1
|
Wang Y, Yuan S, Tan W, Zhou Y, Liao R, Su W. Auraptene alleviates inflammatory injury and cell apoptosis in children with pneumonia in vitro. Allergol Immunopathol (Madr) 2023; 51:54-59. [PMID: 37937496 DOI: 10.15586/aei.v51i6.974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 08/28/2023] [Indexed: 11/09/2023]
Abstract
OBJECTIVE The aim of the present study is to investigate the effects of auraptene on inflammation and apoptosis of pneumonia cell model and uncover the mechanism. METHODS WI-38 cells were treated with lipopolysaccharide (LPS) to construct a pneumonia model. Cell counting kit-8 assay, enzyme-linked-immunosorbent serologic assay, and quantitative polymerase chain reaction assay were conducted to confirm the effects of auraptene on the viability and inflammation of WI-38 cells. Flow cytometry (FCM) and immunoblot assays were conducted to detect the effects of auraptene on the apoptosis of WI-38 cells. Immunoblot assay was performed to confirm the mechanism. RESULTS We found that auraptene stimulated cell viability in WI-38 cells upon LPS treatment. Auraptene also inhibited cellular inflammation. Furthermore, auraptene inhibited cell apoptosis of WI-38 cells upon LPS treatment. Mechanically, auraptene inhibited the nuclear factor kappa B signaling pathway, thereby suppressing the pneumonia. CONCLUSION Auraptene alleviates inflammatory injury and cell apoptosis in pneumonia, thus has the potential to act as a pneumonia drug.
Collapse
Affiliation(s)
- Yuebin Wang
- Department of Pediatrics, Affiliated Hospital of Xiangnan University, Chenzhou, Hunan Province, China
| | - Shuzhen Yuan
- Department of Pediatrics, Affiliated Hospital of Xiangnan University, Chenzhou, Hunan Province, China
| | - Wei Tan
- Department of Pediatrics, Affiliated Hospital of Xiangnan University, Chenzhou, Hunan Province, China
| | - Yuanyu Zhou
- Department of Pediatrics, Affiliated Hospital of Xiangnan University, Chenzhou, Hunan Province, China
| | - Ruiyun Liao
- Department of Pediatrics, Affiliated Hospital of Xiangnan University, Chenzhou, Hunan Province, China
| | - Wei Su
- Department of Pediatrics, Affiliated Hospital of Xiangnan University, Chenzhou, Hunan Province, China;
| |
Collapse
|
2
|
Sharma P, Joshi T, Mathpal S, Chandra S, Tamta S. In silico identification of antidiabetic target for phytochemicals of A. marmelos and mechanistic insights by molecular dynamics simulations. J Biomol Struct Dyn 2022; 40:10543-10560. [PMID: 34225570 DOI: 10.1080/07391102.2021.1944910] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The leaves and fruits of Aegle marmelos (L.) have antidiabetic activity. However, the mode of action and molecules having antidiabetic activity are not known. Hence, we conducted molecular docking of phytochemicals with various molecular antidiabetic targets to find the same. Docking prioritized Dipeptidyl peptidase-4 (DPP-4) as the main target for phytochemicals of Aegle marmelos. DPP-4 inactivates intestinal peptides, glucagon-like peptide-1 (GLP-1), and Gastric inhibitory polypeptide (GIP). GLP-1 and GIP stimulate a decline in blood glucose levels, but DPP-4 inhibits their functions resulting high level of glucose. Hence inhibiting the activity of DPP-4 is a well-known strategy to treat Type 2 diabetes. Therefore, to find a mechanism that may be involved to act as a natural inhibitor of DPP-4, we screened five phytochemicals out of seventy-three based on Virtual Screening, ADMET Drug-likeness analysis, and PAINS filtering. Further, all five phytochemicals, i.e. Aegeline, Citral, Marmesinin, Auraptene, β-Bisabolene, and reference compound subjected MDS for analyzing the stability of docked complexes to assess the fluctuation and conformational changes during protein-ligand interaction. The values of RMSD, RG, RMSF, SASA, and Gibbs energy revealed the good stability of these phytochemicals in the active site pocket of DPP-4 in comparison to reference. Additionally, we have done the pharmacophore analysis, which revealed many common pharmacophore features between screened phytochemicals of A. marmelos and reference molecule. Our results show that these phytochemicals are potential antidiabetic candidates and can be further modified and evaluated to develop more effective antidiabetic drugs against DPP-4 to treat Type 2 Diabetes. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Priyanka Sharma
- Department of Botany, D.S.B. Campus, Kumaun University, Nainital, Uttarakhand, India
| | - Tushar Joshi
- Department of Biotechnology, Bhimtal Campus, Kumaun University, Nainital, Uttarakhand, India
| | - Shalini Mathpal
- Department of Biotechnology, Bhimtal Campus, Kumaun University, Nainital, Uttarakhand, India
| | - Subhash Chandra
- Department of Botany, S.S.J Campus, Almora, Kumaun University, Nainital, Uttarakhand, India.,Computational Biology & Biotechnology Laboratory, Department of Botany, Soban Singh Jeena University, Almora, Uttarakhand, India
| | - Sushma Tamta
- Department of Botany, D.S.B. Campus, Kumaun University, Nainital, Uttarakhand, India
| |
Collapse
|
3
|
Sunagawa Y, Kawaguchi S, Miyazaki Y, Katanasaka Y, Funamoto M, Shimizu K, Shimizu S, Hamabe-Horiike T, Kawase Y, Komiyama M, Mori K, Murakami A, Hasegawa K, Morimoto T. Auraptene, a citrus peel-derived natural product, prevents myocardial infarction-induced heart failure by activating PPARα in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154457. [PMID: 36223697 DOI: 10.1016/j.phymed.2022.154457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Auraptene derived from the peel of Citrus hassaku possesses anti-tumor, anti-inflammatory, and neuroprotective activities. Thus, it could be a valuable pharmacological alternative to treat some diseases. However, the therapeutic value of auraptene for heart failure (HF) is unknown. STUDY DESIGN/METHODS In cultured cardiomyocytes from neonatal rats, the effect of auraptene on phenylephrine-induced hypertrophic responses and peroxisome proliferator-activated receptor-alpha (PPARα)-dependent gene transcriptions. To investigate whether auraptene prevents the development of heart failure after myocardial infarction (MI) in vivo, Sprague-Dawley rats with moderate MI (fractional shortening < 40%) were randomly assigned for treatment with low- or high-dose auraptene (5 or 50 mg/kg/day, respectively) or vehicle for 6 weeks. The effects of auraptene were evaluated by echocardiography, histological analysis, and the measurement of mRNA levels of hypertrophy, fibrosis, and PPARα-associated genes. RESULTS In cultured cardiomyocytes, auraptene repressed phenylephrine-induced hypertrophic responses, such as increases in cell size and activities of atrial natriuretic factor and endothelin-1 promoters. Auraptene induced PPARα-dependent gene activation by enhancing cardiomyocyte peroxisome proliferator-responsive element reporter activity. The inhibition of PPARα abrogated the protective effect of auraptene on phenylephrine-induced hypertrophic responses. In rats with MI, auraptene significantly improved MI-induced systolic dysfunction and increased posterior wall thickness compared to the vehicle. Auraptene treatment also suppressed MI-induced increases in myocardial cell diameter, perivascular fibrosis, and expression of hypertrophy and fibrosis response markers at the mRNA level compared with vehicle treatment. MI-induced decreases in the expression of PPARα-dependent genes were improved by auraptene treatment. CONCLUSIONS Auraptene has beneficial effects on MI-induced cardiac hypertrophy and left ventricular systolic dysfunction in rats, at least partly due to PPARα activation. Further clinical studies are required to evaluate the efficacy of auraptene in patients with HF.
Collapse
Affiliation(s)
- Yoichi Sunagawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto 612-8555, Japan; Research Support Center, Shizuoka General Hospital, Shizuoka 420-8527, Japan
| | - Shogo Kawaguchi
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Yusuke Miyazaki
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto 612-8555, Japan; Research Support Center, Shizuoka General Hospital, Shizuoka 420-8527, Japan
| | - Yasufumi Katanasaka
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto 612-8555, Japan; Research Support Center, Shizuoka General Hospital, Shizuoka 420-8527, Japan
| | - Masafumi Funamoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto 612-8555, Japan
| | - Kana Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto 612-8555, Japan
| | - Satoshi Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto 612-8555, Japan
| | - Toshihide Hamabe-Horiike
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Yuto Kawase
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Maki Komiyama
- Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto 612-8555, Japan
| | - Kiyoshi Mori
- Division of Molecular and Clinical Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; Department of Nephrology, Shizuoka General Hospital, Shizuoka 420-8527, Japan; Shizuoka Graduate University of Public Health, Shizuoka 420-0881, Japan
| | - Akira Murakami
- School of Human Science and Environment, University of Hyogo, Hyogo 670-0092, Japan
| | - Koji Hasegawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto 612-8555, Japan
| | - Tatsuya Morimoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto 612-8555, Japan; Research Support Center, Shizuoka General Hospital, Shizuoka 420-8527, Japan.
| |
Collapse
|
4
|
Myrtsi ED, Angelis A, Koulocheri SD, Mitakou S, Haroutounian SA. Retrieval of High Added Value Natural Bioactive Coumarins from Mandarin Juice-Making Industrial Byproduct. Molecules 2021; 26:7527. [PMID: 34946609 PMCID: PMC8708529 DOI: 10.3390/molecules26247527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 01/02/2023] Open
Abstract
Cold pressed essential oil (CPEO) of mandarin (Citrus reticulata Blanco), a by-product of the juice-making industrial process known to contain large amounts of polymethoxyflavones, was exploited for its content in high added value natural coumarins. The study herein afforded a method referring to the evaporation of CPEO volatile fraction under mild conditions (reduced pressure and temperature below 35 °C) as azeotrope with isopropanol. This allowed the isolation of high added value coumarins from the non-volatile fragment using preparative High Performance Liquid Chromatography (HPLC). Pilot-scale application of this procedure afforded for each kg of CPEO processed the following natural bioactive coumarins in chemically pure forms: heraclenol (38-55 mg), 8-gerayloxypsoralen (35-51 mg), auraptene (22-33 mg), and bergamottin (14-19 mg). The structures of coumarins were verified by Nuclear Magnetic Resonance (NMR) spectroscopy and HPLC co-injection with authentic standards. Thus, the low market value mandarin CPEO with current value of 17 to 22 EUR/kg can be valorized through the production of four highly bioactive natural compounds worth 3479 to 5057 EUR/kg, indicating the great potentials of this methodology in the terms of the circular economy.
Collapse
Affiliation(s)
- Eleni D. Myrtsi
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.D.M.); (S.D.K.)
| | - Apostolis Angelis
- Division of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (A.A.); (S.M.)
| | - Sofia D. Koulocheri
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.D.M.); (S.D.K.)
| | - Sofia Mitakou
- Division of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (A.A.); (S.M.)
| | - Serkos A. Haroutounian
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (E.D.M.); (S.D.K.)
| |
Collapse
|
5
|
Ma XF, Zhao Q, Cheng Y, Yan DM, Zhu WF, Li F. Metabolomics reveals the role of isopentenyl group in coumarins metabolism. Biomed Chromatogr 2021; 36:e5239. [PMID: 34494281 DOI: 10.1002/bmc.5239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/14/2021] [Accepted: 08/30/2021] [Indexed: 02/05/2023]
Abstract
Coumarins are a group of natural compounds commonly found in the families of Rutaceae and Umbelliferae. 7-Isopentenyloxycoumarin (ISC), auraptene (AUR), and umbelliprenin (UM) belong to prenyloxycoumarins (PYCs), which link isopentenyl, geranyl, and farnesyl group at C7 position, respectively. The substituent of 7-ethoxycoumarin (ETC) is the ethyl group. In this study, UPLC-ESI-QTOF-MS (ultra-performance liquid chromatography-electrospray ionization-quadrupole time of flight-MS)-based metabolomics was used to evaluate the in vivo and in vitro metabolism of PYCs. Results showed that ETC produced 10 known metabolites, and ISC was transformed into 17 metabolites in vivo and in vitro, which were undescribed compounds. A total of 35 AUR metabolites, including 34 undescribed metabolites were identified, and 21 metabolites were reported for the first time in UM. The results indicated that hydroxylation and N-acetylcysteine conjugation were the common metabolic reactions for PYCs. The metabolic rates of ETC, ISC, AUR and UM were 26%, 36%, 81%, and 38%, respectively, in human liver microsome, while they were 24%, 40%, 80%, and 37%, respectively, in mouse liver microsomes. In addition, recombinant cytochrome P450s (CYPs) screening showed that CYP1A1, 2C19, 3A4, and 3A5 were the major metabolic enzymes involved in the formation of hydroxylation metabolites. Together, these results suggest that the isopentenyl group plays an important role in the metabolism of PYCs.
Collapse
Affiliation(s)
- Xiao-Fang Ma
- Academician Workstation, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Qi Zhao
- Laboratory of Metabolomics and Drug-Induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Cheng
- Laboratory of Metabolomics and Drug-Induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Dong-Mei Yan
- Academician Workstation, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Wei-Feng Zhu
- Academician Workstation, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Fei Li
- Laboratory of Metabolomics and Drug-Induced Liver Injury, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Fiorito S, Epifano F, Marchetti L, Palumbo L, Orhan IE, Sharifi-Rad M, Genovese S. Oxyprenylated Secondary Metabolites as Modulators of Lipid and Sugar Metabolism. Curr Top Med Chem 2021; 22:189-198. [PMID: 34315370 DOI: 10.2174/1568026621666210727163038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/03/2021] [Accepted: 05/27/2021] [Indexed: 11/22/2022]
Abstract
O-Prenylcoumarins (3,3-dimethylallyl, geranyl-, farnesyl- and related biosynthetic derivatives) represent a class of rarely occurring natural compounds. The most part of these secondary metabolites have been obtained from plant species belonging to the Rutaceae, Apiaceae, andFabaceae families, and from fungi, and bacteria. In the last two decades prenyloxycoumarinshave been found to possess a great potential in terms of pharmacological activities. The aim of this comprehensive review is to make a survey of the in so far reported literature citations about these valuable phytochemicals and structurally related compounds about their modulatory properties of lipid and sugar metabolism. Literature data have been acquired from the main Internet database. Several oxyprenylated secondary metabolites have been surveyed. Among these prenyloxycoumarins represented the main group exerting displayed valuable effects as modulators of lipid and sugar metabolism. The title phytochemicals have been found in common edible and fruits vegetables already known to have beneficial effects to this concern, thus enforcing the nutraceutical role of these food plants. All compounds outlined in the present review article have a great potential for the next future for the prevention and management of acute and chronic metabolic disorders.
Collapse
Affiliation(s)
- Serena Fiorito
- Department of Pharmacy, University "Gabriele d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo (CH), Italy
| | - Francesco Epifano
- Department of Pharmacy, University "Gabriele d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo (CH), Italy
| | - Lorenzo Marchetti
- Department of Pharmacy, University "Gabriele d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo (CH), Italy
| | - Lucia Palumbo
- Department of Pharmacy, University "Gabriele d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo (CH), Italy
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University,Ankara, Turkey
| | - Majid Sharifi-Rad
- Department of Range and Watershed Management, Faculty of Water and Soil, University of Zabol, Zabol 98613-35856, Iran
| | - Salvatore Genovese
- Department of Pharmacy, University "Gabriele d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo (CH), Italy
| |
Collapse
|
7
|
Gogoi B, Gogoi D, Gogoi N, Mahanta S, Buragohain AK. Network pharmacology based high throughput screening for identification of multi targeted anti-diabetic compound from traditionally used plants. J Biomol Struct Dyn 2021; 40:8004-8017. [PMID: 33769188 DOI: 10.1080/07391102.2021.1905554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The incurable Type 2 diabetes mellitus (T2DM) has now been considered a pandemic with only supportive care in existence. Due to the adverse effects of available anti-diabetic drugs, there arises a great urgency to develop new drug molecules. One of the alternatives that can be considered for the treatment of T2DM are natural compounds from traditionally used herbal medicine. The present study undertakes, an integrated multidisciplinary concept of Network Pharmacology to evaluate the efficacy of potent anti-diabetic compound from traditionally used anti-diabetic plants of north east India and followed by DFT analysis. In the course of the study, 22 plant species were selected on the basis of their use in traditional medicine for the treatment of T2DM by various ethnic groups of the north eastern region of India. Initially, a library of 1053 compounds derived from these plants was generated. This was followed by network preparation between compounds and targets based on the docking result. The compounds having the best network property were considered for DFT analysis. We have identified that auraptene, a monoterpene coumarin for its activity in the management of Type 2 diabetes mellitus and deciphered its unexplored probable mechanisms. Molecular dynamics simulation of the ligand-protein complexes also reveals the stable binding of auraptene with the target proteins namely, Protein Kinase C θ, Glucocorticoid receptor, 11-β hydroxysteroid dehydrogenase 1 and Aldose Reductase, all of which form uniform interactions throughout the MD simulation trajectory. Therefore, this finding could provide new insights for the development of a new anti-diabetic drug.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bhaskarjyoti Gogoi
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India.,Department of Biotechnology, Royal Global University, Guwahati, Assam, India
| | - Dhrubajyoti Gogoi
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh, Assam, India
| | - Neelutpal Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Saurov Mahanta
- National Institute of Electronics and Information Technology (NIELIT), Guwahati, Assam, India
| | - Alak K Buragohain
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India.,Department of Biotechnology, Royal Global University, Guwahati, Assam, India
| |
Collapse
|
8
|
Akashi S, Morita A, Mochizuki Y, Shibuya F, Kamei Y, Miura S. Citrus hassaku Extract Powder Increases Mitochondrial Content and Oxidative Muscle Fibers by Upregulation of PGC-1α in Skeletal Muscle. Nutrients 2021; 13:nu13020497. [PMID: 33546195 PMCID: PMC7913372 DOI: 10.3390/nu13020497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/26/2021] [Accepted: 01/30/2021] [Indexed: 12/18/2022] Open
Abstract
Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) is expressed in skeletal muscles and regulates systemic metabolism. Thus, nutraceuticals targeting skeletal muscle PGC-1α have attracted attention to modulate systemic metabolism. As auraptene contained in citrus fruits promotes lipid metabolism and improves mitochondrial respiration, it could increase mitochondrial function through PGC-1α. Therefore, we hypothesized that PGC-1α is activated by auraptene and investigated its effect using Citrus hassaku extract powder (CHEP) containing >80% of auraptene. C2C12 myotubes were incubated with vehicle or CHEP for 24 h; C57BL/6J mice were fed a control diet or a 0.25% (w/w) CHEP-containing diet for 5 weeks. PGC-1α protein level and mitochondrial content increased following CHEP treatment in cultured myotubes and skeletal muscles. In addition, the number of oxidative fibers increased in CHEP-fed mice. These findings suggest that CHEP-mediated PGC-1α upregulation induced mitochondrial biogenesis and fiber transformation to oxidative fibers. Furthermore, as CHEP increased the expression of the protein sirtuin 3 and of phosphorylated AMP-activated protein kinase (AMPK) and the transcriptional activity of PGC-1α, these molecules might be involved in CHEP-induced effects in skeletal muscles. Collectively, our findings indicate that CHEP mediates PGC-1α expression in skeletal muscles and may serve as a dietary supplement to prevent metabolic disorders.
Collapse
Affiliation(s)
- Shiori Akashi
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (S.A.); (A.M.); (Y.M.); (F.S.)
| | - Akihito Morita
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (S.A.); (A.M.); (Y.M.); (F.S.)
| | - Yusuke Mochizuki
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (S.A.); (A.M.); (Y.M.); (F.S.)
| | - Fuka Shibuya
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (S.A.); (A.M.); (Y.M.); (F.S.)
| | - Yasutomi Kamei
- Laboratory of Molecular Nutrition, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan;
| | - Shinji Miura
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (S.A.); (A.M.); (Y.M.); (F.S.)
- Correspondence: ; Tel.: +81-54-264-5559; Fax: +81-54-264-5559
| |
Collapse
|
9
|
Yoshizaki K, Asai M, Hara T. High-Fat Diet Enhances Working Memory in the Y-Maze Test in Male C57BL/6J Mice with Less Anxiety in the Elevated Plus Maze Test. Nutrients 2020; 12:nu12072036. [PMID: 32659954 PMCID: PMC7400900 DOI: 10.3390/nu12072036] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 11/25/2022] Open
Abstract
Obesity is characterized by massive adipose tissue accumulation and is associated with psychiatric disorders and cognitive impairment in human and animal models. However, it is unclear whether high-fat diet (HFD)-induced obesity presents a risk of psychiatric disorders and cognitive impairment. To examine this question, we conducted systematic behavioral analyses in C57BL/6J mice (male, 8-week-old) fed an HFD for 7 weeks. C57BL/6J mice fed an HFD showed significantly increased body weight, hyperlocomotion in the open-field test (OFT) and Y-maze test (YMZT), and impaired sucrose preference in the sucrose consumption test, compared to mice fed a normal diet. Neither body weight nor body weight gain was associated with any of the behavioral traits we examined. Working memory, as assessed by the YMZT, and anxiety-like behavior, as assessed by the elevated plus maze test (EPMT), were significantly correlated with mice fed an HFD, although these behavioral traits did not affect the entire group. These results suggest that HFD-induced obesity does not induce neuropsychiatric symptoms in C57BL/6J mice. Rather, HFD improved working memory in C57BL/6J mice with less anxiety, indicating that an HFD might be beneficial under limited conditions. Correlation analysis of individual traits is a useful tool to determine those conditions.
Collapse
Affiliation(s)
- Kaichi Yoshizaki
- Department of Disease Model, Institute for Developmental Research, Aichi Developmental Disability Center, Aichi 480-0392, Japan;
- Correspondence: (K.Y.); (T.H.); Tel.: +81-568-88-0811 (K.Y.); +81-4-2947-6763 (T.H.)
| | - Masato Asai
- Department of Disease Model, Institute for Developmental Research, Aichi Developmental Disability Center, Aichi 480-0392, Japan;
| | - Taichi Hara
- Laboratory of Food and Life Science, Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192, Japan
- Correspondence: (K.Y.); (T.H.); Tel.: +81-568-88-0811 (K.Y.); +81-4-2947-6763 (T.H.)
| |
Collapse
|
10
|
Hussein MM, Samy M, Arisha AH, Saadeldin IM, Alshammari GM. Anti-obesity effects of individual or combination treatment with Spirulina platensis and green coffee bean aqueous extracts in high-fat diet-induced obese rats. ALL LIFE 2020. [DOI: 10.1080/26895293.2020.1781698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Mohamed M.A. Hussein
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Maha Samy
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed Hamed Arisha
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Islam M. Saadeldin
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Ghedeir M. Alshammari
- Department of Food science and nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
11
|
Wang Y, Zhang W, Wu X, Wu C, Qian L, Wang L, Zhang X, Yang M, Li D, Ding J, Wang C, Yin Z, Ding Y. Transcriptomic comparison of liver tissue between Anqing six-end-white pigs and Yorkshire pigs based on RNA sequencing. Genome 2020; 63:203-214. [DOI: 10.1139/gen-2019-0105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chinese indigenous pig and Western commercial pig breeds show different patterns of lipid metabolism, fat deposition, and fatty acid composition; for these reasons, they have become vitally important models of energy metabolism and obesity in humans. To compare the mechanisms underlying lipid metabolism between Yorkshire pigs (lean type) and Anqing six-end-white pigs (obese type), the liver transcriptomes of six castrated boars with a body weight of approximately 100 kg (three Yorkshire and three Anqing) were analyzed by RNA-seq. The total number of reads produced for each liver sample ranged from 47.05 to 62.6 million. Among 362 differentially expressed genes, 142 were up-regulated and 220 were down-regulated in Anqing six-end-white pigs. Based on these data, 79 GO terms were significantly enriched. The top 10 (the 10 with lowest corrected P-value) significantly enriched GO terms were identified, including lipid metabolic process and carboxylic acid metabolic process. Pathway analysis revealed three significantly enriched KEGG pathways including PPAR signaling pathway, steroid hormone biosynthesis, and retinol metabolism. Based on protein–protein interaction networks, multiple genes responsible for lipid metabolism were identified, such as PCK1, PPARA, and CYP7A1, and these were considered promising candidate genes that could affect porcine liver lipid metabolism and fat deposition. Our results provide abundant transcriptomic information that will be useful for animal breeding and biomedical research.
Collapse
Affiliation(s)
- Yuanlang Wang
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Wei Zhang
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xudong Wu
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Chaodong Wu
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Li Qian
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Li Wang
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xiaodong Zhang
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Min Yang
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Dengtao Li
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jian Ding
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Chonglong Wang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China
| | - Zongjun Yin
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yueyun Ding
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| |
Collapse
|
12
|
Maleki EH, Bahrami AR, Sadeghian H, Matin MM. Discovering the structure-activity relationships of different O-prenylated coumarin derivatives as effective anticancer agents in human cervical cancer cells. Toxicol In Vitro 2019; 63:104745. [PMID: 31830504 DOI: 10.1016/j.tiv.2019.104745] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/24/2019] [Accepted: 12/09/2019] [Indexed: 12/24/2022]
Abstract
Cervical cancer remains one of the greatest life threatening diseases for women worldwide. Although chemotherapy is considered as a standard treatment for advanced cervical cancers, there are still some drawbacks in this procedure including side effects and acquired drug resistance, which necessitate further research on development of more effective agents with less side effects. Among natural compounds, coumarin derivatives have shown anticancer properties on various cancerous cells and coumarin ring has proven to have a paramount role in development of anticancer drugs. Here, we aimed to establish the structure-activity relationships of eighteen O-prenylated coumarin derivatives and determined their anticancer properties on HeLa cervical cancer and HDF normal cells by MTT assay. Moreover, the mechanism of cell death induced by these compounds and their effects on cell cycle were studied using flow cytometry. MTT results indicated that twelve O-prenylated coumarin derivatives exhibited selective toxicity on HeLa cells, while they had no significant toxic effects on normal cells. Besides, flow cytometric analyses, showed that the selected compounds induced apoptosis in HeLa cells, and could also result to G1 cell cycle arrest. In conclusion, analyzing structural-activity relationships revealed that a prenylation substitution at position 6 of the coumarin ring greatly improved anticancer properties of these agents. As these derivatives exerted their cytotoxic effects via apoptosis and were not toxic on normal cells, they can be considered as effective anticancer agents for further preclinical experiments.
Collapse
Affiliation(s)
- Ebrahim H Maleki
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Hamid Sadeghian
- Neurogenic Inflammation Research Center, Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran.
| |
Collapse
|
13
|
Bibak B, Shakeri F, Barreto GE, Keshavarzi Z, Sathyapalan T, Sahebkar A. A review of the pharmacological and therapeutic effects of auraptene. Biofactors 2019; 45:867-879. [PMID: 31424600 DOI: 10.1002/biof.1550] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/26/2019] [Indexed: 12/25/2022]
Abstract
There is a growing awareness in herbal medications as they are usually safe and devoid of significant adverse effects. Auraptene is a natural bioactive monoterpene coumarin ether and is consumed all over the world. There is growing evidence of the therapeutic benefits of auraptene. Auraptene, also known as auraptene and 7-geranyloxycoumarin, is a bioactive monoterpene coumarin from Rutaceae family, which is isolated from Citrus aurantium (Seville orange) and Aegle marmelos (bael fruit). Auraptene is a highly pleiotropic molecule, which can modulate intracellular signaling pathways that control inflammation, cell growth, and apoptosis. It has a potential therapeutic role in the prevention and treatment of various diseases due to its anti-inflammatory and antioxidant activities as well as its excellent safety profile. In the present article, various pharmacological and therapeutic effects of auraptene were reviewed. Different online databases using keywords such as auraptene, therapeutic effects and pharmacological effects were searched until the end of September 2018, for this purpose. Auraptene has been suggested to be effective in the treatment of a broad range of disorders including inflammatory disorders, dysentery, wounds, scars, keloids, and pain. In addition, different studies have demonstrated that auraptene possesses numerous pharmacological properties including anti-inflammatory, anti-oxidative, anti-diabetic, anti-hypertensive and anti-cancer as well as neuroprotective effects. The present review provides a detailed survey of scientific researches regarding pharmacological properties and therapeutic effects of auraptene.
Collapse
Affiliation(s)
- Bahram Bibak
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Department of Physiology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Farzaneh Shakeri
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - George E Barreto
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Zakieh Keshavarzi
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Department of Physiology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Ishida M, Takekuni C, Nishi K, Sugahara T. Anti-inflammatory effect of aqueous extract from Kawachi-bankan (Citrus maxima) peel in vitro and in vivo. Cytotechnology 2019; 71:797-807. [PMID: 31190318 PMCID: PMC6663950 DOI: 10.1007/s10616-019-00323-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/07/2019] [Indexed: 11/29/2022] Open
Abstract
Kawachi-bankan (Citrus maxima) is one of the citruses produced in Ehime, Japan. Although health functions of flavonoids and carotenoids in citrus peel have been studied very well, those of water-soluble substances in the peel have not been focused. We herein indicated the anti-inflammatory effect of Kawachi-bankan peel aqueous extract (KPE) in vitro and in vivo. KPE significantly inhibited the production of inflammatory cytokines such as interleukin (IL)-6 and tumor necrosis factor (TNF)-α by LPS-stimulated RAW264.7 cells without cytotoxicity. KPE also significantly inhibited the mRNA expression levels of IL-6 and TNF-α in the cells, suggesting that KPE inhibits the production of inflammatory cytokines by suppressing the gene expression levels. Immunoblot analysis revealed that KPE shows an anti-inflammatory effect on macrophages through the suppression of the phosphorylation of p38 and the translocation of NF-κB into nucleus. The oral administration of KPE inhibited the serum levels of inflammatory cytokines and improved the survival rate in systemic inflammatory response syndrome (SIRS) model mice. Our experiments using a cell line suggested that KPE inhibits the production of inflammatory cytokines by macrophages in hyperinflammatory state. In addition, experiments in vivo showed that the oral administration of KPE inhibited the serum levels of inflammatory cytokines and improved the survival rate in SIRS model mice. Our findings indicated that KPE contributes to alleviating of a hyperinflammatory response.
Collapse
Affiliation(s)
- Momoko Ishida
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan
| | - Chihiro Takekuni
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan
| | - Kosuke Nishi
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan
- Food and Health Sciences Research Center, Ehime University, Matsuyama, Ehime, 790-8566, Japan
| | - Takuya Sugahara
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan.
- Food and Health Sciences Research Center, Ehime University, Matsuyama, Ehime, 790-8566, Japan.
| |
Collapse
|
15
|
Biomolecular Targets of Oxyprenylated Phenylpropanoids and Polyketides. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2019; 108:143-205. [PMID: 30924014 DOI: 10.1007/978-3-030-01099-7_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oxyprenylated secondary metabolites (e.g. phenylpropanoids and polyketides) represent a rare class of natural compounds. Over the past two decades, this group of phytochemicals has become a topic of intense research activity by several teams worldwide due to their in vitro and in vivo pharmacological activities, and to their great therapeutic and nutraceutical potential for the chemoprevention of acute and chronic diseases affecting humans. Such investigations have provided evidence that oxyprenylated secondary metabolites are able to interact with several biological targets at different levels accounting for their observed anticarcinogenic, anti-inflammatory, neuroprotective, immunomodulatory, antihypertensive, and metabolic effects. The aim of the present contribution is to provide a detailed survey of the so far reported data on the capacities of selected oxyprenylated phenylpropanoids and polyketides to trigger receptors, enzymes, and other types of cellular factors for which they exhibit a high degree of affinity and therefore evoke specific responses. With respect to the rather small amounts of these compounds available from natural sources, their chemical synthesis is also highlighted.
Collapse
|
16
|
Regulatory Efficacy of Spirulina platensis Protease Hydrolyzate on Lipid Metabolism and Gut Microbiota in High-Fat Diet-Fed Rats. Int J Mol Sci 2018; 19:ijms19124023. [PMID: 30551559 PMCID: PMC6320850 DOI: 10.3390/ijms19124023] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/04/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023] Open
Abstract
Lipid metabolism disorder (LMD) is a public health issue. Spirulina platensis is a widely used natural weight-reducing agent and Spirulina platensis is a kind of protein source. In the present study, we aimed to evaluate the effect of Spirulina platensis protease hydrolyzate (SPPH) on the lipid metabolism and gut microbiota in high-fat diet (HFD)-fed rats. Our study showed that SPPH decreased the levels of triglyceride (TG), total cholesterol (TC), low-density-lipoprotein cholesterol (LDL-c), alanine transaminase (ALT), and aspartate transaminase (AST), but increased the level of high-density-lipoprotein cholesterol (HDL-c) in serum and liver. Moreover, SPPH had a hypolipidemic effect as indicated by the down-regulation of sterol regulatory element-binding transcription factor-1c (SREBP-1c), acetyl CoA carboxylase (ACC), SREBP-1c, and peroxisome proliferator-activated receptor-γ (PPARγ) and the up-regulation of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) and peroxisome proliferator-activated receptorα (PPARα) at the mRNA level in liver. SPPH treatment enriched the abundance of beneficial bacteria. In conclusion, our study showed that SPPH might be produce glucose metabolic benefits in rats with diet-induced LMD. The mechanisms underlying the beneficial effects of SPPH on the metabolism remain to be further investigated. Collectively, the above-mentioned findings illustrate that Spirulina platensis peptides have the potential to ameliorate lipid metabolic disorders, and our data provides evidence that SPPH might be used as an adjuvant therapy and functional food in obese and diabetic individuals.
Collapse
|
17
|
Okuyama S, Nakashima T, Nakamura K, Shinoka W, Kotani M, Sawamoto A, Nakajima M, Furukawa Y. Inhibitory Effects of Auraptene and Naringin on Astroglial Activation, Tau Hyperphosphorylation, and Suppression of Neurogenesis in the Hippocampus of Streptozotocin-Induced Hyperglycemic Mice. Antioxidants (Basel) 2018; 7:antiox7080109. [PMID: 30126250 PMCID: PMC6115810 DOI: 10.3390/antiox7080109] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/10/2018] [Accepted: 08/17/2018] [Indexed: 01/08/2023] Open
Abstract
Auraptene, a citrus-related compound, exerts anti-inflammatory effects in peripheral tissues, and we demonstrated these effects in the brains of a lipopolysaccharide-injected systemic inflammation animal model and a brain ischemic mouse model. Naringin, another citrus-related compound, has been shown to exert antioxidant effects in several animal models. Hyperglycemia induces oxidative stress and inflammation and causes extensive damage in the brain; therefore, we herein evaluated the anti-inflammatory and other effects of auraptene and naringin in streptozotocin-induced hyperglycemic mice. Both compounds inhibited astroglial activation and the hyperphosphorylation of tau at 231 of threonine in neurons, and also recovered the suppression of neurogenesis in the dentate gyrus of the hippocampus in hyperglycemic mice. These results suggested that auraptene and naringin have potential effects as neuroprotective agents in the brain.
Collapse
Affiliation(s)
- Satoshi Okuyama
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan.
| | - Tatsumi Nakashima
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan.
| | - Kumi Nakamura
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan.
| | - Wakana Shinoka
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan.
| | - Maho Kotani
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan.
| | - Atsushi Sawamoto
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan.
| | - Mitsunari Nakajima
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan.
| | - Yoshiko Furukawa
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan.
| |
Collapse
|
18
|
Vakili T, Iranshahi M, Arab H, Riahi B, Roshan NM, Karimi G. Safety evaluation of auraptene in rats in acute and subacute toxicity studies. Regul Toxicol Pharmacol 2017; 91:159-164. [PMID: 29080847 DOI: 10.1016/j.yrtph.2017.10.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/21/2017] [Accepted: 10/24/2017] [Indexed: 02/07/2023]
Abstract
Auraptene (AUR) is a natural, bioactive, monoterpene coumarin ether. It has anti-inflammatory, anti-carcinogenic, anti-bacterial, neuroprotective, and hepatoprotective properties. The aim of the present study was to assess the acute and subacute toxicity of oral administration of AUR in rats by evaluating clinical signs, haematology, biochemical factors, pathological changes and immune-toxicity. Acute administration of AUR in doses of 125, 250, 500, 1000 and 2000 mg/kg body weight had no mortality or clinical signs in a period of two days. To evaluate subacute toxicity, AUR was administrated for 28 days by oral gavage in doses of 125 and 250 mg/kg. There were significant differences in the haematological and biochemical data of the treated and untreated groups. However, almost all haematological differences were within normal reference ranges. Subacute administration of AUR showed no toxic histopathological effects on organ tissue. Evaluation of immune-toxicity also revealed no significant differences between treatment and untreated groups.
Collapse
Affiliation(s)
- Tooraj Vakili
- Resident of Pharmacology, Department of Pharmacology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hosseinali Arab
- Resident of Pharmacology, Department of Pharmacology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Bamdad Riahi
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nama Mohammadian Roshan
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
19
|
Genovese S, Ashida H, Yamashita Y, Nakgano T, Ikeda M, Daishi S, Epifano F, Taddeo VA, Fiorito S. The interaction of auraptene and other oxyprenylated phenylpropanoids with glucose transporter type 4. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 32:74-79. [PMID: 28732810 DOI: 10.1016/j.phymed.2017.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/29/2017] [Accepted: 06/29/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Glucose transporter 4 (GLUT4) is firmly established to play a pivotal role in glucose metabolism and in particular in modulating the insulin-stimulated glucose transport in several tissues, such as skeletal muscle and adipose tissue. Stimulation of GLUT4 by insulin results in its translocation to the plasma membrane, activation of several kinases, and finally in a large glucose influx into cells. PURPOSE In this study we investigated the modulating properties of four biologically active oxyprenylated ferulic acid and umbelliferone derivatives and of their unprenylated parent compounds on GLUT-4 mediated glucose uptake and translocation. METHODS Oxyprenylated phenylpropanoids have been synthesized in high yields and purity by already reported methodologies. All the synthesized chemicals were tested for their capacity to modulate GLUT4 mediated glucose uptake and GLUT4 translocation in L6 rat skeletal myoblasts in the concentration range 0.1 - 10 µM. Insulin (0.1 µM) was used as positive control. Western blot analysis was employed to assess if GLUT4 translocation occurred prior to increase of glucose uptake. Statistical analyses were carried out by the Dunnett multiple comparison test. RESULTS 4'-Geranyloxyferulic acid (GOFA), 7-isopentenyloxycoumarin, and auraptene (7-geranyloxycoumarin) increased glucose uptake in a concentration-dependent manner, and significant increases were observed at 0.1 µM for GOFA, and 10 µM for 7-isopentenyloxycoumarin, and auraptene. These products also were able to significantly promote the translocation of GLUT4 to the plasma membrane of L6 myotubes. After treatment with compounds for 15 min, the incorporated amounts of GOFA, 7-isopentenyloxucoumarin, and auraptene were 0.15, 0.32, and 1.77 nmols/60-mm culture dish, respectively. A sample of raw Italian propolis, found to be rich in GOFA and auraptene, was also seen to mimic insulin-effect in the concentration range 0.01 - 1.0 mg/ml. CONCLUSIONS Among the compounds assayed, auraptene showed to possess potentialities to be a potent activator of both translocation of GLUT4 and glucose influx into skeletal muscle cells with the highest bioavailability among effective compounds. Its capacity to modulate sugar metabolism, coupled to its presence in edible Citrus fruits, can be regarded as an additional reason to account for the already known stimulating properties of some vegetable (e.g. bitter orange).
Collapse
Affiliation(s)
- Salvatore Genovese
- Department of Pharmacy, University "G. D'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo (CH), Italy
| | - Hitoshi Ashida
- Department of Agrobioscience, Kobe University, 1-1 Rokkodai-cho, Nada-ku, 6578501 Kobe, Japan
| | - Yoko Yamashita
- Department of Agrobioscience, Kobe University, 1-1 Rokkodai-cho, Nada-ku, 6578501 Kobe, Japan
| | - Tomoya Nakgano
- Department of Agrobioscience, Kobe University, 1-1 Rokkodai-cho, Nada-ku, 6578501 Kobe, Japan
| | - Masaki Ikeda
- Department of Agrobioscience, Kobe University, 1-1 Rokkodai-cho, Nada-ku, 6578501 Kobe, Japan
| | - Shirasaya Daishi
- Department of Agrobioscience, Kobe University, 1-1 Rokkodai-cho, Nada-ku, 6578501 Kobe, Japan
| | - Francesco Epifano
- Department of Pharmacy, University "G. D'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo (CH), Italy.
| | - Vito Alessandro Taddeo
- Department of Pharmacy, University "G. D'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo (CH), Italy
| | - Serena Fiorito
- Department of Pharmacy, University "G. D'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo (CH), Italy
| |
Collapse
|
20
|
Ji W, Zhao M, Wang M, Yan W, Liu Y, Ren S, Lu J, Wang B, Chen L. Effects of canagliflozin on weight loss in high-fat diet-induced obese mice. PLoS One 2017; 12:e0179960. [PMID: 28665967 PMCID: PMC5493335 DOI: 10.1371/journal.pone.0179960] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 06/07/2017] [Indexed: 02/06/2023] Open
Abstract
Canagliflozin, an inhibitor of sodium glucose co-transporter (SGLT) 2, has been shown to reduce body weight during the treatment of type 2 diabetes mellitus (T2DM). In this study, we sought to determine the role of canagliflozin in body weight loss and liver injury in obesity. C57BL/6J mice were fed a high-fat diet to simulate diet-induced obesity (DIO). Canagliflozin (15 and 60 mg/kg) was administered to DIO mice for 4 weeks. Orlistat (10 mg/kg) was used as a positive control. The body weight, liver weight, liver morphology, total cholesterol (TC) and triglyceride (TG) levels were examined. Signaling molecules, including diacylgycero1 acyltransferase-2 (DGAT2), peroxisome proliferation receptor alpha-1 (PPARα1), PPARγ1, PPARγ2 mRNA levels and the protein expression of SGLT2 were evaluated. Canagliflozin reduced body weight, especially the high-dose canagliflozin, and resulted in increased body weight loss compared with orlistat. Moreover, canagliflozin reduced the liver weight and the ratio of liver weight to body weight, lowered the serum levels of TC and TG, and ameliorated liver steatosis. During the canagliflozin treatment, SGLT2, DGAT2, PPARγ1 and PPARγ2 were inhibited, and PPARα1 was elevated in the liver tissues. This finding may explain why body weight was reduced and secondary liver injury was ameliorated in response to canagliflozin. Together, the results suggest that canagliflozin may be a potential anti-obesity strategy.
Collapse
Affiliation(s)
- Wenjun Ji
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Department of Pharmacy, Taizhou People’s Hospital, Taizhou, Jiangsu, China
| | - Mei Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Department of Pharmacy, 302 Military Hospital of China, Beijing, China
| | - Meng Wang
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Department of Pharmacy, Shijiazhuang Maternity Hospital, Shijiazhuang, Hebei, China
| | - Wenhui Yan
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Yuan Liu
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Shuting Ren
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, Shaanxi, China
- Department of Pathology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Jun Lu
- Clinical Research Center, the First Affiliated Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Bing Wang
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, Shaanxi, China
- Department of Pathology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Lina Chen
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, Shaanxi, China
- * E-mail:
| |
Collapse
|
21
|
Lee JC, Shin EA, Kim B, Kim BI, Chitsazian-Yazdi M, Iranshahi M, Kim SH. Auraptene Induces Apoptosis via Myeloid Cell Leukemia 1-Mediated Activation of Caspases in PC3 and DU145 Prostate Cancer Cells. Phytother Res 2017; 31:891-898. [PMID: 28383142 DOI: 10.1002/ptr.5810] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 02/13/2017] [Accepted: 03/16/2017] [Indexed: 01/24/2023]
Abstract
Although auraptene, a prenyloxy coumarin from Citrus species, was known to have anti-oxidant, anti-bacterial, antiinflammatory, and anti-tumor activities, the underlying anti-tumor mechanism of auraptene in prostate cancers is not fully understood to date. Thus, in the present study, we have investigated the anti-tumor mechanism of auraptene mainly in PC3 and DU145 prostate cancer cells, because auraptene suppressed the viability of androgen-independent PC3 and DU145 prostate cancer cells better than androgen-sensitive LNCaP cells. Also, auraptene notably increased sub-G1 cell population and terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells as features of apoptosis in two prostate cancer cells compared with untreated control. Consistently, auraptene cleaved poly(ADP-ribose) polymerase, activated caspase-9 and caspase-3, suppressed the expression of anti-apoptotic proteins, including Bcl-2 and myeloid cell leukemia 1 (Mcl-1), and also activated pro-apoptotic protein Bax in both prostate cancer cells. However, Mcl-1 overexpression reversed the apoptotic effect of auraptene to increase sub-G1 population and induce caspase-9/3 in both prostate cancer cells. Taken together, the results support scientific evidences that auraptene induces apoptosis in PC3 and DU145 prostate cancer cells via Mcl-1-mediated activation of caspases as a potent chemopreventive agent for prostate cancer prevention and treatment. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jae Chul Lee
- Department of East West Medical Science Graduate School of East West Medical Science, Kyung Hee University, Suwon, Korea
| | - Eun Ah Shin
- College of Korean Medicine, Kyung Hee University, Seoul, 130-701, Korea
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Seoul, 130-701, Korea
| | - Bo-Im Kim
- College of Korean Medicine, Kyung Hee University, Seoul, 130-701, Korea
| | - Mahsa Chitsazian-Yazdi
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul, 130-701, Korea
| |
Collapse
|
22
|
Yang H, Xiao L, Wang N. Peroxisome proliferator-activated receptor α ligands and modulators from dietary compounds: Types, screening methods and functions. J Diabetes 2017; 9:341-352. [PMID: 27863018 DOI: 10.1111/1753-0407.12506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 10/24/2016] [Indexed: 12/24/2022] Open
Abstract
Peroxisome proliferator-activated receptor α (PPARα) plays a key role in lipid metabolism and glucose homeostasis and a crucial role in the prevention and treatment of metabolic diseases. Natural dietary compounds, including nutrients and phytochemicals, are PPARα ligands or modulators. High-throughput screening assays have been developed to screen for PPARα ligands and modulators in our diet. In the present review, we discuss recent advances in our knowledge of PPARα, including its structure, function, and ligand and modulator screening assays, and summarize the different types of dietary PPARα ligands and modulators.
Collapse
Affiliation(s)
- Haixia Yang
- Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an, China
- Department of Nutrition and Food Safety, School of Public Health, Xi'an Jiaotong University, Xi'an, China
| | - Lei Xiao
- Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an, China
| | - Nanping Wang
- The Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
23
|
Aragonès G, Ardid-Ruiz A, Ibars M, Suárez M, Bladé C. Modulation of leptin resistance by food compounds. Mol Nutr Food Res 2016; 60:1789-803. [DOI: 10.1002/mnfr.201500964] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Gerard Aragonès
- Department of Biochemistry and Biotechnology; Nutrigenomics Research Group; Universitat Rovira i Virgili; Tarragona Spain
| | - Andrea Ardid-Ruiz
- Department of Biochemistry and Biotechnology; Nutrigenomics Research Group; Universitat Rovira i Virgili; Tarragona Spain
| | - Maria Ibars
- Department of Biochemistry and Biotechnology; Nutrigenomics Research Group; Universitat Rovira i Virgili; Tarragona Spain
| | - Manuel Suárez
- Department of Biochemistry and Biotechnology; Nutrigenomics Research Group; Universitat Rovira i Virgili; Tarragona Spain
| | - Cinta Bladé
- Department of Biochemistry and Biotechnology; Nutrigenomics Research Group; Universitat Rovira i Virgili; Tarragona Spain
| |
Collapse
|
24
|
Chen WM, Shaw LH, Chang PJ, Tung SY, Chang TS, Shen CH, Hsieh YY, Wei KL. Hepatoprotective effect of resveratrol against ethanol-induced oxidative stress through induction of superoxide dismutase in vivo and in vitro. Exp Ther Med 2016; 11:1231-1238. [PMID: 27073428 PMCID: PMC4812565 DOI: 10.3892/etm.2016.3077] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 12/01/2015] [Indexed: 12/14/2022] Open
Abstract
The present study aimed to investigate the hepatoprotective effect of resveratrol (RSV) against ethanol-induced oxidative stress in vivo, and investigate the underlying mechanisms by which RSV exerts its anti-oxidative effects on hepatic cells. C57BL/6J mice were divided into four groups: Untreated control, ethanol-treated, RSV-treated, and ethanol + RSV-treated. The plasma lipid profile, hepatic lipid accumulation and antioxidative enzyme activities were analyzed. HepG2 cells were used as a cellular model to analyze the effects of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and peroxisome proliferator-activated receptors (PPARs) in the RSV-mediated protection of ethanol-induced oxidative stress. In C57BL/6J mice, ethanol caused a significant increase in plasma triglyceride levels and hepatic lipid accumulation (P<0.05), whereas RSV notably increased SOD activity. In HepG2 cells, SOD activity was enhanced in the RSV-treated HepG2 cells, whereas the activity of CAT and GPx was not affected. Western blot and quantitative polymerase chain reaction analyses demonstrated that RSV significantly increased SOD protein and mRNA expression levels (P<0.05). Using a transient transfection assay, PPARγ was observed to participate in the regulation of SOD gene expression in RSV-administered HepG2 cells. To conclude, the results from the present study suggest that RSV may contribute towards the protection of hepatic cells from ethanol-induced oxidative stress via the induction of SOD activity and gene expression.
Collapse
Affiliation(s)
- Wei-Ming Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Puzi, Chiayi 61363, Taiwan, R.O.C.; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan, R.O.C.; College of Medicine, Chang Gung University, Taoyuan 333, Taiwan, R.O.C
| | - Lee-Hsin Shaw
- Institute of Traditional Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C
| | - Pey-Jium Chang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan, R.O.C
| | - Shui-Yi Tung
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Puzi, Chiayi 61363, Taiwan, R.O.C.; College of Medicine, Chang Gung University, Taoyuan 333, Taiwan, R.O.C
| | - Te-Sheng Chang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Puzi, Chiayi 61363, Taiwan, R.O.C.; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan, R.O.C
| | - Chein-Heng Shen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Puzi, Chiayi 61363, Taiwan, R.O.C.; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan, R.O.C
| | - Yung-Yu Hsieh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Puzi, Chiayi 61363, Taiwan, R.O.C.; College of Medicine, Chang Gung University, Taoyuan 333, Taiwan, R.O.C
| | - Kuo-Liang Wei
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Puzi, Chiayi 61363, Taiwan, R.O.C.; College of Medicine, Chang Gung University, Taoyuan 333, Taiwan, R.O.C
| |
Collapse
|
25
|
Derosa G, Maffioli P, Sahebkar A. Auraptene and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 929:399-407. [PMID: 27771936 DOI: 10.1007/978-3-319-41342-6_19] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Auraptene (7-geranyloxycoumarin) is the best known and most abundant prenyloxycoumarin present in nature. It is synthesized by various plant species, mainly those of the Rutaceae and Umbeliferae (Apiaceae) families, comprising many edible fruits and vegetables such as lemons, grapefruit and orange. Auraptene has shown a remarkable effect in the prevention of degenerative diseases, in particular it has been reported to be one the most promising known natural chemopreventive agents against several types of cancer. The aim of this chapter is to review the effects of auraptene in the prevention and treatment of different chronic diseases.
Collapse
Affiliation(s)
- Giuseppe Derosa
- Department of Internal Medicine and Therapeutics, University of Pavia, Fondazione IRCCS Policlinico San Matteo, P.le C. Golgi, 2-27100, Pavia, Italy.
- Center for Prevention, Surveillance, Diagnosis and Treatment of Rare Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
- Center for the Study of Endocrine-Metabolic Pathophysiology and Clinical Research, University of Pavia, Pavia, Italy.
- Laboratory of Molecular Medicine, University of Pavia, Pavia, Italy.
| | - Pamela Maffioli
- Department of Internal Medicine and Therapeutics, University of Pavia, Fondazione IRCCS Policlinico San Matteo, P.le C. Golgi, 2-27100, Pavia, Italy
- Center for Prevention, Surveillance, Diagnosis and Treatment of Rare Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- PhD School in Experimental Medicine, University of Pavia, Pavia, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Medicine and Pharmacology, Metabolic Research Centre, Royal Perth Hospital, University of Western Australia, Perth, Australia.
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, P.O. Box: 91779-48564, Mashhad, Iran.
| |
Collapse
|
26
|
Song Y, Lee SJ, Jang SH, Ha JH, Song YM, Ko YG, Kim HD, Min W, Kang SN, Cho JH. Sasa borealis stem extract attenuates hepatic steatosis in high-fat diet-induced obese rats. Nutrients 2014; 6:2179-95. [PMID: 24905748 PMCID: PMC4073142 DOI: 10.3390/nu6062179] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/12/2014] [Accepted: 05/26/2014] [Indexed: 01/04/2023] Open
Abstract
The aim of the current study is to examine the improving effect of Sasa borealis stem (SBS) extract extracts on high-fat diet (HFD)-induced hepatic steatosis in rats. To determine the hepatoprotective effect of SBS, we fed rats a normal regular diet (ND), HFD, and HFD supplemented with 150 mg/kg body weight (BW) SBS extracts for five weeks. We found that the body weight and liver weight of rats in the HFD + SBS group were significantly lower than those in the HFD group. Significantly lower serum total cholesterol (TC) and triglyceride (TG) concentrations were observed in the SBS-supplemented group compared with the HFD group. We also found that the HFD supplemented with SBS group showed dramatically reduced hepatic lipid accumulation compared to the HFD alone group, and administration of SBS resulted in dramatic suppression of TG, TC in the HFD-induced fatty liver. In liver gene expression within the SBS treated group, PPARα was significantly increased and SREBP-1c was significantly suppressed. SBS induced a significant decrease in the hepatic mRNA levels of PPARγ, FAS, ACC1, and DGAT2. In conclusion, SBS improved cholesterol metabolism, decreased lipogenesis, and increased lipid oxidation in HFD-induced hepatic steatosis in rats, implying a potential application in treatment of non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Yuno Song
- Institute of Agriculture and Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Korea.
| | - Soo-Jung Lee
- Department of Foods and Nutrition, Gyeongsang National University, Jinju 660-701, Korea.
| | - Sun-Hee Jang
- Institute of Agriculture and Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Korea.
| | - Ji Hee Ha
- Department of Animal Science & Biotechnology, Gyeongnam National University of Science and Technology, Jinju 660-758, Korea.
| | - Young Min Song
- Department of Animal Science & Biotechnology, Gyeongnam National University of Science and Technology, Jinju 660-758, Korea.
| | - Yeoung-Gyu Ko
- Animal Genetic Resources Station, National Institute of Animal Science, RDA, Namwon 590-832, Korea.
| | - Hong-Duck Kim
- Department of Environmental Health Science, New York Medical College, Valhalla, NY 10595, USA.
| | - Wongi Min
- Institute of Agriculture and Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Korea.
| | - Suk Nam Kang
- Department of Bioindustry, Daegu University, Gyungsan 712-714, Korea.
| | - Jae-Hyeon Cho
- Institute of Agriculture and Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Korea.
| |
Collapse
|
27
|
Kimura R, Takahashi N, Lin S, Goto T, Murota K, Nakata R, Inoue H, Kawada T. DHA attenuates postprandial hyperlipidemia via activating PPARα in intestinal epithelial cells. J Lipid Res 2013; 54:3258-68. [PMID: 24133194 DOI: 10.1194/jlr.m034942] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
It is known that peroxisome proliferator-activated receptor (PPAR)α, whose activation reduces hyperlipidemia, is highly expressed in intestinal epithelial cells. Docosahexaenoic acid (DHA) could improve postprandial hyperlipidemia, however, its relationship with intestinal PPARα activation is not revealed. In this study, we investigated whether DHA can affect postprandial hyperlipidemia by activating intestinal PPARα using Caco-2 cells and C57BL/6 mice. The genes involved in fatty acid (FA) oxidation and oxygen consumption rate were increased, and the secretion of triacylglyceride (TG) and apolipoprotein B (apoB) was decreased in DHA-treated Caco-2 cells. Additionally, intestinal FA oxidation was induced, and TG and apoB secretion from intestinal epithelial cells was reduced, resulting in the attenuation of plasma TG and apoB levels after oral administration of olive oil in DHA-rich oil-fed mice compared with controls. However, no increase in genes involved in FA oxidation was observed in the liver. Furthermore, the effects of DHA on intestinal lipid secretion and postprandial hyperlipidemia were abolished in PPARα knockout mice. In conclusion, the present work suggests that DHA can inhibit the secretion of TG from intestinal epithelial cells via PPARα activation, which attenuates postprandial hyperlipidemia.
Collapse
Affiliation(s)
- Rino Kimura
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Li TP, Zhu RG, Dong YP, Liu YH, Li SH, Chen G. Effects of pectin pentaoligosaccharide from Hawthorn ( Crataegus pinnatifida Bunge. var. Major) on the activity and mRNA levels of enzymes involved in fatty acid oxidation in the liver of mice fed a high-fat diet. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:7599-7605. [PMID: 23855516 DOI: 10.1021/jf400283w] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The regulatory effects of haw pectin pentaoligosaccharide (HPPS) on fatty acid oxidation-related enzyme activities and mRNA levels were investigated in the liver of high fat diet induced hyperlipidemic mice. Results showed that HPPS (150 mg/kg for 10 weeks) significantly suppresses weight gain (32.3 ± 0.26 and 21.1 ± 0.14 g for high-fat diet and HPPS groups, respectively), decreases serum triacylglycerol levels (1.64 ± 0.09 and 0.91 ± 0.02 mmol/L, respectively), and increases lipid excretion in feces (55.7 ± 0.38 and 106.4 ± 0.57 mg/g for total lipid, respectively), compared to high-fat diet as control. HPPS significantly increased the hepatic fatty acid oxidation-related enzyme activities of acyl-CoA oxidase, carnitine palmitoyltransferase I, 3-ketoacyl-CoA thiolase, and 2,4-dienoyl-CoA reductase by 53.8, 74.2, 47.1, and 24.2%, respectively. Meanwhile, the corresponding mRNAs were up-regulated by 89.6, 85.8, 82.9, and 30.9%, respectively. Moreover, HPPS was able to up-regulate the gene and protein expressions of peroxisome proliferator-activated receptor α. Results suggest that continuous HPPS ingestion may be used as dietary therapy to prevent obesity and cardiovascular diseases.
Collapse
Affiliation(s)
- Tuo-Ping Li
- Department of Food Science, Liaoning University ,; The Engineering Technology Research Center for Food Bioprocessing of Liaoning Province; and The Key Laboratory of Food Bioprocessing and Quality Control Technology, Shenyang 110036, China
| | | | | | | | | | | |
Collapse
|
29
|
Lin S, Hirai S, Goto T, Sakamoto T, Takahashi N, Yano M, Sasaki T, Yu R, Kawada T. Auraptene suppresses inflammatory responses in activated RAW264 macrophages by inhibiting p38 mitogen-activated protein kinase activation. Mol Nutr Food Res 2013; 57:1135-44. [PMID: 23495198 DOI: 10.1002/mnfr.201200611] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/25/2012] [Accepted: 01/10/2013] [Indexed: 01/22/2023]
Abstract
SCOPE Inflammation plays a key role in obesity-related pathologies such as insulin resistance and type 2 diabetes. Hypertrophied adipocytes trigger the enhancement of macrophage infiltration and the release of various proinflammatory factors in obese adipose tissue. In this study, we examined whether auraptene, a citrus-fruit-derived compound, could suppress the production of inflammatory factors that mediate the interaction between adipocytes and macrophages. METHODS AND RESULTS Experiments using a co-culture system of 3T3-L1 adipocytes and RAW264 macrophages showed that auraptene reduced the production of nitric oxide and tumor necrosis factor-α. In RAW264 macrophages, auraptene also suppressed the inflammation induced by either LPS or the conditioned medium derived from 3T3-L1 adipocytes. In addition, auraptene inhibited the phosphorylation of the p38 mitogen-activated protein kinase and suppressed the production of proinflammatory mediators in activated macrophages. CONCLUSION Our findings indicate that auraptene exhibits anti-inflammatory properties by suppressing the production of inflammatory factors that mediate the interaction between adipocytes and macrophages, suggesting that auraptene is a valuable food-derived compound with a potential to attenuate chronic inflammation in adipose tissue and to improve obesity-related insulin resistance.
Collapse
Affiliation(s)
- Shan Lin
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Goto T, Kim YI, Takahashi N, Kawada T. Natural compounds regulate energy metabolism by the modulating the activity of lipid-sensing nuclear receptors. Mol Nutr Food Res 2012. [DOI: 10.1002/mnfr.201200522] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tsuyoshi Goto
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology; Graduate School of Agriculture, Kyoto University; Uji Japan
- Research Unit for Physiological Chemistry; the Center for the Promotion of Interdisciplinary Education and Research; Kyoto University; Kyoto Japan
| | - Young-Il Kim
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology; Graduate School of Agriculture, Kyoto University; Uji Japan
| | - Nobuyuki Takahashi
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology; Graduate School of Agriculture, Kyoto University; Uji Japan
- Research Unit for Physiological Chemistry; the Center for the Promotion of Interdisciplinary Education and Research; Kyoto University; Kyoto Japan
| | - Teruo Kawada
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology; Graduate School of Agriculture, Kyoto University; Uji Japan
- Research Unit for Physiological Chemistry; the Center for the Promotion of Interdisciplinary Education and Research; Kyoto University; Kyoto Japan
| |
Collapse
|
31
|
Epifano F, Genovese S, Miller R, Majumdar APN. Auraptene and its effects on the re-emergence of colon cancer stem cells. Phytother Res 2012; 27:784-6. [PMID: 22761031 DOI: 10.1002/ptr.4773] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 05/31/2012] [Accepted: 06/05/2012] [Indexed: 12/22/2022]
Abstract
Recent studies indicate that auraptene (7-geranyloxycoumarin, AUR), a geranyloxycoumarin extracted from fruits of edible plants belonging to the Rutaceae family, may represent a novel lead compound for dietary colon cancer chemoprevention in rodents. As a continuation of studies aimed to better depict the pharmacological effects and mechanism of action of the title natural compound, the current investigation was undertaken to determine whether AUR would be able to prevent the growth and sphere (surrogate tumors) formation of FOLFOX-resistant colon cancer cells that are highly enriched in cancer stem cells (CSCs). Our results demonstrate that AUR at a concentration of 10 μM was able to inhibit the growth and formation of colonospheres of FOLFOX-resistant colon cancer HT-29 cells in vitro. The corresponding parental cells were also similarly affected by AUR at the same concentration level. The reduction in the growth and colonospheres formation in FOLFOX-resistant HT-29 was also associated with a concomitant decrease in phospho-epidermal growth factor receptor. These findings suggest that AUR could prevent the re-emergence of CSCs.
Collapse
Affiliation(s)
- Francesco Epifano
- Dipartimento di Scienze del Farmaco, Università 'G. D'Annunzio' Chieti-Pescara, Via dei Vestini 31, 66100, Chieti, Italy
| | | | | | | |
Collapse
|