1
|
Lone RA, Kumar B, Kashif M, Fakhrah S, Rout TK, Siddiqui S, Pattanayak R, Singh PK, Mohanty CS. The Root-Tuber Trypsin Inhibitor of Winged Bean and Its Anti-cancerous Activity Against Osteosarcoma Cell-Line. Protein J 2025; 44:88-101. [PMID: 39702856 DOI: 10.1007/s10930-024-10244-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 12/21/2024]
Abstract
Trypsin inhibitor from the root-tuber of underutilized legume Winged bean (Psophocarpus tetragonolobus (L.) DC.) (WbT-TI) was purified using ion exchange chromatography followed by size-exclusion chromatography. The purified WbT-TI showed a molecular mass of 20,609 Da and an isoelectric point of 5.10. Ultraviolet circular dichroism (UV-CD) and intrinsic fluorescence reported, that WbT-TI interacts with trypsin. Domain-wise analysis of WbT-TI revealed it to belong to the Kunitz-type soybean trypsin inhibitor (STI) family with a specific β-trefoil fold. The sequence of WbT-TI showed 44% sequence coverage to acidic trypsin inhibitor from the seed of the same plant. Protein interaction similarity analysis (PIPSA) evaluated the electrostatic properties of WbT-TI and provided information about the interacting partners of trypsin inhibitors. The purified protein was quantified and tested for in vitro anticancer activity using 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay against the human osteosarcoma (MG-63) cell line. At 5 µg/ml of WbT-TI, the highest inhibition was seen. These studies may lead to the development of winged bean protease inhibitor-based preventive and therapeutic strategies for different kinds of cancers.
Collapse
Affiliation(s)
- Rayees Ahmad Lone
- Plant Genetic Resources and Improvement Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Bhupendra Kumar
- Plant Genetic Resources and Improvement Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Mohd Kashif
- Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Shafquat Fakhrah
- Plant Genetic Resources and Improvement Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| | - Tofan Kumar Rout
- Sophisticated Analytical Instrument Facility and Research, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Sahabjada Siddiqui
- Department of Biotechnology, Era University, Lucknow, Uttar Pradesh, India
| | - Rojalin Pattanayak
- College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - Pradhyumna Kumar Singh
- Plant Genetic Resources and Improvement Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Chandra Sekhar Mohanty
- Plant Genetic Resources and Improvement Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India.
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
2
|
Paul DC, Bhattacharjee M. Revisiting the significance of natural protease inhibitors: A comprehensive review. Int J Biol Macromol 2024; 280:135899. [PMID: 39317291 DOI: 10.1016/j.ijbiomac.2024.135899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/09/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Protease inhibitors (PIs) function as a natural adversary to proteolytic enzymes. They can diminish or inhibit the catalytic properties of proteases, which are crucial for various tasks in the physiology and metabolism of cellular forms. Protease Inhibitors are low molecular weight (5-25 kDa) stable proteins. Plants are a fair source of PIs, so foods containing PIs remarkably influence human health. PIs are usually present in storage tissues of the plant, although they are present in other aerial parts as well. In plants, protease inhibitors participate in vital functions such as maintaining physiological homeostasis, mobilization of storage proteins, defense systems, apoptosis, and other processes. In recent years, plant-derived PIs have shown promising results in treating various diseases including inflammatory conditions, osteoporosis, cardiovascular issues, and brain disorders. The primary goal of this review is to provide a comprehensive understanding of the characteristics, applications, and challenges associated with natural protease inhibitors in plants, which draws insights from an extensive examination of 80+ research papers with a focus on their potential in agriculture and medicine. By synthesizing findings from an extensive literature review, this work aims to guide future research directions and innovations in leveraging plant-based PIs for sustainable agricultural practices and advanced therapeutic interventions.
Collapse
Affiliation(s)
- Dhiman Chandra Paul
- Programme of Biotechnology, Assam down town University, Panikhaiti, Gandhinagar, Guwahati, Assam 26, India
| | - Minakshi Bhattacharjee
- Programme of Biotechnology, Assam down town University, Panikhaiti, Gandhinagar, Guwahati, Assam 26, India.
| |
Collapse
|
3
|
Gatto CC, Cavalcante CDQO, Lima FC, Nascimento ÉCM, Martins JBL, Santana BLO, Gualberto ACM, Pittella-Silva F. Structural Design, Anticancer Evaluation, and Molecular Docking of Newly Synthesized Ni(II) Complexes with ONS-Donor Dithiocarbazate Ligands. Molecules 2024; 29:2759. [PMID: 38930825 PMCID: PMC11206525 DOI: 10.3390/molecules29122759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
The current article reports the investigation of three new Ni(II) complexes with ONS-donor dithiocarbazate ligands: [Ni(L1)PPh3] (1), [Ni(L2)PPh3] (2), and [Ni(L2)Py] (3). Single-crystal X-ray analyses revealed mononuclear complexes with a distorted square planar geometry and the metal centers coordinated with a doubly deprotonated dithiocarbazate ligand and coligand pyridine or triphenylphosphine. The non-covalent interactions were investigated by the Hirshfeld surface and the results revealed that the strongest interactions were π⋅⋅⋅π stacking interactions and non-classical hydrogen bonds C-H···H and C-H···N. Physicochemical and spectroscopic methods indicate the same structures in the solid state and solution. The toxicity effects of the free ligands and Ni(II) complexes were tested on the human breast cancer cell line MCF-7 and non-malignant breast epithelial cell line MCF-10A. The half-maximal inhibitory concentration (IC50) values, indicating that the compounds were potent in inhibiting cell growth, were obtained for both cell lines at three distinct time points. While inhibitory effects were evident in both malignant and non-malignant cells, all three complexes demonstrated lower IC50 values for malignant breast cell lines than their non-malignant counterparts, suggesting a stronger impact on cancerous cell lines. Furthermore, molecular docking studies were performed showing the complex (2) as a promising candidate for further therapeutic exploration.
Collapse
Affiliation(s)
- Claudia C. Gatto
- University of Brasilia, Institute of Chemistry, Laboratory of Inorganic Synthesis and Crystallography, Brasília 70910-900, DF, Brazil
| | - Cássia de Q. O. Cavalcante
- University of Brasilia, Institute of Chemistry, Laboratory of Inorganic Synthesis and Crystallography, Brasília 70910-900, DF, Brazil
| | - Francielle C. Lima
- University of Brasilia, Institute of Chemistry, Laboratory of Inorganic Synthesis and Crystallography, Brasília 70910-900, DF, Brazil
| | - Érica C. M. Nascimento
- University of Brasilia, Institute of Chemistry, Laboratory of Computational Chemistry, Brasília 70910-900, DF, Brazil; (É.C.M.N.); (J.B.L.M.)
| | - João B. L. Martins
- University of Brasilia, Institute of Chemistry, Laboratory of Computational Chemistry, Brasília 70910-900, DF, Brazil; (É.C.M.N.); (J.B.L.M.)
| | - Brunna L. O. Santana
- University of Brasilia, Faculty of Health Sciences and Medicine, Laboratory of Molecular Pathology of Cancer, Brasília 70910-900, DF, Brazil; (B.L.O.S.); (F.P.-S.)
| | - Ana C. M. Gualberto
- University of Brasilia, Faculty of Health Sciences and Medicine, Laboratory of Molecular Pathology of Cancer, Brasília 70910-900, DF, Brazil; (B.L.O.S.); (F.P.-S.)
| | - Fabio Pittella-Silva
- University of Brasilia, Faculty of Health Sciences and Medicine, Laboratory of Molecular Pathology of Cancer, Brasília 70910-900, DF, Brazil; (B.L.O.S.); (F.P.-S.)
| |
Collapse
|
4
|
Abstract
Biologically active plant peptides, consisting of secondary metabolites, are compounds (amino acids) utilized by plants in their defense arsenal. Enzymatic processes and metabolic pathways secrete these plant peptides. They are also known for their medicinal value and have been incorporated in therapeutics of major human diseases. Nevertheless, its limitations (low bioavailability, high cytotoxicity, poor absorption, low abundance, improper metabolism, etc.) have demanded a need to explore further and discover other new plant compounds that overcome these limitations. Keeping this in mind, therapeutic plant proteins can be excellent remedial substitutes for bodily affliction. A multitude of these peptides demonstrates anti-carcinogenic, anti-microbial, anti-HIV, and neuro-regulating properties. This article's main aim is to list out and report the status of various therapeutic plant peptides and their prospective status as peptide-based drugs for multiple diseases (infectious and non-infectious). The feasibility of these compounds in the imminent future has also been discussed.
Collapse
|
5
|
SAXS Analysis and Characterization of Anticancer Activity of PNP-UDP Family Protein from Putranjiva roxburghii. Protein J 2022; 41:381-393. [PMID: 35674860 DOI: 10.1007/s10930-022-10060-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2022] [Indexed: 10/18/2022]
Abstract
A class of plant defense and storage proteins, including Putranjiva roxburghii PNP protein (PRpnp), belongs to PNP-UDP family. The PRpnp and related plant proteins contain a disrupted PNP-UDP domain as revealed in previous studies. In PRpnp, the insert disrupting the domain contains the trypsin inhibitory site. In the present work, we analyzed native PRpnp (nPRpnp) complex formation with trypsin and inosine using SAXS experiments and established its dual functionality. Results indicated a relatively compact nPRpnp:Inosine structure, whereas trypsin complex showed conformational changes/flexibility. nPRpnp also exhibited a strong anti-cancer activity toward breast cancer (MCF-7), prostate cancer (DU-145) and hepatocellular carcinoma (HepG2) cell lines. MCF-7 and DU-145 were more sensitive to nPRpnp treatment as compared to HepG2. However, nPRpnp treatment showed no effect on the viability of HEK293 cells indicating that nPRpnp is specific for targeting the viability of only cancer cells. Further, acridine orange, DAPI and DNA fragmentation studies showed that cytotoxic effect of nPRpnp is mediated through induction of apoptosis as evident from the apoptosis-associated morphological changes and nuclear fragmentation observed after PRpnp treatment of cancer cells. These results suggest that PRpnp has the potential to be used as an anticancer agent. This is first report of anticancer activity as well as SAXS-based analysis for a PNP enzyme with trypsin inhibitory activity.
Collapse
|
6
|
Cid-Gallegos MS, Corzo-Ríos LJ, Jiménez-Martínez C, Sánchez-Chino XM. Protease Inhibitors from Plants as Therapeutic Agents- A Review. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:20-29. [PMID: 35000105 DOI: 10.1007/s11130-022-00949-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/28/2021] [Indexed: 05/18/2023]
Abstract
Plant-based diets are a great source of protease inhibitors (PIs). Two of the most well-known families of PIs are Bowman-Birk inhibitors (BBI) and Kunitz-type inhibitors (KTI). The first group acts mainly on trypsin, chymotrypsin, and elastase; the second is on serine, cysteine, and aspartic proteases. PIs can retard or inhibit the catalytic action of enzymes; therefore, they are considered non-nutritional compounds; nevertheless, animal studies and cell line experiments showed promising results of PIs in treating human illnesses such as obesity, cardiovascular diseases, autoimmune diseases, inflammatory processes, and different types of cancer (gastric, colorectal, breast, and lung cancer). Anticarcinogenic activity's proposed mechanisms of action comprise several inhibitory effects at different molecular levels, i.e., transcription, post-transcription, translation, post-translation, and secretion of cancer cells. This work reviews the potential therapeutic applications of PIs as anticarcinogenic and anti-inflammatory agents in human diseases and the mechanisms by which they exert these effects.
Collapse
Affiliation(s)
- M S Cid-Gallegos
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Delegación Gustavo A. Madero, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa s/n, México City, C.P. 07738, México
| | - L J Corzo-Ríos
- Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional. Av. Acueducto S/N, Barrio La Laguna, Col. Ticomán, México City, C.P. 07340, México
| | - C Jiménez-Martínez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Delegación Gustavo A. Madero, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa s/n, México City, C.P. 07738, México
| | - X M Sánchez-Chino
- CONACYT, Departamento de Salud, El Colegio de La Frontera Sur-Villahermosa, Tabasco, México.
| |
Collapse
|
7
|
Kårlund A, Paukkonen I, Gómez-Gallego C, Kolehmainen M. Intestinal Exposure to Food-Derived Protease Inhibitors: Digestion Physiology- and Gut Health-Related Effects. Healthcare (Basel) 2021; 9:1002. [PMID: 34442141 PMCID: PMC8394810 DOI: 10.3390/healthcare9081002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/22/2021] [Accepted: 08/03/2021] [Indexed: 12/15/2022] Open
Abstract
Plant-derived protease inhibitors (PI), such as Bowman-Birk inhibitors and Kunitz-type inhibitors, have been suggested to negatively affect dietary protein digestion by blocking the activity of trypsin and chymotrypsin in the human gastrointestinal system. In addition, some PIs may possess proinflammatory activities. However, there is also scientific evidence on some beneficial effects of PIs, for example, gut-related anti-inflammatory and chemopreventive activities in vitro and in vivo. Some PIs are sensitive to processing and digestion; thus, their survival is an important aspect when considering their positive and negative bioactivities. The aim of this review was to evaluate the relevance of PIs in protein digestion in humans and to discuss the potential of PIs from whole foods and as purified compounds in decreasing symptoms of bowel-related conditions. Based on the reviewed literature, we concluded that while the complex interactions affecting plant protein digestibility and bioavailability remain unclear, PI supplements could be considered for targeted purposes to mitigate inflammation and gastric pain.
Collapse
Affiliation(s)
- Anna Kårlund
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (C.G.-G.); (M.K.)
| | - Isa Paukkonen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
| | - Carlos Gómez-Gallego
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (C.G.-G.); (M.K.)
| | - Marjukka Kolehmainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (C.G.-G.); (M.K.)
| |
Collapse
|
8
|
Capraro J, Benedetti SD, Heinzl GC, Scarafoni A, Magni C. Bioactivities of Pseudocereal Fractionated Seed Proteins and Derived Peptides Relevant for Maintaining Human Well-Being. Int J Mol Sci 2021; 22:3543. [PMID: 33805525 PMCID: PMC8036814 DOI: 10.3390/ijms22073543] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/17/2022] Open
Abstract
Food proteins and peptides are able to exert a variety of well-known bioactivities, some of which are related to well-being and disease prevention in humans and animals. Currently, an active trend in research focuses on chronic inflammation and oxidative stress, delineating their major pathogenetic role in age-related diseases and in some forms of cancer. The present study aims to investigate the potential effects of pseudocereal proteins and their derived peptides on chronic inflammation and oxidative stress. After purification and attribution to protein classes according to classic Osborne's classification, the immune-modulating, antioxidant, and trypsin inhibitor activities of proteins from quinoa (Chenopodium quinoa Willd.), amaranth (Amaranthus retroflexus L.), and buckwheat (Fagopyrum esculentum Moench) seeds have been assessed in vitro. The peptides generated by simulated gastro-intestinal digestion of each fraction have been also investigated for the selected bioactivities. None of the proteins or peptides elicited inflammation in Caco-2 cells; furthermore, all protein fractions showed different degrees of protection of cells from IL-1β-induced inflammation. Immune-modulating and antioxidant activities were, in general, higher for the albumin fraction. Overall, seed proteins can express these bioactivities mainly after hydrolysis. On the contrary, higher trypsin inhibitor activity was expressed by globulins in their intact form. These findings lay the foundations for the exploitation of these pseudocereal seeds as source of anti-inflammatory molecules.
Collapse
Affiliation(s)
- Jessica Capraro
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133 Milano, Italy
| | - Stefano De Benedetti
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133 Milano, Italy
| | - Giuditta Carlotta Heinzl
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133 Milano, Italy
| | - Alessio Scarafoni
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133 Milano, Italy
| | - Chiara Magni
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, 20133 Milano, Italy
| |
Collapse
|
9
|
Cruz-Silva I, Gozzo AJ, Nunes VA, Tanaka AS, da Silva Araujo M. Bioengineering of an elastase inhibitor from Caesalpinia echinata (Brazil wood) seeds. PHYTOCHEMISTRY 2021; 182:112595. [PMID: 33321445 DOI: 10.1016/j.phytochem.2020.112595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Protease inhibitors have been widely used in several therapeutic applications such as in the treatment of bleeding disorders, hypertension, cancer and pulmonary diseases. In a previous work, we demonstrated that a Kunitz-type serine protease inhibitor isolated from the seeds of Caesalpinia echinata (CeEI) exhibits pharmacological potential in lung inflammatory diseases in which neutrophil elastase plays a crucial role. However, an important challenge in the use of natural products is to ensure a commercially viable production. In this work, we report the cloning, expression and purification of two recombinant CeEI isoinhibitors with 700 base pairs encoding two proteins with 181 amino acid residues (rCeEI-4 and rCeEI-5). After the expression, each yielding 22 mg/L of active protein, both isoinhibitors presented a molecular mass of about 23.0 kDa, evaluated by SDS-PAGE. The inhibition constants for human neutrophil elastase (HNE) were 0.67 nM (rCeEI-4) and 0.57 nM (rCeEI-5), i.e., similar to the native inhibitor (1.90 nM). Furthermore, rCeEI-4 was used as a template to design smaller functional peptides flanking the inhibitor reactive site: rCeEI-36, delimited between the amino acid residues N36 and S88 containing a disulfide bond in the reactive-site loop, and rCeEI-46, delimited between S46 and L75 without the disulfide bond. The yields were 18 mg/L (rCeEI-36) and 12 mg/L (rCeEI-46). Both peptides inhibit HNE in the nanomolar range (Ki 0.30 ± 0.01 and 8.80 ± 0.23, respectively). Considering their size and the inhibitory efficiency, these peptides may be considered in strategies for the development of drugs targeting pulmonary disorders where elastase is involved.
Collapse
Affiliation(s)
- Ilana Cruz-Silva
- Department of Biochemistry, Universidade Federal de São Paulo, Rua Três de Maio, 100, 04044-020, São Paulo, SP, Brazil; Division of Dermatology, Hospital Sírio Libanês, Rua Professor Daher Cutait, 69, 01308-060, São Paulo, SP, Brazil
| | - Andrezza Justino Gozzo
- Institute of Marine Sciences, Universidade Federal de São Paulo, Rua Doutor Carvalho de Mendonça, 144, 11070-100, Santos, SP, Brazil.
| | - Viviane Abreu Nunes
- Department of Biotechnology, Universidade de São Paulo, Avenida Arlindo Béttio, 1000, 03828-000, São Paulo, SP, Brazil.
| | - Aparecida Sadae Tanaka
- Department of Biochemistry, Universidade Federal de São Paulo, Rua Três de Maio, 100, 04044-020, São Paulo, SP, Brazil
| | - Mariana da Silva Araujo
- Department of Biochemistry, Universidade Federal de São Paulo, Rua Três de Maio, 100, 04044-020, São Paulo, SP, Brazil
| |
Collapse
|
10
|
Wani SS, Dar PA, Zargar SM, Dar TA. Therapeutic Potential of Medicinal Plant Proteins: Present Status and Future Perspectives. Curr Protein Pept Sci 2021; 21:443-487. [PMID: 31746291 DOI: 10.2174/1389203720666191119095624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 10/10/2019] [Accepted: 10/27/2019] [Indexed: 02/07/2023]
Abstract
Biologically active molecules obtained from plant sources, mostly including secondary metabolites, have been considered to be of immense value with respect to the treatment of various human diseases. However, some inevitable limitations associated with these secondary metabolites like high cytotoxicity, low bioavailability, poor absorption, low abundance, improper metabolism, etc., have forced the scientific community to explore medicinal plants for alternate biologically active molecules. In this context, therapeutically active proteins/peptides from medicinal plants have been promoted as a promising therapeutic intervention for various human diseases. A large number of proteins isolated from the medicinal plants have been shown to exhibit anti-microbial, anti-oxidant, anti-HIV, anticancerous, ribosome-inactivating and neuro-modulatory activities. Moreover, with advanced technological developments in the medicinal plant research, medicinal plant proteins such as Bowman-Birk protease inhibitor and Mistletoe Lectin-I are presently under clinical trials against prostate cancer, oral carcinomas and malignant melanoma. Despite these developments and proteins being potential drug candidates, to date, not a single systematic review article has documented the therapeutical potential of the available biologically active medicinal plant proteome. The present article was therefore designed to describe the current status of the therapeutically active medicinal plant proteins/peptides vis-à-vis their potential as future protein-based drugs for various human diseases. Future insights in this direction have also been highlighted.
Collapse
Affiliation(s)
- Snober Shabeer Wani
- Department of Clinical Biochemistry, University of Kashmir, Srinagar-190006, Jammu and Kashmir, India
| | - Parvaiz A Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar-190006, Jammu and Kashmir, India
| | - Sajad M Zargar
- Division of Plant Biotechnology, S. K. University of Agricultural Sciences and Technology of Srinagar, Shalimar-190025, Srinagar, Jammu and Kashmir, India
| | - Tanveer A Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar-190006, Jammu and Kashmir, India
| |
Collapse
|
11
|
Robinson GHJ, Domoney C. Perspectives on the genetic improvement of health- and nutrition-related traits in pea. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:353-362. [PMID: 33250319 PMCID: PMC7801860 DOI: 10.1016/j.plaphy.2020.11.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/15/2020] [Indexed: 05/27/2023]
Abstract
Pea (Pisum sativum L.) is a widely grown pulse crop that is a source of protein, starch and micronutrients in both human diets and livestock feeds. There is currently a strong global focus on making agriculture and food production systems more sustainable, and pea has one of the smallest carbon footprints of all crops. Multiple genetic loci have been identified that influence pea seed protein content, but protein composition is also important nutritionally. Studies have previously identified gene families encoding individual seed protein classes, now documented in a reference pea genome assembly. Much is also known about loci affecting starch metabolism in pea, with research especially focusing on improving concentrations of resistant starch, which has a positive effect on maintaining blood glucose homeostasis. Diversity in natural germplasm for micronutrient concentrations and mineral hyperaccumulation mutants have been discovered, with quantitative trait loci on multiple linkage groups identified for seed micronutrient concentrations. Antinutrients, which affect nutrient bioavailability, must also be considered; mutants in which the concentrations of important antinutrients including phytate and trypsin inhibitors are reduced have already been discovered. Current knowledge on the genetics of nutritional traits in pea will greatly assist with crop improvement for specific end uses, and further identification of genes involved will help advance our knowledge of the control of the synthesis of seed compounds.
Collapse
Affiliation(s)
- Gabriel H J Robinson
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UH, United Kingdom
| | - Claire Domoney
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UH, United Kingdom.
| |
Collapse
|
12
|
Gitlin-Domagalska A, Maciejewska A, Dębowski D. Bowman-Birk Inhibitors: Insights into Family of Multifunctional Proteins and Peptides with Potential Therapeutical Applications. Pharmaceuticals (Basel) 2020; 13:E421. [PMID: 33255583 PMCID: PMC7760496 DOI: 10.3390/ph13120421] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/13/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Bowman-Birk inhibitors (BBIs) are found primarily in seeds of legumes and in cereal grains. These canonical inhibitors share a highly conserved nine-amino acids binding loop motif CTP1SXPPXC (where P1 is the inhibitory active site, while X stands for various amino acids). They are natural controllers of plants' endogenous proteases, but they are also inhibitors of exogenous proteases present in microbials and insects. They are considered as plants' protective agents, as their elevated levels are observed during injury, presence of pathogens, or abiotic stress, i.a. Similar properties are observed for peptides isolated from amphibians' skin containing 11-amino acids disulfide-bridged loop CWTP1SXPPXPC. They are classified as Bowman-Birk like trypsin inhibitors (BBLTIs). These inhibitors are resistant to proteolysis and not toxic, and they are reported to be beneficial in the treatment of various pathological states. In this review, we summarize up-to-date research results regarding BBIs' and BBLTIs' inhibitory activity, immunomodulatory and anti-inflammatory activity, antimicrobial and insecticidal strength, as well as chemopreventive properties.
Collapse
Affiliation(s)
| | | | - Dawid Dębowski
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (A.G.-D.); (A.M.)
| |
Collapse
|
13
|
Fernández-Tomé S, Hernández-Ledesma B. Gastrointestinal Digestion of Food Proteins under the Effects of Released Bioactive Peptides on Digestive Health. Mol Nutr Food Res 2020; 64:e2000401. [PMID: 32974997 DOI: 10.1002/mnfr.202000401] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/15/2020] [Indexed: 12/20/2022]
Abstract
The gastrointestinal tract represents a specialized interface between the organism and the external environment. Because of its direct contact with lumen substances, the modulation of digestive functions by dietary substances is supported by a growing body of evidence. Food-derived bioactive peptides have demonstrated a plethora of activities in the organism with increasing interest toward their impact over the digestive system and related physiological effects. This review updates the biological effects of food proteins, specifically milk and soybean proteins, associated to gastrointestinal health and highlights the study of digestion products and released peptides, the identification of the active form/s, and the evaluation of the mechanisms of action underlying their relationship with the digestive cells and receptors. The approach toward the modifications that food proteins and peptides undergo during gastrointestinal digestion and their bioavailability is a crucial step for current investigations on the field. The recent literature on the regulation of digestive functions by peptides has been mostly considered in terms of their influence on gastrointestinal motility and signaling, oxidative damage and inflammation, and malignant cellular proliferation. A final section regarding the actual challenges and future perspectives in this scientific topic is critically discussed.
Collapse
Affiliation(s)
- Samuel Fernández-Tomé
- Samuel Fernández-Tomé. Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Diego de León, 62, 28006, Madrid, Spain
| | - Blanca Hernández-Ledesma
- Blanca Hernández-Ledesma. Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera, 9, 28049, Madrid, Spain
| |
Collapse
|
14
|
Mittal P, Kumar V, Rani A. Effect of genotype, seed development stages, and processing treatments on Bowman-Birk inhibitor in soybean and its level in commercial soy products. ACTA ALIMENTARIA 2020. [DOI: 10.1556/066.2020.49.3.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bowman-Birk inhibitor (BBI) is a protease inhibitor that affects protein digestibility; however, it is increasingly being recognised as anutraceutical and cosmeceutical molecule. In the present study, BBI concentration during soybean seed development, its loss during processing treatments, and the level in commercial soy products were determined. Significant differences for BBI concentration were observed across the genotypes and seed development stages. Genotype × seed development stage interaction was also found to be significant (P<0.05) for BBI concentration. Boiling, autoclaving, microwave irradiation, and sprouting resulted in significant (P<0.05) loss of BBI. Minimum loss was observed in sprouting, while autoclaving for 5 min completely deactivated BBI. Microwave irradiation of the soaked seeds resulted in higher BBI loss than of dry seeds. Among the commercial soy products, BBI concentration was high in soy flour brands, minuscule in ready-to-cook miso soup and undetectable in extruded soy products and roasted soy nuts.
Collapse
Affiliation(s)
- P. Mittal
- ICAR-Indian Institute of Soybean Research, Khandwa Road, Indore, 452001. India
| | - V. Kumar
- ICAR-Indian Institute of Soybean Research, Khandwa Road, Indore, 452001. India
| | - A. Rani
- ICAR-Indian Institute of Soybean Research, Khandwa Road, Indore, 452001. India
| |
Collapse
|
15
|
Identification and Target-Modification of SL-BBI: A Novel Bowman-Birk Type Trypsin Inhibitor from Sylvirana latouchii. Biomolecules 2020; 10:biom10091254. [PMID: 32872343 PMCID: PMC7565067 DOI: 10.3390/biom10091254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 01/10/2023] Open
Abstract
The peptides from the ranacyclin family share similar active disulphide loop with plant-derived Bowman-Birk type inhibitors, some of which have the dual activities of trypsin inhibition and antimicrobial. Herein, a novel Bowman-Birk type trypsin inhibitor of the ranacyclin family was identified from the skin secretion of broad-folded frog (Sylvirana latouchii) by molecular cloning method and named as SL-BBI. After chemical synthesis, it was proved to be a potent inhibitor of trypsin with a Ki value of 230.5 nM and showed weak antimicrobial activity against tested microorganisms. Modified analogue K-SL maintains the original inhibitory activity with a Ki value of 77.27 nM while enhancing the antimicrobial activity. After the substitution of active P1 site to phenylalanine and P2' site to isoleucine, F-SL regenerated its inhibitory activity on chymotrypsin with a Ki value of 309.3 nM and exhibited antiproliferative effects on PC-3, MCF-7 and a series of non-small cell lung cancer cell lines without cell membrane damage. The affinity of F-SL for the β subunits in the yeast 20S proteasome showed by molecular docking simulations enriched the understanding of the possible action mode of Bowman-Birk type inhibitors. Further mechanistic studies have shown that F-SL can activate caspase 3/7 in H157 cells and induce apoptosis, which means it has the potential to become an anticancer agent.
Collapse
|
16
|
Patriota LLDS, Ramos DDBM, Dos Santos ACLA, Silva YA, Gama E Silva M, Torres DJL, Procópio TF, de Oliveira AM, Coelho LCBB, Pontual EV, da Silva DCN, Paiva PMG, de Lorena VMB, Mendes RL, Napoleão TH. Antitumor activity of Moringa oleifera (drumstick tree) flower trypsin inhibitor (MoFTI) in sarcoma 180-bearing mice. Food Chem Toxicol 2020; 145:111691. [PMID: 32810586 DOI: 10.1016/j.fct.2020.111691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/31/2020] [Accepted: 08/11/2020] [Indexed: 10/23/2022]
Abstract
The plant Moringa oleifera is used as food and medicine. M. oleifera flowers are source of protein, fiber, and antioxidants, and are used to treat inflammation and tumors. This work evaluated the antitumor activity of the M. oleifera flower trypsin inhibitor (MoFTI) in sarcoma 180-bearing mice. Swiss female mice were inoculated with sarcoma 180 cells. Seven days later, the animals were treated intraperitoneally for 1 week with daily doses of PBS (control) or MoFTI (15 or 30 mg/kg). For toxicity assessment, water and food consumption, body and organ weights, histological alterations, and blood hematological and biochemical parameters were measured. Treatment with MoFTI caused pronounced reduction (90.1%-97.9%) in tumor weight. The tumors of treated animals had a reduced number of secondary vessels and lower gauge of the primary vessels compared to the control. No significant changes were observed in water and food consumption or in body and organ weights. Histopathological analysis did not indicate damage to the liver, kidneys, and spleen. In conclusion, MoFTI showed antitumor potential, with no clear evidence of toxicity.
Collapse
Affiliation(s)
| | | | | | - Yasmym Araújo Silva
- Laboratório de Oncologia Experimental, Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brazil
| | - Mariana Gama E Silva
- Laboratório de Oncologia Experimental, Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brazil
| | - Diego José Lira Torres
- Departamento de Imunologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco, Brazil
| | - Thamara Figueiredo Procópio
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Alisson Macário de Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | - Emmanuel Viana Pontual
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
| | | | - Patrícia Maria Guedes Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | - Rosemairy Luciane Mendes
- Laboratório de Oncologia Experimental, Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brazil
| | - Thiago Henrique Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
17
|
Fernández-Tomé S, Xu F, Han Y, Hernández-Ledesma B, Xiao H. Inhibitory Effects of Peptide Lunasin in Colorectal Cancer HCT-116 Cells and Their Tumorsphere-Derived Subpopulation. Int J Mol Sci 2020; 21:ijms21020537. [PMID: 31947688 PMCID: PMC7014180 DOI: 10.3390/ijms21020537] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/07/2020] [Accepted: 01/13/2020] [Indexed: 01/06/2023] Open
Abstract
The involvement of cancer stem-like cells (CSC) in the tumor pathogenesis has profound implications for cancer therapy and chemoprevention. Lunasin is a bioactive peptide from soybean and other vegetal sources with proven protective activities against cancer and other chronic diseases. The present study focused on the cytotoxic effect of peptide lunasin in colorectal cancer HCT-116 cells, both the bulk tumor and the CSC subpopulations. Lunasin inhibited the proliferation and the tumorsphere-forming capacity of HCT-116 cells. Flow cytometry results demonstrated that the inhibitory effects were related to apoptosis induction and cell cycle-arrest at G1 phase. Moreover, lunasin caused an increase in the sub-GO/G1 phase of bulk tumor cells, linked to the apoptotic events found. Immunoblotting analysis further showed that lunasin induced apoptosis through activation of caspase-3 and cleavage of PARP, and could modulate cell cycle progress through the cyclin-dependent kinase inhibitor p21. Together, these results provide new evidence on the chemopreventive activity of peptide lunasin on colorectal cancer by modulating both the parental and the tumorsphere-derived subsets of HCT-116 cells.
Collapse
Affiliation(s)
- Samuel Fernández-Tomé
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM CEI UAM+CSIC), Nicolás Cabrera, 9, 28049 Madrid, Spain;
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (F.X.); (Y.H.)
| | - Fei Xu
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (F.X.); (Y.H.)
| | - Yanhui Han
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (F.X.); (Y.H.)
| | - Blanca Hernández-Ledesma
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM CEI UAM+CSIC), Nicolás Cabrera, 9, 28049 Madrid, Spain;
- Correspondence: (B.H.-L.); (H.X.); Tel.: +34 910017970 (B.H.-L.); +1 413-545-2281 (H.X.)
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (F.X.); (Y.H.)
- Correspondence: (B.H.-L.); (H.X.); Tel.: +34 910017970 (B.H.-L.); +1 413-545-2281 (H.X.)
| |
Collapse
|
18
|
Cristina Oliveira de Lima V, Piuvezam G, Leal Lima Maciel B, Heloneida de Araújo Morais A. Trypsin inhibitors: promising candidate satietogenic proteins as complementary treatment for obesity and metabolic disorders? J Enzyme Inhib Med Chem 2019; 34:405-419. [PMID: 30734596 PMCID: PMC6327991 DOI: 10.1080/14756366.2018.1542387] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/16/2018] [Accepted: 10/26/2018] [Indexed: 10/27/2022] Open
Abstract
The increase in non-communicable chronic diseases has aroused interest in the research of adjuvants to the classic forms of treatments. Obesity and metabolic syndrome are the main targets of confrontation because they relate directly to other chronic diseases. In this context, trypsin inhibitors, molecules with wide heterologous application, appear as possibilities in the treatment of overweight and obesity due to the action on satiety related mechanisms, mainly in the modulation of satiety hormones, such as cholecystokinin. In addition, trypsin inhibitors have the ability to also act on some biochemical parameters related to these diseases, thus, emerging as potential candidates and promising molecules in the treatment of the obesity and metabolic syndrome. Thus, the present article proposes to approach, through a systematic literature review, the advantages, disadvantages and viabilities for the use of trypsin inhibitors directed to the treatment of overweight and obesity.
Collapse
Affiliation(s)
| | - Grasiela Piuvezam
- Department of Collective Health, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Bruna Leal Lima Maciel
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Ana Heloneida de Araújo Morais
- Department of Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
19
|
Olías R, Becerra-Rodríguez C, Soliz-Rueda JR, Moreno FJ, Delgado-Andrade C, Clemente A. Glycation affects differently the main soybean Bowman-Birk isoinhibitors, IBB1 and IBBD2, altering their antiproliferative properties against HT29 colon cancer cells. Food Funct 2019; 10:6193-6202. [PMID: 31501839 DOI: 10.1039/c9fo01421g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Naturally-occurring serine protease inhibitors of the Bowman-Birk family, particularly abundant in legume seeds, exert their potential chemopreventive and/or therapeutic properties via protease inhibition. Processing of legume seeds, including soybeans, has been proposed as a major cause for their loss of bioactivity due to glycation. In order to assess how glycation affected the protease inhibitory activities of major soybean Bowman-Birk isoinhibitors (BBI) and their antiproliferative properties, IBB1 and IBBD2 were purified and subjected to glycation under controlled conditions using glucose at high temperature. Both soybean isoinhibitors showed remarkable heat stability. In the presence of glucose, IBBD2 lost most of its trypsin inhibitory activity while IBB1 maintains similar trypsin and chymotrypsin inhibitory activities as in the absence of sugar. Glycation patterns of both BBI proteins were assessed by MALDI-TOF spectrometry. Our results show that the glycation process affects IBBD2, losing partially its antiproliferative activity against HT29 colon cancer cells, while glycated-IBB1 was unaffected.
Collapse
Affiliation(s)
- Raquel Olías
- Estación Experimental del Zaidín (EEZ, CSIC), Profesor Albareda 1, Granada 18008, Spain.
| | | | - Jorge R Soliz-Rueda
- Estación Experimental del Zaidín (EEZ, CSIC), Profesor Albareda 1, Granada 18008, Spain.
| | - F Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación, (CIAL, CSIC-UAM), Nicolás Cabrera 9, Campus de Cantoblanco-Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Cristina Delgado-Andrade
- Instituto de Ciencia y Tecnología de los Alimentos y Nutrición (ICTAN, CSIC), Jose Antonio Novais 10, Madrid 28040, Spain
| | - Alfonso Clemente
- Estación Experimental del Zaidín (EEZ, CSIC), Profesor Albareda 1, Granada 18008, Spain.
| |
Collapse
|
20
|
Fernandes JPC, Mehdad A, Valadares NF, Mourão CBF, Ventura MM, Barbosa JARG, Freitas SMD. Crystallographic structure of a complex between trypsin and a nonapeptide derived from a Bowman-Birk inhibitor found in Vigna unguiculata seeds. Arch Biochem Biophys 2019; 665:79-86. [PMID: 30817908 DOI: 10.1016/j.abb.2019.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/16/2019] [Accepted: 02/18/2019] [Indexed: 11/28/2022]
Abstract
Natural inhibitors of proteases have been classified into different families, among them is the Bowman-Birk Inhibitor (BBI) family. Members of BBI have two structurally reactive loops that simultaneously inhibit trypsin and chymotrypsin. Here, we have investigated the binding of bovine trypsin by a cyclic nonapeptide, named PTRY9 (CTKSIPPQC), derived of the black-eyed pea trypsin/chymotrypsin inhibitor (BTCI) from Vigna unguiculata seeds. This peptide was synthetically produced with the disulfide bond restraining its conformation to mimic the reactive loop that inhibits trypsin. PTRY9 complexed to pancreatic bovine trypsin was crystallized in orthorhombic and trigonal space groups, P212121 and P3221, with maximum resolutions of 1.15 and 1.61 Å, respectively. The structures presented refinement parameters of Rwork = 14.52 % and Rfree = 15.59 %; Rwork = 15.60 % and Rfree = 18.78 %, and different surface area between the peptide and the enzyme of 1024 Å2 and 1070 Å2, respectively. The binding site of the PTRY9 is similar to that found for BTCI as shown by a r.m.s.d. of 0.358 Å between the superimposed structures and the electrostatic complementary pattern at the enzyme-peptide interface. Additionally, enzyme inhibition assays show that the affinity of trypsin for PTRY9 is smaller than that for BTCI. In vitro assays revealed that, like BTCI, this synthetic peptide is not cytotoxic for normal mammary epithelial MCF-10A cells, but exerts cytotoxic effects on MDA.MB.231 invasive human breast cancer cells.
Collapse
Affiliation(s)
- João Paulo Campos Fernandes
- Laboratory of Biophysics, Department of Cell Biology, University of Brasilia, Campus Darcy Ribeiro, Asa Norte, Brasília, DF, 70910-900, Brazil
| | - Azadeh Mehdad
- Laboratory of Biophysics, Department of Cell Biology, University of Brasilia, Campus Darcy Ribeiro, Asa Norte, Brasília, DF, 70910-900, Brazil
| | - Napoleão Fonseca Valadares
- Laboratory of Biophysics, Department of Cell Biology, University of Brasilia, Campus Darcy Ribeiro, Asa Norte, Brasília, DF, 70910-900, Brazil
| | | | - Manuel Mateus Ventura
- Laboratory of Biophysics, Department of Cell Biology, University of Brasilia, Campus Darcy Ribeiro, Asa Norte, Brasília, DF, 70910-900, Brazil
| | | | - Sonia Maria de Freitas
- Laboratory of Biophysics, Department of Cell Biology, University of Brasilia, Campus Darcy Ribeiro, Asa Norte, Brasília, DF, 70910-900, Brazil.
| |
Collapse
|
21
|
Farooq M, Hussain M, Usman M, Farooq S, Alghamdi SS, Siddique KHM. Impact of Abiotic Stresses on Grain Composition and Quality in Food Legumes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8887-8897. [PMID: 30075073 DOI: 10.1021/acs.jafc.8b02924] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Grain quality and composition in food legumes are influenced by abiotic stresses. This review discusses the influence of abiotic stresses on grain composition and quality in food grains. Grain protein declines under salt stress due to the restricted absorption of nitrate from the soil solution. Grain phosphorus, nitrogen, and potassium contents declined whereas sodium and chloride increased. However, under drought, grain protein increased whereas the oil contents were decreased. For example, among fatty acids, oleic acid content increased; however, linoleic and/or linolenic acids were decreased under drought. Heat stress increased grain oil content whereas grain protein was decreased. Low temperature during late pod-filling reduced starch, protein, soluble sugar, fat, and fiber contents. However, an elevated CO2 level improved omega-3 fatty acid content at the expense of omega-6 fatty acids. Crop management and improvement strategies, next generation sequencing, and gene manipulation can help improve quality of food legumes under abiotic stresses.
Collapse
Affiliation(s)
- Muhammad Farooq
- Department of Crop Sciences, College of Agricultural and Marine Sciences , Sultan Qaboos University , Al-Khoud 123 , Oman
- Department of Agronomy , University of Agriculture , Faisalabad , Pakistan 38040
- The UWA Institute of Agriculture , The University of Western Australia , LB 5005 , Perth Western Australia 6001 , Australia
- College of Food and Agricultural Sciences , King Saud University , Riyadh 11451 , Saudi Arabia
| | - Mubshar Hussain
- Department of Agronomy , Bahauddin Zakariya University , Multan , Pakistan 60000
- School of Veterinary and Life Sciences , Murdoch University , 90 South Street , Murdoch , Western Australia 6150 , Australia
| | - Muhammad Usman
- Department of Agronomy , University of Agriculture , Faisalabad , Pakistan 38040
| | - Shahid Farooq
- Department of Plant Protection , Harran University , Sanliurfa , Turkey
| | - Salem S Alghamdi
- College of Food and Agricultural Sciences , King Saud University , Riyadh 11451 , Saudi Arabia
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture , The University of Western Australia , LB 5005 , Perth Western Australia 6001 , Australia
| |
Collapse
|
22
|
Interface Interactions of the Bowman-Birk Inhibitor BTCI in a Ternary Complex with Trypsin and Chymotrypsin Evaluated by Semiempirical Quantum Mechanical Calculations. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
A Bowman-Birk type chymotrypsin inhibitor peptide from the amphibian, Hylarana erythraea. Sci Rep 2018; 8:5851. [PMID: 29643444 PMCID: PMC5895817 DOI: 10.1038/s41598-018-24206-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/28/2018] [Indexed: 01/10/2023] Open
Abstract
The first amphibian skin secretion-derived Bowman-Birk type chymotrypsin inhibitor is described here from the Asian green frog, Hylarana erythraea, and was identified by use of molecular cloning and tandem mass spectrometric amino acid sequencing. It was named Hylarana erythraea chymotrypsin inhibitor (HECI) and in addition to inhibition of chymotrypsin (Ki = 3.92 ± 0.35 μM), the peptide also inhibited the 20 S proteasome (Ki = 8.55 ± 1.84 μM). Additionally, an analogue of HECI, named K9-HECI, in which Phe9 was substituted by Lys9 at the P1 position, was functional as a trypsin inhibitor. Both peptides exhibited anti-proliferation activity against the human cancer cell lines, H157, PC-3 and MCF-7, up to a concentration of 1 mM and possessed a low degree of cytotoxicity on normal cells, HMEC-1. However, HECI exhibited higher anti-proliferative potency against H157. The results indicate that HECI, inhibiting chymotryptic-like activity of proteasome, could provide new insights in treatment of lung cancer.
Collapse
|
24
|
Routray DS. Bowman Birk Inhibitors (BBI) in interception of inflammation and malignant transformation of OPMDs. Oral Oncol 2018; 78:220-221. [PMID: 29429632 DOI: 10.1016/j.oraloncology.2018.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/01/2018] [Accepted: 02/04/2018] [Indexed: 10/18/2022]
Affiliation(s)
- Dr Samapika Routray
- M.D.S(Oral Pathology & Microbiology), Department of Dental Surgery, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India.
| |
Collapse
|
25
|
Nabi M, Bhat A, Abeer Rasool SU, Ashraf S, Maqbool R, Ahmad Ganie S, Amin S. Physio-chemical Characterization and Anti-microbial Activity of Serine Protease Inhibitors Purified from the Sophora japonica Seeds. Pak J Biol Sci 2018; 21:432-440. [PMID: 30724044 DOI: 10.3923/pjbs.2018.432.440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
BACKGROUND AND OBJECTIVE Protease inhibitors (PIs) regulate various cellular processes like cell cycle, differentiation, apoptosis and immune responses. Leguminous seeds are rich sources of protease inhibitors and many novel protease inhibitors have been purified from them. To isolate and purify protease inhibitors from seeds of Sophora japonica, characterize and investigate their anti- microbial activity. MATERIALS AND METHODS Protease inhibitors (SJ-pi I and SJ-pi II) were purified to homogeneity by ammonium sulfate precipitation, Ion exchange chromatography and column chromatography. The molecular mass was estimated by size exclusion chromatography and by SDS-PAGE and anti- microbial activity was tested by agar disk diffusion method. RESULTS Two protease inhibitors were isolated and purified from Sophora japonica seeds, SJ-pi I and SJ-pi II, with molecular weight of 15.1 and 31 kDa, respectively. Both purified inhibitors were active over a range of pH (6.0-9.0) and showed maximum activity in the temperature range of 30-40°C. They inhibited the growth of three Gram-positive bacteria. CONCLUSION Protease inhibitors were classified as serine protease inhibitors, however further necessary structural investigations need to be carried out so as to group them into specific class of serine protease inhibitors.
Collapse
|
26
|
He H, Li X, Kong X, Hua Y, Chen Y. Heat-induced inactivation mechanism of soybean Bowman-Birk inhibitors. Food Chem 2017; 232:712-720. [PMID: 28490132 DOI: 10.1016/j.foodchem.2017.04.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 03/13/2017] [Accepted: 04/11/2017] [Indexed: 11/30/2022]
Abstract
Due to the complications of the soymilk system, the heat-induced Bowman-Birk inhibitor (BBI) inactivation mechanism is not well known. In this study, two BBI samples with low and high purities were prepared from soymilk. It was confirmed that three groups (A, C, and D) of BBI, which are contained in soybean seeds, were transferred into soymilk during processing. On heating, it was found that 1) the two subdomains of BBI were not equally heat stable, 2) the conformation of BBI gradually changed, 3) some amino acid residues (namely, cystine, serine and lysine) in BBI were degraded, 4) BBI did not tend to form intermolecular cross-links with another BBI, but did slightly with non-BBI proteins. Based on some previous studies, the conformational change of BBI was attributed to β-elimination reactions on the amino acid residues of BBI and the subsequent intramolecular reactions induced by the products yielded by the β-elimination reactions.
Collapse
Affiliation(s)
- Hui He
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Xingfei Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Xiangzhen Kong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Yufei Hua
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Yeming Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China.
| |
Collapse
|
27
|
|
28
|
He H, Li X, Kong X, Zhang C, Hua Y, Chen Y. Effects of Disulfide Bond Reduction on the Conformation and Trypsin/Chymotrypsin Inhibitor Activity of Soybean Bowman-Birk Inhibitor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2461-2467. [PMID: 28249116 DOI: 10.1021/acs.jafc.6b05829] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Soybean seeds contain three groups (A, C, and D) of Bowman-Birk inhibitors (BBIs). In this study, highly purified BBI-A (approximately 96%) was obtained from soybean whey at the 0.1 g level by the complex coacervation method. BBI-A has seven disulfide bonds (SS) and no sulfhydryl group and exhibits trypsin inhibitor activity (TIA) and chymotrypsin inhibitor activity (CIA). The X-ray structure has shown that BBI-A has five exposed SS and two buried SS. Because of steric hindrance, it was reasonable to consider that dithiothreitol first attacks the five exposed SS and then the two buried SS, which was supported by the results that SS reduction with dithiothreitol could be divided into quick and slow stages, and the critical point was close to 5/7. The effects of SS reduction on TIA and CIA could be divided into three stages: when one exposed SS was reduced, both TIA and CIA decreased to approximately 60%; with further reduction of exposed SS, CIA gradually decreased to 8% and TIA gradually decreased to 26%; with further reduction of buried SS, CIA gradually decreased to 2% and TIA slightly decreased to 24%. Far-ultraviolet (far-UV) circular dichroism (CD) spectra showed that the secondary structure of BBI-A was slightly changed, whereas near-ultraviolet (near-UV) CD spectra showed that the conformation of BBI-A was substantially changed after the five exposed SS were reduced; further reduction of buried SS affected the conformation to some extent. The results of Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis and from a C8 column showed the same trend as near-UV CD spectra. BBI-A has a structural peculiarity in that two hydrophobic patches are exposed to the exterior (in contrast to typical soluble proteins), which was attributed to the seven SS by some researchers. These results support the hypothesis that hydrophobic collapse of the exposed hydrophobic patches into a regular hydrophobic core occurred after the reduction of SS in BBI-A.
Collapse
Affiliation(s)
- Hui He
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University , 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| | - Xingfei Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University , 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| | - Xiangzhen Kong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University , 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| | - Caimeng Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University , 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| | - Yufei Hua
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University , 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| | - Yeming Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University , 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
29
|
Microbial carcinogenic toxins and dietary anti-cancer protectants. Cell Mol Life Sci 2017; 74:2627-2643. [PMID: 28238104 PMCID: PMC5487888 DOI: 10.1007/s00018-017-2487-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 12/16/2022]
Abstract
Several toxins are known which account for the ability of some bacteria to initiate or promote carcinogenesis. These ideas are summarised and evidence is discussed for more specific mechanisms involving chymotrypsin and the bacterial chymotryptic enzyme subtilisin. Subtilisin and Bacillus subtilis are present in the gut and environment and both are used commercially in agriculture, livestock rearing and meat processing. The enzymes deplete cells of tumour suppressors such as deleted in colorectal cancer (DCC) and neogenin, so their potential presence in the food chain might represent an important link between diet and cancer. Over-eating increases secretion of chymotrypsin which is absorbed from the gut and could contribute to several forms of cancer linked to obesity. Inhibition of these serine proteases by Bowman–Birk inhibitors in fruit and vegetables could account for some of the protective effects of a plant-rich diet. These interactions represent previously unknown non-genetic mechanisms for the modification of tumour suppressor proteins and provide a plausible explanation contributing to both the pro-oncogenic effects of meat products and the protective activity of a plant-rich diet. The data suggest that changes to farming husbandry and food processing methods to remove these sources of extrinsic proteases might significantly reduce the incidence of several cancers.
Collapse
|
30
|
Srikanth S, Chen Z. Plant Protease Inhibitors in Therapeutics-Focus on Cancer Therapy. Front Pharmacol 2016; 7:470. [PMID: 28008315 PMCID: PMC5143346 DOI: 10.3389/fphar.2016.00470] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 11/18/2016] [Indexed: 12/28/2022] Open
Abstract
Plants are known to have many secondary metabolites and phytochemical compounds which are highly explored at biochemical and molecular genetics level and exploited enormously in the human health care sector. However, there are other less explored small molecular weight proteins, which inhibit proteases/proteinases. Plants are good sources of protease inhibitors (PIs) which protect them against diseases, insects, pests, and herbivores. In the past, proteinaceous PIs were considered primarily as protein-degrading enzymes. Nevertheless, this view has significantly changed and PIs are now treated as very important signaling molecules in many biological activities such as inflammation, apoptosis, blood clotting and hormone processing. In recent years, PIs have been examined extensively as therapeutic agents, primarily to deal with various human cancers. Interestingly, many plant-based PIs are also found to be effective against cardiovascular diseases, osteoporosis, inflammatory diseases and neurological disorders. Several plant PIs are under further evaluation in in vitro clinical trials. Among all types of PIs, Bowman-Birk inhibitors (BBI) have been studied extensively in the treatment of many diseases, especially in the field of cancer prevention. So far, crops such as beans, potatoes, barley, squash, millet, wheat, buckwheat, groundnut, chickpea, pigeonpea, corn, and pineapple have been identified as good sources of PIs. The PI content of such foods has a significant influence on human health disorders, particularly in the regions where people mostly depend on these kind of foods. These natural PIs vary in concentration, protease specificity, heat stability, and sometimes several PIs may be present in the same species or tissue. However, it is important to carry out individual studies to identify the potential effects of each PI on human health. PIs in plants make them incredible sources to determine novel PIs with specific pharmacological and therapeutic effects due to their peculiarity and superabundance.
Collapse
Affiliation(s)
| | - Zhong Chen
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological UniversitySingapore, Singapore
| |
Collapse
|
31
|
Forrest CM, McNair K, Vincenten MCJ, Darlington LG, Stone TW. Selective depletion of tumour suppressors Deleted in Colorectal Cancer (DCC) and neogenin by environmental and endogenous serine proteases: linking diet and cancer. BMC Cancer 2016; 16:772. [PMID: 27716118 PMCID: PMC5054602 DOI: 10.1186/s12885-016-2795-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 09/21/2016] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The related tumour suppressor proteins Deleted in Colorectal Cancer (DCC) and neogenin are absent or weakly expressed in many cancers, whereas their insertion into cells suppresses oncogenic behaviour. Serine proteases influence the initiation and progression of cancers although the mechanisms are unknown. METHODS The effects of environmental (bacterial subtilisin) and endogenous mammalian (chymotrypsin) serine proteases were examined on protein expression in fresh, normal tissue and human neuroblastoma and mammary adenocarcinoma lines. Cell proliferation and migration assays (chemoattraction and wound closure) were used to examine cell function. Cells lacking DCC were transfected with an ectopic dcc plasmid. RESULTS Subtilisin and chymotrypsin selectively depleted DCC and neogenin from cells at nanomolar concentrations without affecting related proteins. Cells showed reduced adherence and increased migration, but after washing they re-attached within 24 h, with recovery of protein expression. These effects are induced by chymotryptic activity as they are prevented by chymostatin and the soybean Bowman-Birk inhibitor typical of many plant protease inhibitors. CONCLUSIONS Bacillus subtilis, which secretes subtilisin is widely present in soil, the environment and the intestinal contents, while subtilisin itself is used in meat processing, animal feed probiotics and many household cleaning agents. With chymotrypsin present in chyme, blood and tissues, these proteases may contribute to cancer development by depleting DCC and neogenin. Blocking their activity by Bowman-Birk inhibitors may explain the protective effects of a plant diet. Our findings identify a potential non-genetic contribution to cancer cell behaviour which may explain both the association of processed meats and other factors with cancer incidence and the protection afforded by plant-rich diets, with significant implications for cancer prevention.
Collapse
Affiliation(s)
- Caroline M Forrest
- College of Medical, Veterinary and Life Sciences, West Medical Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Kara McNair
- College of Medical, Veterinary and Life Sciences, West Medical Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Maria C J Vincenten
- College of Medical, Veterinary and Life Sciences, West Medical Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | - Trevor W Stone
- College of Medical, Veterinary and Life Sciences, West Medical Building, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
32
|
Dia VP, Krishnan HB. BG-4, a novel anticancer peptide from bitter gourd (Momordica charantia), promotes apoptosis in human colon cancer cells. Sci Rep 2016; 6:33532. [PMID: 27628414 PMCID: PMC5024301 DOI: 10.1038/srep33532] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/26/2016] [Indexed: 02/08/2023] Open
Abstract
Momordica charantia is a perennial plant with reported health benefits. BG-4, a novel peptide from Momordica charantia, was isolated, purified and characterized. The trypsin inhibitory activity of BG-4 is 8.6 times higher than purified soybean trypsin inhibitor. The high trypsin inhibitory activity of BG-4 may be responsible for its capability to cause cytotoxicity to HCT-116 and HT-29 human colon cancer cells with ED50 values of 134.4 and 217.0 μg/mL after 48 h of treatment, respectively. The mechanism involved in the cytotoxic effect may be associated with induction of apoptosis as evidenced by increased percentage of HCT-116 and HT-29 colon cancer cells undergoing apoptosis from 5.4% (untreated) to 24.8% (BG-4 treated, 125 μg/mL for 16 h) and 8.5% (untreated) to 31.9% (BG-4 treated, 125 μg/mL for 16 h), respectively. The molecular mechanistic explanation in the apoptosis inducing property of BG-4 is due to reduced expression of Bcl-2 and increased expression of Bax leading to increased expression of caspase-3 and affecting the expression of cell cycle proteins p21 and CDK2. This is the first report on the anti-cancer potential of a novel bioactive peptide isolated from Momordica charantia in vitro supporting the potential therapeutic property of BG-4 against colon cancer that must be addressed using in vivo models of colon carcinogenesis.
Collapse
Affiliation(s)
- Vermont P Dia
- Department of Food Science and Technology, The University of Tennessee Institute of Agriculture, Knoxville TN 37996 USA
| | - Hari B Krishnan
- USDA-ARS Plant Genetics Resources Unit, University of Missouri, Columbia, MO 65211 USA
| |
Collapse
|
33
|
Lima A, Mota J, Monteiro S, Ferreira R. Legume seeds and colorectal cancer revisited: Protease inhibitors reduce MMP-9 activity and colon cancer cell migration. Food Chem 2016; 197:30-8. [DOI: 10.1016/j.foodchem.2015.10.063] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 09/29/2015] [Accepted: 10/14/2015] [Indexed: 02/07/2023]
|
34
|
Mehdad A, Xavier Reis G, Souza AA, Barbosa JARG, Ventura MM, de Freitas SM. A Bowman-Birk inhibitor induces apoptosis in human breast adenocarcinoma through mitochondrial impairment and oxidative damage following proteasome 20S inhibition. Cell Death Discov 2016; 2:15067. [PMID: 27551492 PMCID: PMC4979482 DOI: 10.1038/cddiscovery.2015.67] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/19/2015] [Accepted: 12/03/2015] [Indexed: 12/29/2022] Open
Abstract
Proteasome inhibitors are emerging as a new class of chemopreventive agents and have gained huge importance as potential pharmacological tools in breast cancer treatment. Improved understanding of the role played by proteases and their specific inhibitors in humans offers novel and challenging opportunities for preventive and therapeutic intervention. In this study, we demonstrated that the Bowman-Birk protease inhibitor from Vigna unguiculata seeds, named black-eyed pea trypsin/chymotrypsin Inhibitor (BTCI), potently suppresses human breast adenocarcinoma cell viability by inhibiting the activity of proteasome 20S. BTCI induced a negative growth effect against a panel of breast cancer cells, with a concomitant cytostatic effect at the G2/M phase of the cell cycle and an increase in apoptosis, as observed by an augmented number of cells at the sub-G1 phase and annexin V-fluorescin isothiocyanate (FITC)/propidium iodide (PI) staining. In contrast, BTCI exhibited no cytotoxic effect on normal mammary epithelial cells. Moreover, the increased levels of intracellular reactive oxygen species (ROS) and changes in the mitochondrial membrane potential in cells treated with BTCI indicated mitochondrial damage as a crucial cellular event responsible for the apoptotic process. The higher activity of caspase in tumoral cells treated with BTCI in comparison with untreated cells suggests that BTCI induces apoptosis in a caspase-dependent manner. BTCI affected NF-kB target gene expression in both non invasive and invasive breast cancer cell lines, with the effect highly pronounced in the invasive cells. An increased expression of interleukin-8 (IL-8) in both cell lines was also observed. Taken together, these results suggest that BTCI promotes apoptosis through ROS-induced mitochondrial damage following proteasome inhibition. These findings highlight the pharmacological potential and benefit of BTCI in breast cancer treatment.
Collapse
Affiliation(s)
- A Mehdad
- Laboratory of Molecular Biophysics, Institute
of Biological Sciences, University of Brasilia, Brasilia,
Brazil
| | - Giselle Xavier Reis
- Faculty of Medicine, Department of Molecular
Pathology, University of Brasilia, Brasilia, Brazil
| | - AA Souza
- Laboratory of Molecular Biophysics, Institute
of Biological Sciences, University of Brasilia, Brasilia,
Brazil
| | - JARG Barbosa
- Laboratory of Molecular Biophysics, Institute
of Biological Sciences, University of Brasilia, Brasilia,
Brazil
| | - MM Ventura
- Laboratory of Molecular Biophysics, Institute
of Biological Sciences, University of Brasilia, Brasilia,
Brazil
| | - SM de Freitas
- Laboratory of Molecular Biophysics, Institute
of Biological Sciences, University of Brasilia, Brasilia,
Brazil
| |
Collapse
|
35
|
Arques MC, Pastoriza S, Delgado-Andrade C, Clemente A, Rufián-Henares JA. Relationship between Glycation and Polyphenol Content and the Bioactivity of Selected Commercial Soy Milks. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1823-1830. [PMID: 26878080 DOI: 10.1021/acs.jafc.6b00181] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Soy milk is a health-promoting beverage of which consumption is steadily expanding. Different bioactivities have been associated with soy products such as antioxidant capacity, anti-inflammatory properties, or decrease of cancer development risk. These activities have been related to the presence of several compounds, including polyphenols and serine protease inhibitors, although factors influencing such activities have been scarcely studied. In this study, we have determined the antioxidant capacity (ABTS and FRAP methods measured with the global antioxidant response, GAR protocol), total phenolic content, serine protease inhibitory activity, and presence of heat damage indicators in commercial soy milks. Polyphenols were primarily responsible for the antioxidant capacity of soy milks, increasing their concentration after digestion. Glycation under heat treatment might be responsible for decreasing protease inhibitory activities in soy milks. The results obtained support a role for furosine, a known marker of Maillard reaction and glycation, as a potential indicator to monitor both thermal treatment and effects on protease inhibitory activities in soy milk. The contribution of soy milk consumption to the daily intake of antioxidants and serine protease inhibitory activities is discussed.
Collapse
Affiliation(s)
- M Carmen Arques
- Departamento Fisiología y Bioquı́mica de la Nutrición Animal, Estación Experimental del Zaidin (EEZ-CSIC) , 18008 Granada, Spain
| | - Silvia Pastoriza
- Departamento de Nutrición y Bromatologı́a, Facultad de Farmacia, Campus de Cartuja, Universidad de Granada , 18071 Granada, Spain
| | - Cristina Delgado-Andrade
- Departamento Fisiología y Bioquı́mica de la Nutrición Animal, Estación Experimental del Zaidin (EEZ-CSIC) , 18008 Granada, Spain
| | - Alfonso Clemente
- Departamento Fisiología y Bioquı́mica de la Nutrición Animal, Estación Experimental del Zaidin (EEZ-CSIC) , 18008 Granada, Spain
| | - José A Rufián-Henares
- Departamento de Nutrición y Bromatologı́a, Facultad de Farmacia, Campus de Cartuja, Universidad de Granada , 18071 Granada, Spain
| |
Collapse
|
36
|
Hernández-Ledesma B, Hsieh CC. Chemopreventive role of food-derived proteins and peptides: A review. Crit Rev Food Sci Nutr 2015; 57:2358-2376. [DOI: 10.1080/10408398.2015.1057632] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Blanca Hernández-Ledesma
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM, CEI UAM+CSIC), Madrid, Spain
| | - Chia-Chien Hsieh
- Department of Human Development and Family Studies (Nutritional Science and Education), National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
37
|
Effect of processing methods on compositional evaluation of underutilized legume, Parkia roxburghii G. Don (yongchak) seeds. Journal of Food Science and Technology 2015; 52:6157-69. [PMID: 26396363 DOI: 10.1007/s13197-015-1732-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/02/2015] [Accepted: 01/07/2015] [Indexed: 10/24/2022]
Abstract
The present study has been undertaken to analyze the effect of various processing methods like (i) soaking followed by autoclaving with (a) ash, (b) sodium bicarbonate, (c) sugar and (d) water; (ii) dry heating and (iii) fermentation on nutritional and antinutritional components of under-utilized tree legume Parkia roxburghii. The applied methods were found to enhance the protein (15-36 %) and lipid content (11-69 %) and to decrease the other proximal components. All the methods significantly reduced the antinutrients viz. condensed tannins, phytate, saponins, trypsin inhibitors, chymotrypsin inhibitors and lectins. Exceptionally, increased content was documented on total phenolics (117-207 %) and tannins (171-257 %). These reduced antinutritional loads have led to an increase in protein (9-20 %) and starch digestibility (75-254 %). Fermented kernels, the best processed form showed characteristic leguminous pattern for content and composition of amino acids, fatty acids and minerals. So knowledge gathering and exploration of nutritionally balanced under-utilized legumes would enhance food and nutritional security.
Collapse
|
38
|
Clemente A, Arques MC, Dalmais M, Le Signor C, Chinoy C, Olias R, Rayner T, Isaac PG, Lawson DM, Bendahmane A, Domoney C. Eliminating anti-nutritional plant food proteins: the case of seed protease inhibitors in pea. PLoS One 2015; 10:e0134634. [PMID: 26267859 PMCID: PMC4534040 DOI: 10.1371/journal.pone.0134634] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/11/2015] [Indexed: 12/03/2022] Open
Abstract
Several classes of seed proteins limit the utilisation of plant proteins in human and farm animal diets, while plant foods have much to offer to the sustainable intensification of food/feed production and to human health. Reduction or removal of these proteins could greatly enhance seed protein quality and various strategies have been used to try to achieve this with limited success. We investigated whether seed protease inhibitor mutations could be exploited to enhance seed quality, availing of induced mutant and natural Pisum germplasm collections to identify mutants, whilst acquiring an understanding of the impact of mutations on activity. A mutant (TILLING) resource developed in Pisum sativum L. (pea) and a large germplasm collection representing Pisum diversity were investigated as sources of mutations that reduce or abolish the activity of the major protease inhibitor (Bowman-Birk) class of seed protein. Of three missense mutations, predicted to affect activity of the mature trypsin / chymotrypsin inhibitor TI1 protein, a C77Y substitution in the mature mutant inhibitor abolished inhibitor activity, consistent with an absolute requirement for the disulphide bond C77-C92 for function in the native inhibitor. Two further classes of mutation (S85F, E109K) resulted in less dramatic changes to isoform or overall inhibitory activity. The alternative strategy to reduce anti-nutrients, by targeted screening of Pisum germplasm, successfully identified a single accession (Pisum elatius) as a double null mutant for the two closely linked genes encoding the TI1 and TI2 seed protease inhibitors. The P. elatius mutant has extremely low seed protease inhibitory activity and introgression of the mutation into cultivated germplasm has been achieved. The study provides new insights into structure-function relationships for protease inhibitors which impact on pea seed quality. The induced and natural germplasm variants identified provide immediate potential for either halving or abolishing the corresponding inhibitory activity, along with associated molecular markers for breeding programmes. The potential for making large changes to plant protein profiles for improved and sustainable food production through diversity is illustrated. The strategy employed here to reduce anti-nutritional proteins in seeds may be extended to allergens and other seed proteins with negative nutritional effects. Additionally, the novel variants described for pea will assist future studies of the biological role and health-related properties of so-called anti-nutrients.
Collapse
Affiliation(s)
- Alfonso Clemente
- Department of Physiology and Biochemistry of Animal Nutrition, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Maria C. Arques
- Department of Physiology and Biochemistry of Animal Nutrition, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Marion Dalmais
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA 1165—CNRS 8114—UEVE 2, Rue Gaston Crémieux—CP 5708—F-91000 Evry cedex, France
| | - Christine Le Signor
- UMR 1347 Agroécologie AgroSup/INRA/uB, Pôle Génétique & Ecophysiologie GEAPSI, 17 rue Sully BP 86510, 21065 Dijon cedex, France
| | - Catherine Chinoy
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Raquel Olias
- Department of Physiology and Biochemistry of Animal Nutrition, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Tracey Rayner
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Peter G. Isaac
- IDna Genetics Ltd, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - David M. Lawson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Abdelhafid Bendahmane
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA 1165—CNRS 8114—UEVE 2, Rue Gaston Crémieux—CP 5708—F-91000 Evry cedex, France
| | - Claire Domoney
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
39
|
Sgambati V, Pizzo E, Mezzacapo MC, Di Giuseppe AMA, Landi N, Poerio E, Di Maro A. Cytotoxic activity of chimeric protein PD-L4UWSCI(tr) does not appear be affected by specificity of inhibition mediated by anti-protease WSCI domain. Biochimie 2015; 107 Pt B:385-90. [PMID: 25457104 DOI: 10.1016/j.biochi.2014.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/12/2014] [Indexed: 02/07/2023]
Abstract
In a previously study, a type 1 ribosome inactivating protein (PD-L4) and a wheat subtilisin/chymotrypsin inhibitor (WSCI) were engineered into a chimeric protein (PD-L4UWSCI) that presented in addition to the same properties of both domains an intriguing selective cytotoxic action on murine tumor cells. This finding supported the idea that the protection of C-terminal region of PD-L4 could amplify its cytotoxic action by virtue of a greater resistance to proteases. Several authors indeed revealed that the cytotoxicity of RIPs depends not only on the intracellular routing, but also on the intrinsic resistance to proteolysis. In this regard in the present work we have produced a variant of chimeric protein, named PD-L4UWSCI(tr), changing the inhibitory specificity of WSCI domain. The purpose of this approach was to check if the cytotoxicity of the chimeric protein was altered depending on the properties of protease inhibitor domain or by a different fold of whole protein. Data collected supposedly indicate that WSCI domain contributes to cytotoxicity of chimeric protein exclusively from a structural point of view.
Collapse
|
40
|
Cruz-Huerta E, Fernández-Tomé S, Arques MC, Amigo L, Recio I, Clemente A, Hernández-Ledesma B. The protective role of the Bowman-Birk protease inhibitor in soybean lunasin digestion: the effect of released peptides on colon cancer growth. Food Funct 2015; 6:2626-35. [PMID: 26132418 DOI: 10.1039/c5fo00454c] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Lunasin is a naturally-occurring peptide demonstrating chemopreventive, antioxidant and anti-inflammatory properties. To exhibit these activities, orally ingested lunasin needs to survive proteolytic attack of digestive enzymes to reach target tissues in active form/s. Preliminary studies suggested the protective role of protease inhibitors, such as the Bowman-Birk inhibitor and Kunitz-trypsin inhibitor, against lunasin's digestion by both pepsin and pancreatin. This work describes in depth the behaviour of lunasin under conditions simulating the transit through the gastrointestinal tract in the absence or presence of soybean Bowman-Birk isoinhibitor 1 (IBB1) in both active and inactive states. By liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS), the remaining lunasin at the end of gastric and gastro-duodenal phases was quantified. Protection against the action of pepsin was independent of the amount of IBB1 present in the analyzed samples, whereas an IBB1 dose-dependent protective effect against trypsin and chymotrypsin was observed. Peptides released from lunasin and inactive IBB1 were identified by MS/MS. The remaining lunasin and IBB1 as well as their derived peptides could be responsible for the anti-proliferative activity against colon cancer cells observed for the digests obtained at the end of simulated gastrointestinal digestion.
Collapse
Affiliation(s)
- Elvia Cruz-Huerta
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM CEI UAM+CSIC), Nicolás Cabrera, 9, 28049 Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
41
|
Effects of industrial canning on the proximate composition, bioactive compounds contents and nutritional profile of two Spanish common dry beans (Phaseolus vulgaris L.). Food Chem 2015; 166:68-75. [DOI: 10.1016/j.foodchem.2014.05.158] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 05/29/2014] [Accepted: 05/31/2014] [Indexed: 11/22/2022]
|
42
|
Rakashanda S, Qazi AK, Majeed R, Andrabi SM, Hamid A, Sharma PR, Amin S. Plant-derived protease inhibitors LC-pi (Lavatera cashmeriana) inhibit human lung cancer cell proliferation in vitro. Nutr Cancer 2014; 67:156-66. [PMID: 25412192 DOI: 10.1080/01635581.2015.967876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The objective of this study was to check the anticancer activity of purified protease inhibitors of Lavatera cashmeriana viz LC-pi I, II, III, and IV (Lavatera cashmeriana protease inhibitors) on A549 (lung) cell. It was found that LC-pi I and II significantly inhibited the proliferation of A549 cells with IC₅₀ value of 54 μg/ml and 38 μg/ml, respectively, whereas inhibition by LC-pi III and IV was negligible. LC-pi I and II were further found to inhibit formation of colonies in a dose-dependent manner. Also, both inhibitors were found to induce apoptosis causing chromatin condensation and DNA fragmentation, without loss of mitochondrial membrane potential. Cell cycle revealed a significant increase of subG₀/G₁ phase cells that are apoptotic cells. We also demonstrated a dose-dependent decrease in migration of A549 cells on cell migration assay by both inhibitors. Taken together, we demonstrate that LC-pi I and II inhibited proliferation through arresting cells before apoptosis, inducing apoptosis and inhibiting cell migration in human lung cancer cells, but the study warrants further investigation. Our results support the notion that plant protease inhibitors may have the potential to advance as chemopreventive agents.
Collapse
Affiliation(s)
- Syed Rakashanda
- a Department of Biochemistry , The University of Kashmir , Srinagar , India
| | | | | | | | | | | | | |
Collapse
|
43
|
Clemente A, Arques MDC. Bowman-Birk inhibitors from legumes as colorectal chemopreventive agents. World J Gastroenterol 2014; 20:10305-10315. [PMID: 25132747 PMCID: PMC4130838 DOI: 10.3748/wjg.v20.i30.10305] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/21/2014] [Accepted: 04/23/2014] [Indexed: 02/06/2023] Open
Abstract
Aberrant functioning of serine proteases in inflammatory and carcinogenic processes within the gastrointestinal tract (GIT) has prompted scientists to investigate the potential of serine protease inhibitors, both natural and synthetic, as modulators of their proteolytic activities. Protease inhibitors of the Bowman-Birk type, a major protease inhibitor family in legume seeds, which inhibit potently and specifically trypsin- and chymotrypsin-like proteases, are currently being investigated as colorectal chemopreventive agents. Physiologically relevant amounts of Bowman-Birk inhibitors (BBI) can reach the large intestine in active form due to their extraordinary resistance to extreme conditions within the GIT. Studies in animal models have proven that dietary BBI from several legume sources, including soybean, pea, lentil and chickpea, can prevent or suppress carcinogenic and inflammatory processes within the GIT. Although the therapeutic targets and the action mechanism of BBI have not yet been elucidated, the emerging evidence suggests that BBI exert their preventive properties via protease inhibition; in this sense, serine proteases should be considered as primary targets in early stages of carcinogenesis. The validation of candidate serine proteases as therapeutic targets together with the identification, within the wide array of natural BBI variants, of the most potent and specific protease inhibitors, are necessary to better understand the potential of this protein family as colorectal chemopreventive agents.
Collapse
|
44
|
Li X, Dong D, Hua Y, Chen Y, Kong X, Zhang C. Soybean whey protein/chitosan complex behavior and selective recovery of kunitz trypsin inhibitor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:7279-86. [PMID: 24999928 DOI: 10.1021/jf501904g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Proteins in soybean whey were separated by Tricine-SDS-PAGE and identified by MALDI-TOF/TOF-MS. In addition to β-amylase, soybean agglutinin (SBA), and Kunitz trypsin inhibitor (KTI), a 12 kDa band was found to have an amino acid sequence similar to that of Bowman-Birk protease inhibitor (BBI) and showed both trypsin and chymotrypsin inhibitor activities. The complex behavior of soybean whey proteins (SWP) with chitosan (Ch) as a function of pH and protein to polysaccharide ratio (RSWP/Ch) was studied by turbidimetric titration and SDS-PAGE. During pH titration, the ratio of zeta potentials (absolute values) for proteins to chitosan (|ZSWP|/ZCh) at the initial point of phase separation (pHφ1) was equal to the reciprocal of their mass ratio (SWP/Ch), revealing that the electric neutrality conditions were fulfilled. The maximum protein recovery (32%) was obtained at RSWP/Ch = 4:1 and pH 6.3, whereas at RSWP/Ch = 20:1 and pH 5.5, chitosan consumption was the lowest (0.196 g Ch/g recovered proteins). In the protein-chitosan complex, KTI and the 12 kDa protein were higher in content than SBA and β-amylase. However, if soybean whey was precentrifuged to remove aggregated proteins and interacted with chitosan at the conditions of SWP/Ch = 100:1, pH 4.8, and low ionic strength, KTI was found to be selectively complexed. After removal of chitosan at pH 10, a high-purity KTI (90% by SEC-HPLC) could be obtained.
Collapse
Affiliation(s)
- Xingfei Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University , 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People's Republic of China
| | | | | | | | | | | |
Collapse
|
45
|
Arques MC, Marín-Manzano MC, da Rocha LCB, Hernandez-Ledesma B, Recio I, Clemente A. Quantitative determination of active Bowman-Birk isoinhibitors, IBB1 and IBBD2, in commercial soymilks. Food Chem 2014; 155:24-30. [PMID: 24594149 DOI: 10.1016/j.foodchem.2014.01.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/28/2013] [Accepted: 01/10/2014] [Indexed: 12/27/2022]
Abstract
Naturally-occurring serine protease inhibitors of the Bowman-Birk family exert their potential chemopreventive and/or therapeutic properties via protease inhibition. In this study, we have quantified the amounts of active BBI isoinhibitors, IBB1 and IBBD2, in six commercial soymilks. By using cation exchange chromatography, the BBI isoinhibitors were isolated and their specific trypsin inhibitory activity was used to estimate their amounts in soymilk samples. IBB1 and IBBD2 concentrations ranged from 0.44 to 5.20 and 0.27 to 4.60 mg/100ml of soymilk, respectively; total BBI, considered as the sum of both isoinhibitors, ranged from 0.60 to 9.07 mg/100ml of soymilk. These data show that physiologically relevant amounts of active BBI are present in commercial soymilk and may exert potential health-promoting effects.
Collapse
Affiliation(s)
- M Carmen Arques
- Department of Nutrition, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - M Carmen Marín-Manzano
- Department of Nutrition, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | | | - Blanca Hernandez-Ledesma
- Department of Food Analysis and Bioactivity, Institute of Food Science (CIAL, CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Isidra Recio
- Department of Food Analysis and Bioactivity, Institute of Food Science (CIAL, CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Alfonso Clemente
- Department of Nutrition, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008 Granada, Spain.
| |
Collapse
|
46
|
Rakashanda S, Qazi AK, Majeed R, Rafiq S, Dar IM, Masood A, Hamid A, Amin S. Antiproliferative activity of Lavatera cashmeriana- protease inhibitors towards human cancer cells. Asian Pac J Cancer Prev 2014; 14:3975-8. [PMID: 23886217 DOI: 10.7314/apjcp.2013.14.6.3975] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Proteases play a regulatory role in a variety of pathologies including cancer, pancreatitis, thromboembolic disorders, viral infections and many others. One of the possible strategies to combat these pathologies seems to be the use of protease inhibitors. LC-pi I, II, III and IV (Lavatera cashmerian-protease inhibitors) have been found in vitro to strongly inhibit trypsin, chymotrypsin and elastase, proteases contributing to tumour invasion and metastasis, indicated possible anticancer effects. The purpose of this study was to check in vitro anticancer activity of these four inhibitors on human lung cancer cell lines. MATERIAL AND METHODS In order to assess whether these inhibitors induced in vitro cytoxicity, SRB assay was conducted with THP-1 (leukemia), NCIH322 (lung) and Colo205, HCT-116 (colon) lines. RESULTS LC-pi I significantly inhibited the cell proliferation of all cells tested and also LC-pi II was active in all except HCT-116. Inhibition of cell growth by LC-pi III and IV was negligible. IC50 values of LC-pi I and II for NCIH322, were less compared to other cell lines suggesting that lung cancer cells are more inhibited. CONCLUSION These investigations might point to future preventive as well as curative solutions using plant protease inhibitors for various cancers, especially in the lung, hence warranting their further investigation.
Collapse
Affiliation(s)
- Syed Rakashanda
- Department of Biochemistry, University of Kashmir, Srinagar, J and K, India
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Gomes LS, Senna R, Sandim V, Silva-Neto MAC, Perales JEA, Zingali RB, Soares MR, Fialho E. Four conventional soybean [Glycine max (L.) Merrill] seeds exhibit different protein profiles as revealed by proteomic analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:1283-93. [PMID: 24377746 DOI: 10.1021/jf404351g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Soybeans have several functional properties due to their composition and may exert beneficial health effects that are attributed to proteins and their derivative peptides. The present study aimed to analyze the protein profiles of four new conventional soybean seeds (BRS 257, BRS 258, BRS 267, and Embrapa 48) with the use of proteomic tools. Two-dimensional (2D) and one-dimensional (1D) gel electrophoreses were performed, followed by MALDI-TOF/TOF and ESI-Q-TOF mass spectrometry analyses, respectively. These two different experimental approaches allowed the identification of 117 proteins from 1D gels and 46 differentially expressed protein spots in 2D gels. BRS 267 showed the greatest diversity of identified spots in the 2D gel analyses. In the 1D gels, the major groups were storage (25-40%) and lipid metabolism (11-25%) proteins. The differences in protein composition between cultivars could indicate functional and nutritional differences and could direct the development of new cultivars.
Collapse
Affiliation(s)
- Luciana S Gomes
- Departamento de Nutrição Básica e Experimental, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro , Av. Carlos Chagas Filho, Prédio do CCS, Bloco J-2, Laboratório 13, 393 Rio de Janeiro 21941-590, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Rubio LA, Pérez A, Ruiz R, Guzmán MÁ, Aranda-Olmedo I, Clemente A. Characterization of pea (Pisum sativum) seed protein fractions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:280-7. [PMID: 23744804 DOI: 10.1002/jsfa.6250] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/24/2013] [Accepted: 06/06/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND Legume seed proteins have to be chemically characterized in order to properly link their nutritional effects with their chemical structure. RESULTS Vicilin and albumin fractions devoid of cross-contamination, as assessed by mass peptide fingerprinting analysis, were obtained from defatted pea (Pisum sativum cv. Bilbo) meal. The extracted protein fractions contained 56.7-67.7 g non-starch polysaccharides kg⁻¹. The vicilin fraction was higher than legumins in arginine, isoleucine, leucine, phenylalanine and lysine. The most abundant amino acids in the albumin fraction were aspartic acid, glutamic acid, lysine and arginine, and the amounts of methionine were more than double than those in legumins and vicilins. The pea albumin fraction showed a clear enrichment of protease inhibitory activity when compared with the seed meal. In vitro digestibility values for pea proteins were 0.63 ± 0.04, 0.88 ± 0.04 and 0.41 ± 0.23 for legumins, vicilins and albumins respectively. CONCLUSION Vicilin and albumin fractions devoid of cross-contamination with other proteins were obtained from pea seed meal. The vicilin fraction also contained low amounts of soluble non-starch polysaccharides and was enriched in isoleucine, leucine, phenylalanine and lysine. In vitro digestibility values for pea proteins were similar or even numerically higher than those for control proteins.
Collapse
Affiliation(s)
- Luis A Rubio
- Physiology and Biochemistry of Animal Nutrition (EEZ, CSIC), Profesor Albareda 1, E-18008, Granada, Spain
| | | | | | | | | | | |
Collapse
|
49
|
Kudre TG, Benjakul S, Kishimura H. Comparative study on chemical compositions and properties of protein isolates from mung bean, black bean and bambara groundnut. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:2429-2436. [PMID: 23400865 DOI: 10.1002/jsfa.6052] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 12/16/2012] [Accepted: 01/09/2013] [Indexed: 06/01/2023]
Abstract
BACKGROUND Different legume seeds may have different protein compositions and properties, thereby affecting applications in food systems. This study aimed to extract and characterize protein isolates from legumes grown in Thailand, including mung bean (MBPI), black bean (BBPI) and bambara groundnut (BGPI). RESULTS All protein isolates had a protein content in the range of 85.2-88.2%. The highest trypsin inhibitory activity was found in BGPI. All protein isolates exhibited satisfactory balanced amino acids with respect to the FAO/WHO pattern. MBPI and BBPI had three predominant proteins with a molecular weight (MW) range of 42-54 kDa, whereas BGPI had two dominant proteins with MW of 52 and 62 kDa. Based on differential scanning calorimetric analysis, MBPI and BGPI had two endothermic peaks, whereas three peaks were found for BBPI. All protein isolates exhibited similar FTIR spectra, indicating similarity in functional group and structure. All protein isolates showed a minimum protein solubility at around pH 4-5. CONCLUSION All protein isolates were important sources of proteins with high lysine content. Isolates from different legumes showed slight differences in physiochemical and thermal properties. Those isolates can be used as proteinaceous ingredients in a variety of food products such as salad dressing, meat products and desserts.
Collapse
Affiliation(s)
- Tanaji G Kudre
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University Hat Yai, Songkhla, Thailand
| | | | | |
Collapse
|
50
|
Amigo-Benavent M, Nitride C, Bravo L, Ferranti P, del Castillo MD. Stability and bioactivity of a Bowman–Birk inhibitor in orange juice during processing and storage. Food Funct 2013; 4:1051-60. [DOI: 10.1039/c3fo30354c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|