1
|
Kubicz J, Lochyński P, Kamińska JA. Groundwater Safety and Availability Index (GSAI) and its association with salinity indicators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 970:179019. [PMID: 40054244 DOI: 10.1016/j.scitotenv.2025.179019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/18/2025] [Accepted: 02/27/2025] [Indexed: 03/17/2025]
Abstract
This study assesses the quality of groundwater in the Odra River Basin in Poland, focussing on environmental health risks, temporal variability, and their association with salinity indices. A new indicator, the Groundwater Safety and Availability Index (GSAI), was developed to evaluate groundwater resources by integrating health risk and resource quantity factors, providing a novel tool for ranking water resources and informing environmental and administrative decision-making. Groundwater samples were collected between 2005 and 2021 and analysed in accordance with national standards. The results demonstrate an improvement in groundwater quality over time, indicated by a reduction in Health Index (HI) values, particularly in Lower Silesia, Lubusz, and Silesia. Significant correlations were found between HI and NO₃- (τ-Kendall = 0.40) and arsenic (τ-Kendall = 0.55). GSAI values varied across regions, with West Pomerania showing the highest groundwater safety and availability, while Silesia had the lowest. Elevated concentrations of contaminants such as arsenic and nitrates were found to significantly impact water safety, particularly during hydrogeological droughts. These findings support the need for region-specific management strategies to ensure sustainable groundwater use and mitigate health risks, with the GSAI serving as a valuable tool for policymakers and environmental planners.
Collapse
Affiliation(s)
- Justyna Kubicz
- Wrocław University of Environmental and Life Sciences, Institute of Environmental Engineering, Grunwaldzki Square 24, 50-363 Wrocław, Poland
| | - Paweł Lochyński
- Wrocław University of Environmental and Life Sciences, Institute of Environmental Engineering, Grunwaldzki Square 24, 50-363 Wrocław, Poland.
| | - Joanna A Kamińska
- Wrocław University of Environmental and Life Sciences, Department of Applied Mathematics, Grunwaldzka Street 53, 50-357 Wrocław, Poland
| |
Collapse
|
2
|
Ghosh S, Chakraborty A, Das N, Bhowmick S, Majumdar KK, Bhattacharjee S, Mukherjee M, Sikdar N, Pramanik S. AS3MT Gene Variant Shows Association with Skin Lesions in an Arsenic Exposed Population of India. Biol Trace Elem Res 2025:10.1007/s12011-025-04515-2. [PMID: 39828879 DOI: 10.1007/s12011-025-04515-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
AS3MT, GSTO2, and GSTP1 genes play important roles in the arsenic biotransformation pathway, while CYP2E1 gene has a prominent role in the metabolic activation of xenobiotics. Hence, polymorphisms of these genes might have an effect on arsenic biotransformation and could impact susceptibility to arsenical skin lesions in individuals of chronic arsenic toxicity. The present case-control study, comprising 148 subjects, attempted to evaluate genetic association between nine polymorphisms of AS3MT, GSTO2, GSTP1 and CYP2E1 genes and arsenical skin lesions in a West Bengal (WB) population. A statistically significant association was found between rs11191439 (AS3MT) and arsenical skin lesions (OR = 5.50, P-value = 0.01) using logistic regression with age and gender as covariates. Among non-genetic risk factors, age and groundwater arsenic were found to be significantly associated with skin lesions (P-value < 0.05). When haplotypes among the intragenic polymorphisms of AS3MT, CYP2E1 and GSTO2 genes were analyzed, 'ATA' and 'ACG' haplotypes of the AS3MT gene showed significant difference between the case and control. Multifactor dimensionality reduction (MDR) analysis was performed on the nine polymorphisms and groundwater and urinary arsenic for studying gene-environment interactions. Strong association was observed between groundwater arsenic and skin lesions relative to the SNPs (P-value < 10-5). The best model with maximum testing accuracy included one SNP from the AS3MT (rs11191439) and groundwater arsenic (P-value < 0.0001). The present study documents the first report about the association of AS3MT gene variant with skin lesions in an arsenic exposed population of WB. Presumably, this is also the first study that has used MDR to investigate gene-environment interactions in arsenic-induced toxicity.
Collapse
Affiliation(s)
- Soma Ghosh
- Kolkata Zonal Centre, CSIR-National Environmental Engineering Research Institute, i-8 Sector-C, East Kolkata Township, Kolkata, 700107, India.
- Dept. of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, 700126, West Bengal, India.
| | - Arijit Chakraborty
- Kolkata Zonal Centre, CSIR-National Environmental Engineering Research Institute, i-8 Sector-C, East Kolkata Township, Kolkata, 700107, India
| | - Neelotpal Das
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Baranagar, Kolkata, 700108, India
| | - Subhamoy Bhowmick
- Kolkata Zonal Centre, CSIR-National Environmental Engineering Research Institute, i-8 Sector-C, East Kolkata Township, Kolkata, 700107, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kunal Kanti Majumdar
- Dept. of Community Medicine, KPC Medical College and Hospital, 1F Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Samsiddhi Bhattacharjee
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, P.O.: N.S.S, Kalyani, 741251, West Bengal, India
| | - Mouli Mukherjee
- Kolkata Zonal Centre, CSIR-National Environmental Engineering Research Institute, i-8 Sector-C, East Kolkata Township, Kolkata, 700107, India
| | - Nilabja Sikdar
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Baranagar, Kolkata, 700108, India
- Estuarine and Coastal Studies Foundation, Howrah, 711101, West Bengal, India
| | - Sreemanta Pramanik
- Kolkata Zonal Centre, CSIR-National Environmental Engineering Research Institute, i-8 Sector-C, East Kolkata Township, Kolkata, 700107, India.
| |
Collapse
|
3
|
Yadav SK, Dutta TK, Chatterjee A, Dutta S, Mohammad A, Das AK. Environmental contamination of arsenic: pathway analysis through water-soil-feed-livestock in Nadia District (India) and potential human health risk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57832-57855. [PMID: 39294538 DOI: 10.1007/s11356-024-34956-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/06/2024] [Indexed: 09/20/2024]
Abstract
This study investigated arsenic (As) concentrations in diverse environmental components and their potential impact on the health risks faced by residents of the arsenic (As)-contaminated Nadia district in West Bengal, India. A random selection of 182 cattle and 255 goats from 40 livestock farmers in the district revealed that both animals and humans were naturally exposed to elevated arsenic levels through contaminated drinking water, foods, grasses, concentrate feeds, various fodder tree leaves, and other food/feed resources. The mean As concentration in roughages (483.18 µg/kg DM) was significantly higher (p < 0.001) than in tree leaves (391.53 µg/kg DM), and concentrate feed/ingredients (186.66 µg/kg DM). Pond water exhibited higher arsenic levels (106.11 µg/L) compared to shallow tube well water (47.96 µg/L) and deep tube well water/tap water (10.64 µg/L and 10.04 µg/L, respectively). The mean arsenic concentration in soils DM of fodder fields, crop fields, and grassland was 10.25, 10.58, and 10.20 mg/kg, respectively. It was observed that protein-rich feeds had lower levels of arsenic accumulation (p < 0.048), while fiber-rich feeds containing more cellulose, hemicellulose, and lignin had higher arsenic levels (p < 0.017). Goats consumed 73.46% more arsenic per kg body weight compared to dairy cows. Although chronic and sub-chronic arsenic exposure in the district did not typically manifest symptoms or visible signs in ruminant animals, concentrations in the hair and feces of both cattle and goats exceeded normal values. Cattle feces had significantly higher arsenic (410.43 µg/kg DM) levels (p < 0.001) than goat feces (227.00 µg/kg DM), and arsenic concentration in cattle hair (1917.74 µg/kg DM) was also significantly greater (p < 0.001) than goat hair (1435.74 µg/kg DM). Arsenic levels in milk samples from both species were below 10 µg/kg. Liver (356.02 µg/kg DM) and kidney (317.22 µg/kg DM) contained significantly higher (p < 0.001) levels of arsenic compared to muscle (204.23 µg/kg DM), and bone (161.98 µg/kg DM) in local meat-type adult male goats. The skin accumulated the highest amount of arsenic (576.24 µg/kg DM) among the non-edible parts of the goat carcass. The cumulative cancer risk value for adults was 4.96 × 10-3, exceeding the threshold value (1 × 10-6). This suggests a significant risk of cancer development for the population in arsenic-affected areas. Non-cancer risks (hazard indexes) were estimated at 11.01 for adults. Our observations revealed that the highest bioaccumulation of arsenic occurred in the hair of cows, and goats in the examined localities. The biotransformation factor (BTF) for hair was much higher compared to other excreted samples from both species. The calculated BTF followed the order: hair > feces > milk for cows and goats. Livestock farmers in Nadia district are advised to carefully select feed resources, prioritizing those high in crude protein and low in neutral detergent fiber, and they should provide drinking water from deep aquifers to ensure the safety of milk and meat for human consumption.
Collapse
Affiliation(s)
- Sushil Kumar Yadav
- ICAR-National Dairy Research Institute, Eastern Regional Station, Kalyani, West Bengal, 751235, India
| | - Tapas Kumar Dutta
- ICAR-National Dairy Research Institute, Eastern Regional Station, Kalyani, West Bengal, 751235, India.
| | - Anupam Chatterjee
- ICAR-National Dairy Research Institute, Eastern Regional Station, Kalyani, West Bengal, 751235, India
| | - Sneha Dutta
- All India Institute of Medical Sciences, Bhubaneswar, Odissa, 751019, India
| | - Asif Mohammad
- ICAR-National Dairy Research Institute, Eastern Regional Station, Kalyani, West Bengal, 751235, India
| | - Arun Kumar Das
- ICAR-Indian Veterinary Research Institute, Eastern Regional Station, Kolkata, West Bengal, 700037, India
| |
Collapse
|
4
|
Medda N, Maiti S, Acharyya N, Samanta T, Banerjee A, De SK, Ghosh TK, Maiti S. Arsenic Induced Oxidative Neural-Damages in Rat are Mitigated by Tea-Leave Extract via MMPs and AChE Inactivation, Shown by Molecular Docking and in Vitro Studies with Pure Theaflavin and AChE. Cell Biochem Biophys 2024; 82:2567-2583. [PMID: 38943009 DOI: 10.1007/s12013-024-01369-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND Chronic arsenic-exposure causes neuromuscular disorders and other health anomalies. Damage to DNA and cytoskeletal/extracellular matrix is brought on by reactive-oxygen-species (ROS)-induced intrinsic antioxidant depletion (thiols/urate). Therapeutic chelating-agents have multiple side-effects. OBJECTIVES The protection of (Camellia sinensis) tea-extract and role of uric-acid (UA) or allopurinol (urate-depletor) on arsenic-toxicity were verified in rat model. METHODS Camellia sinensis (CS dry-leaves), UA or allopurinol was supplemented to arsenic-intoxicated rats for 4-weeks. Purified theaflavins and their galloyl-ester were tested in-vitro on pure AChE (acetylcholinesterase) and their PDB/PubChem 3-D structures were utilized for in-silico binding studies. The primary chemical components were evaluated from CS-extracts. Biochemical analysis, PAGE-zymogram, DNA-stability comet analysis, HE-staining was performed in arsenic-exposed rat brain tissues. RESULTS Animals exposed to arsenic showed symptoms of erratic locomotion, decreased intrinsic antioxidants (catalase/SOD1/uric acid), increased AChE, and malondialdehyde. Cerebellar and cerebrum tissue damages were shown with increased levels of matrix-metalloprotease (MMP2/9) and DNA damage (comets). Allopurinol- supplemented group demonstrated somewhat similar biochemical responses. In the CS-group brain tissues especially cerebellum is considerably protected which is evident from endogenous antioxidant and DNA and cytoskeleton protection with concomitant inactivation of MMPs and AChE. Present study indicates theaflavin-digallate (TFDG) demonstrated the highest inhibition of purified AChE (IC50 = 2.19 µg/ml with the lowest binding free-energy; -369.87 kcal/mol) followed by TFMG (IC50 = 3.86 µg/ml, -347.06 kcal/mol) suggesting their possible restoring effects of cholinergic response. CONCLUSIONS Favorable responses in UA-group and adverse outcome in allo-group justify the neuro-protective effects of UA as an endogenous antioxidant. Role of flavon-gallate in neuro protection mechanism may be further studied.
Collapse
Affiliation(s)
- Nandita Medda
- Department of Biochemistry and Biotechnology, Oriental Institute of Science and Technology, Midnapore, 721102, West Bengal, India
- Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Sayantani Maiti
- Department of Biochemistry and Biotechnology, Oriental Institute of Science and Technology, Midnapore, 721102, West Bengal, India
| | - Nirmallya Acharyya
- Department of Biochemistry and Biotechnology, Oriental Institute of Science and Technology, Midnapore, 721102, West Bengal, India
- Post-Doctoral Fellow, US-FDA, Silver Spring, MD, USA
| | - Tanmoy Samanta
- Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Amrita Banerjee
- Haldia Institute of Health Sciences, ICARE, Haldia, West Bengal, India
- Centre for Industrial Biotechnology Research, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, 751003, India
| | - Subrata Kr De
- Department of Zoology, Vidyasagar University, Medinipur, 721102, India
| | - Tamal Kanti Ghosh
- Purulia Government Medical College and Hospital, Purulia, West Bengal, India
| | - Smarajit Maiti
- Haldia Institute of Health Sciences, ICARE, Haldia, West Bengal, India.
| |
Collapse
|
5
|
Hu K, Islam MA, Parvez F, Bhattacharya P, Khan KM. Chronic exposure of arsenic among children in Asia: A current opinion based on epidemiological evidence. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2024; 39:100558. [PMID: 40125474 PMCID: PMC11928148 DOI: 10.1016/j.coesh.2024.100558] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
The health effects of arsenic (As) exposure are a major global environmental issue affecting millions of people around the globe. Although adult epidemiological studies on As-induced health consequences have been extensively reviewed, but not much comprehensive review has been done targeting children. In this epidemiological review, 64 human subject studies on children were identified after applying exclusion criteria, which addressed an array of health effects of As exposure in early life stages in South and Southeast (S-SE) Asian countries, where a great variability in As exposures has been reported. The present review identified neurocognitive impairment linked to As exposure in early life stages. In utero and childhood As exposures were also associated with genetic and metabolic alteration, elevated pneumonia risk, and skin lesions in several populations in S-SE Asia. Significant associations of As with epigenetic changes, DNA damages, abnormal birth outcomes, and elevated mortality were also reported in epidemiological studies. The findings of this review article may help public health policymakers and clinicians develop early-life intervention strategies to reduce the burden of diseases in As-exposed populations.
Collapse
Affiliation(s)
- Kelsey Hu
- College of Osteopathic Medicine, Sam Houston State University, 925 City Central Ave, Conroe, TX 77304, USA
| | - Md Aminul Islam
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
- Advanced Molecular Lab, Department of Microbiology, President Abdul Hamid Medical College, Karimganj, Kishoreganj, 2310, Bangladesh
| | - Faruque Parvez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, USA
| | - Prosun Bhattacharya
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE-100 44 Stockholm, Sweden
| | - Khalid M Khan
- Department of Public Health, College of Health Sciences, Sam Houston State University, 1901 Ave I, CHSS Suite 432, Huntsville, TX 77340, USA
| |
Collapse
|
6
|
Das A, Joardar M, De A, Mridha D, Ghosh S, Das B, Mandal J, Thakur BK, Roychowdhury T. Appraisal of treated drinking water quality from arsenic removal units in West Bengal, India: Approach on safety, efficiency, sustainability, future health risk and socioeconomics. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133216. [PMID: 38101016 DOI: 10.1016/j.jhazmat.2023.133216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/03/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
The present study depicts the true failed scenario of the arsenic (As) removal units (ARU) in West Bengal by evaluating their treated water quality. Annual As removal efficiency of the 12 studied ARUs range between 35.2% and 82.6%. A comprehensive physico-chemical parameters and trace elements analysis find almost 25% and 16.7% of treated drinking water samples with poor water quality index (WQI) and high heavy metal evaluation index (HEI), respectively. The pond-based water treatment plant maintains the production of continuous As-safe water with a range between 60.2% and 66.7% due to its high Fe/As ratio. It's a discontent concluding the treated drinking water of the groundwater based-ARUs were observed with sufficient As mediated cancer risk (3 ×10-3). The non-cancer risk (HQ) of As is safe for the surface water treatment plant (0.38), whereas it is threatening for the groundwater based-ARUs (7.44). However, the drinking water samples are safe in view of HQ from the other trace elements like Hg, Al, Cd, Cr, Pb, F- and NO3-. Small scale ARU could be a feasible mitigation strategy in reducing the As menace in the long run if the plants are maintained correctly. Nevertheless, surface treated water is the most sustainable solution as withdrawal of groundwater for drinking purpose is not a viable practice.
Collapse
Affiliation(s)
- Antara Das
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India
| | - Madhurima Joardar
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India
| | - Ayan De
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India
| | - Deepanjan Mridha
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India
| | - Swetanjana Ghosh
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India
| | - Bipradip Das
- Department of Mining Engineering, Indian Institute of Engineering Science and Technology, Shibpur, West Bengal, India
| | - Jajati Mandal
- School of Science, Engineering and Environment, University of Salford, Manchester, United Kingdom
| | - Barun Kumar Thakur
- Department of Economics, FLAME University, Pune, Maharashtra 412115, India
| | - Tarit Roychowdhury
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
7
|
Aryan Y, Pon T, Panneerselvam B, Dikshit AK. A comprehensive review of human health risks of arsenic and fluoride contamination of groundwater in the South Asia region. JOURNAL OF WATER AND HEALTH 2024; 22:235-267. [PMID: 38421620 PMCID: wh_2023_082 DOI: 10.2166/wh.2023.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The present study found that ∼80 million people in India, ∼60 million people in Pakistan, ∼70 million people in Bangladesh, and ∼3 million people in Nepal are exposed to arsenic groundwater contamination above 10 μg/L, while Sri Lanka remains moderately affected. In the case of fluoride contamination, ∼120 million in India, >2 million in Pakistan, and ∼0.5 million in Sri Lanka are exposed to the risk of fluoride above 1.5 mg/L, while Bangladesh and Nepal are mildly affected. The hazard quotient (HQ) for arsenic varied from 0 to 822 in India, 0 to 33 in Pakistan, 0 to 1,051 in Bangladesh, 0 to 582 in Nepal, and 0 to 89 in Sri Lanka. The cancer risk of arsenic varied from 0 to 1.64 × 1-1 in India, 0 to 1.07 × 10-1 in Pakistan, 0 to 2.10 × 10-1 in Bangladesh, 0 to 1.16 × 10-1 in Nepal, and 0 to 1.78 × 10-2 in Sri Lanka. In the case of fluoride, the HQ ranged from 0 to 21 in India, 0 to 33 in Pakistan, 0 to 18 in Bangladesh, 0 to 10 in Nepal, and 0 to 10 in Sri Lanka. Arsenic and fluoride have adverse effects on animals, resulting in chemical poisoning and skeletal fluorosis. Adsorption and membrane filtration have demonstrated outstanding treatment outcomes.
Collapse
Affiliation(s)
- Yash Aryan
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai 400076, India E-mail:
| | - Thambidurai Pon
- Department of Coastal Disaster Management, School of Physical, Chemical and Applied Sciences, Pondicherry University, Port Blair Campus - 744112, Andaman and Nicobar Islands, India
| | - Balamurugan Panneerselvam
- Center of Excellence in Interdisciplinary Research for Sustainable Development, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anil Kumar Dikshit
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
8
|
Wang P, Xie D, Xiao T, Cheng C, Wang D, Sun J, Wu M, Yang Y, Zhang A, Liu Q. H3K18 lactylation promotes the progression of arsenite-related idiopathic pulmonary fibrosis via YTHDF1/m6A/NREP. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132582. [PMID: 37742376 DOI: 10.1016/j.jhazmat.2023.132582] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/26/2023] [Accepted: 09/17/2023] [Indexed: 09/26/2023]
Abstract
As epigenetic modifications, lactylation and N6-methyladenosine (m6A) have attracted wide attention. Arsenite is an environmental pollutant that has been proven to induce idiopathic pulmonary fibrosis (IPF). However, the molecular mechanisms of lactylation and m6A methylation are unclear in arsenite-related IPF (As-IPF). In view of the limited understanding of molecular mechanism of m6A and lactylation in As-IPF, MeRIP-seq, RNA-seq and ChIP-seq were analyzed to verify the target gene regulated by m6A and H3K18 lactylation (H3K18la). We found that, for As-IPF, the global levels of m6A, levels of YTHDF1 and m6A-modified neuronal protein 3.1 (NREP) were elevated in alveolar epithelial cells (AECs). The secretion levels of TGF-β1 were increased via YTHDF1/m6A/NREP, which promoted the fibroblast-to-myofibroblast transition (FMT). Further, extracellular lactate from myofibroblasts elevated levels of the global lactylation (Kla) and H3K18la via the lactate monocarboxylate transporter 1 (MCT1), and, in AECs, H3K18la facilitated the transcription of Ythdf1. This report highlights the role of crosstalk between AECs and myofibroblasts via lactylation and m6A and the significance of H3K18la regulation of YTHDF1 in the progression of As-IPF, which may be useful for finding effective therapeutic targets.
Collapse
Affiliation(s)
- Peiwen Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Daxiao Xie
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Tian Xiao
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, Jiangsu, PR China
| | - Cheng Cheng
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Dapeng Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
| | - Jing Sun
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Meng Wu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Yi Yang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, Guizhou, PR China
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China.
| |
Collapse
|
9
|
Pradhan S, Choudhury A, Dey S, Hossain MF, Saha A, Saha D. Siderophore-producing Bacillus amyloliquefaciens BM3 mitigate arsenic contamination and suppress Fusarium wilt in brinjal plants. J Appl Microbiol 2023; 134:lxad217. [PMID: 37740438 DOI: 10.1093/jambio/lxad217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
AIM Arsenic contamination in agricultural soils poses a serious health risk for humans. Bacteria that produce siderophores, primarily for iron acquisition, can be relevant in combating arsenic toxicity in agricultural soils and simultaneously act as biocontrol agents against plant diseases. We evaluated the arsenic bioremediation and biocontrol potential of the rhizosphere isolate Bacillus amyloliquefaciens BM3 and studied the interaction between the purified siderophore bacillibactin and arsenic. METHODS AND RESULTS BM3 showed high arsenic resistance [MIC value 475 and 24 mM against As(V) and As(III), respectively] and broad spectrum in-vitro antagonism against several phytopathogenic fungi. BM3 was identified by biochemical characterization and 16S rRNA gene sequencing. Scanning electron microscopy (SEM) analysis revealed increased cell size of BM3 when grown in presence of sub-lethal arsenic concentrations. Bioremediation assays showed a 74% and 88.1% reduction in As(V) and As(III) concentrations, respectively. Genetic determinants for arsenic resistance (arsC and aoxB) and antifungal traits (bacAB and chiA) were detected by PCR. Arsenic chelating ability of bacillibactin, the siderophore purified from culture filtrate of BM3 and identified through spectroscopic data analysis, was observed in CAS assay and fluorescence spectrometry. In-vivo application of talc-based formulation of BM3 in brinjal seedlings showed significant reduction in Fusarium wilt disease. CONCLUSION Strain B. amyloliquefaciens BM3 may be useful in arsenic bioremediation and may be considered for large field trials as an alternative to chemical fungicides by inhibiting soil borne pathogens.
Collapse
Affiliation(s)
- Smriti Pradhan
- Department of Biotechnology, University of North Bengal, Siliguri, West Bengal 734013, India
| | - Abhinandan Choudhury
- Department of Biotechnology, University of North Bengal, Siliguri, West Bengal 734013, India
| | - Sovan Dey
- Department of Chemistry, University of North Bengal, Siliguri, West Bengal 734013, India
| | - Md Firoj Hossain
- Department of Chemistry, University of North Bengal, Siliguri, West Bengal 734013, India
| | - Aniruddha Saha
- Department of Botany, University of North Bengal, Siliguri, West Bengal 734013, India
| | - Dipanwita Saha
- Department of Biotechnology, University of North Bengal, Siliguri, West Bengal 734013, India
| |
Collapse
|
10
|
Das A, Joardar M, Chowdhury NR, Mridha D, De A, Majumder S, Das J, Majumdar KK, Roychowdhury T. Significance of the prime factors regulating arsenic toxicity and associated health risk: a hypothesis-based investigation in a critically exposed population of West Bengal, India. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3423-3446. [PMID: 36335536 DOI: 10.1007/s10653-022-01422-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/20/2022] [Indexed: 06/01/2023]
Abstract
The suffering from arsenic toxicity is a long-standing concern in Asian countries. The role of the key factors (arsenic intake, age and sex) regulating arsenic toxicity is aimed to evaluate for a severely exposed population from Murshidabad district, West Bengal. Mean arsenic concentrations in drinking water supplied through tube well, Sajaldhara treatment plant and pipeline were observed as 208, 27 and 54 µg/l, respectively. Urinary arsenic concentration had been observed as < 3-42.1, < 3-56.2 and < 3-80 µg/l in children, teenagers and adults, respectively. Mean concentrations of hair and nail arsenic were found to be 0.84 and 2.38 mg/kg; 3.07 and 6.18 mg/kg; and 4.41 and 9.07 mg/kg, respectively, for the studied age-groups. Water arsenic was found to be associated with hair and nail (r = 0.57 and 0.60), higher than urine (r = 0.37). Arsenic deposition in biomarkers appeared to be dependent on age; however, it is independent of sex. Principal component analysis showed a direct relationship between dietary intake of arsenic and chronic biomarkers. Nail was proved as the most fitted biomarker of arsenic toxicity by Dunn's post hoc test. Monte Carlo sensitivity analysis and cluster analysis showed that the most significant factor regulating health risk is 'concentration of arsenic' than 'exposure duration', 'body weight' and 'intake rate'. The contribution of arsenic concentration towards calculated health risk was highest in teenagers (45.5-61.2%), followed by adults (47.8-49%) and children (21-27.6%). Regular and sufficient access to arsenic-safe drinking water is an immediate need for the affected population.
Collapse
Affiliation(s)
- Antara Das
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Madhurima Joardar
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | | | - Deepanjan Mridha
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Ayan De
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Sharmistha Majumder
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Jagyashila Das
- National Institute of Biomedical Genomics, Kalyani, India
| | - Kunal Kanti Majumdar
- Department of Community Medicine, KPC Medical College and Hospital, Jadavpur, Kolkata, 700032, India
| | - Tarit Roychowdhury
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
11
|
Mishra D, Chakrabortty R, Sen K, Pal SC, Mondal NK. Groundwater vulnerability assessment of elevated arsenic in Gangetic plain of West Bengal, India; Using primary information, lithological transport, state-of-the-art approaches. JOURNAL OF CONTAMINANT HYDROLOGY 2023; 256:104195. [PMID: 37186993 DOI: 10.1016/j.jconhyd.2023.104195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 04/24/2023] [Accepted: 05/01/2023] [Indexed: 05/17/2023]
Abstract
Deterioration of groundwater quality is a long-term incident which leads unending vulnerability of groundwater. The present work was carried out in Murshidabad District, West Bengal, India to assess groundwater vulnerability due to elevated arsenic (As) and other heavy metal contamination in this area. The geographic distribution of arsenic and other heavy metals including physicochemical parameters of groundwater (in both pre-monsoon and post-monsoon season) and different physical factors were performed. GIS-machine learning model such as support vector machine (SVM), random forest (RF) and support vector regression (SVR) were used for this study. Results revealed that, the concentration of groundwater arsenic compasses from 0.093 to 0.448 mg/L in pre-monsoon and 0.078 to 0.539 mg/L in post-monsoon throughout the district; which indicate that all water samples of the Murshidabad District exceed the WHO's permissible limit (0.01 mg/L). The GIS-machine learning model outcomes states the values of area under the curve (AUC) of SVR, RF and SVM are 0.923, 0.901 and 0.897 (training datasets) and 0.910, 0.899 and 0.891 (validation datasets), respectively. Hence, "support vector regression" model is best fitted to predict the arsenic vulnerable zones of Murshidabad District. Then again, groundwater flow paths and arsenic transport was assessed by three dimensions underlying transport model (MODPATH). The particles discharging trends clearly revealed that the Holocene age aquifers are major contributor of As than Pleistocene age aquifers and this may be the main cause of As vulnerability of both northeast and southwest parts of Murshidabad District. Therefore, special attention should be paid on the predicted vulnerable areas for the safeguard of the public health. Moreover, this study can help to make a proper framework towards sustainable groundwater management.
Collapse
Affiliation(s)
- Debojyoti Mishra
- Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, India
| | | | - Kamalesh Sen
- Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, India
| | | | - Naba Kumar Mondal
- Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, India.
| |
Collapse
|
12
|
Biswas T, Pal SC, Chowdhuri I, Ruidas D, Saha A, Islam ARMT, Shit M. Effects of elevated arsenic and nitrate concentrations on groundwater resources in deltaic region of Sundarban Ramsar site, Indo-Bangladesh region. MARINE POLLUTION BULLETIN 2023; 188:114618. [PMID: 36682305 DOI: 10.1016/j.marpolbul.2023.114618] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
An attempt has been adopted to predict the As and NO3- concentration in groundwater (GW) in fast-growing coastal Ramsar region in eastern India. This study is focused to evaluate the As and NO3- vulnerable areas of coastal belts of the Indo-Bangladesh Ramsar site a hydro-geostrategic region of the world by using advanced ensemble ML techniques including NB-RF, NB-SVM and NB-Bagging. A total of 199 samples were collected from the entire study area for utilizing the 12 GWQ conditioning factors. The predicted results are certified that NB-Bagging the most suitable and preferable model in this current research. The vulnerability of As and NO3- concentration shows that most of the areas are highly vulnerable to As and low to moderately vulnerable to NO3. The reliable findings of this present study will help the management authorities and policymakers in taking preventive measures in reducing the vulnerability of water resources and corresponding health risks.
Collapse
Affiliation(s)
- Tanmoy Biswas
- Department of Geography, The University of Burdwan, Purba Bardhaman, West Bengal 713104, India
| | - Subodh Chandra Pal
- Department of Geography, The University of Burdwan, Purba Bardhaman, West Bengal 713104, India.
| | - Indrajit Chowdhuri
- Department of Geography, The University of Burdwan, Purba Bardhaman, West Bengal 713104, India
| | - Dipankar Ruidas
- Department of Geography, The University of Burdwan, Purba Bardhaman, West Bengal 713104, India
| | - Asish Saha
- Department of Geography, The University of Burdwan, Purba Bardhaman, West Bengal 713104, India
| | | | - Manisa Shit
- Department of Geography, Raiganj University, Raiganj, Uttar Dinajpur, West Bengal 733134, India
| |
Collapse
|
13
|
Saha A, Gupta A, Sar P. Metagenome based analysis of groundwater from arsenic contaminated sites of West Bengal revealed community diversity and their metabolic potential. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:91-106. [PMID: 36852697 DOI: 10.1080/10934529.2023.2173919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The study of microbial community in groundwater systems is considered to be essential to improve our understanding of arsenic (As) biogeochemical cycling in aquifers, mainly as it relates to the fate and transport of As. The present study was conducted to determine the microbial community composition and its functional potential using As-contaminated groundwater from part of the Bengal Delta Plain (BDP) in West Bengal, India. Geochemical analyses indicated low to moderate dissolved oxygen (0.42-3.02 mg/L), varying As (2.5-311 µg/L) and Fe (0.19-1.2 mg/L) content, while low concentrations of total organic carbon (TOC), total inorganic carbon (TIC), nitrate, and sulfate were detected. Proteobacteria was the most abundant phylum, while the indiscriminate presence of an array of archaeal phyla, Euryarchaeota, Crenarchaeota, Nanoarchaeota, etc., was noteworthy. The core community members were affiliated to Sideroxydans, Acidovorax, Pseudoxanthomonas, Brevundimonas, etc. However, diversity assessed over multiple seasons indicated a shift from Sideroxydans to Pseudomonas or Brevundimonas dominant community, suggestive of microbial response to seasonally fluctuating geochemical stimuli. Taxonomy-based functional potential showed prospects for As biotransformation, methanogenesis, sulfate respiration, denitrification, etc. Thus, this study strengthened existing reports from this region by capturing the less abundant or difficult-to-culture taxa collectively forming a major fraction of the microbial community.
Collapse
Affiliation(s)
- Anumeha Saha
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Abhishek Gupta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Pinaki Sar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| |
Collapse
|
14
|
Raza MB, Datta SP, Golui D, Barman M, Das TK, Sahoo RN, Upadhyay D, Rahman MM, Behera B, Naveenkumar A. Synthesis and Performance Evaluation of Novel Bentonite-Supported Nanoscale Zero Valent Iron for Remediation of Arsenic Contaminated Water and Soil. Molecules 2023; 28:molecules28052168. [PMID: 36903414 PMCID: PMC10004430 DOI: 10.3390/molecules28052168] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Groundwater arsenic (As) pollution is a naturally occurring phenomenon posing serious threats to human health. To mitigate this issue, we synthesized a novel bentonite-based engineered nano zero-valent iron (nZVI-Bento) material to remove As from contaminated soil and water. Sorption isotherm and kinetics models were employed to understand the mechanisms governing As removal. Experimental and model predicted values of adsorption capacity (qe or qt) were compared to evaluate the adequacy of the models, substantiated by error function analysis, and the best-fit model was selected based on corrected Akaike Information Criterion (AICc). The non-linear regression fitting of both adsorption isotherm and kinetic models revealed lower values of error and lower AICc values than the linear regression models. The pseudo-second-order (non-linear) fit was the best fit among kinetic models with the lowest AICc values, at 57.5 (nZVI-Bare) and 71.9 (nZVI-Bento), while the Freundlich equation was the best fit among the isotherm models, showing the lowest AICc values, at 105.5 (nZVI-Bare) and 105.1 (nZVI-Bento). The adsorption maxima (qmax) predicted by the non-linear Langmuir adsorption isotherm were 354.3 and 198.5 mg g-1 for nZVI-Bare and nZVI-Bento, respectively. The nZVI-Bento successfully reduced As in water (initial As concentration = 5 mg L-1; adsorbent dose = 0.5 g L-1) to below permissible limits for drinking water (10 µg L-1). The nZVI-Bento @ 1% (w/w) could stabilize As in soils by increasing the amorphous Fe bound fraction and significantly diminish the non-specific and specifically bound fraction of As in soil. Considering the enhanced stability of the novel nZVI-Bento (upto 60 days) as compared to the unmodified product, it is envisaged that the synthesized product could be effectively used for removing As from water to make it safe for human consumption.
Collapse
Affiliation(s)
- Md Basit Raza
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
- ICAR-Indian Institute of Soil and Water Conservation, RC Koraput, Odisha 763002, India
| | - Siba Prasad Datta
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
- Correspondence: (S.P.D.); (D.G.); (M.M.R.)
| | - Debasis Golui
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58102, USA
- Correspondence: (S.P.D.); (D.G.); (M.M.R.)
| | - Mandira Barman
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Tapas Kumar Das
- Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Rabi Narayan Sahoo
- Division of Agricultural Physics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Devi Upadhyay
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
- Department of General Educational Development, Faculty of Science & Information Technology, Daffodil International University, Ashulia, Savar, Dhaka 1207, Bangladesh
- Correspondence: (S.P.D.); (D.G.); (M.M.R.)
| | | | - A Naveenkumar
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| |
Collapse
|
15
|
Wu M, Sun J, Wang L, Wang P, Xiao T, Wang S, Liu Q. The lncRNA HOTAIR via miR-17-5p is involved in arsenite-induced hepatic fibrosis through regulation of Th17 cell differentiation. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130276. [PMID: 36332283 DOI: 10.1016/j.jhazmat.2022.130276] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Arsenic compounds are toxins that are widely distributed in the environment. Chronic exposure to low levels of these compounds can cause hepatic fibrosis and other damage. Th17 differentiation of CD4+ T cells and the secretion of IL-17 activates hepatic stellate cells (HSCs), which are involved in hepatic fibrosis, but their mechanisms in arsenic-induced hepatic fibrosis are unclear. We found, in arsenite-induced fibrotic livers of mice, increases of CD4+ T cell infiltration, Th17 cell nuclear receptor retinoic acid receptor-related orphan receptor γt (RORγt), and secretion of the pro-inflammatory cytokine IL-17. There were also elevated levels of the lncRNA, HOTAIR. For Jurkat cells, arsenite elevated levels of HOTAIR and protein levels of RORγt and IL-17A, decreased miR-17-5p, promoted Th17 cell differentiation, and released IL-17. The culture medium of arsenite-treated Jurkat cells activated LX-2 cells. Down-regulation of HOTAIR or up-regulation of miR-17-5p blocked arsenite-induced Th17 cell differentiation, which inhibited the LX-2 cell activation. However, down-regulation of HOTAIR and miR-17-5p reversed this inhibitory effect. For mice, silencing of HOTAIR diminished the hepatic levels of RORγt and IL-17A and alleviated arsenite-induced hepatic fibrosis. These results demonstrate that, for CD4+ T cells, arsenite promotes RORγt-mediated Th17 cell differentiation through HOTAIR down-regulation of miR-17-5p, and increases the secretion of cytokine IL-17A, which activates HSCs; the activated HSCs facilitate hepatic fibrosis. The findings reveal a new mechanism and a potential therapeutic target for arsenite-induced hepatic fibrosis.
Collapse
Affiliation(s)
- Meng Wu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Jing Sun
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Department of Nutrition, Functional Food Clinical Evaluation Center, Affiliated Hospital of Jiangnan University, Wuxi 214122, Jiangsu, People's Republic of China
| | - Li Wang
- Department of Toxicology, School of Public Health, Baotou Medical College, Baotou 014040, Inner Mongolia, People's Republic of China
| | - Peiwen Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Tian Xiao
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Suhua Wang
- Department of Toxicology, School of Public Health, Baotou Medical College, Baotou 014040, Inner Mongolia, People's Republic of China.
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
16
|
Das A, Chowdhury O, Gupta P, Das N, Mitra A, Ghosh S, Ghosh S, Sarkar S, Bandyopadhyay D, Chattopadhyay S. Arsenic-induced differential inflammatory responses in mouse thymus involves NF-κB/STAT-3 disruption, Treg bias and autophagy activation. Life Sci 2023; 314:121290. [PMID: 36549349 DOI: 10.1016/j.lfs.2022.121290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/29/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
AIM Arsenic contamination in drinking water is a world-wide public health concern. Sustained arsenic ingestion leads to immune alterations and subsequent development of inflammatory and autoimmune diseases; however, the underlying cellular and molecular intricacies of immunotoxicity remains uncharacterized. We aim to understand how exposure to arsenic at different concentrations affects the immune system differentially and whether arsenic-induced differential inflammation dictates altered T-regulatory cell bias and emphasize the role of autophagy in the pathway. MAIN METHODS Swiss albino mice were exposed to environmentally relevant concentrations of arsenic in drinking water for 28 days. Examination of thymic cyto-architecture was done to evaluate thymic damage. ELISA was performed for key cytokines. Flow cytometry, western blotting, and immunostaining were performed for cell surface and intracellular proteins. Co-immunoprecipitation and transfection with siRNA were performed to examine the direct physical interactions between proteins. KEY FINDINGS Our study distinctly demonstrates that arsenic-induced oxidative stress instigates NF-κB activation, which not only provokes pro-inflammatory responses, but also exhibits immune-suppressive activity depending on the dose of arsenic. Co-immunoprecipitation of NF-κBp65 and pSTAT-3 reveals that arsenic alters their physical interaction, thereby suppressing IL-6/STAT-3/IL-17A feedback loop. Flow cytometry and silencing studies demonstrate that NF-κB-driven Treg cell differentiation induces immune-suppression through FoxP3 up-regulation at the highest dose of arsenic and such immune-suppression is actively supported by NF-κB-driven autophagy activation. SIGNIFICANCE Collectively, our findings reveal that exposure to arsenic differentially impacts the immune system and understanding the molecular cascade might provide direction for prevention/treatment of arsenic-induced inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Ankur Das
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| | - Olivia Chowdhury
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| | - Payal Gupta
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| | - Nirmal Das
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| | - Ankan Mitra
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| | - Sourav Ghosh
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| | - Sayan Ghosh
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| | - Swaimanti Sarkar
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| | | | - Sreya Chattopadhyay
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India; Centre for Research in Nanoscience and Nanotechnology (CRNN), University of Calcutta, JD-2, Salt Lake, Sector III, Kolkata 700098, India.
| |
Collapse
|
17
|
Kushalan S, Kashyap A, Morajkar S, Hegde S. Geospatial Distribution of Fluoride and Iron in Natural Water Sources in Mangalore City. JOURNAL OF HEALTH AND ALLIED SCIENCES NU 2023. [DOI: 10.1055/s-0042-1760322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
AbstractWater is the most essential substance that supports life on earth. Animals and plants require water for their survival. Since water is being lost or used by our body, it is essential to replace it constantly. Humans need clean, potable water for consumption and to meet their daily hygiene needs. However, increased anthropogenic activities have caused a drastic increase in heavy metals in fresh waters. Heavy metals interfere with the normal physiology of the human body. It binds to cellular components, leading to dysfunction of the metabolic processes in our body. This study was undertaken to study the geospatial distribution of selected heavy metals in open-well waters within Mangalore City Corporation limits. Mangalore is perched strategically on the path of rapid development, heading toward becoming a smart city in India. Water samples were collected from all 60 wards in the jurisdiction of Mangalore City Corporation. The fluoride concentration was estimated using the spectrophotometric method using the Sodium 2-(parasulfophenylazo)-1,8-dihydroxy3,6-naphthalene disulfonate (SPADNS) reagent. Similarly, iron was estimated using the phenanthroline reagent. The findings report that the pH of the samples was acidic in 20 wards. Panambur, Kunjathbail North, Mannagudda, Court and Cantonment water was colored. Kunjathbail (North), Kunjathbail (South), Kambala, Kadri North, Bendoor, Bolar, Mannagudda, and Markada, showed high turbidity levels. The fluoride concentration in the samples collected from 60 wards of Mangalore city was less than 1.5 ppm, which is the permissible limit by the World Health Organization. Iron is within the permissible limit except for the wards Court and Boloor, which showed an iron concentration of 0.4 ppm and 3.08 ppm, respectively. However, arsenic was not detected in any of the 180 samples collected from the 60 wards of Mangalore City Corporation.
Collapse
Affiliation(s)
- Sharanya Kushalan
- Division of Bioresource and Biotechnology, Nitte University Centre for Science Education and Research (NUCSER), Nitte Deemed to be University, Deralakatte, Mangalore, Karnataka, India
| | - Anusha Kashyap
- Division of Bioresource and Biotechnology, Nitte University Centre for Science Education and Research (NUCSER), Nitte Deemed to be University, Deralakatte, Mangalore, Karnataka, India
| | - Shaiesh Morajkar
- Parvatibai Chowgule College of Arts & Science (Autonomous), Gogol, Margao, Goa, India
| | - Smitha Hegde
- Division of Bioresource and Biotechnology, Nitte University Centre for Science Education and Research (NUCSER), Nitte Deemed to be University, Deralakatte, Mangalore, Karnataka, India
| |
Collapse
|
18
|
Banerjee S, Dhar S, Sudarshan M, Chakraborty A, Bhattacharjee S, Bhattacharjee P. Investigating the synergistic role of heavy metals in Arsenic-induced skin lesions in West Bengal, India. J Trace Elem Med Biol 2023; 75:127103. [PMID: 36435151 DOI: 10.1016/j.jtemb.2022.127103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Arsenic toxicity is one of the major health issues throughout the world. Approximately 108 countries that account for more than 230 million people worldwide are at high risk of arsenic poisoning mainly through drinking water and diet. Chronic exposure to arsenic causes several pathophysiological end-points including skin lesions, peripheral neuropathy, cancer, etc. In India, the population living in the lower Gangetic basin possesses a great risk of arsenicosis and other diseases. Scientists are trying to understand the gene-environmental interactions behind arsenic toxicity revealing the potential role of genetic variants of individuals. Few pieces of the literature showed that the population is not exposed to a mixture of metals. Hence, in this study, an attempt has been made to explore whether some other metals play a synergistic role in As-induced toxicity. METHODS For this, an assessment of the level of heavy metals using ED-XRF in soil, vegetables from As-exposed areas along with quantification of the heavy metal concentration in human blood and hair of the As-exposed population were conducted. RESULTS Results show the concentration of urinary arsenic is very high signifying the magnitude of the exposure. In addition to this, the levels of iron (Fe), copper (Cu), chromium (Cr) were found to be very high in soil and Fe, manganese (Mn), lead (Pb) in vegetables were exceeding the WHO/FAO recommended permissible limit. However, Fe and zinc (Zn) were predominantly high in whole blood and hair of the arsenic-exposed population when compared with the control population. CONCLUSION It can be confirmed that the population from Murshidabad is exposed to As and other heavy metals through drinking water as well as food. Particularly for this population, Fe, Zn and rubidium (Rb) may play a synergistic role in arsenic-induced toxicity. However, further studies on the large population-based investigation are required to establish the chemistry of the metal toxicity.
Collapse
Affiliation(s)
- Shuvam Banerjee
- Environmental epigenomics Laboratory, Department of Environmental Science, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India; UGC-DAE Consortium for Scientific Research, Kolkata Center, Sector-III, LB-8, Bidhan Nagar, Kolkata 700106, West Bengal, India
| | - Shrinjana Dhar
- Environmental epigenomics Laboratory, Department of Environmental Science, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - M Sudarshan
- UGC-DAE Consortium for Scientific Research, Kolkata Center, Sector-III, LB-8, Bidhan Nagar, Kolkata 700106, West Bengal, India
| | - Anindita Chakraborty
- UGC-DAE Consortium for Scientific Research, Kolkata Center, Sector-III, LB-8, Bidhan Nagar, Kolkata 700106, West Bengal, India
| | | | - Pritha Bhattacharjee
- Environmental epigenomics Laboratory, Department of Environmental Science, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India.
| |
Collapse
|
19
|
Saha A, Pal SC, Chowdhuri I, Roy P, Chakrabortty R. Effect of hydrogeochemical behavior on groundwater resources in Holocene aquifers of moribund Ganges Delta, India: Infusing data-driven algorithms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120203. [PMID: 36150620 DOI: 10.1016/j.envpol.2022.120203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/16/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
One of the fundamental sustainable development goals has been recognized as having access to clean water for drinking purposes. In the Anthropocene era, rapid urbanization put further stress on water resources, and associated groundwater contamination expanded into a significant global environmental issue. Natural arsenic and related water pollution have already caused a burden issue on groundwater vulnerability and corresponding health hazard in and around the Ganges delta. A field based hydrogeochemical analysis has been carried out in the elevated arsenic prone areas of moribund Ganges delta, West Bengal, a part of western Ganga- Brahmaputra delta (GBD). New data driven heuristic algorithms are rarely used in groundwater vulnerability studies, specifically not yet used in the elevated arsenic prone areas of Ganges delta, India. Therefore, in the current study, emphasis has been given on integration of heuristic algorithms and random forest (RF) i.e., "RF-particle swarm optimization (PSO)", "RF-grey wolf optimizer (GWO)" and "RF-grasshopper optimization algorithm (GOA)", to identify groundwater vulnerable zones on the basis of field based hydrogeochemical parameters. In addition, correspondence health hazard of this area was assessed through human health hazard index. The spatial distribution of groundwater vulnerability revealed that middle-eastern and north-western part of the study area covered by very high and high, whereas central, western and south-western part are covered by very low and low vulnerability zones in outcomes of all the applied models. The evaluation result indicates that RF-GOA (AUC = 0.911) model performed the best considering testing dataset, and thereafter RF-GWO, RF-PSO and RF with AUC value is 0.901, 0.892 and 0.812 respectively. Findings also revealed the groundwater in this study region is quite unfavorable for drinking and irrigation purposes. The suggested models demonstrate their usefulness in foretelling sustainable groundwater resource management in various deltaic regions of the world through taking appropriate measures by policy-makers.
Collapse
Affiliation(s)
- Asish Saha
- Department of Geography, The University of Burdwan, Bardhaman, West Bengal, 713104, India
| | - Subodh Chandra Pal
- Department of Geography, The University of Burdwan, Bardhaman, West Bengal, 713104, India.
| | - Indrajit Chowdhuri
- Department of Geography, The University of Burdwan, Bardhaman, West Bengal, 713104, India
| | - Paramita Roy
- Department of Geography, The University of Burdwan, Bardhaman, West Bengal, 713104, India
| | - Rabin Chakrabortty
- Department of Geography, The University of Burdwan, Bardhaman, West Bengal, 713104, India
| |
Collapse
|
20
|
Sarkar A, Paul B, Darbha GK. The groundwater arsenic contamination in the Bengal Basin-A review in brief. CHEMOSPHERE 2022; 299:134369. [PMID: 35318018 DOI: 10.1016/j.chemosphere.2022.134369] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 05/27/2023]
Abstract
The presence of arsenic in the groundwater of the densely-populated Bengal Basin evolved as a mass-poisoning agent and is a reason for the misery of millions of people living here. High-level arsenic was detected in the shallow aquifer-tube wells of the basin in the late-20th century. The redox conditions and the biogeochemical activities in the shallow aquifers support the existence of arsenic in its most toxic +3 state. The shallow aquifers are constructed by the Holocene reduced grey sands, having a lesser capacity to hold the arsenic brought from the Himalayas by the Ganga-Brahmaputra-Meghna river system. Among several other hypotheses, the reductive dissolution of arsenic bearing Fe-oxyhydroxides coupled with the microbial activities in the organic-matter-rich Holocene grey sands is believed to be the primary reason for releasing arsenic in groundwater of basinal shallow aquifers. The deep aquifers below the late Pleistocene aquifers and the Palaeo-interfluvial aquifers capped by the last glacial maximum Palaeosol generally contain arsenic-free or low-arsenic water. Ingress of arsenic into the deep aquifers from the shallow aquifers was considered to have been caused by extensive non-domestic pumping. However, studies have found that extensive pumping is unlikely to contaminate the deep aquifer water with higher levels of arsenic within decadal time scales. Irrigation-pumping may produce hydraulic barriers between the shallow and deep aquifer-groundwater and distributes arsenic in the topsoil by flushing. Significant disparities have been observed among the Bengal basinal groundwater arsenic concentrations. However, abrupt spatial variation in groundwater arsenic concentrations has been a key feature of the basin.
Collapse
Affiliation(s)
- Arpan Sarkar
- Department of Environmental Science & Engineering, Indian Institute of Technology (ISM) Dhanbad, Dhanbad, Jharkhand, 826004, India.
| | - Biswajit Paul
- Department of Environmental Science & Engineering, Indian Institute of Technology (ISM) Dhanbad, Dhanbad, Jharkhand, 826004, India.
| | - Gopala Krishna Darbha
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India; Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India.
| |
Collapse
|
21
|
Aljubran MA, Ali Z, Wang Y, Alonso E, Puspasari T, Cherviakouski K, Pinnau I. Highly efficient size-sieving-based removal of arsenic(III) via defect-free interfacially-polymerized polyamide thin-film composite membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Abstract
Arsenic is a naturally occurring metalloid and one of the few metals that can be metabolized inside the human body. The pervasive presence of arsenic in nature and anthropogenic sources from agricultural and medical use have perpetuated human exposure to this toxic and carcinogenic element. Highly exposed individuals are susceptible to various illnesses, including skin disorders; cognitive impairment; and cancers of the lung, liver, and kidneys. In fact, across the globe, approximately 200 million people are exposed to potentially toxic levels of arsenic, which has prompted substantial research and mitigation efforts to combat this extensive public health issue. This review provides an up-to-date look at arsenic-related challenges facing the global community, including current sources of arsenic, global disease burden, arsenic resistance, and shortcomings of ongoing mitigation measures, and discusses potential next steps.
Collapse
Affiliation(s)
- Qiao Yi Chen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Max Costa
- Department of Environmental Medicine, New York University School of Medicine, New York, New York 10010, USA;
| |
Collapse
|
23
|
Joardar M, Das A, Chowdhury NR, Mridha D, De A, Majumdar KK, Roychowdhury T. Health effect and risk assessment of the populations exposed to different arsenic levels in drinking water and foodstuffs from four villages in arsenic endemic Gaighata block, West Bengal, India. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:3027-3053. [PMID: 33492569 DOI: 10.1007/s10653-021-00823-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Health exposure and perception of risk assessment have been evaluated on the populations exposed to different arsenic levels in drinking water (615, 301, 48, 20 µg/l), rice grain (792, 487, 588, 569 µg/kg) and vegetables (283, 187, 238, 300 µg/kg) from four villages in arsenic endemic Gaighata block, West Bengal. Dietary arsenic intake rates for the studied populations from extremely highly, highly, moderately, and mild arsenic-exposed areas were 56.03, 28.73, 11.30, and 9.13 μg/kg bw/day, respectively. Acute and chronic effects of arsenic toxicity were observed in ascending order from mild to extremely highly exposed populations. Statistical interpretation using 'ANOVA' proves a significant relationship between drinking water and biomarkers, whereas "two-tailed paired t test" justifies that the consumption of arsenic-contaminated dietary intakes is the considerable pathway of health risk exposure. According to the risk thermometer (SAMOE), drinking water belongs to risk class 5 (extremely highly and highly exposed area) and 4 (moderately and mild exposed area) category, whereas rice grain and vegetables belong to risk class 5 and 4, respectively, for all the differently exposed populations. The carcinogenic (ILCR) and non-carcinogenic risks (HQ) through dietary intakes for adults were much higher than the recommended threshold level, compared to the children. Supplementation of arsenic-safe drinking water and nutritional food is strictly recommended to overcome the severe arsenic crisis.
Collapse
Affiliation(s)
- Madhurima Joardar
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Antara Das
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | | | - Deepanjan Mridha
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Ayan De
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Kunal Kanti Majumdar
- Department of Community Medicine, KPC Medical College & Hospital, Jadavpur, Kolkata, 700032, India
| | - Tarit Roychowdhury
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
24
|
Mishra D, Das BS, Sinha T, Hoque JM, Reynolds C, Rafiqul Islam M, Hossain M, Sar P, Menon M. Living with arsenic in the environment: An examination of current awareness of farmers in the Bengal basin using hybrid feature selection and machine learning. ENVIRONMENT INTERNATIONAL 2021; 153:106529. [PMID: 33784587 DOI: 10.1016/j.envint.2021.106529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
High levels of arsenic in drinking water and food materials continue to pose a global health challenge. Over 127 million people alone in Bangladesh (BD) and West Bengal (WB) state of India are exposed to elevated levels of arsenic in drinking water. Despite decades of research and outreach, arsenic awareness in communities continue to be low. Specifically, very few studies reported arsenic awareness among low-income farming communities. A comprehensive approach to assess arsenic awareness is a key step in identifying research and development priorities so that appropriate stakeholder engagement may be designed to tackle arsenic menace. In this study, we developed a comprehensive arsenic awareness index (CAAI) and identified key awareness drivers (KADs) of arsenic to help evaluate farmers' preferences in dealing with arsenic in the environment. The CAAI and KADs were developed using a questionnaire survey in conjunction with ten machine learning (ML) models coupled with a hybrid feature selection approach. Two questionnaire surveys comprising of 73 questions covering health, water and community, and food were conducted in arsenic-affected areas of WB and BD. Comparison of CAAIs showed that the BD farmers were generally more arsenic-aware (CAAI = 7.7) than WB farmers (CAAI = 6.8). Interestingly, the reverse was true for the awareness linked to arsenic in the food chain. Application of hybrid feature selection identified 15 KADs, which included factors related to stakeholder interventions and cropping practices instead of commonly perceived factors such as age, gender and income. Among ML algorithms, classification and regression trees and single C5.0 tree could estimate CAAIs with an average accuracy of 84%. Both communities agreed on policy changes on water testing and clean water supply. The CAAI and KADs combination revealed a contrasting arsenic awareness between the two farming communities, albeit their cultural similarities. Specifically, our study shows the need for increasing awareness of risks through the food chain in BD, whereas awareness campaigns should be strengthened to raise overall awareness in WB possibly through media channels as deemed effective in BD.
Collapse
Affiliation(s)
| | - Bhabani S Das
- Indian Institute of Technology Kharagpur, WB 721302, India
| | | | - Jiaul M Hoque
- Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Christian Reynolds
- Department of Geography, University of Sheffield, S102TN, United Kingdom; Centre for Food Policy, City, University of London, Myddelton Street Building, Myddelton Street, EC1R 1UW London, United Kingdom; Barbara Hardy Institute, UniSA STEM, Mawson Lakes Blvd, Mawson Lakes, SA 5095, Australia
| | - M Rafiqul Islam
- Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mahmud Hossain
- Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Pinaki Sar
- Indian Institute of Technology Kharagpur, WB 721302, India
| | - Manoj Menon
- Department of Geography, University of Sheffield, S102TN, United Kingdom.
| |
Collapse
|
25
|
Das A, Joardar M, Chowdhury NR, De A, Mridha D, Roychowdhury T. Arsenic toxicity in livestock growing in arsenic endemic and control sites of West Bengal: risk for human and environment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:3005-3025. [PMID: 33492570 DOI: 10.1007/s10653-021-00808-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
The present study aims to estimate geochemical arsenic toxicity in the domestic livestock and possible risk for human and environment caused by them. Daily dietary arsenic intake of an exposed adult cow or bull is nearly 4.56 times higher than control populace and about 3.65 times higher than exposed goats. Arsenic toxicity is well exhibited in all the biomarkers through different statistical interpretations. Arsenic bioconcentration is faster through water compared to paddy straw and mostly manifested in faeces and tail hair in cattle. Cow dung and tail hair are the most pronounced pathways of arsenic biotransformation into environment. A considerable amount of arsenic has been observed in animal proteins such as cow milk, boiled egg yolk, albumen, liver and meat from the exposed livestock. Cow milk arsenic is mostly accumulated in casein (83%) due to the presence of phosphoserine units. SAMOE-risk thermometer, calculated for the most regularly consumed foodstuffs in the area, shows the human health risk in a distinct order: drinking water > rice grain > cow milk > chicken > egg > mutton ranging from class 5 to 1. USEPA health risk assessment model reveals more risk in adults than in children, subsisting severe cancer risk from the foodstuffs where the edible animal proteins cannot be ignored. Therefore, the domestic livestock should be urgently treated with surface water, while provision of both arsenic-free drinking water and nutritional supplements is mandatory for the affected human population to overcome the severe arsenic crisis situation.
Collapse
Affiliation(s)
- Antara Das
- School of Environmental Studies, Jadavpur University, Kolkata, 700070, India
| | - Madhurima Joardar
- School of Environmental Studies, Jadavpur University, Kolkata, 700070, India
| | | | - Ayan De
- School of Environmental Studies, Jadavpur University, Kolkata, 700070, India
| | - Deepanjan Mridha
- School of Environmental Studies, Jadavpur University, Kolkata, 700070, India
| | - Tarit Roychowdhury
- School of Environmental Studies, Jadavpur University, Kolkata, 700070, India.
| |
Collapse
|
26
|
Mukherjee A, Sarkar S, Chakraborty M, Duttagupta S, Bhattacharya A, Saha D, Bhattacharya P, Mitra A, Gupta S. Occurrence, predictors and hazards of elevated groundwater arsenic across India through field observations and regional-scale AI-based modeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143511. [PMID: 33250253 DOI: 10.1016/j.scitotenv.2020.143511] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 06/12/2023]
Abstract
Existence of wide spread elevated concentrations of groundwater arsenic (As) across South Asia, including India, has endangered a huge groundwater-based drinking water dependent population. Here, using high-spatial resolution As field-observations (~3 million groundwater sources) across India, we have delineated the regional-scale occurrence of elevated groundwater As (≥10 μg/L), along with the possible geologic-geomorphologic-hydrologic and human-sourced predictors that influence the spatial distribution of the contaminant. Using statistical and machine learning method, we also modeled the groundwater As concentrations probability at 1 Km resolution, along with probabilistic delineation of high As-hazard zones across India. The observed occurrence of groundwater As was found to be most strongly influenced by geology-tectonics, groundwater-fed irrigated area (%) and elevation. Pervasive As contamination is observed in major parts of the Himalayan mega-river Indus-Ganges-Brahmaputra basins, however it also occurs in several more-localized pockets, mostly related to ancient tectonic zones, igneous provinces, aquifers in modern delta and chalcophile mineralized regions. The model results suggest As-hazard potential in yet-undetected areas. Our model performed well in predicting groundwater arsenic, with accuracy: 82% and 84%; area under the curve (AUC): 0.89 and 0.88 for test data and validation datasets. An estimated ~90 million people across India are found to be exposed to high groundwater As from field-observed data, with the five states with highest hazard are West Bengal (28 million), Bihar (21 million), Uttar Pradesh (15 million), Assam (8.6 million) and Punjab (6 million). However it can be much more if the modeled hazard is considered (>250 million). Thus, our study provides a detailed, quantitative assessment of high groundwater As across India, with delineation of possible intrinsic influences and exogenous forcings. The predictive model is helpful in predicting As-hazard zones in the areas with limited measurements.
Collapse
Affiliation(s)
- Abhijit Mukherjee
- Department of Geology and Geophysics, Indian Institute of Technology Kharagpur, Kharagpur, India; School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India.
| | - Soumyajit Sarkar
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Madhumita Chakraborty
- Department of Geology and Geophysics, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Srimanti Duttagupta
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Animesh Bhattacharya
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Dipankar Saha
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Prosun Bhattacharya
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Adway Mitra
- Centre of Excellence in Artificial Intelligence (AI), Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Saibal Gupta
- Department of Geology and Geophysics, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
27
|
Ghosh S, Basu M, Banerjee K, Chaudhury SP, Paul T, Bera DK, Pal DK, Sk UH, Panda CK, Ghosh A. Arsenic level in bladder tumor of patients from an exposed population: association with progression and prognosis. Future Oncol 2021; 17:1311-1323. [PMID: 33648348 DOI: 10.2217/fon-2020-0154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Aims: To elucidate the impact of arsenic on progression and prognosis of bladder cancer. Patients & methods: Total arsenic in 145 tumors (80 non-muscle-invasive [NMIBC] and 65 muscle-invasive bladder cancer [MIBC]) was measured and associated with Ki67 expression, tumor-clinicopathological parameters and patient outcome. Results: Tumor arsenic concentration was higher in exposed than unexposed patients (256 μg/kg vs 77 μg/kg; p < 0.0001) and positively correlated (r = 0.65; p < 0.0001) with arsenic content of patient's drinking water. Arsenic concentration showed significant association with Ki67-overexpression (p = 0.001) and advanced tumor stages (NMIBC vs MIBC; p = 0.0009). In NMIBC, high tumor arsenic (>100 μg/kg) and Ki67 overexpression was established as predictors for recurrence (hazard ratio [HR]: 4.68; p = 0.005 and HR: 3.91; p = 0.018) and progression (HR: 6.04; p = 0.023 and HR: 6.87; p = 0.013). In MIBC, association of high arsenic remained significant with increased risk of recurrence (HR: 4.58; p = 0.04). Conclusion: In NMIBC, high arsenic and Ki67 overexpression and in MIBC, only high arsenic showed prognostic importance in predicting poor patient outcome.
Collapse
Affiliation(s)
- Sabnam Ghosh
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, 700073, India
| | - Mukta Basu
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, West Bengal, 700026, India
| | - Kalyan Banerjee
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, 700073, India
| | | | - Tanmoy Paul
- Department of Microbiology, University of Kalyani, West Bengal, 741235, India
| | - Dipak Kumar Bera
- Department of Urology, IPGME&R, Kolkata, West Bengal, 700020, India
| | - Dilip Kumar Pal
- Department of Urology, IPGME&R, Kolkata, West Bengal, 700020, India
| | - Ugir Hossain Sk
- Department of Clinical & Translational Research, Chittaranjan National Cancer Institute, Kolkata, West Bengal, 700026, India
| | - Chinmay Kumar Panda
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, West Bengal, 700026, India
| | - Amlan Ghosh
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, 700073, India
| |
Collapse
|
28
|
De A, Mridha D, Bandopadhyay B, Roychowdhury T, Panja AS. Arsenic and Its Effect on Nutritional Properties of Oyster Mushrooms with Reference to Health Risk Assessment. Biol Trace Elem Res 2021; 199:1170-1178. [PMID: 32557102 DOI: 10.1007/s12011-020-02224-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/27/2020] [Indexed: 10/24/2022]
Abstract
Arsenic (As) contamination is endemic in West Bengal, India. Arsenic exposure through mushroom is lethal to health. Pleurotus sp. is globally consumed as food for its medicinal and nutritional values. This study was performed to evaluate the arsenic accumulation in mushroom through arsenic biomagnified rice straw substrate in relation to health risk assessment. Arsenic concentrations were higher in P. ostreatus (12.577 mg/kg DW) and Pleurotus sp. (12.446 mg/kg DW) cultivated in arsenic biomagnified rice straw as compared with P. ostreatus (0.472 mg/kg DW) and Pleurotus sp. (0.434 mg/kg DW) cultivated in non-contaminant rice straw; respectively. The bio-concentration factor (BCF) value of arsenic was highest in stem at 3rd flush for both P. ostreatus and Pleurotus sp. The health risk index (HRI) based on dietary intake of these arsenic biomagnified mushrooms was found moderately higher in both the species, so higher intake of these mushrooms will put people at health risk.
Collapse
Affiliation(s)
- Ayan De
- School of Environmental Studies, Jadavpur University, Kolkata, West Bengal, India
| | - Deepanjan Mridha
- School of Environmental Studies, Jadavpur University, Kolkata, West Bengal, India
| | - Bidyut Bandopadhyay
- Department of Biotechnology, Molecular Informatics Laboratory, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Tarit Roychowdhury
- School of Environmental Studies, Jadavpur University, Kolkata, West Bengal, India
| | - Anindya Sundar Panja
- Department of Biotechnology, Molecular Informatics Laboratory, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore, West Bengal, 721102, India.
| |
Collapse
|
29
|
Uddin MJ, Jeong YK. Urban river pollution in Bangladesh during last 40 years: potential public health and ecological risk, present policy, and future prospects toward smart water management. Heliyon 2021; 7:e06107. [PMID: 33659727 PMCID: PMC7892934 DOI: 10.1016/j.heliyon.2021.e06107] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/14/2020] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
River water is very much important for domestic, agriculture and industrial use in Bangladesh which is in critical condition from long time based on research data. During last 40 years, extreme pollution events occurred in peripheral rivers surrounding Dhaka city and Karnaphuli River in Chittagong city. Present data showed that other urban rivers are also in critical condition especially Korotoa, Teesta, Rupsha, Pashur and Padma. The pollutants flowing with water made a severe pollution in downstream areas of rivers. Metals concentrations in river water was found to be higher in dry season. Dissolve oxygen (DO) was nearly zero in Buriganga River and several points in Turag, Balu, Sitalakhya and Karnaphuli River. NO3-, NO2- and PO43- pollution occurred in different rivers. Zn, Cu, Fe, Pb, Cd, Ni, Mn, As and Cr concentration was above drinking water standard in most of the river and some metals was even above irrigation standard in water from several rivers. Sediment data showed very much higher metal concentrations in most of the rivers especially peripheral rivers in Dhaka and Karnaphuli, Korotoa, Teesta, Rupsha and Meghna River. Metal concentrations in sediment was above US EPA threshold value in most of the rivers. Metal concentrations in fish and agricultural crops showed that bioaccumulations of metals had occurred. The concentration of metals showed the trend like: water<fish<sediment. Agricultural crops were found to contain toxic metals through polluted water irrigation. The calculated data of daily intake for the non-carcinogenic and carcinogenic showed that consumption of the contaminated foodstuff can cause serious health injuries.
Collapse
Affiliation(s)
- Md. Jamal Uddin
- Department of Soil and Environmental Sciences, University of Barisal, Bangladesh
- Corresponding author.
| | - Yeon-Koo Jeong
- Solid and Hazardous Waste Management Laboratory, Department of Environmental Engineering, Kumoh National Institute of Technology, South Korea
| |
Collapse
|
30
|
Chakraborty M, Sarkar S, Mukherjee A, Shamsudduha M, Ahmed KM, Bhattacharya A, Mitra A. Modeling regional-scale groundwater arsenic hazard in the transboundary Ganges River Delta, India and Bangladesh: Infusing physically-based model with machine learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141107. [PMID: 33113690 DOI: 10.1016/j.scitotenv.2020.141107] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023]
Abstract
For the last few decades, toxic levels of arsenic (As) in groundwater from the aquifers of the Ganges River delta, India and Bangladesh, have been known to cause serious public health concerns. Innumerable studies have advocated the control of geomorphologic, geologic, hydrogeologic, biogeochemical, and anthropogenic factors on arsenic mobilization, flow, and distribution patterns within the Ganges River delta. We have developed transboundary regional-scale models for computing the probability of groundwater As concentrations to exceed the WHO permissible thresholds for drinking water of 10 μg/L within the Ganges River delta as a function of the various geomorphologic-(hydro)geologic-hydrostratigraphic-anthropogenic controlling factors, using statistical methods and artificial intelligence (AI) [i.e., machine learning] techniques namely, Random Forest (RF), Boosted Regression Trees (BRT) and Logistic Regression (LR) algorithms, followed by probabilistic delineation the high As-hazard zones within the delta. A "hybrid multi-modeling approach" was adapted for this study, which involved the introduction of hydrostratigraphic parameters (aquifer connectivity and surficial aquitard thickness) derived from a high-resolution transboundary hydrostratigraphic model developed for the Ganges River delta aquifer system, as predictors for modeling groundwater As probabilities within the delta. The RF model outperforms the BRT and LR model in terms of model performance. Model outputs suggest the dominant influence of surficial aquitard thickness and groundwater-fed irrigated area (%) on groundwater As. While, the north-central and southern regions of the Ganges River delta show low As-hazard (<10 μg/L), the western and north-eastern regions demonstrate elevated hazard level (>10 μg/L). An estimated 30.3 million people are found to be exposed to elevated groundwater As within the study area. Thus, our study demonstrates that such hybrid, predictive models are not only helpful in delineating the regional-scale distribution of groundwater As-hazard zones in the areas with limited As data but is also useful in identifying the possible exogenous forcing that may have led to the worst, natural pollution in human history.
Collapse
Affiliation(s)
- Madhumita Chakraborty
- Department of Geology and Geophysics, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Soumyajit Sarkar
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Abhijit Mukherjee
- Department of Geology and Geophysics, Indian Institute of Technology Kharagpur, Kharagpur, India; School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India; Applied Policy Advisory in Hydrogeosciencs (APAH) Group, School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India.
| | - Mohammad Shamsudduha
- Department of Geography, University of Sussex, Falmer, Brighton, UK; Institute for Risk and Disaster Reduction, University College London, London WC1E 6BT, UK
| | | | - Animesh Bhattacharya
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India; Applied Policy Advisory in Hydrogeosciencs (APAH) Group, School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Adway Mitra
- Centre of Excellence in Artificial Intelligence (AI), Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
31
|
Chowdhury NR, Das A, Mukherjee M, Swain S, Joardar M, De A, Mridha D, Roychowdhury T. Monsoonal paddy cultivation with phase-wise arsenic distribution in exposed and control sites of West Bengal, alongside its assimilation in rice grain. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123206. [PMID: 32593938 DOI: 10.1016/j.jhazmat.2020.123206] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 05/29/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
The present study mainly deals with monsoonal paddy farming with respect to its phase-wise arsenic (As) accumulation and distribution throughout cultivation in As exposed sites and control areas of West Bengal for two consecutive years, 2017 and 2018. Arsenic uptake in paddy depends on the watering pattern with the help of groundwater (Madhusudhankati: 171 μg/l, Teghoria: 493 μg/l in Gaighata and Pingla: 10 μg/l in Medinipur), soil As phase-wise movement with its enrichment pattern and the variation of rainfall. Arsenic mobility is the highest in root and decreases with height of a plant. However, the synergistic effect of groundwater and rainwater makes a diffused approach to the nature of As flow in plants, because rainwater has a pivotal role in diluting the As content available for translocation. Reproductive phase accumulates maximum As compared to vegetative and ripening phases. Sequential extraction and SEM studies re-confirm no possibility of iron (Fe) plaque formation in root soils which sequestered As. Finally, we conclude that monsoonal cultivation provides least As enriched grain (exposed area: 350 μg/kg, control area: 224 μg/kg) irrespective of the variety of cultivar and area of cultivation, which amounts to one-third of pre-monsoonal grain (1120 μg/kg) and so, it is much safer for consumption with respect to As and micro-nutrient status.
Collapse
Affiliation(s)
| | - Antara Das
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Meenakshi Mukherjee
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Shresthashree Swain
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Madhurima Joardar
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Ayan De
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Deepanjan Mridha
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Tarit Roychowdhury
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
32
|
Integrative genomics and pathway analysis identified prevalent FA-BRCA pathway alterations in arsenic-associated urinary bladder carcinoma: Chronic arsenic accumulation in cancer tissues hampers the FA-BRCA pathway. Genomics 2020; 112:5055-5065. [DOI: 10.1016/j.ygeno.2020.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 07/09/2020] [Accepted: 09/03/2020] [Indexed: 01/18/2023]
|
33
|
Shi K, Wang Q, Wang G. Microbial Oxidation of Arsenite: Regulation, Chemotaxis, Phosphate Metabolism and Energy Generation. Front Microbiol 2020; 11:569282. [PMID: 33072028 PMCID: PMC7533571 DOI: 10.3389/fmicb.2020.569282] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022] Open
Abstract
Arsenic (As) is a metalloid that occurs widely in the environment. The biological oxidation of arsenite [As(III)] to arsenate [As(V)] is considered a strategy to reduce arsenic toxicity and provide energy. In recent years, research interests in microbial As(III) oxidation have been growing, and related new achievements have been revealed. This review focuses on the highlighting of the novel regulatory mechanisms of bacterial As(III) oxidation, the physiological relevance of different arsenic sensing systems and functional relationship between microbial As(III) oxidation and those of chemotaxis, phosphate uptake, carbon metabolism and energy generation. The implication to environmental bioremediation applications of As(III)-oxidizing strains, the knowledge gaps and perspectives are also discussed.
Collapse
Affiliation(s)
- Kaixiang Shi
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qian Wang
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
34
|
Chowdhury NR, Das A, Joardar M, De A, Mridha D, Das R, Rahman MM, Roychowdhury T. Flow of arsenic between rice grain and water: Its interaction, accumulation and distribution in different fractions of cooked rice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:138937. [PMID: 32402904 DOI: 10.1016/j.scitotenv.2020.138937] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 05/19/2023]
Abstract
Arsenic (As) contaminated water is a major threat to human health when used for drinking, cooking and irrigational purposes. Rice being consumed by 50% of the world's population, supplies considerable amount of As to the human body. Our study provides a detailed understanding of As distribution in each fraction of rice while cooking (viz. uncooked rice, cooking water, cooked rice and gruel/total discarded water), ultimately leading to a better explanation of As movement between rice grain and water. A significant decrease of As was observed in cooked rice (34-89% and 23-84% for sunned and parboiled rice respectively) when cooked with low-As containing water, <3 μg/l and moderate As-contaminated water, 36-58 μg/l (3-50% and 12-61% for sunned and parboiled rice respectively) with increasing selenium (Se) concentration. Movement of As from water to rice grain has been inferred with increasing water As (84-105 μg/l), which results in a significant increase of As in cooked rice (24-337% and 114% for sunned and parboiled rice, respectively) with decreasing Se concentration. Arsenic speciation study emphasizes the fact of similar reduction percentage of As (III), As (V) and total As in wet cooked rice when cooked with low-As containing water. The SAMOE value in 'risk thermometer' supports the higher risk of suffering from wet cooked rice (class 4) with increasing cooking water As concentration (class 3 to class 5).
Collapse
Affiliation(s)
| | - Antara Das
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India
| | - Madhurima Joardar
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India
| | - Ayan De
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India
| | - Deepanjan Mridha
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India
| | - Reshmi Das
- Earth Observatory of Singapore, Nanyang Technological University, Singapore 639798, Singapore
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Australia
| | - Tarit Roychowdhury
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
35
|
Zhang X, Zhong HQ, Chu ZW, Zuo X, Wang L, Ren XL, Ma H, Du RY, Ju JJ, Ye XL, Huang CP, Zhu JH, Wu HM. Arsenic induces transgenerational behavior disorders in Caenorhabditis elegans and its underlying mechanisms. CHEMOSPHERE 2020; 252:126510. [PMID: 32203783 DOI: 10.1016/j.chemosphere.2020.126510] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 05/19/2023]
Abstract
The present study aimed to identify the effects of arsenic on behaviors in Caenorhabditis elegans (C. elegans) and the transgenerational effects. The synchronized C. elegans (P generation) were exposed to 0, 0.2, 1.0, and 5.0 mM NaAsO2 and the subsequent generations (F1 and F2) were maintained on fresh nematode growth medium (NGM). The behaviors and growth were recorded at 0, 12, 24, 36, 48, 60, and 72 h post synchronization. The results demonstrated that arsenic affected various indicators regarding the behavior (head thrash, body bend, movement speed, wavelength, amplitude and so on) and in general the effects started to accumulate from 24 h and lasted throughout the exposure. The behavior impairments were transgenerational with varying patterns, amongst the head thrash and body bend responded most sensitively though the responses gradually declined across generations. Arsenic exposure inhibited the growth (body length, body width, and body area) in P C. elegans from 24 h to 60 h, however there was no difference between treatments groups and the control at 72 h. Arsenic led to a dose-dependent degeneration of dopaminergic neurons in C. elegans, and inhibition of BAS-1 and CAT-2 expressions. The expressions of GCS-1, GSS-1, and SKN-1 were induced by arsenic exposure. Overall, chronic arsenic exposure impaired the behaviors and there were transgenerational effects. The head thrash and body bend responded most sensitively. Arsenic induced behavioral disorders might be attributed to degeneration of dopaminergic neurons which was associated with oxidative stress.
Collapse
Affiliation(s)
- Xiong Zhang
- Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Hai-Qing Zhong
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhong-Wei Chu
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiang Zuo
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Li Wang
- Department of Occupational and Environmental Health Science, Baotou Medical College, Baotou, Inner Mongolia, 014030, China
| | - Xiao-Li Ren
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Hao Ma
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ruo-Yi Du
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jing-Juan Ju
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiao-Lei Ye
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Chen-Ping Huang
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jian-Hong Zhu
- Department of Geriatrics and Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Hong-Mei Wu
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
36
|
Samantaray PK, Indrakumar S, Chatterjee K, Agarwal V, Bose S. 'Template-free' hierarchical MoS 2 foam as a sustainable 'green' scavenger of heavy metals and bacteria in point of use water purification. NANOSCALE ADVANCES 2020; 2:2824-2834. [PMID: 36132388 PMCID: PMC9419618 DOI: 10.1039/c9na00747d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 05/05/2020] [Indexed: 05/13/2023]
Abstract
Molybdenum disulfide (MoS2), with its unique optical and electrical properties, has been explored for a variety of applications in the recent past. Still, its capabilities in point-of-use heavy metal ion removal remain to be explored. Herein, for the first time using a facile approach, we fabricated three-dimensional (3D) MoS2 foam from exfoliated single to few-layered MoS2 sheets for the selective exclusion of heavy metals and stringent bactericidal response. This foam was able to exclude 99.9% of Pb(ii) and 98.7% of As(iii) instantaneously and reduced more than 98% of bacteria E. coli. Moreover, the foam exhibits selective toxicity towards bacterial cells while showing no observable toxicity towards mammalian cells. The foam can be recycled and reused for at least five cycles under accelerated conditions and thus can be used for a promising non-cytotoxic, facile, and environmentally benign process for inline water remediation to remove heavy metal ions from the feed and as a potential antibacterial agent.
Collapse
Affiliation(s)
- Paresh Kumar Samantaray
- Centre for BioSystems Science and Engineering, Indian Institute of Science Bangalore India
- Department of Materials Engineering, Indian Institute of Science Bangalore India
| | - Sushma Indrakumar
- Department of Materials Engineering, Indian Institute of Science Bangalore India
| | - Kaushik Chatterjee
- Centre for BioSystems Science and Engineering, Indian Institute of Science Bangalore India
- Department of Materials Engineering, Indian Institute of Science Bangalore India
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education Bangalore India
| | - Vipul Agarwal
- Department of Materials Engineering, Indian Institute of Science Bangalore India
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales Sydney NSW 2052 Australia
| | - Suryasarathi Bose
- Department of Materials Engineering, Indian Institute of Science Bangalore India
| |
Collapse
|
37
|
Pal DK, Agrawal A, Ghosh S, Ghosh A. Association of arsenic with recurrence of urinary bladder cancer. Trop Doct 2020; 50:325-330. [PMID: 32515648 DOI: 10.1177/0049475520930155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Arsenic is known to be an important aetiological factor for the development of urinary bladder cancer. It is known to be found excessively in ground water in certain geographical areas, including West Bengal. We have studied patients with recurrent bladder cancer from different areas of this Indian state and correlated arsenic as a causative aetiological factor for development and aggressiveness of the biological behaviour of urinary cancer. We included 31 patients from various parts of West Bengal state with recurrent bladder cancer who were operated in our institute. Their clinical and residential data and their arsenic content of tumour tissue were measured. Statistical analysis was performed to test the association of tissue arsenic with clinicopathological features of recurrent disease. We found very high levels of arsenic in tumour tissue in all residents of the districts with high prevalence of arsenic in the drinking water. We also observed more aggressive clinicopathological progression and early recurrence in patients with high arsenic content. We conclude that arsenic is a causal factor in the clinicopathological progression of recurrent urinary bladder cancer. Measures to decrease the level of arsenic in drinking water should be taken as this may both improve clinicopathological outcomes in the recurrence of urinary bladder carcinoma, as well as reducing its overall incidence.
Collapse
Affiliation(s)
- Dilip K Pal
- Professor and Head, Department of Urology, Institute of Post Graduate Medical Education & Research, Kolkata, India
| | - Akash Agrawal
- Postdoctorate Trainee, Department of Urology, Institute of Post Graduate Medical Education & Research, Kolkata, India
| | - Sabnam Ghosh
- PhD Scholar, Department of Life Sciences, Kolkata, India
| | - Amlan Ghosh
- Assistant Professor, Department of Life Sciences, Presidency University, Kolkata, India
| |
Collapse
|
38
|
Naskar N, Lahiri S, Mitra S, Chaudhuri P. Radiogenic quality assessment of ground and riverine water samples collected from Indian Sundarbans. ENVIRONMENTAL RESEARCH 2020; 185:109407. [PMID: 32208205 DOI: 10.1016/j.envres.2020.109407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 03/05/2020] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
The present study attempts to generate the first baseline data on gross α and β activities in groundwater and riverine water samples collected from different regions of Indian Sundarbans, a part of the world's largest mangrove ecosystem. Until the present, no information is available related to radioactivity measurement in water samples from this vast area. Gross alpha-beta activities were measured by liquid scintillation counting-triple to double coincidence ratio (LSC-TDCR) technique. The minimum detectable activities in present experimental condition were found to be 21 mBq L-1 and 55 mBq L-1 for gross α and β respectively. Gross alpha activities in all groundwater and riverine samples were found to be below the detection limit (BDL), whereas gross beta activities in groundwater and riverine samples varied from BDL to 0.46 ± 0.24 Bq L-1 and BDL to 0.90 ± 0.26 Bq L-1 respectively, which are below WHO recommended value 1 Bq L-1. Annual effective doses were below 0.1 mSv. U and Th concentrations in the water samples were determined by ultrasonic-nebulizer assisted Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) and found to be BDL. For assessing 3H activity, double-distilled water samples were measured by LSC-TDCR technique, which provided BDL result.
Collapse
Affiliation(s)
- Nabanita Naskar
- Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata, 700064, India; Department of Environmental Science, University of Calcutta, Kolkata, 700019, India
| | - Susanta Lahiri
- Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata, 700064, India; Homi Bhabha National Institute, India.
| | - Sayantani Mitra
- Department of Environmental Science, University of Calcutta, Kolkata, 700019, India
| | - Punarbasu Chaudhuri
- Department of Environmental Science, University of Calcutta, Kolkata, 700019, India
| |
Collapse
|
39
|
Prasad P, Sarkar N, Sinha D. Effect of low- and high-level groundwater arsenic on peripheral blood and lung function of exposed rural women. Regul Toxicol Pharmacol 2020; 115:104684. [PMID: 32454235 DOI: 10.1016/j.yrtph.2020.104684] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 11/16/2022]
Abstract
The World Health Organization (WHO) recommended maximum contaminant level (MCL) of arsenic (As) in drinking water at 10 μg/L. Many Asian countries still have their MCL for As at 50 μg/L. The current cross sectional study was conducted on asymptomatic females (without As related skin lesions) selected from rural areas of West Bengal, Baruipur and Dhamakhali [low As 11-50 μg/L; N,93]; Kamardanga & Sibhati [high As>50 μg/L; N,70] and Boria [Control; As<10 μg/L N,118] of West Bengal, India. The study was designed to compare the status of peripheral blood and lung function due to prolonged As exposure. The lung function parameters were considered according to Miller's prediction quadrant - FVC less than 80% indicated restrictive lung, FEV1/FVC less than 70% showed obstructive lung and both FVC and FEV1/FVC less than predicted percentage exhibited combined lung function decrement. The study showed that groundwater As concentration [22.5 ± 19.2 (low), 67.8 ± 26.9 (high) and 1.02 ± 2.3 μg/L (control)] was correlated with nail As content of the enrolled women. Linear regression depicted that nail As content influenced reduction of haemoglobin (β: 0.43; 95%CI: 0.02 to -0.006; p = 0.0001) and CD56+ NK cells (β: 0.53; 95%CI: 0.07 to -0.03; p = 0.0001) per 1 μg/g increase in As in nails. Multivariate logistic regression exhibited that nail As content was associated with reduction of lung function parameters [FEV1 (Exp B:1.04; 95%CI: 1.022 to 1.055; p = 0.0001) and FVC (Exp B:1.05; 95%CI: 1.03 to 1.07; p = 0.0001) per 1 μg/g increase in As in nails. Hence the study may be indicative of the fact that even in asymptomatic women, increase in chronic As exposure may weaken immune surveillance and provoke respiratory ailments.
Collapse
Affiliation(s)
- Priyanka Prasad
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700026, India
| | - Nivedita Sarkar
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700026, India
| | - Dona Sinha
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700026, India.
| |
Collapse
|
40
|
Haldar S, Ghosh A. Microbial and plant-assisted heavy metal remediation in aquatic ecosystems: a comprehensive review. 3 Biotech 2020; 10:205. [PMID: 32328403 DOI: 10.1007/s13205-020-02195-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
Abstract
Heavy metal (HM) pollution in aquatic ecosystems has an adverse effect on both aquatic life forms as well as terrestrial living beings, including humans. Since HMs are recalcitrant, they accumulate in the environment and are subsequently biomagnified through the food chain. Conventional physical and chemical methods used to remove the HMs from aquatic habitats are usually expensive, slow, non-environment friendly, and mostly inefficient. On the contrary, phytoremediation and microbe-assisted remediation technologies have attracted immense attention in recent years and offer a better solution to the problem. These newly emerged remediation technologies are eco-friendly, efficient and cost-effective. Both phytoremediation and microbe-assisted remediation technologies adopt different mechanisms for HM bioremediation in aquatic ecosystems. Recent advancement of molecular tools has contributed significantly to better understand the mechanisms of metal adsorption, translocation, sequestration, and tolerance in plants and microbes. Albeit immense possibilities to use such bioremediation as a successful environmental clean-up technology, it is yet to be successfully implemented in the field conditions. This review article comprehensively discusses HM accumulation in Indian aquatic environments. Furthermore, it describes the effect of HMs accumulation in the aquatic environment and the role of phytoremediation as well as microbe-assisted remediation in mitigation of the HM toxicity. Finally, the review concludes with a note on the challenges, opportunities and future directions for bioremediation in the aquatic ecosystems.
Collapse
Affiliation(s)
- Shyamalina Haldar
- 1Department of Biochemistry, Asutosh College, University of Calcutta, Kolkata, 700026 India
| | - Abhrajyoti Ghosh
- 2Department of Biochemistry, Centenary Campus, Bose Institute, P-1/12 C.I.T. Scheme VII-M, Kolkata, 700054 India
| |
Collapse
|
41
|
Shah AH, Shahid M, Khalid S, Shabbir Z, Bakhat HF, Murtaza B, Farooq A, Akram M, Shah GM, Nasim W, Niazi NK. Assessment of arsenic exposure by drinking well water and associated carcinogenic risk in peri-urban areas of Vehari, Pakistan. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:121-133. [PMID: 31054072 DOI: 10.1007/s10653-019-00306-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 04/23/2019] [Indexed: 06/09/2023]
Abstract
Arsenic (As) is a highly toxic and carcinogenic element. It has received considerable consideration worldwide in recent years due to its highest toxicity to human, and currently, high concentrations observed in the groundwater. Some recent media and research reports also highlighted possible As contamination of groundwater systems in Pakistan. However, there is a scarcity of data about As contents in groundwater in different areas/regions of the country. Consequently, the current study estimated the As concentration in the groundwater used for drinking purpose in 15 peri-urban sites of district Vehari, Pakistan. In total, 127 groundwater samples were collected and examined for As contents in addition to physicochemical characteristics such as temperature, electrical conductivity, pH, total soluble salts, chloride, carbonates, bicarbonates, sodium, potassium, lithium, calcium and barium. Results indicated that the groundwater samples were not fully fit for drinking purposes with several parameters, especially the alarming levels of As (mean As: 46.9 µg/L). It was found that 83% groundwater samples of peri-urban sites in district Vehari have As concentration greater than WHO lower permissible limit (10 µg/L). The risk assessment parameters (mean hazard quotient: 3.9 and mean cancer risk: 0.0018) also showed possible carcinogenic and non-carcinogenic risks associated with ingestion of As-contaminated groundwater at peri-urban sites. Based on the findings, it is anticipated that special monitoring and management of groundwater is necessary in the studied area in order to curtail the health risks associated with the use of As-contaminated drinking water. Moreover, appropriate remediation and removal of As from groundwater is also imperative for the study area before being used for drinking purpose to avoid As exposure and related risks to the local community.
Collapse
Affiliation(s)
- Ali Haidar Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Islamabad, 61100, Pakistan
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Islamabad, 61100, Pakistan.
| | - Sana Khalid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Islamabad, 61100, Pakistan
| | - Zunaira Shabbir
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Islamabad, 61100, Pakistan
| | - Hafiz Faiq Bakhat
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Islamabad, 61100, Pakistan
| | - Behzad Murtaza
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Islamabad, 61100, Pakistan
| | - Amjad Farooq
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Islamabad, 61100, Pakistan
| | - Muhammad Akram
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Islamabad, 61100, Pakistan
| | - Ghulam Mustafa Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Islamabad, 61100, Pakistan
| | - Wajid Nasim
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Islamabad, 61100, Pakistan
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
- School of Civil Engineering and Surveying, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| |
Collapse
|
42
|
Souri Z, Karimi N, Farooq MA, Sandalio LM. Nitric oxide improves tolerance to arsenic stress in Isatis cappadocica desv. Shoots by enhancing antioxidant defenses. CHEMOSPHERE 2020; 239:124523. [PMID: 31499308 DOI: 10.1016/j.chemosphere.2019.124523] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/22/2019] [Accepted: 08/04/2019] [Indexed: 06/10/2023]
Abstract
Arsenic (As) is a toxic metalloid that severely hampers plant growth and also poses health risks for humans through the food chain. Although nitric oxide (NO) is known to improve plant resistance to multiple stresses including metal toxicity, little is known about its role in the As tolerance of hyperaccumulator plants. This study investigates the role of the exogenously applied NO donor, sodium nitroprusside (SNP), in improving the As tolerance of Isatis cappadocica, which has been reported to hyperaccumulate As. Exposure to toxic As concentrations significantly increases NO production and damages the cell membrane, as indicated by increased hydrogen peroxide (H2O2) and malondialdehyde (MDA) concentrations, thereby reducing plant growth. However, the addition of SNP improves growth and alleviates As-induced oxidative stress by enhancing the activity of superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), glutathione S-transferase (GST), glutathione (GSH), as well as proline and thiol concentrations, thereby confirming the beneficial role played by NO in increasing As stress tolerance. Furthermore, the As-induced decrease in growth and the increase in oxidative stress were more marked in the presence of bovine hemoglobin (Hb; a NO scavenger) and N(G)-nitro-l-arginine methyl ester (l-NAME; a NO synthase inhibitor), thus demonstrating the protective role of NO against As toxicity. The reduction in NO concentrations by l-NAME suggests that NOS-like activity is involved in the generation of NO in response to As in I. cappadocica.
Collapse
Affiliation(s)
- Zahra Souri
- Laboratory of Plant Physiology, Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran.
| | - Naser Karimi
- Laboratory of Plant Physiology, Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran.
| | - Muhammad Ansar Farooq
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan.
| | - Luisa M Sandalio
- Laboratory for Reactive Oxygen and Nitrogen Species Signaling Under Plant Stress Conditions, Department of Biochemistry and Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008, Granada, Spain.
| |
Collapse
|
43
|
Pathan S, Pandita N, Kishore N. Acid functionalized-nanoporous carbon/MnO2 composite for removal of arsenic from aqueous medium. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2016.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
44
|
Banerjee N, Das S, Tripathy S, Bandyopadhyay AK, Sarma N, Bandyopadhyay A, Giri AK. MicroRNAs play an important role in contributing to arsenic susceptibility in the chronically exposed individuals of West Bengal, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:28052-28061. [PMID: 31359311 DOI: 10.1007/s11356-019-05980-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
Arsenic exposure by groundwater contamination is a menace which threatens more than 26 million individuals of West Bengal. Interestingly, with similar levels of arsenic exposure, only 15-20% of the population show arsenic-induced skin lesions, the hallmarks of chronic arsenic toxicity, but the rest do not. In this study, our aim was to identify whether microRNAs (miRNA) have any role to play in causing such arsenic susceptibility. Global plasma miRNA profiling was done in 12 arsenic-exposed individuals with skin lesions and 12 exposed individuals without skin lesions. Two hundred two miRNAs were found to be differentially regulated between the two study groups. Results were validated by quantitative real-time PCR in 30 exposed subjects from each of the groups, which showed that among others miR-21, miR-23a, miR-27a, miR-122, miR-124, miR-126, miR-619, and miR-3613 were significantly upregulated and miR-1282 and miR-4530 were downregulated in the skin lesion group compared with the no skin lesion group. Bioinformatic analyses predicted that these altered miRNAs have targets in 7 different biochemical pathways, including glycerophospholipid metabolism, colorectal cancer, glycosphingolipid biosynthesis, T cell receptor signaling, and neurotrophin signaling pathways; glycerophospholipid metabolism pathway being the most enriched pathway. Association study show that these microRNAs contribute significantly to the increased prevalence of other non-dermatological health effects like conjunctival irritations of the eyes and respiratory distress in the study subjects. To our knowledge, this is the first study of its kind involving miRNA expressions contributing to arsenic susceptibility in the exposed population of West Bengal.
Collapse
Affiliation(s)
- Nilanjana Banerjee
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India.
| | - Subhadeep Das
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India
| | - Sucheta Tripathy
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India
| | | | - Nilendu Sarma
- Dr B. C. Roy Memorial Hospital for Children, Kolkata, 700054, India
| | - Arun Bandyopadhyay
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India
| | - Ashok K Giri
- Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India.
| |
Collapse
|
45
|
Biswas A, Swain S, Chowdhury NR, Joardar M, Das A, Mukherjee M, Roychowdhury T. Arsenic contamination in Kolkata metropolitan city: perspective of transportation of agricultural products from arsenic-endemic areas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:22929-22944. [PMID: 31177413 DOI: 10.1007/s11356-019-05595-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 05/27/2019] [Indexed: 06/09/2023]
Abstract
Arsenic exposure route for humans is through the drinking of contaminated water and intake of arsenic-contaminated foods, particularly in arsenic-exposed areas of Bengal delta. Transport of the arsenic-contaminated crops and vegetables grown using arsenic-contaminated groundwater and soil in arsenic-exposed areas to the uncontaminated sites and consequent dietary intakes leads to great threats for the population residing in non-endemic areas with respect to consumption of arsenic through drinking water. We have studied the food materials collected from 30 families and their dietary habits, apparently who consume arsenic-free drinking water as well as 9 well-known markets of Kolkata city. The total and inorganic arsenic intake has been estimated from the collected foodstuffs from the market basket survey (n = 93) and household survey (n = 139), respectively for human risk analysis. About 100% of the collected samples contained detectable amount of arsenic (range 24-324 μg/kg), since the origin of the food materials was somewhere from arsenic-endemic areas. The daily consumption of inorganic arsenic (iAs) from rice grain and vegetables for adult and children is 76 μg and 41.4 μg, respectively. Inorganic arsenic (mainly arsenite and arsenate) contributes approximately 88% of the total content of arsenic in vegetable. In most of the cases, insufficient nutrient intake by the studied population may lead to arsenic toxicity in the long run. An independent cancer risk assessment study on the same population indicates that the main risk of cancer might appear through the intake of arsenic-contaminated rice grain and cereals.
Collapse
Affiliation(s)
- Anirban Biswas
- School of Environmental Studies, Jadavpur University, Kolkata, West Bengal, 700032, India
| | - Shresthashree Swain
- School of Environmental Studies, Jadavpur University, Kolkata, West Bengal, 700032, India
| | | | - Madhurima Joardar
- School of Environmental Studies, Jadavpur University, Kolkata, West Bengal, 700032, India
| | - Antara Das
- School of Environmental Studies, Jadavpur University, Kolkata, West Bengal, 700032, India
| | - Meenakshi Mukherjee
- School of Environmental Studies, Jadavpur University, Kolkata, West Bengal, 700032, India
| | - Tarit Roychowdhury
- School of Environmental Studies, Jadavpur University, Kolkata, West Bengal, 700032, India.
| |
Collapse
|
46
|
Sinha D, Prasad P. Health effects inflicted by chronic low-level arsenic contamination in groundwater: A global public health challenge. J Appl Toxicol 2019; 40:87-131. [PMID: 31273810 DOI: 10.1002/jat.3823] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 04/28/2019] [Indexed: 01/23/2023]
Abstract
Groundwater arsenic (As) contamination is a global public health concern. The high level of As exposure (100-1000 μg/L or even higher) through groundwater has been frequently associated with serious public health hazards, e.g., skin disorders, cardiovascular diseases, respiratory problems, complications of gastrointestinal tract, liver and splenic ailments, kidney and bladder disorders, reproductive failure, neurotoxicity and cancer. However, reviews on low-level As exposure and the imperative health effects are far less documented. The World Health Organization (WHO) and the United States Environmental Protection Agency (USEPA) has set the permissible standard of As in drinking water at 10 μg/L. Considering the WHO and USEPA guidelines, most of the developed countries have established standards at or below this guideline. Worldwide many countries including India have millions of aquifers with low-level As contamination (≤50 μg/L). The exposed population of these areas might not show any As-related skin lesions (hallmark of As toxicity particularly in a population consuming As contaminated groundwater >300 μg/L) but might be subclinically affected. This review has attempted to encompass the wide range of health effects associated with chronic low-level As exposure ≤50 μg/L and the probable mechanisms that might provide a better insight regarding the underlying cause of these clinical manifestations. Therefore, there is an urgent need to create mass awareness about the health effects of chronic low-level As exposure and planning of proper mitigation strategies.
Collapse
Affiliation(s)
- Dona Sinha
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India
| | - Priyanka Prasad
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
47
|
Tabassum RA, Shahid M, Dumat C, Niazi NK, Khalid S, Shah NS, Imran M, Khalid S. Health risk assessment of drinking arsenic-containing groundwater in Hasilpur, Pakistan: effect of sampling area, depth, and source. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:20018-20029. [PMID: 29429111 DOI: 10.1007/s11356-018-1276-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/11/2018] [Indexed: 06/08/2023]
Abstract
Currently, several news channels and research publications have highlighted the dilemma of arsenic (As)-contaminated groundwater in Pakistan. However, there is lack of data regarding groundwater As content of various areas in Pakistan. The present study evaluated As contamination and associated health risks in previously unexplored groundwater of Hasilpur-Pakistan. Total of 61 groundwater samples were collected from different areas (rural and urban), sources (electric pump, hand pump, and tubewell) and depths (35-430 ft or 11-131 m). The water samples were analyzed for As level and other parameters such as pH, electrical conductivity, total dissolved solids, cations, and anions. It was found that 41% (25 out of 61) water samples contained As (≥ 5 μg/L). Out of 25 As-contaminated water samples, 13 water samples exceeded the permissible level of WHO (10 μg/L). High As contents have been found in tubewell samples and at high sampling depths (> 300 ft). The major As-contaminated groundwater in Hasilpur is found in urban areas. Furthermore, health risk and cancer risk due to As contamination were also assessed with respect to average daily dose (ADD), hazard quotient (HQ), and carcinogenic risk (CR). The values of HQ and CR of As in Hasilpur were up to 58 and 0.00231, respectively. Multivariate analysis revealed a positive correlation between groundwater As contents, pH, and depth in Hasilpur. The current study proposed the proper monitoring and management of well water in Hasilpur to minimize the As-associated health hazards.
Collapse
Affiliation(s)
- Riaz Ahmad Tabassum
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, 61100, Pakistan
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, 61100, Pakistan.
| | - Camille Dumat
- Centre d'Etude et de Recherche Travail Organisation Pouvoir (CERTOP), UMR5044, Université J. Jaurès - Toulouse II, 5 allée Antonio Machado, 31058, Toulouse Cedex 9, France
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
- MARUM and Department of Geosciences, University of Bremen, D-28359, Bremen, Germany
- Southern Cross GeoScience, Southern Cross University, Lismore, NSW, 2480, Australia
| | - Sana Khalid
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, 61100, Pakistan
| | - Noor Samad Shah
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, 61100, Pakistan
| | - Muhammad Imran
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, 61100, Pakistan
| | - Samina Khalid
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, 61100, Pakistan
| |
Collapse
|
48
|
Alam MZ, Hoque MA, Ahammed GJ, Carpenter-Boggs L. Arbuscular mycorrhizal fungi reduce arsenic uptake and improve plant growth in Lens culinaris. PLoS One 2019; 14:e0211441. [PMID: 31095573 PMCID: PMC6522021 DOI: 10.1371/journal.pone.0211441] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 04/15/2019] [Indexed: 01/19/2023] Open
Abstract
Arsenic (As) is a carcinogenic and hazardous substance that poses a serious risk to human health due to its transport into the food chain. The present research is focused on the As transport in different lentil genotypes and the role of Arbuscular Mycorrhizal Fungi (AMF) in mitigation of As phyto-toxicity. Arsenic transport from soil to root, shoot and grains in different lentil genotypes was analyzed by flow injection hydride generation atomic absorption spectrophotometry. AMF were applied for the reduction of As uptake as well as the improvement of plant growth in lentil genotypes. Arsenic phyto-toxicity was dose-dependent as evidenced by relatively higher shoot length, fresh and dry weight of root and shoot in 5 and 15 mgkg-1 As-treated lentil plants than that in 100 mgkg-1 As-treated lentil. Arsenic accumulation occurred in roots and shoots of all BARI-released lentil genotypes. Arsenic accumulation in grains was found higher in BARI Mashur 1 than other lentil genotypes. AMF treatment significantly increased growth and biomass accumulation in lentil compared to that in non-AMF plants. Furthermore, AMF effectively reduced the As concentrations in roots and shoots of lentil plants grown at 8 and 45 mgkg-1 As-contaminated soils. This study revealed remarkable divergence in As accumulation among different BARI-released lentil genotypes; however, AMF could reduce As uptake and mitigate As-induced phyto-toxicity in lentil. Taken together, our results suggest a great potential of AMF in mitigating As transfer in root and shoot mass and reallocation to grains, which would expand lentil cultivation in As-affected areas throughout the world.
Collapse
Affiliation(s)
- Mohammad Zahangeer Alam
- Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
- Department of Soil Science, Bangladesh Agricultural University (BAU), Mymensingh, Bangladesh
- Department of Crop and Soil Sciences, Washington State University (WSU), Pullman, WA, United States of America
| | - Md. Anamul Hoque
- Department of Soil Science, Bangladesh Agricultural University (BAU), Mymensingh, Bangladesh
| | - Golam Jalal Ahammed
- College of Forestry, Henan University of Science and Technology, Luoyang, PR China
| | - Lynne Carpenter-Boggs
- Department of Crop and Soil Sciences, Washington State University (WSU), Pullman, WA, United States of America
| |
Collapse
|
49
|
Pal P, Halder A. Is There Any Role of Arsenic Toxicity in HPV Related Oral Squamous Cell Carcinoma? Biol Trace Elem Res 2019; 188:274-283. [PMID: 29959645 DOI: 10.1007/s12011-018-1419-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/20/2018] [Indexed: 10/28/2022]
Abstract
Arsenic is a potent human carcinogen affecting the rate of cancer deaths worldwide. In India, West Bengal is the worst affected state by arsenic. To our best knowledge, this is the first study relating arsenic toxicity with oral carcinoma, along with HPV infection, the latter being well established in western countries. To find out a possible correlation between arsenic toxicity and oral carcinoma in the population of West Bengal, in or without any association with human papilloma virus infection. Ethical clearance of this study was obtained from the institutional committee. One hundred and four malignant and 103 premalignant cases were selected for this study along with 200 healthy age and sex-matched individuals selected as control (100 each for malignant and premalignant) (2013-2017). On proper consent, their buccal swab and hair samples were assessed for the presence of HPV DNA by DNA extraction, followed by PCR and arsenic estimation by flow injection hydride generation atomic absorption spectrometry respectively. A very highly significant correlation has been observed between arsenic toxicity, HPV infection and the occurrence of oral carcinoma (p value = 2.18e-06; p value = 0.00100 respectively). A correlation has also been observed between these two factors simultaneously, contributing to this malignancy (phi coefficient = 0.2194839). A statistically significant correlation observed between this metal toxicity and viral infection in the occurrence of oral carcinoma in this population indicates a possible symbiotic role between these two factors in this malignancy.
Collapse
Affiliation(s)
- Pritha Pal
- Department of Genetics, Vivekananda Institute of Medical Sciences, Ramakrishna Mission Seva Pratishthan, 99 Sarat Bose Road, Kolkata, 700026, India
| | - Ajanta Halder
- Department of Genetics, Vivekananda Institute of Medical Sciences, Ramakrishna Mission Seva Pratishthan, 99 Sarat Bose Road, Kolkata, 700026, India.
| |
Collapse
|
50
|
Assessment of Arsenic Removal Units in Arsenic-Prone Rural Area in Uttar Pradesh, India. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s40030-018-0349-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|