibacterial effect of MGO in honey.
Collapse
Affiliation(s)
- Marcus Thierig
- Chair of Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Jana Raupbach
- Chair of Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), D-14558 Nuthetal, Germany
| | - Diana Wolf
- Chair of General Microbiology, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Thorsten Mascher
- Chair of General Microbiology, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Kannan Subramanian
- Manuka Health New Zealand Limited, 66 Weona Court, Te Awamutu 3800, New Zealand
| | - Thomas Henle
- Chair of Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
- Correspondence:
| |
Collapse
|
37
|
Yan S, Wu L, Xue X. α-Dicarbonyl compounds in food products: Comprehensively understanding their occurrence, analysis, and control. Compr Rev Food Sci Food Saf 2023; 22:1387-1417. [PMID: 36789800 DOI: 10.1111/1541-4337.13115] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/12/2022] [Revised: 12/31/2022] [Accepted: 01/14/2023] [Indexed: 02/16/2023]
Abstract
α-Dicarbonyl compounds (α-DCs) are readily produced during the heating and storage of foods, mainly through the Maillard reaction, caramelization, lipid-peroxidation, and enzymatic reaction. They contribute to both the organoleptic properties (i.e., aroma, taste, and color) and deterioration of foods and are potential indicators of food quality. α-DCs are also important precursors to hazardous substances, such as acrylamide, furan, advanced lipoxidation end products, and advanced glycation end products, which are genotoxic, neurotoxic, and linked to several diseases. Recent studies have indicated that dietary α-DCs can elevate plasma α-DC levels and lead to "dicarbonyl stress." To accurately assess their health risks, quantifying α-DCs in food products is crucial. Considering their low volatility, inability to absorb ultraviolet light, and high reactivity, the analysis of α-DCs in complex food systems is a challenge. In this review, we comprehensively cover the development of scientific approaches, from extraction, enrichment, and derivatization, to sophisticated detection techniques, which are necessary for quantifying α-DCs in different foods. Exposure to α-DCs is inevitable because they exist in most foods. Recently, novel strategies for reducing α-DC levels in foods have become a hot research topic. These strategies include the use of new processing technologies, formula modification, and supplementation with α-DC scavengers (e.g., phenolic compounds). For each strategy, it is important to consider the potential mechanisms underlying the formation and removal of process contaminants. Future studies are needed to develop techniques to control α-DC formation during food processing, and standardized approaches are needed to quantify and compare α-DCs in different foods.
Collapse
Affiliation(s)
- Sha Yan
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
| | - Liming Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofeng Xue
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
38
|
Evidence for Natural Products as Alternative Wound-Healing Therapies. Biomolecules 2023; 13:biom13030444. [PMID: 36979379 PMCID: PMC10046143 DOI: 10.3390/biom13030444] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/02/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 03/02/2023] Open
Abstract
Chronic, non-healing wounds represent a significant area of unmet medical need and are a growing problem for healthcare systems around the world. They affect the quality of life for patients and are an economic burden, being difficult and time consuming to treat. They are an escalating problem across the developed world due to the increasing incidence of diabetes and the higher prevalence of ageing populations. Effective treatment options are currently lacking, and in some cases chronic wounds can persist for years. Some traditional medicines are believed to contain bioactive small molecules that induce the healing of chronic wounds by reducing excessive inflammation, thereby allowing re-epithelisation to occur. Furthermore, many small molecules found in plants are known to have antibacterial properties and, although they lack the therapeutic selectivity of antibiotics, they are certainly capable of acting as topical antiseptics when applied to infected wounds. As these molecules act through mechanisms of action distinct from those of clinically used antibiotics, they are often active against antibiotic resistant bacteria. Although there are numerous studies highlighting the effects of naturally occurring small molecules in wound-healing assays in vitro, only evidence from well conducted clinical trials can allow these molecules or the remedies that contain them to progress to the clinic. With this in mind, we review wound-healing natural remedies that have entered clinical trials over a twenty-year period to the present. We examine the bioactive small molecules likely to be in involved and, where possible, their mechanisms of action.
Collapse
|
39
|
Paget BW, Kleffmann T, Whiteman KE, Thomas MF, McMahon CD. Quantitative comparison of manuka and clover honey proteomes with royal jelly. PLoS One 2023; 18:e0272898. [PMID: 36763642 PMCID: PMC9916596 DOI: 10.1371/journal.pone.0272898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/28/2022] [Accepted: 01/26/2023] [Indexed: 02/12/2023] Open
Abstract
Royal jelly and honey are two substances produced successively by the worker bee caste. Modern proteomics approaches have been used to explore the protein component of each substance independently, but to date none have quantitatively compared the protein profile of honey and royal jelly directly. Sequential window acquisition of all theoretical fragment-ion spectra mass spectrometry (SWATH-MS) was used to compare protein quantities of bee origin in mānuka and clover honey to royal jelly. Two analysis techniques identified 76 proteins in total. Peptide intensity was directly compared for a subset of 31 proteins that were identified with high confidence, and the relative changes in protein abundance were compared between each honey type and royal jelly. Major Royal Jelly Proteins (MRJPs) had similar profiles in both honeys, except MRJP6, which was significantly more abundant in clover honey. Proteins involved in nectar metabolism were more abundant in honey than in royal jelly as expected. However, the trend revealed a potential catalytic role for MRJP6 in clover honey and a nectar- or honey-specific role for uncharacterised protein LOC408608. The abundance of MRJP6 in mānuka honey was equivalent to royal jelly suggesting a potential effect of nectar type on expression of this protein. Data are available via ProteomeXchange with identifier PXD038889.
Collapse
Affiliation(s)
- Blake W. Paget
- Hamilton Laboratory, ManukaMed LP, Masterton, New Zealand
- * E-mail:
| | - Torsten Kleffmann
- Division of Health Sciences, Research Infrastructure Centre, University of Otago, Dunedin, New Zealand
| | | | - Mark F. Thomas
- Hamilton Laboratory, ManukaMed LP, Masterton, New Zealand
| | | |
Collapse
|
40
|
Mundo MA, Xiong ZR, Galasong Y, Manns DC, Seeley TD, Vegdahl AC, Worobo RW. Diversity, antimicrobial production, and seasonal variation of honey bee microbiota isolated from the honey stomachs of the domestic honey bee, Apis mellifera. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2022.931363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/17/2023] Open
Abstract
The antimicrobial nature of honey and its related apiological origins typically focus on basic chemical analysis without attempting to understand the diversity of the microbial component. The antibacterial activity, chemical characterization, and diversity of bacteria isolated from Apis mellifera honey stomachs and hive honey collected throughout the honey production season are presented. After screening >2,000 isolates, 50 isolates were selected and characterized by 16S rRNA gene homology, Gram stain, catalase and protease tests, as well as for antibacterial activity against select indicators. Antibacterial-producing isolates were predominantly from the Pseudomonas, Paenibacillus, Lonsdalea, Serratia, and Bacillus genera. Isolates collected from honey stomachs in April displayed the highest level of activity (27%). While April isolates did not demonstrate activity against the Gram-negative bacteria tested. Whereas 59% of July isolates, 33% of September isolates, and 100% of the honey isolates did. The predominant honey stomach isolates were Pseudomonas spp. (April), Paenibacillus polymyxa (July, Sept.), and Lonsdalea iberica (Sept.). Chemical characterizations of the antimicrobial compounds show most to be antibiotic in nature with the minority being potential bacteriocins. This study offers the first glimpse into the variability and diversity of the bacteria/host interactions found within the honey stomach of the domestic honey bee while revealing a novel source of potentially beneficial antimicrobial compounds.
Collapse
|
41
|
Sinha S, Sehgal A, Ray S, Sehgal R. Benefits of Manuka Honey in the Management of Infectious Diseases: Recent Advances and Prospects. Mini Rev Med Chem 2023; 23:1928-1941. [PMID: 37282661 DOI: 10.2174/1389557523666230605120717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/15/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 06/08/2023]
Abstract
The benefits of honey have been recognized since ancient times for treating numerous diseases. However, in today's modern era, the use of traditional remedies has been rapidly diminishing due to the complexities of modern lifestyles. While antibiotics are commonly used and effective in treating pathogenic infections, their inappropriate use can lead to the development of resistance among microorganisms, resulting in their widespread prevalence. Therefore, new approaches are constantly required to combat drug-resistant microorganisms, and one practical and useful approach is the use of drug combination treatments. Manuka honey, derived from the manuka tree (Leptospermum scoparium) found exclusively in New Zealand, has garnered significant attention for its biological potential, particularly due to its antioxidant and antimicrobial properties. Moreover, when combined with antibiotics, it has demonstrated the ability to enhance their effectiveness. In this review, we delve into the chemical markers of manuka honey that are currently known, as well as detail the impact of manuka honey on the management of infectious diseases up to the present.
Collapse
Affiliation(s)
- Shweta Sinha
- Department of Medical Parasitology, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012, India
| | - Alka Sehgal
- Department of Obstetrics & Gynaecology, GMCH, Chandigarh, 160030, India
| | - Sudip Ray
- School of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
- New Zealand Institute for Minerals to Materials Research, Greymouth, 7805, New Zealand
| | - Rakesh Sehgal
- Department of Medical Parasitology, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012, India
| |
Collapse
|
42
|
Shallan AI, Abdel-Hakim A, Hammad MA, Abou El-Alamin MM. Highly sensitive spectrofluorimetric method for the determination of the genotoxic methylglyoxal in glycerol-containing pharmaceuticals and dietary supplements. LUMINESCENCE 2023; 38:39-46. [PMID: 36482153 DOI: 10.1002/bio.4419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/21/2022] [Revised: 11/02/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
Methylglyoxal (MGO) is a genotoxic α-dicarbonyl compound. Recently, it was found to be formed in glycerol preparations during storage through auto-oxidation. A simple fluorimetric determination of the carcinogenic degradation product of glycerol, MGO, was developed and validated. The proposed method is based on the derivatization of MGO with 4-carbomethoxybenzaldehyde (CMBA) and ammonium acetate to yield a fluorescent imidazole derivative that can be measured at 415 nm after excitation at 322 nm. The optimized conditions were determined to be 0.2 M CMBA, 1.0 M ammonium acetate and a reaction time of 40 min at 90°C using ethanol as diluting solvent. The linear range was 10.0-200.0 ng/ml. Detection and quantification limits were 2.22 and 6.72 ng/ml, respectively. The proposed method was validated according to International Council for Harmonisation (ICH) guidelines and compared with the reported method and no significant difference was found. It was successfully applied for the determination of MGO in six different glycerol-containing pharmaceutical preparations and dietary supplements.
Collapse
Affiliation(s)
- Aliaa I Shallan
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Ali Abdel-Hakim
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Mohamed A Hammad
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Maha M Abou El-Alamin
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
43
|
Pleeging CCF, de Rooster H, Van Wijk B, Wagener FADTG, Cremers NAJ. Intra-socket application of medical-grade honey after tooth extraction attenuates inflammation and promotes healing in cats. J Feline Med Surg 2022; 24:e618-e627. [PMID: 36315457 PMCID: PMC9743079 DOI: 10.1177/1098612x221125772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Dental diseases are a major problem in cats and often necessitate tooth extraction. Medical-grade honey (MGH) has antimicrobial and wound-healing properties, and therefore the aim of this study was to investigate whether intra-socket application improved healing after tooth extraction. It was postulated that applying MGH would reduce inflammation, improve the viability of the surgical flap and enhance healing following tooth extraction. METHODS A prospective randomised controlled trial was performed in client-owned cats undergoing bilateral tooth extractions of the same element of the canine or (pre)molar tooth. A split-mouth design was used in which every animal served as its own control. After surgical extraction of the elements, the sockets on one side were filled with an MGH-based ointment (L-Mesitran Soft), whereas the contralateral side received no treatment (control). A mucoperiosteal flap was used on both sides, and simple interrupted monofilament sutures were placed. No antimicrobial drugs were administered. Clinical parameters (inflammation/redness, flap viability and wound healing) were subjectively analysed on days 3 and 7 post-extraction by a veterinarian blinded to the treatment. RESULTS Twenty-one cats were included. MGH significantly decreased signs of inflammation (P <0.01), improved mucoperiosteal flap viability (P <0.01) and promoted wound healing (P = 0.01), at both time points. MGH was easy to apply and there were no adverse events. CONCLUSIONS AND RELEVANCE Intra-socket application of MGH after tooth extraction positively affects the surgical wound, as it reduces redness, improves flap viability and enhances wound healing. Applying MGH represents a potent adjuvant therapy to support intra-oral wound healing after tooth extraction.
Collapse
Affiliation(s)
- Carlos CF Pleeging
- Dierenkliniek Hoogveld, Echt, The Netherlands
- Department of Dentistry – Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hilde de Rooster
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Bas Van Wijk
- Department of Dentistry – Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frank ADTG Wagener
- Department of Dentistry – Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Niels AJ Cremers
- Department of Gynecology and Obstetrics, Maastricht University Medical Centre, Maastricht, The Netherlands
- Triticum Exploitatie BV, Maastricht, The Netherlands
| |
Collapse
|
44
|
Matharu RK, Ahmed J, Seo J, Karu K, Golshan MA, Edirisinghe M, Ciric L. Antibacterial Properties of Honey Nanocomposite Fibrous Meshes. Polymers (Basel) 2022; 14:polym14235155. [PMID: 36501550 PMCID: PMC9740266 DOI: 10.3390/polym14235155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/12/2022] [Revised: 10/25/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022] Open
Abstract
Natural substances are increasingly being developed for use in health-related applications. Honey has attracted significant interest, not only for its physical and chemical properties, but also for its antibacterial activity. For the first time, suspensions of Black Forest honeydew honey and manuka honey UMF 20+ were examined for their antibacterial properties against Escherichia coli and Staphylococcus epidermidis using flow cytometry. The inhibitory effect of honey on bacterial growth was evident at concentrations of 10, 20 and 30 v/v%. The minimum inhibitory effects of both honey types against each bacterium were also investigated and reported. Electrospray ionisation (ESI) mass spectrometry was performed on both Black Forest honeydew honey and manuka honey UMF 20+. Manuka honey had a gluconic concentration of 2519 mg/kg, whilst Black Forest honeydew honey had a concentration of 2195 mg/kg. Manuka honey demonstrated the strongest potency when compared to Black Forest honeydew honey; therefore, it was incorporated into nanofiber scaffolds using pressurised gyration and 10, 20 and 30 v/v% manuka honey-polycaprolactone solutions. Composite fibres were analysed for their morphology and topography using scanning electron microscopy. The average fibre diameter of the manuka honey-polycaprolactone scaffolds was found to range from 437 to 815 nm. The antibacterial activity of the 30 v/v% scaffolds was studied using S. epidermidis. Strong antibacterial activity was observed with a bacterial reduction rate of over 90%. The results show that honey composite fibres formed using pressurised gyration can be considered a natural therapeutic agent for various medicinal purposes, including wound-healing applications.
Collapse
Affiliation(s)
- Rupy Kaur Matharu
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
- Department of Civil, Environmental & Geomatic Engineering, University College London, Chadwick Building, Gower Street, London WC1E 6BT, UK
- Correspondence:
| | - Jubair Ahmed
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Jegak Seo
- Department of Civil, Environmental & Geomatic Engineering, University College London, Chadwick Building, Gower Street, London WC1E 6BT, UK
| | - Kersti Karu
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Mitra Ashrafi Golshan
- Department of Civil, Environmental & Geomatic Engineering, University College London, Chadwick Building, Gower Street, London WC1E 6BT, UK
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Lena Ciric
- Department of Civil, Environmental & Geomatic Engineering, University College London, Chadwick Building, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
45
|
Romário-Silva D, Alencar SM, Bueno-Silva B, Sardi JDCO, Franchin M, de Carvalho RDP, Ferreira TEDSA, Rosalen PL. Antimicrobial Activity of Honey against Oral Microorganisms: Current Reality, Methodological Challenges and Solutions. Microorganisms 2022; 10:microorganisms10122325. [PMID: 36557578 PMCID: PMC9781356 DOI: 10.3390/microorganisms10122325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/30/2022] [Revised: 11/10/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Honey has been shown to have antimicrobial activity against different microorganisms, but its effects on oral biofilms are largely unknown. In this review, we analyzed the currently available literature on the antimicrobial activity of honey against oral biofilms in order to determine its potential as a functional food in the treatment and/or prevention of oral diseases. Here, we compare studies reporting on the antimicrobial activity of honey against systemic and oral bacteria, discuss methodological strategies, and point out current gaps in the literature. To date, there are no consistent studies supporting the use of honey as a therapy for oral diseases of bacterial origin, but current evidence in the field is promising. The lack of studies examining the antibiofilm activity of honey against oral microorganisms reveals a need for additional research to better define aspects such as chemical composition, the mechanism(s) of action, and antimicrobial action.
Collapse
Affiliation(s)
- Diego Romário-Silva
- Department of Biosciences, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13414-903, Brazil
- Research Program in Integrated Dental Sciences, University of Cuiabá, Cuiabá 78065-900, Brazil
| | - Severino Matias Alencar
- Department of Agri-Food Industry, Food and Nutrition, Luiz de Queiroz College of Agriculture (Escola Superior de Agricultura “Luiz de Queiroz”—ESALQ), University of São Paulo, Piracicaba 13418-900, Brazil
| | - Bruno Bueno-Silva
- Dental Research Division, Guarulhos University, Guarulhos 07023-070, Brazil
| | - Janaína de Cássia Orlandi Sardi
- Research Program in Integrated Dental Sciences, University of Cuiabá, Cuiabá 78065-900, Brazil
- Dental Research Division, Guarulhos University, Guarulhos 07023-070, Brazil
| | - Marcelo Franchin
- School of Dentistry, Federal University of Alfenas (Unifal-MG), Alfenas 37130-001, Brazil
- Correspondence: (M.F.); (P.L.R.)
| | | | - Thayná Ellen de Sousa Alves Ferreira
- Department of Biosciences, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13414-903, Brazil
- Research Program in Integrated Dental Sciences, University of Cuiabá, Cuiabá 78065-900, Brazil
| | - Pedro Luiz Rosalen
- Department of Biosciences, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13414-903, Brazil
- Biological Sciences Graduate Program, Federal University of Alfenas (Unifal-MG), Alfenas 37130-001, Brazil
- Correspondence: (M.F.); (P.L.R.)
| |
Collapse
|
46
|
Hossain ML, Hammer K, Lim LY, Hettiarachchi D, Locher C. Optimisation of an agar overlay assay for the assessment of the antimicrobial activity of topically applied semi-solid antiseptic products including honey-based formulations. METHODS IN MICROBIOLOGY 2022; 202:106596. [DOI: 10.1016/j.mimet.2022.106596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/27/2022] [Revised: 09/08/2022] [Accepted: 10/02/2022] [Indexed: 10/31/2022]
|
47
|
Wultańska D, Paterczyk B, Nowakowska J, Pituch H. The Effect of Selected Bee Products on Adhesion and Biofilm of Clostridioides difficile Strains Belonging to Different Ribotypes. Molecules 2022; 27:7385. [PMID: 36364211 PMCID: PMC9654997 DOI: 10.3390/molecules27217385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/26/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 10/20/2024] Open
Abstract
There is an ongoing search for alternative treatments for Clostridioides difficile infections. The aim of the study was to investigate the antibacterial and antibiotic activity of bee products against C. difficile strains with different polymerase chain reaction ribotypes (RTs). The minimum inhibitory concentration (MICs) of Manuka honey 550+, goldenrod honey, pine honey, and bee bread were determined by the broth dilution method. C. difficile adhesion to HT-29, HT-29 MTX, and CCD 841 CoN cell lines was assessed. Biofilm was cultured in titration plates and visualized by confocal microscopy. The MICs of Manuka honey for C. difficile 630 and ATCC 9689 strains and control strain, M 120, were 6.25%, 6.25%, and 1.56% (v/v), respectively; of goldenrod honey, 50%, 50%, and 12.5%, respectively; of pine honey, 25%, 25%, and 25%, respectively; and of bee bread, 100 mg/L, 50 mg/L, and 100 mg/L, respectively. Manuka honey (1%) increased adhesion of C. difficile RT176 strains, and one strain of RT023, to the CCD 841 cell line. Pine honey (1%) increased RT027 adhesion to the HT-29 cell line. Manuka honey, pine honey, and bee bread at subinhibitory concentrations increased the adhesion of C. difficile. Our research proved that bee products are active against the tested strains of C. difficile.
Collapse
Affiliation(s)
- Dorota Wultańska
- Department of Medical Microbiology, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Bohdan Paterczyk
- Imaging Laboratory, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Julita Nowakowska
- Imaging Laboratory, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Hanna Pituch
- Department of Medical Microbiology, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
48
|
Metabolization of the glycation compounds 3-deoxyglucosone and 5-hydroxymethylfurfural by Saccharomyces yeasts. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04137-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/03/2022]
Abstract
AbstractThe Maillard reaction products (MRPs) 3-deoxyglucosone (3-DG) and 5-hydroxymethylfurfural (HMF), which are formed during the thermal processing and storage of food, come into contact with technologically used yeasts during the fermentation of beer and wine. In order for the yeast cells to work efficiently, handling of the stress-inducing carbonyl compounds is essential. In the present study, the utilization of 3-DG and HMF by 13 Saccharomyces yeast strains (7 brewer’s yeast strains, 1 wine yeast strain, 6 yeast strains isolated from natural habitats) was investigated. All yeast strains studied were able to metabolize 3-DG and HMF. 3-DG is mainly reduced to 3-deoxyfructose (3-DF) and HMF is completely converted to 2,5-bishydroxymethylfuran (BHMF) and 5-formyl-2-furancarboxylic acid (FFCA). The ratio of conversion of HMF to BHMF and FFCA was found to be yeast strain-specific and no differences in the HMF stress tolerance of the yeast strains and species were observed. After incubation with 3-DG, varying amounts of intra- and extracellular 3-DF were found, pointing to a faster transport of 3-DG into the cells in the case of brewer’s yeast strains. Furthermore, the brewer’s yeast strains showed a significantly higher 3-DG stress resistance than the investigated yeast strains isolated from natural habitats. Thus, it can be shown for the first time that Saccharomyces yeast strains differ in their interaction of 3-DG induced carbonyl stress.
Graphical abstract
Collapse
|
49
|
Delavault A, Zoheir AE, Muller D, Hollenbach R, Rabe KS, Ochsenreither K, Rudat J, Syldatk C. Enhanced Bioactivity of Tailor-Made Glycolipid Enriched Manuka Honey. Int J Mol Sci 2022; 23:12031. [PMID: 36233331 PMCID: PMC9570014 DOI: 10.3390/ijms231912031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/29/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 11/16/2022] Open
Abstract
Glycolipids can be synthetized in deep eutectic solvents (DESs) as they possess low water content allowing a reversed lipase activity and thus enables ester formation. Based on this principle, honey can also serve as a media for glycolipid synthesis. Indeed, this supersaturated sugar solution is comparable in terms of physicochemical properties to the sugar-based DESs. Honey-based products being commercially available for therapeutic applications, it appears interesting to enhance its bioactivity. In the current work, we investigate if enriching medical grade honey with in situ enzymatically-synthetized glycolipids can improve the antimicrobial property of the mixture. The tested mixtures are composed of Manuka honey that is enriched with octanoate, decanoate, laurate, and myristate sugar esters, respectively dubbed GOH, GDH, GLH, and GMH. To characterize the bioactivity of those mixtures, first a qualitative screening using an agar well diffusion assay has been performed with methicillin-resistant Staphylococcus aureus, Bacillus subtilis, Candida bombicola, Escherichia coli, and Pseudomonas putida which confirmed considerably enhanced susceptibility of these micro-organisms to the different glycolipid enriched honey mixtures. Then, a designed biosensor E. coli strain that displays a stress reporter system consisting of three stress-specific inducible, red, green, and blue fluorescent proteins which respectively translate to physiological stress, genotoxicity, and cytotoxicity was used. Bioactivity was, therefore, characterized, and a six-fold enhancement of the physiological stress that was caused by GOH compared to regular Manuka honey at a 1.6% (v/v) concentration was observed. An antibacterial agar well diffusion assay with E. coli was performed as well and demonstrated an improved inhibitory potential with GOH upon 20% (v/v) concentration.
Collapse
Affiliation(s)
- André Delavault
- Technical Biology, Institute of Process Engineering in Life Sciences II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Ahmed E. Zoheir
- Department of Genetics and Cytology, National Research Center (NRC), Cairo 12622, Egypt
- Molecular Evolution, Institute for Biological Interfaces 1 (IBG-1), Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Delphine Muller
- Technical Biology, Institute of Process Engineering in Life Sciences II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Rebecca Hollenbach
- Technical Biology, Institute of Process Engineering in Life Sciences II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Technikum Laubholz GmbH, Biotechnologische Konversion, 89143 Blaubeuren, Germany
| | - Kersten S. Rabe
- Molecular Evolution, Institute for Biological Interfaces 1 (IBG-1), Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Katrin Ochsenreither
- Technical Biology, Institute of Process Engineering in Life Sciences II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Technikum Laubholz GmbH, Biotechnologische Konversion, 89143 Blaubeuren, Germany
| | - Jens Rudat
- Technical Biology, Institute of Process Engineering in Life Sciences II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Christoph Syldatk
- Technical Biology, Institute of Process Engineering in Life Sciences II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| |
Collapse
|
50
|
Islam S, Pramanik MJ, Biswas S, Moniruzzaman M, Biswas J, Akhtar-E-Ekram M, Zaman S, Uddin MS, Saleh MA, Hassan S. Biological Efficacy of Compounds from Stingless Honey and Sting Honey against Two Pathogenic Bacteria: An In Vitro and In Silico Study. Molecules 2022; 27:6536. [PMID: 36235073 PMCID: PMC9570921 DOI: 10.3390/molecules27196536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/06/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Honey inhibits bacterial growth due to the high sugar concentration, hydrogen peroxide generation, and proteinaceous compounds present in it. In this study, the antibacterial activity of stingless and sting honey against foodborne pathogenic bacteria isolated from spoiled milk samples was examined. The isolated bacterial strains were confirmed as Bacillus cereus and Listeriamonocytogenes through morphological, biochemical, and 16 s RNA analysis. Physiochemical characterizations of the honey samples revealed that both of the honey samples had an acidic pH, low water content, moderate reducing sugar content, and higher proline content. Through the disc diffusion method, the antibacterial activities of the samples were assayed and better results were observed for the 50 mg/disc honey. Both stingless and sting honey showed the most positive efficacy against Bacillus cereus. Therefore, an in silico study was conducted against this bacterium with some common compounds of honey. From several retrieved constituents of stingless and sting honey, 2,4-dihydroxy-2,5-dimethyl 3(2H)-furan-3-one (furan) and 4H-pyran-4-one,2,3-dihydro of both samples and beta.-D-glucopyranose from the stingless revealed high ligand-protein binding efficiencies for the target protein (6d5z, hemolysin II). The root-mean-square deviation, solvent-accessible surface area, the radius of gyration, root-mean-square fluctuations, and hydrogen bonds were used to ensure the binding stability of the docked complexes in the atomistic simulation and confirmed their stability. The combined effort of wet and dry lab-based work support, to some extent, that the antimicrobial properties of honey have great potential for application in medicine as well as in the food industries.
Collapse
Affiliation(s)
- Shirmin Islam
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Mohammad Joy Pramanik
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Suvro Biswas
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Mohammad Moniruzzaman
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Jui Biswas
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Mohammad Akhtar-E-Ekram
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Shahriar Zaman
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Mohammad Salah Uddin
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Mohammad Abu Saleh
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Sabry Hassan
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|