1
|
Yang Y, Wu Y, Xiang L, Picardo M, Zhang C. Deciphering the role of skin aging in pigmentary disorders. Free Radic Biol Med 2024; 227:638-655. [PMID: 39674424 DOI: 10.1016/j.freeradbiomed.2024.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Skin aging is a complex biological process involving intrinsic and extrinsic factors. Skin aging contains alterations at the tissue, cellular, and molecular levels. Currently, there is increasing evidence that skin aging occurs not only in time-dependent chronological aging but also plays a role in skin pigmentary disorders. This review provides an in-depth analysis of the impact of skin aging on different types of pigmentary disorders, including both hyperpigmentation disorders such as melasma and senile lentigo and hypopigmentation disorders such as vitiligo, idiopathic guttate hypomelanosis and graying of hair. In addition, we explore the mechanisms of skin aging on pigmentation regulation and suggest several potential therapeutic approaches for skin aging and aging-related pigmentary disorders.
Collapse
Affiliation(s)
- Yiwen Yang
- Department of Dermatology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai 200040, PR China
| | - Yue Wu
- Department of Dermatology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai 200040, PR China
| | - Leihong Xiang
- Department of Dermatology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai 200040, PR China
| | - Mauro Picardo
- Istituto Dermopatico Immacolata, IDI-RCCS, Rome, Italy.
| | - Chengfeng Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, No.12 Wulumuqi Zhong Road, Shanghai 200040, PR China.
| |
Collapse
|
2
|
Das G, Kameswaran S, Ramesh B, Bangeppagari M, Nath R, Das Talukdar A, Shin HS, Patra JK. Anti-Aging Effect of Traditional Plant-Based Food: An Overview. Foods 2024; 13:3785. [PMID: 39682858 DOI: 10.3390/foods13233785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Aging is a complex process that involves many physiological mechanisms that gradually impair normal cellular and tissue function and make us more susceptible to diseases and death. It is influenced by intrinsic factors like cellular function and extrinsic factors like pollution and UV radiation. Recent scientific studies show that traditional plant-based foods and supplements can help mitigate the effects of aging. Nutraceuticals, which are dietary supplements with medicinal properties, have gained attention for their ability to prevent chronic and age-related diseases. Antioxidants like flavonoids, carotenoids, ascorbic acid, terpenes, tannins, saponins, alkaloids, minerals, etc. found in plants are key to managing oxidative stress, which is a major cause of aging. Well-known plant-based supplements from Bacopa monnieri, Curcuma longa, Emblica officinalis, Ginkgo biloba, Glycyrrhiza glabra, and Panax ginseng have been found to possess medicinal properties. These supplements have been shown to improve cognitive function, reduce oxidative stress, improve overall health, and potentially extend life and enhance the excellence of life. The obtained benefits from these plant species are due to the presence of their bioactive secondary metabolites, such as bacosides in Bacopa monnieri, curcumin in Curcuma longa, ginsenosides in Panax ginseng, and many more. These compounds not only protect against free radical damage but also modulate key biological pathways of aging. Also, traditional fermented foods (tempeh and kimchi), which are rich in probiotics and bioactive compounds, support gut health, boost immune function, and have anti-aging properties. The molecular mechanisms behind these benefits are the activation of nutrient-sensing pathways like AMPK, SIRT/NAD+, and mTOR, which are important for cellular homeostasis and longevity. This review shows the potential of traditional plant-based foods and dietary supplements for healthy aging, and more studies are needed to prove their efficacy and safety in humans. Incorporating these natural products into our diet may be a practical and effective way to counteract the effects of aging and overall well-being. The foremost goal of this review is to emphasize the importance of supporting the body's antioxidant system by consuming the right balance of natural ingredients in the diet.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| | - Srinivasan Kameswaran
- Department of Botany, Vikrama Simhapuri University College, Kavali 524201, Andhra Pradesh, India
| | - Bellamkonda Ramesh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Manjunatha Bangeppagari
- Department of Cell Biology and Molecular Genetics, Sri DevarajUrs Academy of Higher Education and Research (A Deemed to Be University), Tamaka, Kolar 563103, Karnataka, India
| | - Rajat Nath
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011, Assam, India
- Department of Biotechnology and Microbiology, School of Natural Sciences, Techno India University, Agartala 799004, Tripura, India
| | - Anupam Das Talukdar
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011, Assam, India
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| |
Collapse
|
3
|
Xie L, Dai X, Li Y, Cao Y, Shi M, Li X. Pickering Emulsion of Curcumin Stabilized by Cellulose Nanocrystals/Chitosan Oligosaccharide: Effect in Promoting Wound Healing. Pharmaceutics 2024; 16:1411. [PMID: 39598536 PMCID: PMC11597753 DOI: 10.3390/pharmaceutics16111411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/20/2024] [Accepted: 09/27/2024] [Indexed: 11/29/2024] Open
Abstract
Background: The stabilization of droplets in Pickering emulsions using solid particles has garnered significant attention through various methods. Cellulose and chitin derivatives in nature offer a sustainable source of Pickering emulsion stabilizers. Methods: In this study, medium-chain triglycerides were used as the oil phase for the preparation of emulsion. This study explores the potential of cellulose nanocrystals (CNC) and shell oligosaccharides (COS) as effective stabilizers for achieving stable Pickering emulsions. Optical microscopy, CLSM, and Cyro-SEM were employed to analyze CNC/COS-Cur, revealing the formation of bright and uniform yellow spherical emulsions. Results: CLSM and SEM results confirmed that CNC/COS formed a continuous and compact shell at the oil-water interface layer, enabling a stable 2~3 microns Pickering emulsion with CNS/COS-Cur as an oil-in-water emulsion stabilizer. Based on FTIR, XRD, and SEM analyses of CNC/COS, along with zeta potential measurements of the emulsion, we found that CNC and COS complexed via electrostatic adsorption, forming irregular rods measuring approximately 200-300 nm in length. An evaluation of the DPPH radical-scavenging ability demonstrated that the CNC/ COS-Cur Pickering emulsion performed well in vitro. In vivo experiments involving full-thickness skin excision surgery in rats revealed that CNC/COS-Cur facilitated wound repair processes. Measurements of the MDA and SOD content in healing tissues indicated that the CNC/COS-Cur Pickering emulsion increased SOD levels and reduced MDA content, effectively countering oxidative stress-induced damage. An assessment based on wound-healing rates and histopathological examination showed that CNC/COS-Cur promoted granulation tissue formation, fibroblast proliferation, angiogenesis, and an accelerated re-epithelialization process within the wound tissue, leading to enhanced collagen deposition and facilitating rapid wound-healing capabilities. An antibacterial efficacy assessment conducted in vitro demonstrated antibacterial activity.
Collapse
Affiliation(s)
- Long Xie
- Science and Education Section, The First People’s Hospital of Shuangliu District, Chengdu (West China Airport Hospital Sichuan University), Chengdu 610299, China;
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (X.D.); (Y.L.); (Y.C.)
| | - Xiaolin Dai
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (X.D.); (Y.L.); (Y.C.)
- Department of pharmacy, Chengdu Seventh People’s Hospital (Affliated Cancer Hospital of Chengdu Medical College), Chengdu 610203, China
| | - Yuke Li
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (X.D.); (Y.L.); (Y.C.)
| | - Yi Cao
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (X.D.); (Y.L.); (Y.C.)
| | - Mingyi Shi
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
| | - Xiaofang Li
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (X.D.); (Y.L.); (Y.C.)
| |
Collapse
|
4
|
Shin E, Kim HT, Lee H, Kim B, Park J, Park S, Yum S, Kim SK, Lee JM, Youn B. Low-temperature pulverization-specific Sargassum horneri extract accelerates wound healing and attenuates inflammation in a mouse burn model. Anim Cells Syst (Seoul) 2024; 28:428-438. [PMID: 39246418 PMCID: PMC11378683 DOI: 10.1080/19768354.2024.2396903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/25/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024] Open
Abstract
Burn injuries, affecting local skin disruption as well as inducing systemic inflammatory responses, are presented as a global public health problem. To enhance the effects of burn wound healing, treatment must simultaneously regulate both re-epithelialization and hyperinflammation. Extracts of Sargassum horneri (S. horneri) have shown a potential to enhance skin wound healing through antioxidative properties, immune enhancement, and modulation of inflammatory responses. However, despite its promising application for burn wound healing, specific investigation into S. horneri-derived compounds for enhancing wound healing has not yet been conducted. In this research, we investigated the burn wound-healing effect of the low-temperature pulverization-specific S. horneri extract (LPSHE), which could not be detected using the room-temperature grinding method. In a mouse burn model with third-degree burn injuries, LPSHE accelerated re-epithelialization by promoting the increase in F-actin formation and reduced burn-induced ROS levels. Additionally, LPSHE significantly regulated hyperinflammation by reducing pro-inflammatory cytokines. Further investigation into molecular mechanisms using HaCaT keratinocytes also demonstrated beneficial effects on burn wound healing. Taken together, our findings suggested that LPSHE is a promising therapeutic candidate for enhancing burn wound healing. Furthermore, this research underscored the importance of low-temperature pulverization in discovering novel natural compounds from marine organisms.
Collapse
Affiliation(s)
- Eunguk Shin
- Nuclear Science Research Institute, Pusan National University, Busan, Korea
| | - Hee-Tae Kim
- Department of Naval Architecture and Ocean Engineering, Pusan National University, Busan, Korea
| | - Haksoo Lee
- Department of Integrated Biological Science, Pusan National University, Busan, Korea
| | - Byeongsoo Kim
- Department of Integrated Biological Science, Pusan National University, Busan, Korea
| | - Junhyeong Park
- Department of Integrated Biological Science, Pusan National University, Busan, Korea
| | - Sujin Park
- Department of Integrated Biological Science, Pusan National University, Busan, Korea
| | - Soomin Yum
- Department of Integrated Biological Science, Pusan National University, Busan, Korea
| | - Seul-Kee Kim
- Hydrogen Ship Technology Center, Pusan National University, Busan, Korea
| | - Jae-Myung Lee
- Department of Naval Architecture and Ocean Engineering, Pusan National University, Busan, Korea
- Hydrogen Ship Technology Center, Pusan National University, Busan, Korea
| | - BuHyun Youn
- Nuclear Science Research Institute, Pusan National University, Busan, Korea
- Department of Integrated Biological Science, Pusan National University, Busan, Korea
- Department of Biological Sciences, Pusan National University, Busan, Korea
| |
Collapse
|
5
|
Wang K. The potential therapeutic role of curcumin in osteoporosis treatment: based on multiple signaling pathways. Front Pharmacol 2024; 15:1446536. [PMID: 39175539 PMCID: PMC11338871 DOI: 10.3389/fphar.2024.1446536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Osteoporosis is a common chronic metabolic bone disease caused by disturbances in normal bone metabolism and an imbalance between osteoblasts and osteoclasts. Osteoporosis is characterized by a decrease in bone mass and bone density, leading to increased bone fragility. Osteoporosis is usually treated with medications and surgical methods, but these methods often produce certain side effects. Therefore, the use of traditional herbal ingredients for the treatment of osteoporosis has become a focus of attention and a hot topic in recent years. Curcumin, widely distributed among herbs such as turmeric, tulip, and curcuma longa, contains phenolic, terpenoid, and flavonoid components. Modern pharmacological studies have confirmed that curcumin has a variety of functions including antioxidant and anti-inflammatory properties. In addition, curcumin positively regulates the differentiation and promotes the proliferation of osteoblasts, which play a crucial role in bone formation. Multiple studies have shown that curcumin is effective in the treatment of osteoporosis as it interacts with a variety of signaling pathway targets, thereby interfering with the formation of osteoblasts and osteoclasts and regulating the development of osteoporosis. This review summarized the key signaling pathways and their mechanisms of action of curcumin in the prevention and treatment of osteoporosis and analyzed their characteristics and their relationship with osteoporosis and curcumin. This not only proves the medicinal value of curcumin as a traditional herbal ingredient but also further elucidates the molecular mechanism of curcumin's anti-osteoporosis effect, providing new perspectives for the prevention and treatment of osteoporosis through multiple pathways.
Collapse
Affiliation(s)
- Keyu Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
6
|
Zhan S, He M, Wu Y, Ouyang J. Improved light and ultraviolet stability of curcumin encapsulated in emulsion gels prepared with corn starch, OSA-starch and whey protein isolate. Food Chem 2024; 446:138803. [PMID: 38412810 DOI: 10.1016/j.foodchem.2024.138803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/25/2024] [Accepted: 02/17/2024] [Indexed: 02/29/2024]
Abstract
The objective of this study was to enhance the bioavailability and stability of curcumin (Cur) by encapsulating it in corn starch (CS)/octenylsuccinic acid modified (OSA)-starch-whey protein isolate (WPI) emulsion gels (EGs). As the volume fraction of the oil phase increased, the droplet size and ζ- potential of the EGs decreased. The encapsulation efficiency and bioavailability of Cur in CS/OSA-starch-WPI EGs with a 60% oil ratio were 96.0% and 67.3%, respectively. The release rate of free fatty acid and the bioavailability of Cur from the EGs after digestion were significantly higher compared to Cur dissolved in oil. EGs with an oil phase volume fraction of 75% and 80% demonstrated greater protection against light irradiation but were less effective against UV irradiation compared to EGs with a 60% oil phase volume fraction. Encapsulation in EGs proved to be an effective method for enhancing the bioavailability and stability of Cur.
Collapse
Affiliation(s)
- Siyuan Zhan
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Mohe He
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Yanwen Wu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100089, China
| | - Jie Ouyang
- Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
7
|
Jacquier EF, Kassis A, Marcu D, Contractor N, Hong J, Hu C, Kuehn M, Lenderink C, Rajgopal A. Phytonutrients in the promotion of healthspan: a new perspective. Front Nutr 2024; 11:1409339. [PMID: 39070259 PMCID: PMC11272662 DOI: 10.3389/fnut.2024.1409339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/12/2024] [Indexed: 07/30/2024] Open
Abstract
Considering a growing, aging population, the need for interventions to improve the healthspan in aging are tantamount. Diet and nutrition are important determinants of the aging trajectory. Plant-based diets that provide bioactive phytonutrients may contribute to offsetting hallmarks of aging and reducing the risk of chronic disease. Researchers now advocate moving toward a positive model of aging which focuses on the preservation of functional abilities, rather than an emphasis on the absence of disease. This narrative review discusses the modulatory effect of nutrition on aging, with an emphasis on promising phytonutrients, and their potential to influence cellular, organ and functional parameters in aging. The literature is discussed against the backdrop of a recent conceptual framework which describes vitality, intrinsic capacity and expressed capacities in aging. This aims to better elucidate the role of phytonutrients on vitality and intrinsic capacity in aging adults. Such a review contributes to this new scientific perspective-namely-how nutrition might help to preserve functional abilities in aging, rather than purely offsetting the risk of chronic disease.
Collapse
Affiliation(s)
| | | | - Diana Marcu
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Jina Hong
- Amway Innovation and Science, Ada, MI, United States
| | - Chun Hu
- Amway Innovation and Science, Ada, MI, United States
| | - Marissa Kuehn
- Amway Innovation and Science, Ada, MI, United States
| | | | - Arun Rajgopal
- Amway Innovation and Science, Ada, MI, United States
| |
Collapse
|
8
|
Nemati MM, Abedi M, Ghasemi Y, Ashrafi H, Haghdel M. Formulation and evaluation of antioxidant and antibacterial activity of a peel-off facial masks moisturizer containing curcumin and Rosa Damascena extract. J Cosmet Dermatol 2024; 23:2156-2169. [PMID: 38406887 DOI: 10.1111/jocd.16255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/03/2024] [Accepted: 02/16/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND Acne is a common skin issue that typically occurs during adolescence. It causes long-lasting redness and swelling in the skin. An alternative approach to treating acne could involve using a cosmetic facial mask containing herbal ingredients such as Curcumin and Rosa Damascena extract for its antibacterial properties. AIMS This study aims to create and try out a peel-off mask gel made from Curcumin and R. Damascena extract. This gel is intended to have the ability to kill bacteria such as Staphylococcus aureus, Escherichia coli, and Propionibacterium acnes and remove dead cells from the skin surface. METHODS The peel-off mask was made using polyvinyl alcohol (PVA) in 8% and 10% as solidifier. The evaluation of peel-off masks comprises the examination of physiochemical and mechanical aspects. Furthermore, their longevity, effectiveness, and antibacterial properties are also considered. RESULTS The white color, pleasant smell, and soft texture were the defining features of the peel-off gel mask. The changes in PVA affect the pH level, thickness, and how quickly the peel-off mask dries. The stability test found that the peel-off mask had no significant physical changes when exposed to freezing and thawing. However, there were some differences in color and separation when using the real-time method. A prepared peel-off mask containing 10% PVA and curcumin works best against P. acne. The amount of PVA in the formula affected the physical and chemical qualities, but it did not impact on the antibacterial abilities of the peel-off mask gel. The best formula that gives the best results uses 10% PVA + curcumin. CONCLUSIONS Using the Curcumin and R. Damascena extract in the creation of the peel-off mask gel ensures its efficacy and safety for skin application.
Collapse
Affiliation(s)
- Mohammad Mehdi Nemati
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Abedi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hajar Ashrafi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mobin Haghdel
- Department of Tissue Engineering, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Navarro-Hortal MD, Romero-Márquez JM, Jiménez-Trigo V, Xiao J, Giampieri F, Forbes-Hernández TY, Grosso G, Battino M, Sánchez-González C, Quiles JL. Molecular bases for the use of functional foods in the management of healthy aging: Berries, curcumin, virgin olive oil and honey; three realities and a promise. Crit Rev Food Sci Nutr 2023; 63:11967-11986. [PMID: 35816321 DOI: 10.1080/10408398.2022.2098244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
As the number of older people has grown in recent decades, the search for new approaches to manage or delay aging is also growing. Among the modifiable factors, diet plays a crucial role in healthy aging and in the prevention of age-related diseases. Thus, the interest in the use of foods, which are rich in bioactive compounds such as functional foods with anti-aging effects is a growing market. This review summarizes the current knowledge about the molecular mechanisms of action of foods considered as functional foods in aging, namely berries, curcumin, and virgin olive oil. Moreover, honey is also analyzed as a food with well-known healthy benefits, but which has not been deeply evaluated from the point of view of aging. The effects of these foods on aging are analyzed from the point of view of molecular mechanisms including oxidative stress, mitochondrial dysfunction, inflammation, genomic stability, telomere attrition, cellular senescence, and deregulated nutrient-sensing. A comprehensive study of the scientific literature shows that the aforementioned foods have demonstrated positive effects on certain aspects of aging, which might justify their use as functional foods in elderly. However, more research is needed, especially in humans, designed to understand in depth the mechanisms of action through which they act.
Collapse
Affiliation(s)
- María D Navarro-Hortal
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
| | - Jose M Romero-Márquez
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
| | - Victoria Jiménez-Trigo
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain
| | - Francesca Giampieri
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| | - Tamara Y Forbes-Hernández
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Maurizio Battino
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, China
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Cristina Sánchez-González
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
| | - José L Quiles
- Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Centre, Department of Physiology, University of Granada, Granada, Spain
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| |
Collapse
|
10
|
Eldesoqui M, Ahmed ME, Abdel-Kareem MA, Badawy MM, Dawood AF, Mohamed AS, Ibrahim AM, El-Mansi AA, El-Sherbiny M, Hendawy M. Curcumin Mitigates Malathion-Induced Renal Injury: Suppression of Apoptosis and Modulation of NF-κβ/TNF-α and Nrf2, and HO-1 Signaling. Metabolites 2023; 13:1117. [PMID: 37999213 PMCID: PMC10673029 DOI: 10.3390/metabo13111117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
Malathion is one of the most used organophosphorus pesticides that is used for many reasons such as agriculture and industry. Human exposure to malathion may occur through various means, such as eating food that has been treated with it. Malathion not only increases oxidative stress but also decreases the antioxidant capacity. Curcumin is a powerful antioxidant with many pharmacological actions. Curcumin can act as a free radical scavenger and inhibit the activation and nuclear translocation of NF-κB. Curcumin could combat the lipid peroxidation and antioxidant depletion that trigger the apoptotic pathways. This study aims to examine the antioxidant, anti-inflammatory, and antiapoptotic effects of curcumin. Twenty-four Sprague Dawley rats were divided into four groups (six rats each): control, curcumin, malathion, and malathion + curcumin groups. At the assigned time, blood samples were used for the assessment of serum creatinine, and the kidneys were excised and washed; parts of them were used for the assessment of total oxidant status (TOS), oxidative stress index (OSI), the oxidative stress marker malondialdehyde (MDA), total antioxidant capacity (TAC), and glutathione (GSH) activity, other parts were fixed in formalin for further staining. Histopathological evaluation was performed for the fixed specimens after staining with H&E, sirus red, and the immunohistochemical staining for NF-κβ, TNF-α, Caspase-3, Nrf2, and HO-1. Curcumin significantly decreases the serum creatinine after malathion exposure and significantly restores the oxidant/antioxidant balance by increasing TAC and GSH and decreasing TOS, OSI, and MDA. Curcumin exerts its reno-protective effect and restores the histological architecture of the kidney by downregulating the immune expression of NF-κβ, TNF-α, and Caspase-3 and upregulating the expression of Nrf2 and HO-1. This study concluded that curcumin protects against nephrotoxicity caused by malathion by exerting its antioxidant, anti-inflammatory, and anti-apoptotic capabilities.
Collapse
Affiliation(s)
- Mamdouh Eldesoqui
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (M.E.); (M.E.A.); (M.H.)
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia;
| | - Magda E. Ahmed
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (M.E.); (M.E.A.); (M.H.)
| | - Mona A. Abdel-Kareem
- Department of Anatomy and Embryology, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh P.O. Box 33516, Egypt;
| | - Mohamed Moharram Badawy
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Amal Fahmy Dawood
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Abdelaty Shawky Mohamed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia;
- Pathology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ateya Megahed Ibrahim
- Department of Nursing, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
- Department of Family and Community Health Nursing, Faculty of Nursing, Port Said University, Port Said P.O. Box 42511, Egypt
| | - Ahmed A. El-Mansi
- Biology Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia;
| | - Mohamad El-Sherbiny
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (M.E.); (M.E.A.); (M.H.)
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia;
| | - Mahmoud Hendawy
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (M.E.); (M.E.A.); (M.H.)
| |
Collapse
|
11
|
Du YX, Mamun AA, Lyu AP, Zhang HJ. Natural Compounds Targeting the Autophagy Pathway in the Treatment of Colorectal Cancer. Int J Mol Sci 2023; 24:7310. [PMID: 37108476 PMCID: PMC10138367 DOI: 10.3390/ijms24087310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Autophagy is a highly conserved intracellular degradation pathway by which misfolded proteins or damaged organelles are delivered in a double-membrane vacuolar vesicle and finally degraded by lysosomes. The risk of colorectal cancer (CRC) is high, and there is growing evidence that autophagy plays a critical role in regulating the initiation and metastasis of CRC; however, whether autophagy promotes or suppresses tumor progression is still controversial. Many natural compounds have been reported to exert anticancer effects or enhance current clinical therapies by modulating autophagy. Here, we discuss recent advancements in the molecular mechanisms of autophagy in regulating CRC. We also highlight the research on natural compounds that are particularly promising autophagy modulators for CRC treatment with clinical evidence. Overall, this review illustrates the importance of autophagy in CRC and provides perspectives for these natural autophagy regulators as new therapeutic candidates for CRC drug development.
Collapse
Affiliation(s)
| | | | - Ai-Ping Lyu
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong SAR, China; (Y.-X.D.); (A.A.M.)
| | - Hong-Jie Zhang
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong SAR, China; (Y.-X.D.); (A.A.M.)
| |
Collapse
|
12
|
Liu HM, Cheng MY, Xun MH, Zhao ZW, Zhang Y, Tang W, Cheng J, Ni J, Wang W. Possible Mechanisms of Oxidative Stress-Induced Skin Cellular Senescence, Inflammation, and Cancer and the Therapeutic Potential of Plant Polyphenols. Int J Mol Sci 2023; 24:ijms24043755. [PMID: 36835162 PMCID: PMC9962998 DOI: 10.3390/ijms24043755] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
As the greatest defense organ of the body, the skin is exposed to endogenous and external stressors that produce reactive oxygen species (ROS). When the antioxidant system of the body fails to eliminate ROS, oxidative stress is initiated, which results in skin cellular senescence, inflammation, and cancer. Two main possible mechanisms underlie oxidative stress-induced skin cellular senescence, inflammation, and cancer. One mechanism is that ROS directly degrade biological macromolecules, including proteins, DNA, and lipids, that are essential for cell metabolism, survival, and genetics. Another one is that ROS mediate signaling pathways, such as MAPK, JAK/STAT, PI3K/AKT/mTOR, NF-κB, Nrf2, and SIRT1/FOXO, affecting cytokine release and enzyme expression. As natural antioxidants, plant polyphenols are safe and exhibit a therapeutic potential. We here discuss in detail the therapeutic potential of selected polyphenolic compounds and outline relevant molecular targets. Polyphenols selected here for study according to their structural classification include curcumin, catechins, resveratrol, quercetin, ellagic acid, and procyanidins. Finally, the latest delivery of plant polyphenols to the skin (taking curcumin as an example) and the current status of clinical research are summarized, providing a theoretical foundation for future clinical research and the generation of new pharmaceuticals and cosmetics.
Collapse
Affiliation(s)
- Hui-Min Liu
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China
| | - Ming-Yan Cheng
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Meng-Han Xun
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Zhi-Wei Zhao
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yun Zhang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Wei Tang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jun Cheng
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jia Ni
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Wei Wang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China
- Correspondence: ; Tel.: +86-18918830550
| |
Collapse
|
13
|
Abaquita TAL, Damulewicz M, Tylko G, Pyza E. The dual role of heme oxygenase in regulating apoptosis in the nervous system of Drosophila melanogaster. Front Physiol 2023; 14:1060175. [PMID: 36860519 PMCID: PMC9969482 DOI: 10.3389/fphys.2023.1060175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Accumulating evidence from mammalian studies suggests the dual-faced character of heme oxygenase (HO) in oxidative stress-dependent neurodegeneration. The present study aimed to investigate both neuroprotective and neurotoxic effects of heme oxygenase after the ho gene chronic overexpression or silencing in neurons of Drosophila melanogaster. Our results showed early deaths and behavioral defects after pan-neuronal ho overexpression, while survival and climbing in a strain with pan-neuronal ho silencing were similar over time with its parental controls. We also found that HO can be pro-apoptotic or anti-apoptotic under different conditions. In young (7-day-old) flies, both the cell death activator gene (hid) expression and the initiator caspase Dronc activity increased in heads of flies when ho expression was changed. In addition, various expression levels of ho produced cell-specific degeneration. Dopaminergic (DA) neurons and retina photoreceptors are particularly vulnerable to changes in ho expression. In older (30-day-old) flies, we did not detect any further increase in hid expression or enhanced degeneration, however, we still observed high activity of the initiator caspase. In addition, we used curcumin to further show the involvement of neuronal HO in the regulation of apoptosis. Under normal conditions, curcumin induced both the expression of ho and hid, which was reversed after exposure to high-temperature stress and when supplemented in flies with ho silencing. These results indicate that neuronal HO regulates apoptosis and this process depends on ho expression level, age of flies, and cell type.
Collapse
Affiliation(s)
- Terence Al L. Abaquita
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Cracow, Poland
| | - Milena Damulewicz
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Cracow, Poland
| | - Grzegorz Tylko
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Cracow, Poland
| | | |
Collapse
|
14
|
Leal EC, Carvalho E. Heme Oxygenase-1 as Therapeutic Target for Diabetic Foot Ulcers. Int J Mol Sci 2022; 23:ijms231912043. [PMID: 36233341 PMCID: PMC9569859 DOI: 10.3390/ijms231912043] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 11/22/2022] Open
Abstract
A diabetic foot ulcer (DFU) is one of the major complications of diabetes. Wound healing under diabetic conditions is often impaired. This is in part due to the excessive oxidative stress, prolonged inflammation, immune cell dysfunction, delayed re-epithelialization, and decreased angiogenesis present at the wound site. As a result of these multifactorial impaired healing pathways, it has been difficult to develop effective therapeutic strategies for DFU. Heme oxygenase-1 (HO-1) is the rate-limiting enzyme in heme degradation generating carbon monoxide (CO), biliverdin (BV) which is converted into bilirubin (BR), and iron. HO-1 is a potent antioxidant. It can act as an anti-inflammatory, proliferative, angiogenic and cytoprotective enzyme. Due to its biological functions, HO-1 plays a very important role in wound healing, in part mediated through the biologically active end products generated by its enzymatic activity, particularly CO, BV, and BR. Therapeutic strategies involving the activation of HO-1, or the topical application of its biologically active end products are important in diabetic wound healing. Therefore, HO-1 is an attractive therapeutic target for DFU treatment. This review will provide an overview and discussion of the importance of HO-1 as a therapeutic target for diabetic wound healing.
Collapse
Affiliation(s)
- Ermelindo Carreira Leal
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
- Correspondence: (E.C.L.); (E.C.); Tel.: +351-239-820-190 (E.C.L. & E.C.)
| | - Eugenia Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
- Correspondence: (E.C.L.); (E.C.); Tel.: +351-239-820-190 (E.C.L. & E.C.)
| |
Collapse
|
15
|
Hao R, Li M, Li F, Sun-Waterhouse D, Li D. Protective effects of the phenolic compounds from mung bean hull against H 2O 2-induced skin aging through alleviating oxidative injury and autophagy in HaCaT cells and HSF cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156669. [PMID: 35718184 DOI: 10.1016/j.scitotenv.2022.156669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
To add value to food waste and seek skin aging suppressor, petroleum ether, ethyl acetate, n-butanol and water phenolic extracts were produced from mung bean hulls subjected to ultrasound-assisted ethanolic extraction. The four extracts all contained protocatechuic acid, isovitexin, vitexin, caffeic acid, 4-coumaric acid, ferulic acid, rutin and chlorogenic acid (revealed by UHPLC-MS/MS). The effects of the four extracts and their main phenolic compounds against H2O2-caused cell damage and aging in HaCaT and HSF cells were examined (including cell viability, ROS, MDA, SOD, GSH-px and β-galactosidase levels). The four extracts and the eight phenolic compounds exhibited different protective effects on H2O2-treated HaCaT/HSF cells viability, with the ethyl acetate extract among the extracts, and isovitexin and vitexin among the eight compounds, exerting the greatest protection. Therefore, isovitexin and vitexin may be the key oxidative stress and autophagy modulators of mung bean hull, and they inhibit skin aging and damage likely through suppressing Nrf2/keap1/HO-1 related oxidative damage and LC3II/p62/GATA4 related autophagy.
Collapse
Affiliation(s)
- Rili Hao
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Taian 271018, People's Republic of China
| | - Meiqi Li
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Taian 271018, People's Republic of China
| | - Feng Li
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Taian 271018, People's Republic of China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Taian 271018, People's Republic of China; School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Dapeng Li
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Taian 271018, People's Republic of China.
| |
Collapse
|
16
|
Joshi P, Bisht A, Joshi S, Semwal D, Nema NK, Dwivedi J, Sharma S. Ameliorating potential of curcumin and its analogue in central nervous system disorders and related conditions: A review of molecular pathways. Phytother Res 2022; 36:3143-3180. [PMID: 35790042 DOI: 10.1002/ptr.7522] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/26/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022]
Abstract
Curcumin, isolated from turmeric (Curcuma longa L.) is one of the broadly studied phytomolecule owing to its strong antioxidant and anti-inflammatory potential and has been considered a promising therapeutic candidate in a wide range of disorders. Considering, its low bioavailability, different curcumin analogs have been developed to afford desired pharmacokinetic profile and therapeutic outcome in varied pathological states. Several preclinical and clinical studies have indicated that curcumin ameliorates mitochondrial dysfunction, inflammation, oxidative stress apoptosis-mediated neural cell degeneration and could effectively be utilized in the treatment of different neurodegenerative diseases. Hence, in this review, we have summarized key findings of experimental and clinical studies conducted on curcumin and its analogues with special emphasis on molecular pathways, viz. NF-kB, Nrf2-ARE, glial activation, apoptosis, angiogenesis, SOCS/JAK/STAT, PI3K/Akt, ERK1/2 /MyD88 /p38 MAPK, JNK, iNOS/NO, and MMP pathways involved in imparting ameliorative effects in the therapy of neurodegenerative disorders and associated conditions.
Collapse
Affiliation(s)
- Priyanka Joshi
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India.,R & D, Patanjali Ayurved Ltd, Patanjali Food and Herbal Park, Haridwar, Uttarakhand, India
| | - Akansha Bisht
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India
| | - Sushil Joshi
- R & D, Patanjali Ayurved Ltd, Patanjali Food and Herbal Park, Haridwar, Uttarakhand, India
| | - Deepak Semwal
- Faculty of Biomedical Sciences, Uttarakhand Ayurved University, Dehradun, Uttarakhand, India
| | - Neelesh Kumar Nema
- Paramount Kumkum Private Limited, Prestige Meridian-1, Bangalore, Karnataka, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Rajasthan, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India
| |
Collapse
|
17
|
Vitale S, Colanero S, Placidi M, Di Emidio G, Tatone C, Amicarelli F, D’Alessandro AM. Phytochemistry and Biological Activity of Medicinal Plants in Wound Healing: An Overview of Current Research. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113566. [PMID: 35684503 PMCID: PMC9182061 DOI: 10.3390/molecules27113566] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022]
Abstract
Wound healing is a complicated process, and the effective management of wounds is a major challenge. Natural herbal remedies have now become fundamental for the management of skin disorders and the treatment of skin infections due to the side effects of modern medicine and lower price for herbal products. The aim of the present study is to summarize the most recent in vitro, in vivo, and clinical studies on major herbal preparations, their phytochemical constituents, and new formulations for wound management. Research reveals that several herbal medicaments have marked activity in the management of wounds and that this activity is ascribed to flavonoids, alkaloids, saponins, and phenolic compounds. These phytochemicals can act at different stages of the process by means of various mechanisms, including anti-inflammatory, antimicrobial, antioxidant, collagen synthesis stimulating, cell proliferation, and angiogenic effects. The application of natural compounds using nanotechnology systems may provide significant improvement in the efficacy of wound treatments. Increasing the clinical use of these therapies would require safety assessment in clinical trials.
Collapse
Affiliation(s)
- Stefania Vitale
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
| | - Sara Colanero
- Department of Biosciences, University of Milan, Via Giovanni Celoria 26, 20133 Milan, Italy;
| | - Martina Placidi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
| | - Giovanna Di Emidio
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
| | - Carla Tatone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
| | - Fernanda Amicarelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
| | - Anna Maria D’Alessandro
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.V.); (M.P.); (G.D.E.); (C.T.); (F.A.)
- Correspondence:
| |
Collapse
|
18
|
Consoli V, Sorrenti V, Pittalà V, Greish K, D’Amico AG, Romeo G, Intagliata S, Salerno L, Vanella L. Heme Oxygenase Modulation Drives Ferroptosis in TNBC Cells. Int J Mol Sci 2022; 23:ijms23105709. [PMID: 35628518 PMCID: PMC9143660 DOI: 10.3390/ijms23105709] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 02/06/2023] Open
Abstract
The term ferroptosis refers to a peculiar type of programmed cell death (PCD) mainly characterized by extensive iron-dependent lipid peroxidation. Recently, ferroptosis has been suggested as a potential new strategy for the treatment of several cancers, including breast cancer (BC). In particular, among the BC subtypes, triple negative breast cancer (TNBC) is considered the most aggressive, and conventional drugs fail to provide long-term efficacy. In this context, our study's purpose was to investigate the mechanism of ferroptosis in breast cancer cell lines and reveal the significance of heme oxygenase (HO) modulation in the process, providing new biochemical approaches. HO's effect on BC was evaluated by MTT tests, gene silencing, Western blot analysis, and measurement of reactive oxygen species (ROS), glutathione (GSH) and lipid hydroperoxide (LOOH) levels. In order to assess HO's implication, different approaches were exploited, using two distinct HO-1 inducers (hemin and curcumin), a well-known HO inhibitor (SnMP) and a selective HO-2 inhibitor. The data obtained showed HO's contribution to the onset of ferroptosis; in particular, HO-1 induction seemed to accelerate the process. Moreover, our results suggest a potential role of HO-2 in erastin-induced ferroptosis. In view of the above, HO modulation in ferroptosis can offer a novel approach for breast cancer treatment.
Collapse
Affiliation(s)
- Valeria Consoli
- Department of Drug and Health Science, University of Catania, 95125 Catania, Italy; (V.C.); (V.P.); (A.G.D.); (G.R.); (S.I.); (L.S.); (L.V.)
| | - Valeria Sorrenti
- Department of Drug and Health Science, University of Catania, 95125 Catania, Italy; (V.C.); (V.P.); (A.G.D.); (G.R.); (S.I.); (L.S.); (L.V.)
- CERNUT-Research Centre on Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
- Correspondence:
| | - Valeria Pittalà
- Department of Drug and Health Science, University of Catania, 95125 Catania, Italy; (V.C.); (V.P.); (A.G.D.); (G.R.); (S.I.); (L.S.); (L.V.)
- CERNUT-Research Centre on Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
| | - Khaled Greish
- Princess Al-Jawhara Centre for Molecular Medicine, Department of Molecular Medicine, School of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain;
| | - Agata Grazia D’Amico
- Department of Drug and Health Science, University of Catania, 95125 Catania, Italy; (V.C.); (V.P.); (A.G.D.); (G.R.); (S.I.); (L.S.); (L.V.)
| | - Giuseppe Romeo
- Department of Drug and Health Science, University of Catania, 95125 Catania, Italy; (V.C.); (V.P.); (A.G.D.); (G.R.); (S.I.); (L.S.); (L.V.)
- CERNUT-Research Centre on Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
| | - Sebastiano Intagliata
- Department of Drug and Health Science, University of Catania, 95125 Catania, Italy; (V.C.); (V.P.); (A.G.D.); (G.R.); (S.I.); (L.S.); (L.V.)
- CERNUT-Research Centre on Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
| | - Loredana Salerno
- Department of Drug and Health Science, University of Catania, 95125 Catania, Italy; (V.C.); (V.P.); (A.G.D.); (G.R.); (S.I.); (L.S.); (L.V.)
- CERNUT-Research Centre on Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
| | - Luca Vanella
- Department of Drug and Health Science, University of Catania, 95125 Catania, Italy; (V.C.); (V.P.); (A.G.D.); (G.R.); (S.I.); (L.S.); (L.V.)
- CERNUT-Research Centre on Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
| |
Collapse
|
19
|
Hong YK, Wu CH, Lin YC, Huang YL, Hung KS, Pai TP, Liu YT, Chen TC, Chan H, Hsu CK. ASC-J9 Blocks Cell Proliferation and Extracellular Matrix Production of Keloid Fibroblasts through Inhibiting STAT3 Signaling. Int J Mol Sci 2022; 23:ijms23105549. [PMID: 35628356 PMCID: PMC9141592 DOI: 10.3390/ijms23105549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
Keloids are a fibrotic skin disorder caused by abnormal wound healing and featuring the activation and expansion of fibroblasts beyond the original wound margin. Signal transducer and activator of transcription 3 (STAT3) has been found to mediate the biological functions of keloid fibroblasts (KFs). Therefore, we aimed to demonstrate whether ASC-J9, an inhibitor of STAT3 phosphorylation, can suppress the activation of KFs. Western blotting results showed that ASC-J9 inhibited the levels of COL1A1 and FN1 proteins, which were upregulated in KFs, by decreasing the expression of pSTAT3 and STAT3. RNA sequencing and in vitro studies further demonstrated that ASC-J9 treatment of KFs reduced cell division, inflammation, and ROS generation, as well as extracellular matrix (ECM) synthesis. ELISA assays verified that ASC-J9 treatment significantly mitigated IL-6 protein secretion in KFs. Transmission electron microscopy images revealed that ASC-J9 induced the formation of multilamellar bodies in KFs, which is associated with autophagy-related signaling. These results suggested that inhibiting a vicious cycle of the ROS/STAT3/IL-6 axis by ASC-J9 may represent a potential therapeutic approach to suppress cell proliferation and ECM production in KFs.
Collapse
Affiliation(s)
- Yi-Kai Hong
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (Y.-K.H.); (Y.-C.L.); (Y.-L.H.)
- International Center for Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan 701, Taiwan
| | - Chen-Han Wu
- Allianz Pharmascience, Ltd. (Now AnnJi Pharmaceutical, Co., Ltd.), Taipei 100, Taiwan; (C.-H.W.); (T.-P.P.); (Y.-T.L.); (T.-C.C.); (H.C.)
| | - Yu-Chen Lin
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (Y.-K.H.); (Y.-C.L.); (Y.-L.H.)
- International Center for Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan 701, Taiwan
| | - Yu-Lun Huang
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (Y.-K.H.); (Y.-C.L.); (Y.-L.H.)
| | - Kuo-Shu Hung
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
| | - Tsung-Pin Pai
- Allianz Pharmascience, Ltd. (Now AnnJi Pharmaceutical, Co., Ltd.), Taipei 100, Taiwan; (C.-H.W.); (T.-P.P.); (Y.-T.L.); (T.-C.C.); (H.C.)
| | - Yen-Ting Liu
- Allianz Pharmascience, Ltd. (Now AnnJi Pharmaceutical, Co., Ltd.), Taipei 100, Taiwan; (C.-H.W.); (T.-P.P.); (Y.-T.L.); (T.-C.C.); (H.C.)
| | - Tzu-Chi Chen
- Allianz Pharmascience, Ltd. (Now AnnJi Pharmaceutical, Co., Ltd.), Taipei 100, Taiwan; (C.-H.W.); (T.-P.P.); (Y.-T.L.); (T.-C.C.); (H.C.)
| | - Hardy Chan
- Allianz Pharmascience, Ltd. (Now AnnJi Pharmaceutical, Co., Ltd.), Taipei 100, Taiwan; (C.-H.W.); (T.-P.P.); (Y.-T.L.); (T.-C.C.); (H.C.)
| | - Chao-Kai Hsu
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (Y.-K.H.); (Y.-C.L.); (Y.-L.H.)
- International Center for Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan 701, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Correspondence: ; Tel.: +886-6-2353535-5415
| |
Collapse
|
20
|
Multi-Ingredient Supplement Supports Mitochondrial Health through Interleukin-15 Signaling in Older Adult Human Dermal Fibroblasts. COSMETICS 2022. [DOI: 10.3390/cosmetics9030047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The macroscopic and microscopic deterioration of human skin with age is, in part, attributed to a functional decline in mitochondrial health. We previously demonstrated that exercise attenuated age-associated changes within the skin through enhanced mitochondrial health via IL-15 signaling, an exercise-induced cytokine whose presence increases in circulation following physical activity. The purpose of this investigation was to determine if these mitochondrial-enhancing effects could be mimicked with the provision of a novel multi-ingredient supplement (MIS). Cultured human fibroblasts isolated from older, sedentary women were treated with control media (CON) or CON supplemented with the following active ingredients to create the MIS: coenzyme Q10, alpha lipoic acid, resveratrol, curcumin, zinc, lutein, astaxanthin, copper, biotin, and vitamins C, D, and E. Outcomes were determined following 24 or 72 h of treatment. MIS provision to dermal fibroblasts significantly increased the mRNA abundance of mitochondrial biogenesis activators and downstream IL-15 signaling pathways, and proteins for oxidative phosphorylation subunits and antioxidant defenses. These findings were co-temporal with lower cellular senescence and cytotoxicity following MIS treatment. In summary, MIS supplementation led to exercise-mimetic effects on human dermal fibroblasts and their mitochondria by reproducing the molecular and biochemical effects downstream of IL-15 activation.
Collapse
|
21
|
Michalak M. Plant-Derived Antioxidants: Significance in Skin Health and the Ageing Process. Int J Mol Sci 2022; 23:585. [PMID: 35054770 PMCID: PMC8776015 DOI: 10.3390/ijms23020585] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 12/21/2022] Open
Abstract
Natural substances have traditionally been used in skin care for centuries. There is now an ongoing search for new natural bioactives that not only promote skin health but also protect the skin against various harmful factors, including ultraviolet radiation and free radicals. Free radicals, by disrupting defence and restoration mechanisms, significantly contribute to skin damage and accelerate ageing. Natural compounds present in plants exhibit antioxidant properties and the ability to scavenge free radicals. The increased interest in plant chemistry is linked to the growing interest in plant materials as natural antioxidants. This review focuses on aromatic and medicinal plants as a source of antioxidant substances, such as polyphenols, tocopherols, carotenoids, ascorbic acid, and macromolecules (including polysaccharides and peptides) as well as components of essential oils, and their role in skin health and the ageing process.
Collapse
Affiliation(s)
- Monika Michalak
- Department of Dermatology, Cosmetology and Aesthetic Surgery, Collegium Medicum, Jan Kochanowski University, IX Wieków Kielc 19, 35-317 Kielce, Poland
| |
Collapse
|
22
|
Alizadeh M, Daneghian S. Functional foods, hormesis, and oxidative stress. CURRENT ADVANCES FOR DEVELOPMENT OF FUNCTIONAL FOODS MODULATING INFLAMMATION AND OXIDATIVE STRESS 2022:581-603. [DOI: 10.1016/b978-0-12-823482-2.00022-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
23
|
Hematological and biochemical investigations on the effect of curcumin and Thymoquinone in male mice exposed to Thioacetamide. Saudi J Biol Sci 2022; 29:660-665. [PMID: 35002463 PMCID: PMC8716955 DOI: 10.1016/j.sjbs.2021.10.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/09/2021] [Accepted: 10/14/2021] [Indexed: 12/19/2022] Open
Abstract
Currently, living organisms are increasingly exposed to many toxic chemicals in the environment. These substances pose a threat to human life, other living organisms and ecosystem. In fact, there is an increasing requirement to search for safe therapeutic sources today. Medicinal plants and natural products have become of great importance globally because of their therapeutic potential and medicinal properties, as well as their availability and the absence of harmful side effects for most of them. The present study was designed to explore the potential protective effect of curcumin (CUR) and thymoquinone (TQ) in male rats exposed to thioacetamide (TAA). The experimental mice were divided into eight groups. Group 1 was served as control. Group 2 was exposed to 50 mg/ kg body weight of TAA. Group 3 was exposed to CUR and TAA. Mice of group 4 were treated with TQ and TAA. Mice of group 5 were exposed to CUR plus TQ and TAA. Group 6 was supplemented with CUR. Group 7 was subjected to TQ. Mice of group 8 were treated with CUR and TQ. Hematological and biochemical alterations were evaluated after one month. Significant increases of white blood corpuscles (WBC), alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total bilirubin (TB), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) values were observed in group 2, while the values of red blood corpuscles (RBC), hemoglobin (Hb(, hematocrit (Hct), glutathione (GSH) and superoxide dismutase (SOD) were statistically decreased. Treatment with CUR, TQ and their combination inhibited the hematological and biochemical alterations induced by TAA toxicity. Moreover, the most protective effect was observed in mice treated with CUR plus TQ. These new results suggested that the protective effect of CUR and TQ attributed to their antioxidant properties.
Collapse
|
24
|
Usman AN, Ahmad M, Arifuddin S, Yulianty R. Effectiveness of turmeric (Curcuma Longa Linn) Gel Extract (GE) on wound healing: Pre-clinical test. GACETA SANITARIA 2021; 35 Suppl 2:S196-S198. [PMID: 34929810 DOI: 10.1016/j.gaceta.2021.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/30/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE This research was basic research to identify the effect of turmeric extract tested by the in vivo method. The purpose of this study was to identify differences in the length of the wound at each concentration of gel preparations on days 3, 7, and 14, as well as differences in wound healing time at each concentration of gel preparations and, identify the most effective gel preparations for wound healing. METHOD This study is an experimental laboratory study with experimental animals using post-test only with control groups, the type of research used is a pre-clinical test (pre-clinical trial) on female rabbits. The sample size in this study was 12 rabbits grouped randomly. The length of each group's wounds was measured and observed on days 3, 7, and 14. Gel application was carried out twice a day in the morning and evening for 14 days. In this study, the experimental data were tested using Kruskal Wallis. RESULTS There were differences in wound length in each group treated with turmeric extract gel and base gel. Based on the mean wound length of each group, they experienced a reduction in wound length on days 3, 7, and 14. There were also differences in wound healing time in each group. In each group, wherein this case, the treatment group that was given 5% turmeric extract gel experienced a faster healing time <14 days than the other groups. CONCLUSION In general, turmeric extract gel at each concentration is effective against wound healing. Turmeric extract gel concentration is the most effective gel with a concentration of 5%, then followed by concentrations of 10% and 15%.
Collapse
Affiliation(s)
| | - Mardiana Ahmad
- Department of Midwifery, Graduate School, Hasanuddin University, Indonesia
| | | | | |
Collapse
|
25
|
Skaperda Z, Tekos F, Vardakas P, Nepka C, Kouretas D. Reconceptualization of Hormetic Responses in the Frame of Redox Toxicology. Int J Mol Sci 2021; 23:ijms23010049. [PMID: 35008472 PMCID: PMC8744777 DOI: 10.3390/ijms23010049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 02/01/2023] Open
Abstract
Cellular adaptive mechanisms emerging after exposure to low levels of toxic agents or stressful stimuli comprise an important biological feature that has gained considerable scientific interest. Investigations of low-dose exposures to diverse chemical compounds signify the non-linear mode of action in the exposed cell or organism at such dose levels in contrast to the classic detrimental effects induced at higher ones, a phenomenon usually referred to as hormesis. The resulting phenotype is a beneficial effect that tests our physiology within the limits of our homeostatic adaptations. Therefore, doses below the region of adverse responses are of particular interest and are specified as the hormetic gain zone. The manifestation of redox adaptations aiming to prevent from disturbances of redox homeostasis represent an area of particular interest in hormetic responses, observed after exposure not only to stressors but also to compounds of natural origin, such as phytochemicals. Findings from previous studies on several agents demonstrate the heterogeneity of the specific zone in terms of the molecular events occurring. Major factors deeply involved in these biphasic phenomena are the bioactive compound per se, the dose level, the duration of exposure, the cell, tissue or even organ exposed to and, of course, the biomarker examined. In the end, the molecular fate is a complex toxicological event, based on beneficial and detrimental effects, which, however, are poorly understood to date.
Collapse
Affiliation(s)
- Zoi Skaperda
- Laboratory of Animal Physiology, Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece; (Z.S.); (F.T.); (P.V.)
| | - Fotios Tekos
- Laboratory of Animal Physiology, Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece; (Z.S.); (F.T.); (P.V.)
| | - Periklis Vardakas
- Laboratory of Animal Physiology, Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece; (Z.S.); (F.T.); (P.V.)
| | - Charitini Nepka
- Department of Pathology, University Hospital of Larissa, 41334 Larissa, Greece;
| | - Demetrios Kouretas
- Laboratory of Animal Physiology, Department of Biochemistry-Biotechnology, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece; (Z.S.); (F.T.); (P.V.)
- Correspondence: ; Tel.: +30-2410-565-277; Fax: +30-2410-565-293
| |
Collapse
|
26
|
Regulation of Heme Oxygenase and Its Cross-Talks with Apoptosis and Autophagy under Different Conditions in Drosophila. Antioxidants (Basel) 2021; 10:antiox10111716. [PMID: 34829587 PMCID: PMC8614956 DOI: 10.3390/antiox10111716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 01/09/2023] Open
Abstract
Heme oxygenase (HO) is one of the cytoprotective enzymes that can mitigate the effects of oxidative stress. Here, we found that the ho mRNA level oscillates in the brain of Drosophila melanogaster with two minima at the beginning of the day and night. This rhythm was partly masked by light as its pattern changed in constant darkness (DD). It followed a similar trend in the clock mutant per01 under light/dark regime (LD12:12); however, differences between time points were not statistically significant. In older flies (20 days old), the rhythm was vanished; however, 15 days of curcumin feeding restored this rhythm with an elevated ho mRNA level at all time points studied. In addition, flies exposed to paraquat had higher ho expression in the brain, but only at a specific time of the day which can be a protective response of the brain against stress. These findings suggest that the expression of ho in the fly’s brain is regulated by the circadian clock, light, age, exposure to stress, and the presence of exogenous antioxidants. We also found that HO cross-talks with apoptosis and autophagy under different conditions. Induction of neuronal ho was accompanied by increased transcription of apoptosis and autophagy-related genes. However, this trend changed after exposure to curcumin and paraquat. Our results suggest that HO is involved in the control of apoptotic and autophagic key processes protecting the brain against oxidative damage.
Collapse
|
27
|
Bahrami A, Montecucco F, Carbone F, Sahebkar A. Effects of Curcumin on Aging: Molecular Mechanisms and Experimental Evidence. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8972074. [PMID: 34692844 PMCID: PMC8528582 DOI: 10.1155/2021/8972074] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/21/2021] [Accepted: 09/30/2021] [Indexed: 01/01/2023]
Abstract
Aging is characterized by a progressive inability to maintain homeostasis, self-repair, renewal, performance, and fitness of different tissues throughout the lifespan. Senescence is occurring following enormous intracellular or extracellular stress stimuli. Cellular senescence serves as an antiproliferative process that causes permanent cell cycle arrest and restricts the lifespan. Senescent cells are characterized by terminal cell cycle arrest, enlarged lysosome, and DNA double-strand breaks as well as lipofuscin granularity, senescence-associated heterochromatin foci, and activation of DNA damage response. Curcumin, a hydrophobic polyphenol, is a bioactive chemical constituent of the rhizomes of Curcuma longa Linn (turmeric), which has been extensively used for the alleviation of various human disorders. In addition to its pleiotropic effects, curcumin has been suggested to have antiaging features. In this review, we summarized the therapeutic potential of curcumin in the prevention and delaying of the aging process.
Collapse
Affiliation(s)
- Afsane Bahrami
- Clinical Research Development Unit of Akbar Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
- Clinical Research Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fabrizio Montecucco
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Federico Carbone
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Ultradeformable vesicles: concepts and applications relating to the delivery of skin cosmetics. Ther Deliv 2021; 12:739-756. [PMID: 34519219 DOI: 10.4155/tde-2021-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Skin aging is a phenomenon resulting in reduced self-confidence, thus becoming a major factor in social determinants of health. The use of active cosmetic ingredients can help prevent skin aging. Transfersomes are well known to be capable of deeply penetrating the dermis. This scoping review provides an insight into transfersomes and their prospective use in anti-aging cosmetics. Numerous reports exist highlighting the successful skin delivery of therapeutic agents such as high-molecular-weight, poorly water soluble and poorly permeable active ingredients by means of transfersomes. Moreover, in vitro and in vivo studies have indicated that transfersomes increase the deposition, penetration and efficacy of active ingredients. However, the use of transfersomes in the delivery of active cosmetic ingredients is limited. Considering their similar physicochemical properties, transfersomes should possess considerable potential as a delivery system for anti-aging cosmetics.
Collapse
|
29
|
Kalekhan F, Kudva AK, Raghu SV, Rao S, Hegde SK, Simon P, Baliga MS. Traditionally Used Natural Products in Preventing Ionizing Radiation-Induced Dermatitis: First Review on the Clinical Studies. Anticancer Agents Med Chem 2021; 22:64-82. [PMID: 33820524 DOI: 10.2174/1871520621666210405093236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/16/2020] [Accepted: 01/15/2021] [Indexed: 11/22/2022]
Abstract
In the treatment of cancer, the use of ionizing radiation is an important modality. However, on the downside, radiation, when used for curative purposes, causes acute dermatitis or radiodermatitis at the site of radiation in most individuals. From a clinical viewpoint, severe dermatitis causes a burning and itching sensation is very painful, and severely affects the quality of life of the individual undergoing treatment. In worse situations, acute radiation dermatitis can cause gaps or breaks in the planned treatment and this can adversely affect the treatment objective and outcome. BACKGROUND In various traditional and folk systems of medicine, plants and plant products have been used since time immemorial for treating various skin ailments. Further, many cosmeceutical creams formulated based on knowledge from ethnomedicinal use are marketed and used to treat various ailments. In the current review, an attempt is made at summarizing the beneficial effects of some plants and plant products in mitigating acute radiation dermatitis in humans undergoing curative radiotherapy. Additionally, the emphasis is also placed on the mechanism/s responsible for the beneficial effects. OBJECTIVE The objective of this review is to summarize the clinical observations on the prevention of radiodermatitis by plant products. In this review, the protective effects of Adlay (Coix lachryma-jobi L.) bran extract, Aloe vera, Calendula officinalis, Cucumis sativus, green tea constituent the epigallocatechin-3-gallate, honey, Achillea millefolium, Matricaria chamomilla, olive oil and some polyherbal creams are addressed by also addressing on the mechanism of action for the beneficial effects. METHODS Two authors' data mined for information in Google Scholar, PubMed, Embase and the Cochrane Library for publications in the field from 1901 up to July 2020. The focus was on acute radiation dermatitis, ionizing radiation, curative radiotherapy, human cancer. The articles were collected and analyzed. RESULTS For the first time, this review addresses the usefulness of natural products like adlay bran, Aloe vera, Calendula officinalis, Cucumis sativus, green tea constituent the epigallocatechin-3-gallate, honey, Achillea millefolium, Matricaria chamomilla, olive oil and some experimentally constituted and commercially available polyherbal creams as skincare agents against the deleterious effects of ionizing radiation on the skin. The protective effects are possibly due to the free radical scavenging, antioxidant, anti-inflammatory, wound healing and skin protective effects. CONCLUSION The authors suggest that these plants have been used since antiquity as medicinal agents and require in-depth investigation with both clinical and preclinical validated models of study. The results of these studies will be extremely useful to cancer patients requiring curative radiotherapy, the dermatology fraternity, agro-based and pharmaceutical sectors at large.
Collapse
Affiliation(s)
- Faizan Kalekhan
- Research Unit, Mangalore Institute of Oncology, Pumpwell, Mangalore, Karnataka. India
| | - Avinash K Kudva
- Department of Biochemistry, Mangalore University, Mangalagangotri, Karnataka. India
| | - Shamprasad V Raghu
- Neurogenetics Laboratory, Department of Applied Zoology, Mangalore University, Mangalagangotri, Karnataka. India
| | - Suresh Rao
- Radiation Oncology, Mangalore Institute of Oncology, Mangalore, Karnataka. India
| | - Sanath K Hegde
- Radiation Oncology, Mangalore Institute of Oncology, Pumpwell, Mangalore, Karnataka. India
| | - Paul Simon
- Research Unit, Mangalore Institute of Oncology, Pumpwell, Mangalore, Karnataka. India
| | - Manjeshwar S Baliga
- Research Unit, Mangalore Institute of Oncology, Pumpwell, Mangalore, Karnataka. India
| |
Collapse
|
30
|
Bioactive Compounds for Skin Health: A Review. Nutrients 2021; 13:nu13010203. [PMID: 33445474 PMCID: PMC7827176 DOI: 10.3390/nu13010203] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/05/2021] [Accepted: 01/09/2021] [Indexed: 01/19/2023] Open
Abstract
Human skin is continually changing. The condition of the skin largely depends on the individual’s overall state of health. A balanced diet plays an important role in the proper functioning of the human body, including the skin. The present study draws attention to bioactive substances, i.e., vitamins, minerals, fatty acids, polyphenols, and carotenoids, with a particular focus on their effects on the condition of the skin. The aim of the study was to review the literature on the effects of bioactive substances on skin parameters such as elasticity, firmness, wrinkles, senile dryness, hydration and color, and to define their role in the process of skin ageing.
Collapse
|
31
|
Dhanjal DS, Bhardwaj S, Sharma R, Bhardwaj K, Kumar D, Chopra C, Nepovimova E, Singh R, Kuca K. Plant Fortification of the Diet for Anti-Ageing Effects: A Review. Nutrients 2020; 12:E3008. [PMID: 33007945 PMCID: PMC7601865 DOI: 10.3390/nu12103008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Ageing is an enigmatic and progressive biological process which undermines the normal functions of living organisms with time. Ageing has been conspicuously linked to dietary habits, whereby dietary restrictions and antioxidants play a substantial role in slowing the ageing process. Oxygen is an essential molecule that sustains human life on earth and is involved in the synthesis of reactive oxygen species (ROS) that pose certain health complications. The ROS are believed to be a significant factor in the progression of ageing. A robust lifestyle and healthy food, containing dietary antioxidants, are essential for improving the overall livelihood and decelerating the ageing process. Dietary antioxidants such as adaptogens, anthocyanins, vitamins A/D/C/E and isoflavones slow the ageing phenomena by reducing ROS production in the cells, thereby improving the life span of living organisms. This review highlights the manifestations of ageing, theories associated with ageing and the importance of diet management in ageing. It also discusses the available functional foods as well as nutraceuticals with anti-ageing potential.
Collapse
Affiliation(s)
- Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India; (D.S.D.); (S.B.); (C.C.)
| | - Sonali Bhardwaj
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India; (D.S.D.); (S.B.); (C.C.)
| | - Ruchi Sharma
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; (R.S.); (D.K.)
| | - Kanchan Bhardwaj
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India;
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; (R.S.); (D.K.)
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India; (D.S.D.); (S.B.); (C.C.)
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India; (D.S.D.); (S.B.); (C.C.)
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| |
Collapse
|
32
|
Chaushu L, Rahmanov Gavrielov M, Chaushu G, Zar K, Vered M. Curcumin Promotes Primary Oral Wound Healing in a Rat Model. J Med Food 2020; 24:422-430. [PMID: 32808857 DOI: 10.1089/jmf.2020.0093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Curcumin is known as an anti-tumor, anti-aging, and wound healing promoter. The aim this study was to examine the effect of 2% curcumin paste application on primary wound healing in a palatal rat model. A mid-crestal incision was initiated on the maxillary alveolar ridge. A full thickness flap was raised on either side of the incision and was then repositioned and sutured. Experimental groups consisted of 2% curcumin (Cur), orabase (O), cut only (C), and intact control-no incision, no paste (N). Curcumin 2% and orabase were applied postoperatively every 12 h for 3 consecutive days. Rats were equally killed after 1 and 2 weeks. Histological data included-epithelial gap, inflammatory infiltrate, myofibroblasts, epithelial and connective tissue stem cell-related markers. Data were collected at two time points-1 and 2 weeks. There was no residual epithelial gap 1 week from incision in the Cur and O group vs. residual gap in the C group (P = .031). Curcumin 2% was associated with upregulated expression of epithelial-related markers (P < .05) although not statistically significant compared with orabase alone. Upregulation of connective tissue-related markers (P < .05) was unique to curcumin 2%. Curcumin promotes epithelial gap closure in a primary wound healing model in rats, possibly through upregulation of connective tissue stem cells leading to further epithelial differentiation and proliferation. Tel-Aviv University Animal Care Committee (approval Number: 01-16-031).
Collapse
Affiliation(s)
- Liat Chaushu
- Department of Periodontology and Implant Dentistry, The Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marina Rahmanov Gavrielov
- Department of Periodontology and Implant Dentistry, The Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gabi Chaushu
- Department of Oral and Maxillofacial Surgery, The Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Oral and Maxillofacial Surgery, Rabin Medical Center, Petah Tikva, Israel
| | - Keidar Zar
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Hebrew University, Jerusalem, Israel
| | - Marilena Vered
- Department of Oral Pathology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
33
|
Jesus MS, Carvalho AC, Teixeira JA, Domingues L, Pereira-Wilson C. Ohmic Heating Extract of Vine Pruning Residue Has Anti-Colorectal Cancer Activity and Increases Sensitivity to the Chemotherapeutic Drug 5-FU. Foods 2020; 9:foods9081102. [PMID: 32806531 PMCID: PMC7466249 DOI: 10.3390/foods9081102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
Vine pruning residues are by-products of the wine industry that have not received much attention in the past, in spite of being rich in bioactive compounds. In this study, we aimed to test whether an ohmic extract of vine pruning residue (VPE) has anti-colorectal cancer (CRC) properties, and whether responses differ according with cell's mutation profile. VPE decreased human CRC cell proliferation, accompanied by DNA effects and cell cycle modulation. VPE also increased cell sensitivity to the chemotherapeutic drug 5-FU. Our results suggest that tumors harboring BRAF mutations may be more responsive to VPE than KRAS mutated tumors. These effects of the extract were not completely reproduced by the most abundant constituents tested individually at the concentrations present in the effective dose of VPE. Globally, our results indicate that VPE, a polyphenol enriched extract produced by ohmic heating of vine pruning residue, has anti-colorectal cancer potential, including sensitizing to a chemotherapeutical drug, and its use in functional foods or nutraceuticals could be exploited in personalized anti colorectal cancer dietary strategies. Valorization of this lignocellulosic residue should encourage bio-waste recycling, adding value to this agricultural by-product and promoting the sustainable use of natural resources.
Collapse
Affiliation(s)
- Meirielly S. Jesus
- CEB–Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (M.S.J.); (J.A.T.); (L.D.)
- Department of Biology, University of Minho, 4710-057 Braga, Portugal;
| | - Ana C. Carvalho
- Department of Biology, University of Minho, 4710-057 Braga, Portugal;
- CITAB–Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - José A. Teixeira
- CEB–Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (M.S.J.); (J.A.T.); (L.D.)
| | - Lucília Domingues
- CEB–Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (M.S.J.); (J.A.T.); (L.D.)
| | - Cristina Pereira-Wilson
- CEB–Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (M.S.J.); (J.A.T.); (L.D.)
- Department of Biology, University of Minho, 4710-057 Braga, Portugal;
- Correspondence: ; Tel.: +351-253604318; Fax: +351-253604319
| |
Collapse
|
34
|
Knackstedt R, Oliver J, Gatherwright J. Evidence-Based Perioperative Nutrition Recommendations: Optimizing Results and Minimizing Risks. Plast Reconstr Surg 2020; 146:423-435. [PMID: 32740600 DOI: 10.1097/prs.0000000000007004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Plastic surgery patients span the nutritional spectrum from generally healthy, nutritionally competent patients to inherently catabolic, nutritionally deficient, and chronic wound patients. Therefore, plastic and reconstructive surgery affords the opportunity to investigate the impact of nutrition across a heterogeneous patient population following a wide variety of procedures. Although patients may be nutritionally deficient in certain vitamins warranting perioperative repletion, other supplements have the potential to benefit all patients, regardless of nutritional status. Despite these putative benefits, there is a dearth of information regarding nutritional optimization, with the limited, available literature focusing mostly on herbal supplements and their potential side effects. A significant barrier to supplement use is the lack of education and available supporting information regarding the indications, contraindications, and physiology of these adjuncts. The goal of this article is to provide a comprehensive, evidence-based review of available nutritional supplements that can be considered for the plastic surgery patient in the perioperative period to optimize surgical outcomes while minimizing risk. Prospective, well-designed studies using validated, high-quality supplements will be critical in determining the significance that perioperative supplementation can have for surgical outcomes. Until well-done prospective studies are performed, the supplement, dose, and duration should be determined on an individual, patient-per-patient basis at the discretion of the operating surgeon.
Collapse
Affiliation(s)
- Rebecca Knackstedt
- From the Department of Plastic Surgery, Cleveland Clinic; the Mayo Medical School; and the Division of Plastic Surgery, MetroHealth
| | - Jeremie Oliver
- From the Department of Plastic Surgery, Cleveland Clinic; the Mayo Medical School; and the Division of Plastic Surgery, MetroHealth
| | - James Gatherwright
- From the Department of Plastic Surgery, Cleveland Clinic; the Mayo Medical School; and the Division of Plastic Surgery, MetroHealth
| |
Collapse
|
35
|
Dehghani S, Dalirfardouei R, Jafari Najaf Abadi MH, Ebrahimi Nik M, Jaafari MR, Mahdipour E. Topical application of curcumin regulates the angiogenesis in diabetic-impaired cutaneous wound. Cell Biochem Funct 2020; 38:558-566. [PMID: 32030812 DOI: 10.1002/cbf.3500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/24/2019] [Accepted: 12/27/2019] [Indexed: 12/23/2022]
Abstract
Diabetic wound characterizes with a delayed repair as a result of the lack of neoangiogenesis and the excess of inflammation. Natural products such as curcumin have shown great promises in their regulatory potentials on inflammation and angiogenesis. However, natural agents have several shortages in their bioavailability and stability when used in vivo. In this study, we have evaluated the efficacy of a topical formulation of curcumin in the enhancement of diabetic wound repair. Streptozocin-induced diabetic mice were wounded, and cream of curcumin (1%) was applied topically to wounds twice daily for different treatment periods. Inflammation, neoangiogenesis, and re-epithelialization were evaluated in each experimental group. Wounds of animals treated with curcumin showed an enhanced neoangiogenesis. Application of topical curcumin also increased the expression level of RelA as the main subunit of the nuclear factor-κB (NF-κB) signalling pathway. However, no significant effects on macrophage polarization and re-epithelialization were observed in the curcumin-treated animals. Our study using a higher concentration of curcumin in the form of a topical cream further confirmed the efficacy of curcumin as an angiogenesis-promoting agent; however, it also conveyed uncertainty over the claimed regulatory effects of curcumin on inflammation. SIGNIFICANCE OF THE STUDY: Diabetes results in several complications such as impaired cutaneous wound repair. Excess of inflammation and lack of angiogenesis are among the main causes of delayed healing in diabetes. Curcumin is famous for its anti-inflammatory properties. However, when in the body curcumin has shown to have a limited benefit unless in high-dosage consumes. This is because of its poor absorption from digestive system and its bioavailability. In this study, we have used a topical formulation of curcumin at a relatively high concentration to enhance the healing of a diabetic wound in an animal model of diabetes. We also have studied different cellular and molecular mechanisms by which curcumin may help the wound repair. Our results re-emphasize the proangiogenic potential of curcumin in diabetic wound environment.
Collapse
Affiliation(s)
- Sadegh Dehghani
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Razieh Dalirfardouei
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Molecular Medicine and Genetics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Maryam Ebrahimi Nik
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elahe Mahdipour
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
36
|
Ohmic heating polyphenolic extracts from vine pruning residue with enhanced biological activity. Food Chem 2020; 316:126298. [PMID: 32062230 DOI: 10.1016/j.foodchem.2020.126298] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/15/2020] [Accepted: 01/25/2020] [Indexed: 01/29/2023]
Abstract
Vine Pruning residue was submitted to conventional heating and ohmic heating (OH) for the extraction of bioactive compounds and analyzed for total phenolic content (TPC), polyphenolic profile, antioxidant activity, antimicrobial activity and anticancer activity. The OH extracts were obtained using Low electric field (496.0 V/cm) or Intermediate electric field - IEF (840.0 V/cm). The tests were performed using 45% (v/v) ethanol-water extraction solution at 80 °C at different extraction times (20-90 min). The extract that stood out among the others concerning anticancer potential was the one obtained by OH when used, IEF, where the TPC was significantly higher than in the other extracts which correlated with higher antioxidant, antimicrobial and anti-proliferative activity on different tumor cell lines (HepG2, MDA-MB-231, MCF-7 and Caco2). Vine pruning OH extracts obtained using green solvents by an eco-friendly procedure were revealed as a source of compounds with relevant antioxidant and anticancer activity.
Collapse
|
37
|
Neuroprotective potential of chrysin in Parkinson's disease: Molecular mechanisms and clinical implications. Neurochem Int 2020; 132:104612. [DOI: 10.1016/j.neuint.2019.104612] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 01/09/2023]
|
38
|
Plant-Derived Molecules α-Boswellic Acid Acetate, Praeruptorin-A, and Salvianolic Acid-B Have Age-Related Differential Effects in Young and Senescent Human Fibroblasts In Vitro. Molecules 2019; 25:molecules25010141. [PMID: 31905790 PMCID: PMC6982785 DOI: 10.3390/molecules25010141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 11/20/2022] Open
Abstract
Testing and screening of plant-derived molecules on normal human cells in vitro is a widely used approach for discovering their eventual health beneficial effects for human ageing and longevity. As little is known about age-associated differential effects of such molecules, here we report that young (<25% replicative lifespan completed) and near-senescent (>90% replicative lifespan completed) human skin fibroblasts exposed for 1–15 days to a wide range of concentrations (0.1–100 μM) of the three selected phytochemicals, namely α-boswellic acid acetate (ABC), praeruptorin-A (PTA), and salvianolic acid-B (SAB) had age-related differential effects. The parameters studied were the metabolic activity (MTT assay), cellular morphological phenotype, one-step growth characteristics, expression of genes involved in the cell cycle regulation and cytokine network genes, protein levels of p53, cytosolic superoxide dismutase (SOD1) and microtubule-associated protein 1A/1B-light chain 3 (LC3), and the extent of protein carbonylation and protein aggregation as a sign of oxidative stress. All three compounds showed biphasic hormetic dose response by stimulating cell growth, survival and metabolic activity at low doses (up to 1 μM), while showing inhibitory effects at high doses (>10 μM). Furthermore, the response of early passage young cells was different from that of the late passage near-senescent cells, especially with respect to the expression of cell cycle-related and inflammation-related genes. Such studies have importance with respect to the use of low doses of such molecules as health-promoting and/or ageing-interventions through the phenomenon of hormesis.
Collapse
|
39
|
Markiewicz E, Idowu OC. DNA damage in human skin and the capacities of natural compounds to modulate the bystander signalling. Open Biol 2019; 9:190208. [PMID: 31847786 PMCID: PMC6936251 DOI: 10.1098/rsob.190208] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022] Open
Abstract
Human skin is a stratified organ frequently exposed to sun-generated ultraviolet radiation (UVR), which is considered one of the major factors responsible for DNA damage. Such damage can be direct, through interactions of DNA with UV photons, or indirect, mainly through enhanced production of reactive oxygen species that introduce oxidative changes to the DNA. Oxidative stress and DNA damage also associate with profound changes at the cellular and molecular level involving several cell cycle and signal transduction factors responsible for DNA repair or irreversible changes linked to ageing. Crucially, some of these factors constitute part of the signalling known for the induction of biological changes in non-irradiated, neighbouring cells and defined as the bystander effect. Network interactions with a number of natural compounds, based on their known activity towards these biomarkers in the skin, reveal the capacity to inhibit both the bystander signalling and cell cycle/DNA damage molecules while increasing expression of the anti-oxidant enzymes. Based on this information, we discuss the likely polypharmacology applications of the natural compounds and next-generation screening technologies in improving the anti-oxidant and DNA repair capacities of the skin.
Collapse
|
40
|
Gorabi AM, Kiaie N, Hajighasemi S, Jamialahmadi T, Majeed M, Sahebkar A. The Effect of Curcumin on the Differentiation of Mesenchymal Stem Cells into Mesodermal Lineage. Molecules 2019; 24:E4029. [PMID: 31703322 PMCID: PMC6891787 DOI: 10.3390/molecules24224029] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 01/21/2023] Open
Abstract
Curcumin has been placed at the forefront of the researcher's attention due to its pleiotropic pharmacological effects and health benefits. A considerable volume of articles has pointed out curcumin's effects on the fate of stem cell differentiation. In this review, a descriptive mechanism of how curcumin affects the outcome of the differentiation of mesenchymal stem cells (MSCs) into the mesodermal lineage-i.e., adipocyte, osteocyte, and chondrocyte differentiation-is compiled from the literature. The sections include the mechanism of inhibition or induction of MSCs differentiation to each lineage, their governing molecular mechanisms, and their signal transduction pathways. The effect of different curcumin doses and its structural modifications on the MSCs differentiation is also discussed.
Collapse
Affiliation(s)
- Armita Mahdavi Gorabi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran 1411713138, Iran; (A.M.G.); (N.K.)
| | - Nasim Kiaie
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran 1411713138, Iran; (A.M.G.); (N.K.)
| | - Saeideh Hajighasemi
- Department of Medical Biotechnology, Faculty of Paramedicine, Qazvin University of Medical Sciences, Qazvin 15315-34199, Iran;
| | - Tannaz Jamialahmadi
- Halal Research Center of IRI, FDA, Tehran, Iran;
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- University of Western Australia, Perth 6009, Australia
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
41
|
Son B, Lee S, Kim H, Kang H, Kim J, Youn H, Nam SY, Youn B. Low dose radiation attenuates inflammation and promotes wound healing in a mouse burn model. J Dermatol Sci 2019; 96:81-89. [DOI: 10.1016/j.jdermsci.2019.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/28/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023]
|
42
|
Pickering emulsion stabilized by amphiphilic pH-sensitive starch nanoparticles as therapeutic containers. Colloids Surf B Biointerfaces 2019; 181:244-251. [DOI: 10.1016/j.colsurfb.2019.05.046] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 05/05/2019] [Accepted: 05/18/2019] [Indexed: 12/25/2022]
|
43
|
Sharifi S, Zununi Vahed S, Ahmadian E, Maleki Dizaj S, Abedi A, Hosseiniyan Khatibi SM, Samiei M. Stem Cell Therapy: Curcumin Does the Trick. Phytother Res 2019; 33:2927-2937. [DOI: 10.1002/ptr.6482] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/21/2019] [Accepted: 08/04/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Simin Sharifi
- Dental and Periodontal Research CenterTabriz University of Medical Sciences Tabriz Iran
| | | | - Elham Ahmadian
- Kidney Research CenterTabriz University of Medical Sciences Tabriz Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research CenterTabriz University of Medical Sciences Tabriz Iran
| | - Atefeh Abedi
- Faculty of DentistryTabriz University of Medical Sciences Tabriz Iran
| | | | - Mohammad Samiei
- Faculty of DentistryTabriz University of Medical Sciences Tabriz Iran
- Stem Cell Research CenterTabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
44
|
Kumar N, Reddi S, Devi S, Mada SB, Kapila R, Kapila S. Nrf2 dependent antiaging effect of milk-derived bioactive peptide in old fibroblasts. J Cell Biochem 2019; 120:9677-9691. [PMID: 30592315 DOI: 10.1002/jcb.28246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 11/16/2018] [Indexed: 12/20/2022]
Abstract
Prolonged passaging of primary fibroblast cells totally shapes the natural biological phenomena and leads to the appearance of features related to senescence. As a result, it is a good natural tool to delineate the molecular mechanism of cellular aging. The present investigation revealed the antiaging effect of milk-derived novel bioactive peptide (VLPVPQK). The peptide played an important role in downregulating apoptosis-related markers in late passages of cultured fibroblast cells. The peptide treatment to aged fibroblasts caused enhancement in cell migration, DNA integrity, and decrease in the lipid peroxidation, reactive oxygen species, nitric oxide production as well as pro-inflammatory cytokines, TNF-α and IL-6. Moreover, the peptide decreased the expression of apoptotic caspases, Bax, and senescence-associated β-galactosidase (SA-β-gal) proteins. The peptide pretreatment also enhanced the extracellular collagen protein and antiapoptotic, Bcl-xL. In addition, the peptide treatment reversed the senescence-related activity in fibroblasts by stimulating Nrf2 mediated antioxidative defense system and inhibiting the action of NFkB/p38MAPK signaling, similar to the commercially available inhibitor (SB203580) of p38MAPK. Thus, the peptide exhibits the antiaging effect in dermal fibroblast cells.
Collapse
Affiliation(s)
- Naveen Kumar
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Srinu Reddi
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Savita Devi
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Sanusi Bello Mada
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Rajeev Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Suman Kapila
- Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
45
|
Xu J, Zhou L, Weng Q, Xiao L, Li Q. Curcumin analogues attenuate Aβ 25-35-induced oxidative stress in PC12 cells via Keap1/Nrf2/HO-1 signaling pathways. Chem Biol Interact 2019; 305:171-179. [PMID: 30946834 DOI: 10.1016/j.cbi.2019.01.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 12/21/2018] [Accepted: 01/06/2019] [Indexed: 12/24/2022]
Abstract
Beta-amyloid (Aβ) has pivotal functions in the pathogenesis of Alzheimer's Disease (AD). In the present study, we adopted an vitro model that involved Aβ25-35-induced oxidative damage in PC12 cells. Aβ25-35 (10 μΜ) treatment for 24 h induced significant cell death and oxidative stress in PC12 cells, as evidenced by cell viability reduction, LDH release, ROS accumulation and increased production MDA. (1E,4E)-1, 5-bis(4-hydroxy-3-methoxyphenyl) penta-1, 4-dien-3-one (CB) and (1E, 4E)-1-(3, 4-dimethoxyphenyl)-5-(4-hydroxy-3, 5-dime-thoxyphenyl) Penta-1, 4-dien-3-one (FE), two Curcumin (Cur) analogues displayed neuroprotective effects against Aβ25-35-induced oxidative damage and cellular apoptosis in PC12 cells. Here, we investigated three different treatment ways of CB and FE. It was interesting that post-treatment of CB and FE (restoring way) showed similar effect to the preventive way, while attenuating way did not show any protective effect. We found that low dose CB and FE increased transcriptional factor NF-E2-related factor 2 (Nrf2)/hemo oxygenase 1 (HO-1) protein expression and decreased Kelch-like ECH-associated protein 1 (Keap1) in PC 12 cells. In addition, CB and FE promoted the translation of Nrf2 into nuclear and enhanced the activity of superoxide dismutase (SOD)/catalase, which confirmed cytoprotection against Aβ25-35-induced oxidative damage. Moreover, CB and FE could increase Bcl-2 expression level, decrease the level of Bax and Cyt-c in Aβ25-35-treated PC12 cells. Ultimately, the neuroprotective effect of CB and FE provides a pharmacological basis for its clinical use in prevention and treatment of AD.
Collapse
Affiliation(s)
- Jialin Xu
- College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang, 310014, PR China
| | - Leilei Zhou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang, 310014, PR China
| | - Qi Weng
- College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang, 310014, PR China
| | - Linxia Xiao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang, 310014, PR China
| | - Qingyong Li
- College of Pharmaceutical Science, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang, 310014, PR China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang, 310014, PR China.
| |
Collapse
|
46
|
Barchitta M, Maugeri A, Favara G, Magnano San Lio R, Evola G, Agodi A, Basile G. Nutrition and Wound Healing: An Overview Focusing on the Beneficial Effects of Curcumin. Int J Mol Sci 2019; 20:ijms20051119. [PMID: 30841550 PMCID: PMC6429075 DOI: 10.3390/ijms20051119] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/22/2019] [Accepted: 03/01/2019] [Indexed: 12/13/2022] Open
Abstract
Wound healing implicates several biological and molecular events, such as coagulation, inflammation, migration-proliferation, and remodeling. Here, we provide an overview of the effects of malnutrition and specific nutrients on this process, focusing on the beneficial effects of curcumin. We have summarized that protein loss may negatively affect the whole immune process, while adequate intake of carbohydrates is necessary for fibroblast migration during the proliferative phase. Beyond micronutrients, arginine and glutamine, vitamin A, B, C, and D, zinc, and iron are essential for inflammatory process and synthesis of collagen. Notably, anti-inflammatory and antioxidant properties of curcumin might reduce the expression of tumor necrosis factor alpha (TNF-α) and interleukin-1 (IL-1) and restore the imbalance between reactive oxygen species (ROS) production and antioxidant activity. Since curcumin induces apoptosis of inflammatory cells during the early phase of wound healing, it could also accelerate the healing process by shortening the inflammatory phase. Moreover, curcumin might facilitate collagen synthesis, fibroblasts migration, and differentiation. Although curcumin could be considered as a wound healing agent, especially if topically administered, further research in wound patients is recommended to achieve appropriate nutritional approaches for wound management.
Collapse
Affiliation(s)
- Martina Barchitta
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via S. Sofia 87, 95123 Catania, Italy.
| | - Andrea Maugeri
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via S. Sofia 87, 95123 Catania, Italy.
| | - Giuliana Favara
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via S. Sofia 87, 95123 Catania, Italy.
| | - Roberta Magnano San Lio
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via S. Sofia 87, 95123 Catania, Italy.
| | - Giuseppe Evola
- General and Emergency Surgery Department, Garibaldi Hospital, Piazza Santa Maria di Gesù, 95100 Catania, Italy.
| | - Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via S. Sofia 87, 95123 Catania, Italy.
| | - Guido Basile
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Via Plebiscito 628, 95124 Catania, Italy.
| |
Collapse
|
47
|
Sodagam L, Lewinska A, Kwasniewicz E, Kokhanovska S, Wnuk M, Siems K, Rattan SIS. Phytochemicals Rosmarinic Acid, Ampelopsin, and Amorfrutin-A Can Modulate Age-Related Phenotype of Serially Passaged Human Skin Fibroblasts in vitro. Front Genet 2019; 10:81. [PMID: 30847003 PMCID: PMC6394134 DOI: 10.3389/fgene.2019.00081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/28/2019] [Indexed: 01/31/2023] Open
Abstract
One of the aims of the EU-funded Research and Innovation Action (RIA), titled “Ageing with Elegans” (AwE) is to enhance better understanding of the factors causing health and disease in aging and develop evidence-based preventive, diagnostic, therapeutic, and other strategies. The work package-5 of this project is focused on testing the effects of phytochemicals of natural and synthetic origin on aging, longevity, and health of human cells in vitro, after the initial screening using the animal model systems of nematodes and rats and mice. Accordingly, the first series of three compounds, rosmarinic acid (ROSM), ampelopsin (AMPEL), and amorfrutin-A (AMOR), were selected to test for their short-term and long-term effects on human skin fibroblasts undergoing aging and senescence in vitro. The lifelong modulatory effects of these compounds were tested individually at two doses (0.5 and 1.0 μM), selected after a short-term dose response check of a 20,000-fold range (0.01–200 μM). The results show that these compounds do have some beneficial effects in terms of supporting the long-term lifelong growth and enhanced stress tolerance of serially passaged cells. These effects seem to be achieved by reducing the extent of loss of telomeres, of 5-methyl-cytosine (5-mC) and of 5-hydroxymethyl-cytosine (5-hmC), by reducing the accumulation of oxidative DNA damage product 8-OHdG. There is also some indication that these compounds induce at least one of the stress responses in terms of the increased synthesis of heat shock protein Hsp70. Thus, these phytochemicals may be potential hormetins, which bring about their health beneficial effects by the phenomenon of mild stress-induced hormesis.
Collapse
Affiliation(s)
- Lakshman Sodagam
- Laboratory of Cellular Ageing, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Anna Lewinska
- Department of Cell Biochemistry, University of Rzeszow, Rzeszow, Poland
| | - Ewa Kwasniewicz
- Department of Cell Biochemistry, University of Rzeszow, Rzeszow, Poland
| | | | - Maciej Wnuk
- Department of Genetics, University of Rzeszow, Rzeszow, Poland
| | | | - Suresh I S Rattan
- Laboratory of Cellular Ageing, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
48
|
Choudhary V, Shivakumar H, Ojha H. Curcumin-loaded liposomes for wound healing: Preparation, optimization, in-vivo skin permeation and bioevaluation. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.12.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
49
|
Heme detoxification by heme oxygenase-1 reinstates proliferative and immune balances upon genotoxic tissue injury. Cell Death Dis 2019; 10:72. [PMID: 30683864 PMCID: PMC6347604 DOI: 10.1038/s41419-019-1342-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 01/02/2019] [Indexed: 12/13/2022]
Abstract
Phenotypic changes of myeloid cells are critical to the regulation of premature aging, development of cancer, and responses to infection. Heme metabolism has a fundamental role in the regulation of myeloid cell function and activity. Here, we show that deletion of heme oxygenase-1 (HO-1), an enzyme that removes heme, results in an impaired DNA damage response (DDR), reduced cell proliferation, and increased cellular senescence. We detected increased levels of p16INK4a, H2AXγ, and senescence-associated-β-galactosidase (SA-β-Gal) in cells and tissues isolated from HO-1-deficient mice. Importantly, deficiency of HO-1 in residential macrophages in chimeric mice results in elevated DNA damage and senescence upon radiation-induced injury. Mechanistically, we found that mammalian target of rapamycin (mTOR)/S6 protein signaling is critical for heme and HO-1-regulated phenotype of macrophages. Collectively, our data indicate that HO-1, by detoxifying heme, blocks p16INK4a expression in macrophages, preventing DNA damage and cellular senescence.
Collapse
|
50
|
Moghaddam NSA, Oskouie MN, Butler AE, Petit PX, Barreto GE, Sahebkar A. Hormetic effects of curcumin: What is the evidence? J Cell Physiol 2018; 234:10060-10071. [PMID: 30515809 DOI: 10.1002/jcp.27880] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/15/2018] [Indexed: 12/26/2022]
Abstract
Curcumin (diferuloylmethane), a component of the yellow powder prepared from the roots of Curcuma longa or Zingiberaceae (known as turmeric) is not only widely used to color and flavor food but also used as a pharmaceutical agent. Curcumin demonstrates anti-inflammatory, anticarcinogenic, antiaging, and antioxidant activity, as well as efficacy in wound healing. Notably, curcumin is a hormetic agent (hormetin), as it is stimulatory at low doses and inhibitory at high doses. Hormesis by curcumin could be also a particular function at low doses (i.e., antioxidant behavior) and another function at high dose (i.e., induction of autophagy and cell death). Recent findings suggest that curcumin exhibits biphasic dose-responses on cells, with low doses having stronger effects than high doses; examples being activation of the mitogen-activated protein kinase signaling pathway or antioxidant activity. This indicates that many effects induced by curcumin are dependent on dose and some effects might be greater at lower doses, indicative of a hormetic response. Despite the consistent occurrence of hormetic responses of curcumin in a wide range of biomedical models, epidemiological and clinical trials are needed to assess the nature of curcumin's dose-response in humans. Fortunately, more than one hundred clinical trials with curcumin and curcumin derivatives are ongoing. In this review, we provide the first comprehensive analysis supportive of the hormetic behavior of curcumin and curcumin derivatives.
Collapse
Affiliation(s)
| | - Mohammad Nosrati Oskouie
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alexandra E Butler
- Diabetes Research Center, Qatar Biomedical Research Institute, Doha, Qatar
| | - Patrice X Petit
- CNRS FR3636 Institut de Neurosciences "Mitochondria, Apoptosis and Autophagy Signalling," Université Paris-Descartes, Paris, France
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|