1
|
Li Y, Mao M, Yuan X, Zhao J, Ma L, Chen F, Liao X, Hu X, Ji J. Natural Gastrointestinal Stable Pea Albumin Nanomicelles for Capsaicin Delivery and Their Effects for Enhanced Mucus Permeability at Small Intestine. Biomater Res 2024; 28:0065. [PMID: 39157812 PMCID: PMC11327615 DOI: 10.34133/bmr.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
Natural nanodelivery systems are highly desirable owing to their biocompatibility and biodegradability. However, these delivery systems face challenges from potential degradation in the harsh gastrointestinal environment and limitations imposed by the intestinal mucus barrier, reducing their oral delivery efficacy. Here, gastrointestinal stable and mucus-permeable pea albumin nanomicelles (PANs) with a small particle size (36.42 nm) are successfully fabricated via pre-enzymatic hydrolysis of pea albumin isolate (PAI) using trypsin. Capsaicin (CAP) is used as a hydrophobic drug model and loaded in PAN with a loading capacity of 20.02 μg/mg. PAN exhibits superior intestinal stability, with a 40% higher CAP retention compared to PAI in simulated intestinal digestion. Moreover, PAN displays unrestricted movement in intestinal mucus and can effectively penetrate it, since it increases the mucus permeability of CAP by 2.5 times, indicating an excellent ability to overcome the mucus barrier. Additionally, PAN enhances the cellular uptake and transcellular transport of CAP with endoplasmic reticulum/Golgi and Golgi/plasma membrane pathways involved in the transcytosis and exocytosis. This study suggests that partially enzymatically formed PAN may be a promising oral drug delivery system, effectively overcoming the harsh gastrointestinal environment and mucus barrier to improve intestinal absorption and bioavailability of hydrophobic bioactive substances.
Collapse
Affiliation(s)
| | | | - Xin Yuan
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Jiajia Zhao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Lingjun Ma
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Junfu Ji
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| |
Collapse
|
2
|
Rubio LA. Dietary Milk or Isolated Legume Proteins Modulate Intestinal Microbiota Composition in Rats. Nutrients 2024; 16:149. [PMID: 38201979 PMCID: PMC10781060 DOI: 10.3390/nu16010149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Shifts toward increased proteolytic fermentation, such as, for example, in athlete and high-protein weight loss diets, may alter the relative abundance of microbial species in the gut and generate bioactive, potentially deleterious metabolic products. In the current investigation, intestinal (caecal) microbiota composition was studied in rats fed diets differing only in their constituent proteins: milk (casein (CAS), lactalbumin (LA)) or legume (Cicer arietinum, Lupinus angustifolius) protein isolates (chickpea protein isolate (CPI), lupin protein isolate (LI)). ANOSIM and Discriminant Analysis showed significant (p < 0.05) differences at both family and genus levels in both microbiota composition and functionality as a consequence of feeding the different proteins. Differences were also significant (p < 0.05) for predicted functionality parameters as determined by PICRUSt analysis. LA induced a generally healthier microbiota composition than CAS, and higher amounts of Methanobrevibacter spp. and Methanogenic_PWY were found in the LI group. LEfSe analysis of bacterial composition and functional activities revealed a number of groups/functions able to explain the different effects found with milk and legume protein isolates. In conclusion, the mostly beneficial modulation of intestinal microbiota generally found with legume-based diets is likely to be due, at least in part, to their constituent proteins.
Collapse
Affiliation(s)
- Luis A Rubio
- Department of Animal Nutrition and Sustainable Production, Estación Experimental del Zaidin (CSIC), Profesor Abareda 1, 18008 Granada, Spain
| |
Collapse
|
3
|
Wu DT, Li WX, Wan JJ, Hu YC, Gan RY, Zou L. A Comprehensive Review of Pea ( Pisum sativum L.): Chemical Composition, Processing, Health Benefits, and Food Applications. Foods 2023; 12:2527. [PMID: 37444265 DOI: 10.3390/foods12132527] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Pisum sativum L., commonly referred to as dry, green, or field pea, is one of the most common legumes that is popular and economically important. Due to its richness in a variety of nutritional and bioactive ingredients, the consumption of pea has been suggested to be associated with a wide range of health benefits, and there has been increasing focus on its potential as a functional food. However, there have been limited literature reviews concerning the bioactive compounds, health-promoting effects, and potential applications of pea up to now. This review, therefore, summarizes the literature from the last ten years regarding the chemical composition, physicochemical properties, processing, health benefits, and potential applications of pea. Whole peas are rich in macronutrients, including proteins, starches, dietary fiber, and non-starch polysaccharides. In addition, polyphenols, especially flavonoids and phenolic acids, are important bioactive ingredients that are mainly distributed in the pea coats. Anti-nutritional factors, such as phytic acid, lectin, and trypsin inhibitors, may hinder nutrient absorption. Whole pea seeds can be processed by different techniques such as drying, milling, soaking, and cooking to improve their functional properties. In addition, physicochemical and functional properties of pea starches and pea proteins can be improved by chemical, physical, enzymatic, and combined modification methods. Owing to the multiple bioactive ingredients in peas, the pea and its products exhibit various health benefits, such as antioxidant, anti-inflammatory, antimicrobial, anti-renal fibrosis, and regulation of metabolic syndrome effects. Peas have been processed into various products such as pea beverages, germinated pea products, pea flour-incorporated products, pea-based meat alternatives, and encapsulation and packing materials. Furthermore, recommendations are also provided on how to better utilize peas to promote their development as a sustainable and functional grain. Pea and its components can be further developed into more valuable and nutritious products.
Collapse
Affiliation(s)
- Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wen-Xing Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jia-Jia Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yi-Chen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 138669, Singapore
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
4
|
Lima-Cabello E, Escudero-Feliu J, Peralta-Leal A, Garcia-Fernandez P, Siddique KHM, Singh KB, Núñez MI, León J, Jimenez-Lopez JC. β-Conglutins' Unique Mobile Arm Is a Key Structural Domain Involved in Molecular Nutraceutical Properties of Narrow-Leafed Lupin ( Lupinus angustifolius L.). Int J Mol Sci 2023; 24:7676. [PMID: 37108842 PMCID: PMC10143110 DOI: 10.3390/ijms24087676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Narrow-leafed lupin (NLL; Lupinus angustifolius L.) has multiple nutraceutical properties that may result from unique structural features of β-conglutin proteins, such as the mobile arm at the N-terminal, a structural domain rich in α-helices. A similar domain has not been found in other vicilin proteins of legume species. We used affinity chromatography to purify recombinant complete and truncated (without the mobile arm domain, tβ5 and tβ7) forms of NLL β5 and β7 conglutin proteins. We then used biochemical and molecular biology techniques in ex vivo and in vitro systems to evaluate their anti-inflammatory activity and antioxidant capacity. The complete β5 and β7 conglutin proteins decreased pro-inflammatory mediator levels (e.g., nitric oxide), mRNA expression levels (iNOS, TNFα, IL-1β), and the protein levels of pro-inflammatory cytokine TNF-α, interleukins (IL-1β, IL-2, IL-6, IL-8, IL-12, IL-17, IL-27), and other mediators (INFγ, MOP, S-TNF-R1/-R2, and TWEAK), and exerted a regulatory oxidative balance effect in cells as demonstrated in glutathione, catalase, and superoxide dismutase assays. The truncated tβ5 and tβ7 conglutin proteins did not have these molecular effects. These results suggest that β5 and β7 conglutins have potential as functional food components due to their anti-inflammatory and oxidative cell state regulatory properties, and that the mobile arm of NLL β-conglutin proteins is a key domain in the development of nutraceutical properties, making NLL β5 and β7 excellent innovative candidates as functional foods.
Collapse
Affiliation(s)
- Elena Lima-Cabello
- Spanish National Research Council (CSIC), Estacion Experimental del Zaidin, Department of Stress, Development and Signaling in Plants, E-18008 Granada, Spain
| | - Julia Escudero-Feliu
- Spanish National Research Council (CSIC), Estacion Experimental del Zaidin, Department of Stress, Development and Signaling in Plants, E-18008 Granada, Spain
- Biosanitary Research Institute of Granada (ibs. GRANADA), E-18012 Granada, Spain
| | - Andreina Peralta-Leal
- Spanish National Research Council (CSIC), Estacion Experimental del Zaidin, Department of Stress, Development and Signaling in Plants, E-18008 Granada, Spain
| | - Pedro Garcia-Fernandez
- Research Centre for Information and Communications Technologies (CITIC-UGR), University of Granada, E-18071 Granada, Spain
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Karam B. Singh
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
- CSIRO Agriculture and Food, Floreat, WA 6014, Australia
- Centre for Crop and Disease Management, Curtin University, Bentley, WA 6102, Australia
| | - Maria I. Núñez
- Biosanitary Research Institute of Granada (ibs. GRANADA), E-18012 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, E-18100 Granada, Spain
- Department of Radiology and Physical Medicine, Faculty of Medicine, University of Granada, E-18016 Granada, Spain
| | - Josefa León
- Biosanitary Research Institute of Granada (ibs. GRANADA), E-18012 Granada, Spain
- Clinical Management Unit of Digestive Disease and UNAI, San Cecilio University Hospital, E-18006 Granada, Spain
| | - Jose C. Jimenez-Lopez
- Spanish National Research Council (CSIC), Estacion Experimental del Zaidin, Department of Stress, Development and Signaling in Plants, E-18008 Granada, Spain
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
5
|
Filippone A, Casili G, Lanza M, Scuderi SA, Ardizzone A, Capra AP, Paterniti I, Campolo M, Cuzzocrea S, Esposito E. Evaluation of the Efficacy of Xyloglucan, Pea Protein and Opuntia ficus-indica Extract in a Preclinical Model of Psoriasis. Int J Mol Sci 2023; 24:ijms24043122. [PMID: 36834534 PMCID: PMC9966091 DOI: 10.3390/ijms24043122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by epidermal gene abnormalities, epidermal barrier defects and inflammation. Corticosteroids are considered to be standard treatments, but often come with side effects and lose efficacy with long-term use. Alternative treatments targeting the epidermal barrier defect are needed to manage the disease. Film-forming substances such as xyloglucan, pea protein and Opuntia ficus-indica extract (XPO) have generated interest for their ability to restore skin barrier integrity and may pose an alternative approach to disease management. Thus, the aim of this two-part study was to evaluate the barrier-protective properties of a topical cream containing XPO on the membrane permeability of keratinocytes exposed to inflammatory conditions and compare its efficacy to dexamethasone (DXM) in an in vivo model of psoriasis-like dermatitis. XPO treatment significantly reduced S. aureus adhesion, subsequent skin invasion and restored epithelial barrier function in keratinocytes. Furthermore, the treatment restored the integrity of keratinocytes, reducing tissue damage. In mice with psoriasis-like dermatitis, XPO significantly reduced erythema, inflammatory markers and epidermal thickening with a superior efficacy to dexamethasone. Given the promising results, XPO may represent a novel steroid-sparing therapeutic for epidermal-related diseases such as psoriasis, thanks to its ability to preserve skin barrier function and integrity.
Collapse
|
6
|
Ren Y, Sun Q, Gao R, Sheng Y, Guan T, Li W, Zhou L, Liu C, Li H, Lu Z, Yu L, Shi J, Xu Z, Xue Y, Geng Y. Low Weight Polysaccharide of Hericium erinaceus Ameliorates Colitis via Inhibiting the NLRP3 Inflammasome Activation in Association with Gut Microbiota Modulation. Nutrients 2023; 15:nu15030739. [PMID: 36771444 PMCID: PMC9920828 DOI: 10.3390/nu15030739] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
Ulcerative colitis (UC), one of the typical inflammatory bowel diseases caused by dysregulated immunity, still requires novel therapeutic medicine with high efficacy and low toxicity. Hericium erinaceus has been widely used to treat different health problems especially gastrointestinal sickness in China for thousands of years. Here, we isolated, purified, and characterized a novel low weight polysaccharide (HEP10, Mw: 9.9 kDa) from the mycelia of H. erinaceus in submerged culture. We explored the therapeutic effect of HEP10 on UC and explored its underlying mechanisms. On one hand, HEP10 suppressed the production of TNF-α, IL-1β, IL-6, inducible iNOS, and COX-2 in LPS challenged murine macrophage RAW264.7 cells, as well as in colons from DSS-induced colitis mice. On the other hand, HEP10 treatment markedly suppressed the activation of NLRP3 inflammasome, NF-κB, AKT, and MAPK pathways. Moreover, HEP10 reversed DSS-induced alternation of the gut community composition and structure by significantly increasing Akkermansia muciniphila and also promoting functional shifts in gut microbiota. Structural equation modeling also highlighted that HEP10 can change widely through gut microbiota. In conclusion, HEP10 has a better prebiotic effect than the crude polysaccharides of H. erinaceus, which can be used as a novel dietary supplement and prebiotic to ameliorate colitis.
Collapse
Affiliation(s)
- Yilin Ren
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
- School of Medicine, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Correspondence: (Y.R.); (Y.X.); (Y.G.)
| | - Qige Sun
- School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Ruonan Gao
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
- School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Yinyue Sheng
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Tianyue Guan
- School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Wang Li
- School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Lingxi Zhou
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chang Liu
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
| | - Huaxiang Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Zhenming Lu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Lihua Yu
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Jinsong Shi
- School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhenghong Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Yuzheng Xue
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
- Correspondence: (Y.R.); (Y.X.); (Y.G.)
| | - Yan Geng
- School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, China
- Correspondence: (Y.R.); (Y.X.); (Y.G.)
| |
Collapse
|
7
|
Kim HR, Noh EM, Kim SY. Anti-inflammatory effect and signaling mechanism of 8-shogaol and 10-shogaol in a dextran sodium sulfate-induced colitis mouse model. Heliyon 2023; 9:e12778. [PMID: 36647352 PMCID: PMC9840358 DOI: 10.1016/j.heliyon.2022.e12778] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Ethnopharmacological relevance Ginger (Zingiber officinale Roscoe) has been used for food and applied in Ayurvedic medicine in India for thousands of years. With a reputation for strong anti-inflammatory properties, it has been used for to treat colds, migraines, nausea, arthritis, and high blood pressure in China and Southeast Asia. The physiological activity of ginger is attributed to its functional components, including gingerol and shogaol, and their derivatives. Aim of the study We aimed to investigate the effects of 8- and 10-shogaol and their bioactive signaling mechanisms in a dextran sodium sulfate (DSS)-induced colitis mouse model. The anti-colitis efficacy of 6-, 8-, and 10-derivatives of gingerol and shogaol was comparatively analyzed. Materials and methods Colitis was induced by providing mice with drinking water containing 5% DSS (w/v) for 8 days. The 6-, 8-, and 10-derivatives of gingerol and shogaol were orally administered for two weeks at a dose of 30 mg/kg. Changes in body weight and disease activity index were measured. The levels of pro-inflammatory cytokines, iNOS and COX-2, as well as the phosphorylation of NF-κB were analyzed using ELISA, PCR, or western blotting. Mucin expression and mRNA levels were measured using alcian blue staining and PCR, respectively. The tight-junction-associated proteins occludin and ZO-1 were assessed using immunohistological staining. Results The 6-, 8-, and 10-derivatives of gingerol and shogaol exhibited anti-inflammatory effects by regulating NF-κB signaling. Among the compounds administered, 10-shogaol was the most effective against DSS-induced inflammation. Comparative analysis of the chemical structure showed that shogaol, a dehydrated analog of gingerol, was more effective. 6- and 10-shogaol showed similar effects on DSS-induced morphological changes in the colonic mucus layer, mucin expression, and tight junction proteins. Conclusions 6-, 8-, and 10-Gingerol and 6-, 8-, and 10-shogaol significantly improved the clinical symptoms and intestinal epithelial barrier damage in DSS-induced colitis in mice. The derivatives effectively inhibited DSS-induced inflammation through the regulation of NF-κB signaling. Moreover, 10-shogaol showed the most potent anti-inflammatory effect among the six compounds used in this study. The results indicate that 8- and 10-shogaol, both main ingredients in ginger, may serve as therapeutic candidates for the treatment of colitis.
Collapse
Affiliation(s)
| | - Eun-Mi Noh
- Corresponding author. Jeonju AgroBio-Materials Institute, 111-27 Wonjangdong-gil, Deokjin-gu, Jeonju, 54810, Republic of Korea.
| | | |
Collapse
|
8
|
Abstract
Legumes are a staple of diets all around the world. In some least developed countries, they are the primary source of protein; however, their beneficial properties go beyond their nutritional value. Recent research has shown that legumes have bioactive compounds like peptides, polyphenols and saponins, which exhibit antioxidant, antihypertensive, anti-inflammatory and other biological activities. Thus, these compounds could be an alternative treatment for inflammatory diseases, in particular, chronic inflammation such as arthritis, obesity and cancer. Nowadays, there is a growing interest in alternative therapies derived from natural products; accordingly, the present review has compiled the bioactive compounds found in legumes that have demonstrated an anti-inflammatory effect in non-clinical studies.
Collapse
|
9
|
Li J, Ma Y, Li X, Wang Y, Huo Z, Lin Y, Li J, Yang H, Zhang Z, Yang P, Zhang C. Fermented Astragalus and its metabolites regulate inflammatory status and gut microbiota to repair intestinal barrier damage in dextran sulfate sodium-induced ulcerative colitis. Front Nutr 2022; 9:1035912. [PMID: 36451737 PMCID: PMC9702530 DOI: 10.3389/fnut.2022.1035912] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/27/2022] [Indexed: 09/20/2023] Open
Abstract
Fermentation represents an efficient biotechnological approach to increase the nutritional and functional potential of traditional Chinese medicine. In this study, Lactobacillus plantarum was used to ferment traditional Chinese medicine Astragalus, the differential metabolites in the fermented Astragalus (FA) were identified by ultra-performance liquid chromatography-Q Exactive hybrid quadrupole-Orbitrap mass spectrometry (UPLC-Q-Exactive-MS), and the ameliorating effect of FA on dextran sulfate sodium (DSS)-induced colitis in mice were further explored. The results showed that 11 differential metabolites such as raffinose, progesterone and uridine were identified in FA, which may help improve the ability of FA to alleviate colitis. Prophylactic FA supplementation effectively improved DAI score, colon length and histopathological lesion in DSS-treated mice. The abnormal activation of the intestinal immune barrier in mice was controlled after FA supplementation, the contents of myeloperoxidase (MPO) and IgE were reduced and the contents of IgA were increased. The intestinal pro-inflammatory factors TNF-α, IL-1β, IL-6, and IL-17 were down-regulated and the anti-inflammatory factors IL-10 and TGF-β were up-regulated, suggesting that FA can intervene in inflammatory status by regulating the balance of Th1/Th2/Th17/Treg related cytokines. In addition, FA supplementation modified the structure of the intestinal microbiota and enriched the abundance of Akkermansia and Alistipes, which were positively associated with the production of short-chain fatty acids. These microbes and their metabolites induced by FA also be involved in maintaining the intestinal mucosal barrier integrity by affecting mucosal immunity. We observed that intestinal tight junction protein and mucous secreting protein ZO-1, occludin, and MUC2 genes expression were more pronounced in mice supplemented with FA compared to unfermented Astragalus, along with modulation of intestinal epithelial cells (IECs) apoptosis, verifying the intestinal mucosal barrier repaired by FA. This study is the first to suggest that FA as a potential modulator can more effectively regulate the inflammatory status and gut microbiota to repair the intestinal barrier damage caused by colitis.
Collapse
Affiliation(s)
- Junxiang Li
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yingchun Ma
- Gansu Institute for Drug Control, Lanzhou, China
| | - Xiaofeng Li
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yafei Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zeqi Huo
- School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
| | - Yang Lin
- School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
| | - Jiaru Li
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Hui Yang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zhiming Zhang
- Gansu Provincial Hospital of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Pingrong Yang
- School of Pharmacy, Lanzhou University, Lanzhou, China
- Gansu Institute for Drug Control, Lanzhou, China
| | - Chunjiang Zhang
- School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China
| |
Collapse
|
10
|
Liu N, Song Z, Jin W, Yang Y, Sun S, Zhang Y, Zhang S, Liu S, Ren F, Wang P. Pea albumin extracted from pea (Pisum sativum L.) seed protects mice from high fat diet-induced obesity by modulating lipid metabolism and gut microbiota. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
11
|
Zhang W, Zhang S, Chen C, Liu N, Yang D, Wang P, Ren F. The internalization mechanisms and trafficking of the pea albumin in Caco-2 cells. Int J Biol Macromol 2022; 217:111-119. [PMID: 35764167 DOI: 10.1016/j.ijbiomac.2022.06.149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/23/2022]
Abstract
Pea albumin (PA) can reach the intestine in the active form because it is highly resistant to gastric acid and proteolytic enzymes after their oral intake, which can supply various bioactivities. However, there is no detailed knowledge of the intestinal cell uptake about PA. The aim of this work was to study the internalization mechanism and intracellular trafficking route of PA. The uptake of PA-cyanine 5.5 NHS ester (Cy5.5) was a time-dependent and concentration-dependent process in Caco-2 cells. Endocytosis inhibitors or small interfering RNA (siRNA) techniques revealed that the internalization of PA-Cy5.5 was energy-dependent and mediated by caveolin-mediated endocytosis. Furthermore, we observed colocalization of PA-Cy5.5 and its subcellular localization in Caco-2 cells by using confocal laser scanning microscopy, which revealed that the intracellular trafficking process of PA-Cy5.5 was related to endoplasmic reticulum, Golgi, and lysosome. Interestingly, PA can alleviate lipopolysaccharide -induced ER stress, which may be the main reason why pea albumin is anti-inflammatory. Overall, our findings suggest caveolin may be critical for PA uptake in enterocytes and could contribute to explore the bioactivities mechanism of pea albumin in body.
Collapse
Affiliation(s)
- Weibo Zhang
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Department of Nutrition and Health, China Agricultural University, Beijing 100083, China..
| | - Shucheng Zhang
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Chong Chen
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Ning Liu
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Dong Yang
- Inner Mongolia Caoyuanxinhe Technology Research Co. Ltd., Inner Mongolia 01500, China
| | - Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China..
| | - Fazheng Ren
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Department of Nutrition and Health, China Agricultural University, Beijing 100083, China..
| |
Collapse
|
12
|
Zhang S, Jin W, Zhang W, Ren F, Wang P, Liu N. Pea Albumin Attenuates Dextran Sulfate Sodium-Induced Colitis by Regulating NF-κB Signaling and the Intestinal Microbiota in Mice. Nutrients 2022; 14:3611. [PMID: 36079868 PMCID: PMC9460122 DOI: 10.3390/nu14173611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Inflammatory bowel disease remains a global burden with rapidly increasing incidence and prevalence in both industrialized countries and developing countries. In this study, we prepared pea albumin from pea seeds and determined its beneficial effects being anti-inflammatory and on gut microbiota modulation in dextran sulfate sodium (DSS)-challenged mice. METHOD Six-week-old C57BL/6N male mice received an equivalent volume (200 μL) of sterile phosphate balanced solution, 0.375, 0.75, or 1.50 g/kg body weight (BW) of pea albumin that was subjected to 2.0% DSS for 7 days to induce colitis. On day 17 of the experiment, all mice were sacrificed after blood sample collection, and colon tissue and colon contents were collected. BW change curve, colon length, myeloperoxidase (MPO) activity, mucus staining, immunofluorescence staining of T cells and macrophages, cytokines, pro-inflammatory genes expression, nuclear factor-κB (NF-κB) and signal transducer, and activator of transcription 3 (STAT3) signaling pathways as well as 16S DNA sequence were measured. RESULTS Our results show that pea albumin alleviates DSS-induced BW loss, colon length shortening, enhanced MPO activity, cytokines secretion, mucus deficiency, and inflammatory cell infiltration, as well as enhanced pro-inflammatory genes expression. In addition, the overactivation of NF-κB and STAT3 following DSS exposure is attenuated by pea albumin administration. Of particular interest, pea albumin oral administration restored gut microbiota dysbiosis as evidenced by enhanced α-diversity, restored β-diversity, and promoted relative abundance of Lactobacillus and Lachnospiraceae_NK4A136_group. CONCLUSION Taken together, the data provided herein demonstrated that pea albumin plays a protective role in DSS-induced colitis by reducing inflammatory cell infiltration, pro-inflammatory genes expression and pro-inflammatory cytokines release, inactivation of NF-κB signal, and gut microbiota modulation.
Collapse
Affiliation(s)
- Shucheng Zhang
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Wenhua Jin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Weibo Zhang
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Pengjie Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Ning Liu
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| |
Collapse
|
13
|
Li N, Wen L, Wang F, Li T, Zheng H, Wang T, Qiao M, Huang X, Song L, Bukyei E, Li M. Alleviating effects of pea peptide on oxidative stress injury induced by lead in PC12 cells via Keap1/Nrf2/TXNIP signaling pathway. Front Nutr 2022; 9:964938. [PMID: 36034922 PMCID: PMC9403791 DOI: 10.3389/fnut.2022.964938] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Background Lead poisoning causes an oxidative stress response – a key “bridge” connecting various pathways – in the human body. Oxidative stress usually implies an imbalance between pro-oxidants and antioxidants. Moreover, Nrf2, Keap1, and TXNIP proteins play an essential role in oxidative stress. Some studies showed that pea peptides could alleviate the oxidative stress response. However, the effect and mechanism of pea peptide on oxidative stress response induced by lead in PC12 cells has not been reported. Aim Investigating the effect and mechanism of pea peptides in alleviating oxidative damage in PC12 cells induced by lead. Methods In this study, cell viability was measured by CCK8 (Cell Counting Kit-8). Superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione reductase (GR), glutathione peroxidase (GPx), reactive oxygen species (ROS), and lipid peroxidation (MDA) were measured using the corresponding Biochemical kits. The Keap1, Nrf2, and TXNIP protein expressions were tested using Western blot. Results Pea peptides PP3, PP4, and PP6 could reverse the decrease of cell viability caused by lead exposure (P < 0.05), the elevation of ROS and MDA caused by lead exposure, and the decrease of CAT, SOD, GR, GPx, and GSH/GSSG caused by lead exposure (P < 0.05). Moreover, PP3, PP4, and PP6 could reduce the elevated expression of Keap1 and TXNIP caused by lead exposure; and increase the expression of Nrf2 (P < 0.05). Conclusion PP3, PP4, and PP6 can alleviate lead-induced oxidative stress damage in PC12 cells, and the Nrf2/Keap1/TXNIP signaling pathway may play an essential role in this process.
Collapse
Affiliation(s)
- Ning Li
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Liuding Wen
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Fangyu Wang
- Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Tiange Li
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Haodan Zheng
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Tianlin Wang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Mingwu Qiao
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xianqing Huang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Lianjun Song
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Erkigul Bukyei
- Department for Food Engineering and Hydromechanics, School of Engineering and Technology, Mongolian State University of Life Sciences, Ulaanbaatar, Mongolia
| | - Mingming Li
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
14
|
Papoutsis D, Rocha SDC, Herfindal AM, Kjølsrud Bøhn S, Carlsen H. Intestinal effect of faba bean fractions in WD-fed mice treated with low dose of DSS. PLoS One 2022; 17:e0272288. [PMID: 35939489 PMCID: PMC9359607 DOI: 10.1371/journal.pone.0272288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 07/15/2022] [Indexed: 12/12/2022] Open
Abstract
Rodent studies have shown that legumes can reduce chemical induced colonic inflammation, but the role of faba bean fractions for colon health has not been described. We have investigated the role of protein and fiber fractions of faba beans for colonic health and microbiota composition in a low-grade inflammation mice-model when incorporated in a Western diet (WD). The diet of sixty C57BL/6JRj male mice was standardized to a WD (41% fat, 43% carbohydrates) before were randomly assigned to four groups (n = 12) receiving either 1) WD with 30% of the protein replaced with faba-bean proteins, 2) WD with 7% of the fiber replaced with faba-bean fibers, 3) WD with protein and fiber fractions or 4) plain WD (n = 24). Low-grade inflammation was induced by 1% dextran sodium sulfate (DSS) given to mice for the last six days of the trial. Half (n = 12) in group 4) were given only water (controls). Prior to DSS, body weight, energy intake, glucose and insulin tolerance assays were performed. Inflammatory status in the colon was assessed by biomarkers of inflammation and qRT-PCR analyses of inflammatory related genes. Fecal microbiota composition was assessed by 16S rRNA gene sequencing. 1% DSS treatment increased levels in fecal lipocalin-2 and induced disease activity index score, but the presence of faba bean fractions in WD did not influence these indicators nor the expression level of inflammatory associated genes. However, the mice that had faba-bean proteins had a lower amount of Proteobacteria compared the group on plain WD. The Actinobacteria abundance was also lower in the group that had fiber fraction from faba-beans. Overall, outcomes indicated that in a low-grade inflammation model, replacement of protein and or fiber in a WD with faba bean fractions had marginal effects on inflammatory parameters and colonic microbiota.
Collapse
Affiliation(s)
- Dimitrios Papoutsis
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Sérgio Domingos Cardoso Rocha
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Anne Mari Herfindal
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Siv Kjølsrud Bøhn
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Harald Carlsen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- * E-mail:
| |
Collapse
|
15
|
Dębińska A, Sozańska B. Fermented Food in Asthma and Respiratory Allergies—Chance or Failure? Nutrients 2022; 14:nu14071420. [PMID: 35406034 PMCID: PMC9002914 DOI: 10.3390/nu14071420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 01/27/2023] Open
Abstract
In the last few decades, a dramatic increase in the global prevalence of allergic diseases and asthma was observed. It was hypothesized that diet may be an important immunomodulatory factor influencing susceptibility to allergic diseases. Fermented food, a natural source of living microorganisms and bioactive compounds, has been demonstrated to possess health-promoting potentials and seems to be a promising strategy to reduce the risk of various immune-related diseases, such as allergic diseases and asthma. The exact mechanisms by which allergic diseases and asthma can be alleviated or prevented by fermented food are not well understood; however, its potential to exert an effect through modulating the immune response and influencing the gut microbiota has been recently studied. In this review, we provide the current knowledge on the role of diet, including fermented foods, in preventing or treating allergic diseases and asthma.
Collapse
|
16
|
Baccharis dracunculifolia DC Hydroalcoholic Extract Improves Intestinal and Hippocampal Inflammation and Decreases Behavioral Changes of Colitis Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5833840. [PMID: 35295931 PMCID: PMC8920628 DOI: 10.1155/2022/5833840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/07/2022] [Indexed: 11/26/2022]
Abstract
The hydroalcoholic extract of B. dracunculifolia (HEBD) and its major compound p-coumaric acid were evaluated against the severity of intestinal inflammation and behavioral changes like depressive and anxious behavior in colitis mice. Colitis was induced in Swiss mice by oral dextran sulfate sodium (DSS) administration for five days. The mice received vehicle (10 ml/kg), HEBD (3, 30, or 300 mg/kg), or p-coumaric acid (15 mg/kg) orally, once a day for twelve days. Behavioral tests were performed on the 11th and 12th days after the beginning of the treatments. Moreover, the colon, cortex, and hippocampus were collected to analyze oxidative and inflammatory parameters. The treatment with HEBD (300 mg/Kg), but not p-coumaric acid, showed decreased disease activity index (DAI) values compared to the vehicle group and partially preserved the villi architecture and mucin levels. Furthermore, the HEBD increased the antioxidant defenses in the colon and hippocampus and reduced the myeloperoxidase activity and IL-6 levels in the colon from colitis mice. Colitis mice treated with HEBD did not show depressive-like behavior in the tail suspension test. HEBD reduced colon inflammation, while it maintains antioxidant defenses and mucin levels in this tissue. It may reduce neuropsychiatric comorbidities associated with colitis through its antioxidant effects.
Collapse
|
17
|
Gut Microbiota and Dietary Factors as Modulators of the Mucus Layer in Inflammatory Bowel Disease. Int J Mol Sci 2021; 22:ijms221910224. [PMID: 34638564 PMCID: PMC8508624 DOI: 10.3390/ijms221910224] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/20/2021] [Indexed: 12/14/2022] Open
Abstract
The gastrointestinal tract is optimized to efficiently absorb nutrients and provide a competent barrier against a variety of lumen environmental compounds. Different regulatory mechanisms jointly collaborate to maintain intestinal homeostasis, but alterations in these mechanisms lead to a dysfunctional gastrointestinal barrier and are associated to several inflammatory conditions usually found in chronic pathologies such as inflammatory bowel disease (IBD). The gastrointestinal mucus, mostly composed of mucin glycoproteins, covers the epithelium and plays an essential role in digestive and barrier functions. However, its regulation is very dynamic and is still poorly understood. This review presents some aspects concerning the role of mucus in gut health and its alterations in IBD. In addition, the impact of gut microbiota and dietary compounds as environmental factors modulating the mucus layer is addressed. To date, studies have evidenced the impact of the three-way interplay between the microbiome, diet and the mucus layer on the gut barrier, host immune system and IBD. This review emphasizes the need to address current limitations on this topic, especially regarding the design of robust human trials and highlights the potential interest of improving our understanding of the regulation of the intestinal mucus barrier in IBD.
Collapse
|
18
|
Kårlund A, Paukkonen I, Gómez-Gallego C, Kolehmainen M. Intestinal Exposure to Food-Derived Protease Inhibitors: Digestion Physiology- and Gut Health-Related Effects. Healthcare (Basel) 2021; 9:1002. [PMID: 34442141 PMCID: PMC8394810 DOI: 10.3390/healthcare9081002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/22/2021] [Accepted: 08/03/2021] [Indexed: 12/15/2022] Open
Abstract
Plant-derived protease inhibitors (PI), such as Bowman-Birk inhibitors and Kunitz-type inhibitors, have been suggested to negatively affect dietary protein digestion by blocking the activity of trypsin and chymotrypsin in the human gastrointestinal system. In addition, some PIs may possess proinflammatory activities. However, there is also scientific evidence on some beneficial effects of PIs, for example, gut-related anti-inflammatory and chemopreventive activities in vitro and in vivo. Some PIs are sensitive to processing and digestion; thus, their survival is an important aspect when considering their positive and negative bioactivities. The aim of this review was to evaluate the relevance of PIs in protein digestion in humans and to discuss the potential of PIs from whole foods and as purified compounds in decreasing symptoms of bowel-related conditions. Based on the reviewed literature, we concluded that while the complex interactions affecting plant protein digestibility and bioavailability remain unclear, PI supplements could be considered for targeted purposes to mitigate inflammation and gastric pain.
Collapse
Affiliation(s)
- Anna Kårlund
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (C.G.-G.); (M.K.)
| | - Isa Paukkonen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
| | - Carlos Gómez-Gallego
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (C.G.-G.); (M.K.)
| | - Marjukka Kolehmainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (C.G.-G.); (M.K.)
| |
Collapse
|
19
|
Kavali CM, Nguyen TQ, Zahr AS, Jiang LI, Kononov T. A Randomized, Double-Blind, Split-Body, Placebo-Controlled Clinical Study to Evaluate the Efficacy and Tolerability of a Topical Body Firming Moisturizer for Upper Arm Rejuvenation. Aesthet Surg J 2021; 41:NP472-NP483. [PMID: 32462206 DOI: 10.1093/asj/sjaa134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Aging of upper arm skin, induced by intrinsic and extrinsic factors, often results in a loss of contour, elasticity, and firmness, and an increase in laxity, crepiness, roughness, and photodamage. A topical body firming moisturizer (TBFM) was developed to target all aspects of skin aging. OBJECTIVES The aim of this study was to evaluate the efficacy and tolerability of the TBFM for upper arm firming and rejuvenation. METHODS Forty female subjects, 40 to 60 years old, Fitzpatrick skin type II to V, with mild to moderate laxity, crepiness, and photodamage on the upper arms, were recruited into the study, 10 of whom were selected for biopsy analysis. Subjects were randomly allocated to apply the TBFM and placebo moisturizer on the assigned arms twice daily for 12 weeks. At each visit, efficacy and tolerability evaluation, self-assessment, and standardized clinical photography were performed. Ultrasound measurements were performed at baseline, week 8 and week 12. RESULTS Efficacy evaluation by a clinical grader and bioinstrumentation analysis showed the TBFM improved all skin parameters of the aged upper arm while outperforming the placebo moisturizer after 12 weeks. Clinical photography showed the test product toned and firmed the skin. The TBFM was well tolerated and well perceived by the subjects. Ultrasound images indicated an improvement in skin density and skin structure at week 12. CONCLUSIONS This clinical trial indicates that the TBFM was well tolerated and was effective in improving crepey, lax, and photodamaged skin of the upper arms after 12 weeks of treatment twice daily. LEVEL OF EVIDENCE: 2
Collapse
Affiliation(s)
| | | | | | - Lily I Jiang
- Thomas J. Stephens and Associates, Inc., Richardson, TX
| | | |
Collapse
|
20
|
Basson AR, Ahmed S, Almutairi R, Seo B, Cominelli F. Regulation of Intestinal Inflammation by Soybean and Soy-Derived Compounds. Foods 2021; 10:foods10040774. [PMID: 33916612 PMCID: PMC8066255 DOI: 10.3390/foods10040774] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023] Open
Abstract
Environmental factors, particularly diet, are considered central to the pathogenesis of the inflammatory bowel diseases (IBD), Crohn’s disease and ulcerative colitis. In particular, the Westernization of diet, characterized by high intake of animal protein, saturated fat, and refined carbohydrates, has been shown to contribute to the development and progression of IBD. During the last decade, soybean, as well as soy-derived bioactive compounds (e.g., isoflavones, phytosterols, Bowman-Birk inhibitors) have been increasingly investigated because of their anti-inflammatory properties in animal models of IBD. Herein we provide a scoping review of the most studied disease mechanisms associated with disease induction and progression in IBD rodent models after feeding of either the whole food or a bioactive present in soybean.
Collapse
Affiliation(s)
- Abigail Raffner Basson
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (S.A.); (B.S.)
- Correspondence:
| | - Saleh Ahmed
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (S.A.); (B.S.)
| | - Rawan Almutairi
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Brian Seo
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (S.A.); (B.S.)
| | - Fabio Cominelli
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (S.A.); (B.S.)
| |
Collapse
|
21
|
Raffner Basson A, Gomez-Nguyen A, LaSalla A, Buttó L, Kulpins D, Warner A, Di Martino L, Ponzani G, Osme A, Rodriguez-Palacios A, Cominelli F. Replacing Animal Protein with Soy-Pea Protein in an "American Diet" Controls Murine Crohn Disease-Like Ileitis Regardless of Firmicutes: Bacteroidetes Ratio. J Nutr 2021; 151:579-590. [PMID: 33484150 PMCID: PMC7948210 DOI: 10.1093/jn/nxaa386] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/26/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The current nutritional composition of the "American diet" (AD; also known as Western diet) has been linked to the increasing incidence of chronic diseases, including inflammatory bowel disease (IBD), namely Crohn disease (CD). OBJECTIVES This study investigated which of the 3 major macronutrients (protein, fat, carbohydrates) in the AD has the greatest impact on preventing chronic inflammation in experimental IBD mouse models. METHODS We compared 5 rodent diets designed to mirror the 2011-2012 "What We Eat in America" NHANES. Each diet had 1 macronutrient dietary source replaced. The formulated diets were AD, AD-soy-pea (animal protein replaced by soy + pea protein), AD-CHO ("refined carbohydrate" by polysaccharides), AD-fat [redistribution of the ω-6:ω-3 (n-6:n-3) PUFA ratio; ∼10:1 to 1:1], and AD-mix (all 3 "healthier" macronutrients combined). In 3 separate experiments, 8-wk-old germ-free SAMP1/YitFC mice (SAMP) colonized with human gut microbiota ("hGF-SAMP") from CD or healthy donors were fed an AD, an AD-"modified," or laboratory rodent diet for 24 wk. Two subsequent dextran sodium sulfate-colitis experiments in hGF-SAMP (12-wk-old) and specific-pathogen-free (SPF) C57BL/6 (20-wk-old) mice, and a 6-wk feeding trial in 24-wk-old SPF SAMP were performed. Intestinal inflammation, gut metagenomics, and MS profiles were assessed. RESULTS The AD-soy-pea diet resulted in lower histology scores [mean ± SD (56.1% ± 20.7% reduction)] in all feeding trials and IBD mouse models than did other diets (P < 0.05). Compared with the AD, the AD-soy-pea correlated with increased abundance in Lactobacillaceae and Leuconostraceae (1.5-4.7 log2 and 3.0-5.1 log2 difference, respectively), glutamine (6.5 ± 0.8 compared with 3.9 ± 0.3 ng/μg stool, P = 0.0005) and butyric acid (4:0; 3.3 ± 0.5 compared with 2.54 ± 0.4 ng/μg stool, P = 0.006) concentrations, and decreased linoleic acid (18:2n-6; 5.4 ± 0.4 compared with 8.6 ± 0.3 ng/μL plasma, P = 0.01). CONCLUSIONS Replacement of animal protein in an AD by plant-based sources reduced the severity of experimental IBD in all mouse models studied, suggesting that similar, feasible adjustments to the daily human diet could help control/prevent IBD in humans.
Collapse
Affiliation(s)
- Abigail Raffner Basson
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Adrian Gomez-Nguyen
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Alexandria LaSalla
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ludovica Buttó
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Danielle Kulpins
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Alexandra Warner
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Luca Di Martino
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Gina Ponzani
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Abdullah Osme
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Alexander Rodriguez-Palacios
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Fabio Cominelli
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| |
Collapse
|
22
|
Tatiya-Aphiradee N, Chatuphonprasert W, Jarukamjorn K. Ethanolic Garcinia mangostana extract and α-mangostin improve dextran sulfate sodium-induced ulcerative colitis via the suppression of inflammatory and oxidative responses in ICR mice. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113384. [PMID: 32927006 DOI: 10.1016/j.jep.2020.113384] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 05/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulcerative colitis (UC) is an inflammatory disorder of the colon. Garcinia mangostana Linn. (GM) has been traditionally used for its anti-inflammatory and antioxidant activities. AIM OF THE STUDY The effects of GM and its bioactive constituent α-mangostin on dextran sulfate sodium (DSS)-induced UC in mice were investigated. MATERIALS AND METHODS Adult ICR mice (n = 63) were pretreated with ethanolic GM extract at 40, 200, and 1000 mg/kg/day (GM40, GM200, and GM1000), α-mangostin at 30 mg/kg/day, or sulfasalazine at 100 mg/kg/day (SA) for 7 consecutive days. On days 4-7, UC was induced in the mice by the oral administration of DSS (40 kDa, 6 g/kg/day), while control mice received distilled water. The UC disease activity index (DAI) and histological changes were recorded. The activities of myeloperoxidase, catalase, and superoxide dismutase, and the levels of reactive oxygen species (ROS), nitric oxide (NO), and malondialdehyde (MDA) were determined. The mRNA expression of inflammatory related genes including proinflammatory cytokine Tnf-α, Toll-like receptor (Tlr-2), adhesion molecules (Icam-1 and Vcam-1), and monocyte chemoattractant protein (Mcp-1) were evaluated. RESULTS Treatment with GM or α-mangostin decreased the UC DAI and protected against colon shortening and spleen and kidney enlargement. GM and α-mangostin prevented histological damage, reduced mast cell infiltration in the colon, and decreased myeloperoxidase activity. GM and α-mangostin increased catalase and superoxide dismutase activity and decreased ROS, NO, and MDA production. GM downregulated mRNA expression of Tnf-α, Tlr-2, Icam-1, Vcam-1, and Mcp-1. CONCLUSIONS GM and α-mangostin attenuated the severity of DSS-induced UC via anti-inflammatory and antioxidant effects. Therefore, GM is a promising candidate for development into a novel therapeutic agent for UC.
Collapse
Affiliation(s)
- Nitima Tatiya-Aphiradee
- Research Group for Pharmaceutical Activities of Natural Products Using Pharmaceutical Biotechnology (PANPB), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | - Kanokwan Jarukamjorn
- Research Group for Pharmaceutical Activities of Natural Products Using Pharmaceutical Biotechnology (PANPB), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
23
|
Review on the potential application of non-phenolic compounds from native Latin American food byproducts in inflammatory bowel diseases. Food Res Int 2021; 139:109796. [DOI: 10.1016/j.foodres.2020.109796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 12/16/2022]
|
24
|
Rubio LA, Aranda-Olmedo I, Contreras S, Góngora T, Domínguez G, Peralta-Sánchez JM, Martín-Pedrosa M. Inclusion of limited amounts of extruded legumes plus cereal mixes in normocaloric or obesogenic diets for rats: effects on intestinal microbiota composition. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:5546-5557. [PMID: 32594536 DOI: 10.1002/jsfa.10607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/17/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Differences in the composition of the intestinal microbiota and energetic metabolism between lean and obese populations have been described. Legume consumption has been reported to modulate intestinal microbiota composition. However, to the best of our knowledge, no information can be found in the literature on the effects of consumption of diets containing extruded legume plus cereal mixes on the intestinal microbiota composition of rats. Our purpose was to evaluate the effects on lipids profile (see the accompanying paper) and intestinal microbiota composition (current paper) of incorporating this new food ingredient in normocaloric and obesogenic diets. RESULTS Intestinal and fecal qPCR-based microbial composition of rats fed the extruded legumes plus cereal mixes differed (P < 0.05) from controls. Obesogenic diets did not affect bacterial counts. However, the inclusion of the extruded mixes reduced (P < 0.05) log10 counts in some bacterial groups and increased (P < 0.05) counts of Lactobacilli, while others remained unaffected. PCoA at the genus level grouped together Lactobacillus reuteri, Akkermansia miciniphila and species from Parabacteroides, Prevotella, Rikenellaceae, and Lactobacillus with extruded legume plus cereal diets. Feeding on extruded legumes plus cereal mixes was associated with increased mRNA expression of the cytokines IL6 and TNF-α and decreased expression of TLR4. CONCLUSIONS Our results show that the inclusion in the feed of limited amounts of extruded legumes plus cereal mix, providing a diet that is closer to a normal human one, did modulate the intestinal microbiota composition. Taken together, these results point to the protective, health-promoting properties of extruded legume plus cereal mixes.
Collapse
Affiliation(s)
- Luis A Rubio
- Department of Physiology and Biochemistry of Animal Nutrition, Estación Experimental del Zaidín (EEZ, CSIC), Granada, Spain
| | - Isabel Aranda-Olmedo
- Department of Physiology and Biochemistry of Animal Nutrition, Estación Experimental del Zaidín (EEZ, CSIC), Granada, Spain
| | - Soraya Contreras
- Department of Physiology and Biochemistry of Animal Nutrition, Estación Experimental del Zaidín (EEZ, CSIC), Granada, Spain
| | - Tania Góngora
- Department of Physiology and Biochemistry of Animal Nutrition, Estación Experimental del Zaidín (EEZ, CSIC), Granada, Spain
| | - Gema Domínguez
- Department of Physiology and Biochemistry of Animal Nutrition, Estación Experimental del Zaidín (EEZ, CSIC), Granada, Spain
| | | | | |
Collapse
|
25
|
Gitlin-Domagalska A, Maciejewska A, Dębowski D. Bowman-Birk Inhibitors: Insights into Family of Multifunctional Proteins and Peptides with Potential Therapeutical Applications. Pharmaceuticals (Basel) 2020; 13:E421. [PMID: 33255583 PMCID: PMC7760496 DOI: 10.3390/ph13120421] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/13/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Bowman-Birk inhibitors (BBIs) are found primarily in seeds of legumes and in cereal grains. These canonical inhibitors share a highly conserved nine-amino acids binding loop motif CTP1SXPPXC (where P1 is the inhibitory active site, while X stands for various amino acids). They are natural controllers of plants' endogenous proteases, but they are also inhibitors of exogenous proteases present in microbials and insects. They are considered as plants' protective agents, as their elevated levels are observed during injury, presence of pathogens, or abiotic stress, i.a. Similar properties are observed for peptides isolated from amphibians' skin containing 11-amino acids disulfide-bridged loop CWTP1SXPPXPC. They are classified as Bowman-Birk like trypsin inhibitors (BBLTIs). These inhibitors are resistant to proteolysis and not toxic, and they are reported to be beneficial in the treatment of various pathological states. In this review, we summarize up-to-date research results regarding BBIs' and BBLTIs' inhibitory activity, immunomodulatory and anti-inflammatory activity, antimicrobial and insecticidal strength, as well as chemopreventive properties.
Collapse
Affiliation(s)
| | | | - Dawid Dębowski
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (A.G.-D.); (A.M.)
| |
Collapse
|
26
|
Fernández-Tomé S, Hernández-Ledesma B. Gastrointestinal Digestion of Food Proteins under the Effects of Released Bioactive Peptides on Digestive Health. Mol Nutr Food Res 2020; 64:e2000401. [PMID: 32974997 DOI: 10.1002/mnfr.202000401] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/15/2020] [Indexed: 12/20/2022]
Abstract
The gastrointestinal tract represents a specialized interface between the organism and the external environment. Because of its direct contact with lumen substances, the modulation of digestive functions by dietary substances is supported by a growing body of evidence. Food-derived bioactive peptides have demonstrated a plethora of activities in the organism with increasing interest toward their impact over the digestive system and related physiological effects. This review updates the biological effects of food proteins, specifically milk and soybean proteins, associated to gastrointestinal health and highlights the study of digestion products and released peptides, the identification of the active form/s, and the evaluation of the mechanisms of action underlying their relationship with the digestive cells and receptors. The approach toward the modifications that food proteins and peptides undergo during gastrointestinal digestion and their bioavailability is a crucial step for current investigations on the field. The recent literature on the regulation of digestive functions by peptides has been mostly considered in terms of their influence on gastrointestinal motility and signaling, oxidative damage and inflammation, and malignant cellular proliferation. A final section regarding the actual challenges and future perspectives in this scientific topic is critically discussed.
Collapse
Affiliation(s)
- Samuel Fernández-Tomé
- Samuel Fernández-Tomé. Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Diego de León, 62, 28006, Madrid, Spain
| | - Blanca Hernández-Ledesma
- Blanca Hernández-Ledesma. Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera, 9, 28049, Madrid, Spain
| |
Collapse
|
27
|
Zhao X, Liu H, Wu Y, Hu N, Lei M, Zhang Y, Wang S. Intervention with the crude polysaccharides of Physalis pubescens L. mitigates colitis by preventing oxidative damage, aberrant immune responses, and dysbacteriosis. J Food Sci 2020; 85:2596-2607. [PMID: 32696986 DOI: 10.1111/1750-3841.15330] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/22/2022]
Abstract
In this study, a colitis mouse model induced by dextran sulfate sodium (DSS) was used to investigate the mechanisms of action of an extract of crude polysaccharides (POL) from Physalis pubescens L. as a dietary intervention for colitis. Our results showed that the administration of POL prior to DSS-induced colitis protected the colon mucosal layer; maintained intestinal barrier integrity; alleviated oxidative damage; and lowered neutrophil infiltration by downregulating intercellular cell adhesion molecule-1 and monocyte chemoattractant protein-1 expression. More importantly, POL pretreatment reduced the expression of the proinflammatory factors tumor necrosis factor-α, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), thereby modulating the nuclear factor-κB/iNOS-COX-2 signal transduction pathway. In addition, POL reversed DSS-induced gut dysbiosis, accompanied by reducing the relative abundance of Helicobacter, Mucispirillum, and Erysipelatoclostridium. In conclusion, POL ameliorated DSS-induced intestinal injury in mice, indicating that POL could be a useful dietary nutrient to protect against colitis. PRACTICAL APPLICATION: Physalis pubescens L. is an edible fruit. The results of this study show that the intervention with Physalis pubescens L. crude polysaccharides may help prevent ulcerative colitis.
Collapse
Affiliation(s)
- Xiuli Zhao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, China
| | - Hengchao Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, China
| | - Yajing Wu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, China
| | - Nan Hu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, China
| | - Ming Lei
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, China
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
28
|
A Pea ( Pisum sativum L.) Seed Vicilins Hydrolysate Exhibits PPARγ Ligand Activity and Modulates Adipocyte Differentiation in a 3T3-L1 Cell Culture Model. Foods 2020; 9:foods9060793. [PMID: 32560200 PMCID: PMC7353609 DOI: 10.3390/foods9060793] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 12/22/2022] Open
Abstract
Legume consumption has been reported to induce beneficial effects on obesity-associated metabolic disorders, but the underlying mechanisms have not been fully clarified. In the current work, pea (Pisum sativum L.) seed meal proteins (albumins, legumins and vicilins) were isolated, submitted to a simulated gastrointestinal digestion, and the effects of their hydrolysates (pea albumins hydrolysates (PAH), pea legumins hydrolysates (PLH) and pea vicilin hydrolysates (PVH), respectively) on 3T3-L1 murine pre-adipocytes were investigated. The pea vicilin hydrolysate (PVH), but not native pea vicilins, increased lipid accumulation during adipocyte differentiation. PVH also increased the mRNA expression levels of the adipocyte fatty acid-binding protein (aP2) and decreased that of pre-adipocyte factor-1 (Pref-1) (a pre-adipocyte marker gene), suggesting that PVH promotes adipocyte differentiation. Moreover, PVH induced adiponectin and insulin-responsive glucose transporter 4 (GLUT4) and stimulated glucose uptake. The expression levels of peroxisome proliferator-activated receptor γ (PPARγ), a key regulator of adipocyte differentiation, were up-regulated in 3T3-L1 cells treated with PVH during adipocyte differentiation. Finally, PVH exhibited PPARγ ligand activity. Lactalbumin or other pea hydrolysates (PAH, PLH) did not exhibit such effects. These findings show that PVH stimulates adipocyte differentiation via, at least in part, the up-regulation of PPARγ expression levels and ligand activity. These effects of PVH might be relevant in the context of the beneficial health effects of legume consumption in obesity-associated metabolic disorders.
Collapse
|
29
|
Rondanelli M, Lamburghini S, Faliva MA, Peroni G, Riva A, Allegrini P, Spadaccini D, Gasparri C, Iannello G, Infantino V, Alalwan TA, Perna S, Miccono A. A food pyramid, based on a review of the emerging literature, for subjects with inflammatory bowel disease. ACTA ACUST UNITED AC 2020; 68:17-46. [PMID: 32499202 DOI: 10.1016/j.endinu.2020.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/14/2019] [Accepted: 01/08/2020] [Indexed: 02/07/2023]
Abstract
Emerging literature suggests that diet plays an important modulatory role in inflammatory bowel disease (IBD) through the management of inflammation and oxidative stress. The aim of this narrative review is to evaluate the evidence collected up till now regarding optimum diet therapy for IBD and to design a food pyramid for these patients. The pyramid shows that carbohydrates should be consumed every day (3 portions), together with tolerated fruits and vegetables (5 portions), yogurt (125ml), and extra virgin olive oil; weekly, fish (4 portions), white meat (3 portions), eggs (3 portions), pureed legumes (2 portions), seasoned cheeses (2 portions), and red or processed meats (once a week). At the top of the pyramid, there are two pennants: the red one means that subjects with IBD need some personalized supplementation and the black one means that there are some foods that are banned. The food pyramid makes it easier for patients to decide what they should eat.
Collapse
Affiliation(s)
- Mariangela Rondanelli
- IRCCS Mondino Foundation, Pavia, Department of Public Health, Experimental and Forensic Medicine, Unit of Human and Clinical Nutrition, University of Pavia, Pavia 27100, Italy
| | - Silvia Lamburghini
- University of Pavia, Department of Public Health, Experimental and Forensic Medicine, Section of Human Nutrition, Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona, Pavia 27100, Italy
| | - Milena A Faliva
- University of Pavia, Department of Public Health, Experimental and Forensic Medicine, Section of Human Nutrition, Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona, Pavia 27100, Italy
| | - Gabriella Peroni
- University of Pavia, Department of Public Health, Experimental and Forensic Medicine, Section of Human Nutrition, Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona, Pavia 27100, Italy
| | - Antonella Riva
- Research and Development Unit, Indena, Milan 20146, Italy
| | | | - Daniele Spadaccini
- University of Pavia, Department of Public Health, Experimental and Forensic Medicine, Section of Human Nutrition, Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona, Pavia 27100, Italy
| | - Clara Gasparri
- University of Pavia, Department of Public Health, Experimental and Forensic Medicine, Section of Human Nutrition, Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona, Pavia 27100, Italy
| | - Giancarlo Iannello
- General Management, Azienda di Servizi alla Persona "Istituto Santa Margherita", Pavia 27100, Italy
| | - Vittoria Infantino
- University of Bari Aldo Moro, Department of Biomedical Science and Human Oncology, Section of Human Nutrition, Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona, Pavia 27100, Italy.
| | - Tariq A Alalwan
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus, P.O. Box 32038, Bahrain
| | - Simone Perna
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus, P.O. Box 32038, Bahrain
| | - Alessandra Miccono
- University of Pavia, Department of Public Health, Experimental and Forensic Medicine, Section of Human Nutrition, Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona, Pavia 27100, Italy
| |
Collapse
|
30
|
Chudzik-Kozłowska J, Wasilewska E, Złotkowska D. Evaluation of Immunoreactivity of Pea ( Pisum sativum) Albumins in BALB/c and C57BL/6 Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3891-3902. [PMID: 32178513 DOI: 10.1021/acs.jafc.0c00297] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Green pea (Pisum sativum) is a component of European cuisine; however, an estimated 0.8% of Europeans suffer from allergies to pea proteins. We examined the immunoreactive potential of pea albumins (PA) in BALB/c and C57BL/6 mice. Mice were orally gavaged with PA or glycated pea albumins (G-PA) for 10 consecutive days, in combination with an adjuvant. Both PA and G-PA increased PA-specific serum antibody titers to about 212 for anti-PA IgG, ∼27 for anti-PA IgA, and ∼27.8 for anti-PA IgA in fecal extracts (p < 0.001). On day 42 postexposure, the antibodies titers decreased and were greater in BALB/c compared to C57BL/6 mice (p < 0.05). Distribution of CD4+ and CD8+ T cells in lymphoid tissues presented strain-specific differences. PA was found to induce lymphocyte proliferation; however, G-PA did not. Both PA and G-PA changed CD4+ and CD8+ T cells percentages in some lymphoid tissues; however, this did not impact cytokines production by splenocyte cultures evidenced by the stimulation of Th1, Th2, and Th17 cells. The observed immunomodulatory properties of PA and G-PA and lack of a sign of allergic reaction render them suitable for supplements in personalized diets, but further research is needed to precisely understand this activity.
Collapse
Affiliation(s)
- Justyna Chudzik-Kozłowska
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, J. Tuwima 10 str., 10-748 Olsztyn, Poland
| | - Ewa Wasilewska
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, J. Tuwima 10 str., 10-748 Olsztyn, Poland
| | - Dagmara Złotkowska
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, J. Tuwima 10 str., 10-748 Olsztyn, Poland
| |
Collapse
|
31
|
Grosu IA, Pistol GC, Marin DE, Cişmileanu A, Palade LM, Ţăranu I. Effects of Dietary Grape Seed Meal Bioactive Compounds on the Colonic Microbiota of Weaned Piglets With Dextran Sodium Sulfate-Induced Colitis Used as an Inflammatory Model. Front Vet Sci 2020; 7:31. [PMID: 32161762 PMCID: PMC7054226 DOI: 10.3389/fvets.2020.00031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/14/2020] [Indexed: 12/18/2022] Open
Abstract
Microbiota affects host health and plays an important role in dysbiosis. The study examined the effect of diet including grape seed meal (GSM) with its mixture of bioactive compounds on the large intestine microbiota and short-chain fatty acid synthesis in weaned piglets treated with dextran sodium sulfate (DSS) as a model for inflammatory bowel diseases. Twenty-two piglets were included in four experimental groups based on their diet: control, DSS (1 g/kg/b.w.+control diet), GSM (8% grape seed meal inclusion in control diet), and DSS+GSM (1 g/kg/b.w., 8% grape seed meal in control diet). After 30 days, the colon content was isolated and used for microbiota sequencing on an Illumina MiSeq platform. QIIME 1.9.1 pipeline was used to process the raw sequences. Both GSM and DSS alone and in combination affected the diversity indices and Firmicutes:Bacteroidetes ratio, with significantly higher values in the DSS-afflicted piglets for Proteobacteria phylum, Roseburia, Megasphera and CF231 genus, and lower values for Lactobacillus. GSM with high-fiber, polyphenol and polyunsaturated fatty acid (PUFA) content increased the production of butyrate and isobutyrate, stimulated the growth of beneficial genera like Prevotella and Megasphaera, while countering the relative abundance of Roseburia, reducing it to half of the DSS value and contributing to the management of the DSS effects.
Collapse
Affiliation(s)
- Iulian A Grosu
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Balotesti, Romania
| | - Gina C Pistol
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Balotesti, Romania
| | - Daniela E Marin
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Balotesti, Romania
| | - Ana Cişmileanu
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Balotesti, Romania
| | - Laurenţiu M Palade
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Balotesti, Romania
| | - Ionelia Ţăranu
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Balotesti, Romania
| |
Collapse
|
32
|
Aranda-Olmedo I, Rubio LA. Dietary legumes, intestinal microbiota, inflammation and colorectal cancer. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
33
|
Berberis lycium fruit extract attenuates oxi-inflammatory stress and promotes mucosal healing by mitigating NF-κB/c-Jun/MAPKs signalling and augmenting splenic Treg proliferation in a murine model of dextran sulphate sodium-induced ulcerative colitis. Eur J Nutr 2019; 59:2663-2681. [DOI: 10.1007/s00394-019-02114-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/04/2019] [Indexed: 12/18/2022]
|
34
|
Benmoussa A, Diallo I, Salem M, Michel S, Gilbert C, Sévigny J, Provost P. Concentrates of two subsets of extracellular vesicles from cow's milk modulate symptoms and inflammation in experimental colitis. Sci Rep 2019; 9:14661. [PMID: 31601878 PMCID: PMC6787204 DOI: 10.1038/s41598-019-51092-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/20/2019] [Indexed: 12/17/2022] Open
Abstract
Extracellular vesicles (EVs) are involved in cell-to-cell communication and modulation of numerous physiological and pathological processes. EVs are found in large quantities in milk and contain several inflammation- and immunity-modulating proteins and microRNAs, through which they exert beneficial effects in several inflammatory disease models. Here, we investigated the effects of two EV subsets, concentrated from commercial cow's milk, on a murine model of colitis induced with dextran sodium sulfate (DSS). P35K EVs, isolated by ultracentrifugation at 35,000 g, and P100K EVs, isolated at 100,000 g, were previously characterized and administered by gavage to healthy and DSS-treated mice. P35K EVs and, to a lesser extent, P100K EVs improved several outcomes associated to DSS-induced colitis, modulated the gut microbiota, restored intestinal impermeability and replenished mucin secretion. Also, P35K EVs modulated innate immunity, while P100K EVs decreased inflammation through the downregulation of colitis-associated microRNAs, especially miR-125b, associated with a higher expression of the NFκB inhibitor TNFAIP3 (A20). These results suggest that different milk EV subsets may improve colitis outcomes through different, and possibly complementary, mechanisms. Further unveiling of these mechanisms might offer new opportunities for improving the life of patients with colitis and be of importance for milk processing, infant milk formulation and general public health.
Collapse
Affiliation(s)
- Abderrahim Benmoussa
- CHUQ Research Center/CHUL Pavilion, 2705 Blvd Laurier, Quebec, QC, G1V 4G2, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Idrissa Diallo
- CHUQ Research Center/CHUL Pavilion, 2705 Blvd Laurier, Quebec, QC, G1V 4G2, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Mabrouka Salem
- CHUQ Research Center/CHUL Pavilion, 2705 Blvd Laurier, Quebec, QC, G1V 4G2, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Sara Michel
- CHUQ Research Center/CHUL Pavilion, 2705 Blvd Laurier, Quebec, QC, G1V 4G2, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Caroline Gilbert
- CHUQ Research Center/CHUL Pavilion, 2705 Blvd Laurier, Quebec, QC, G1V 4G2, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Jean Sévigny
- CHUQ Research Center/CHUL Pavilion, 2705 Blvd Laurier, Quebec, QC, G1V 4G2, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Patrick Provost
- CHUQ Research Center/CHUL Pavilion, 2705 Blvd Laurier, Quebec, QC, G1V 4G2, Canada.
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC, G1V 0A6, Canada.
| |
Collapse
|
35
|
Olías R, Becerra-Rodríguez C, Soliz-Rueda JR, Moreno FJ, Delgado-Andrade C, Clemente A. Glycation affects differently the main soybean Bowman-Birk isoinhibitors, IBB1 and IBBD2, altering their antiproliferative properties against HT29 colon cancer cells. Food Funct 2019; 10:6193-6202. [PMID: 31501839 DOI: 10.1039/c9fo01421g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Naturally-occurring serine protease inhibitors of the Bowman-Birk family, particularly abundant in legume seeds, exert their potential chemopreventive and/or therapeutic properties via protease inhibition. Processing of legume seeds, including soybeans, has been proposed as a major cause for their loss of bioactivity due to glycation. In order to assess how glycation affected the protease inhibitory activities of major soybean Bowman-Birk isoinhibitors (BBI) and their antiproliferative properties, IBB1 and IBBD2 were purified and subjected to glycation under controlled conditions using glucose at high temperature. Both soybean isoinhibitors showed remarkable heat stability. In the presence of glucose, IBBD2 lost most of its trypsin inhibitory activity while IBB1 maintains similar trypsin and chymotrypsin inhibitory activities as in the absence of sugar. Glycation patterns of both BBI proteins were assessed by MALDI-TOF spectrometry. Our results show that the glycation process affects IBBD2, losing partially its antiproliferative activity against HT29 colon cancer cells, while glycated-IBB1 was unaffected.
Collapse
Affiliation(s)
- Raquel Olías
- Estación Experimental del Zaidín (EEZ, CSIC), Profesor Albareda 1, Granada 18008, Spain.
| | | | - Jorge R Soliz-Rueda
- Estación Experimental del Zaidín (EEZ, CSIC), Profesor Albareda 1, Granada 18008, Spain.
| | - F Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación, (CIAL, CSIC-UAM), Nicolás Cabrera 9, Campus de Cantoblanco-Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Cristina Delgado-Andrade
- Instituto de Ciencia y Tecnología de los Alimentos y Nutrición (ICTAN, CSIC), Jose Antonio Novais 10, Madrid 28040, Spain
| | - Alfonso Clemente
- Estación Experimental del Zaidín (EEZ, CSIC), Profesor Albareda 1, Granada 18008, Spain.
| |
Collapse
|
36
|
Lu ZX, He JF, Zhang YC, Bing DJ. Composition, physicochemical properties of pea protein and its application in functional foods. Crit Rev Food Sci Nutr 2019; 60:2593-2605. [PMID: 31429319 DOI: 10.1080/10408398.2019.1651248] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Field pea is one of the most important leguminous crops over the world. Pea protein is a relatively new type of plant proteins and has been used as a functional ingredient in global food industry. Pea protein includes four major classes (globulin, albumin, prolamin, and glutelin), in which globulin and albumin are major storage proteins in pea seeds. Globulin is soluble in salt solutions and can be further classified into legumin and vicilin. Albumin is soluble in water and regarded as metabolic and enzymatic proteins with cytosolic functions. Pea protein has a well-balanced amino acid profile with high level of lysine. The composition and structure of pea protein, as well as the processing conditions, significantly affect its physical and chemical properties, such as hydration, rheological characteristics, and surface characteristics. With its availability, low cost, nutritional values and health benefits, pea protein can be used as a novel and effective alternative to substitute for soybean or animal proteins in functional food applications.
Collapse
Affiliation(s)
- Z X Lu
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - J F He
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot, Inner Mongolia, P.R. China
| | - Y C Zhang
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - D J Bing
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| |
Collapse
|
37
|
Fernández-Tomé S, Hernández-Ledesma B, Chaparro M, Indiano-Romacho P, Bernardo D, Gisbert JP. Role of food proteins and bioactive peptides in inflammatory bowel disease. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
38
|
Alavala S, Sangaraju R, Nalban N, Sahu BD, Jerald MK, Kilari EK, Sistla R. Stevioside, a diterpenoid glycoside, shows anti-inflammatory property against Dextran Sulphate Sodium-induced ulcerative colitis in mice. Eur J Pharmacol 2019; 855:192-201. [PMID: 31075241 DOI: 10.1016/j.ejphar.2019.05.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 12/26/2022]
Abstract
Inflammatory bowel disease is an umbrella-term used to describe a set of chronic inflammatory conditions that affect the gastro-intestinal tract. Since most of the inflammatory medications in current use have several undesirable side-effects, stevioside, a naturally occurring, high-intensity sweetener was assessed in our study for its anti-inflammatory properties by in-vitro and in-vivo experiments. Stevioside was observed to significantly inhibit the levels of LPS induced elevation of cytokines, TNF-α (P < 0.05) and IL-6 (P < 0.001) as well as the production of reactive oxygen species (P < 0.01) and nitrites (P < 0.001) in RAW264.7 cells. Stevioside has also been evaluated for its anti-inflammatory effect by using dextran sulfate sodium (DSS)-induced ulcerative colitis model in mice. Stevioside significantly reduced the disease activity index (DAI) score, ameliorated the inflammatory symptoms induced by DSS in mice and exhibited intact colon histo-architecture. Stevioside treatment significantly inhibited the levels of pro-inflammatory cytokines, TNF-α and IL-6, and the protein expressions of pro-inflammatory mediators, COX-2 (P < 0.01) and iNOS (P < 0.01) and restored the levels of endogenous anti-oxidants such as superoxide dismutase (P < 0.01), catalase (P < 0.001), glutathione s-transferase (P < 0.001) and reduced glutathione (P < 0.001) level in colon tissues. It was also observed that stevioside significantly suppressed NF-κB (p65) activation by abrogating IκB phosphorylation and attenuated the phosphorylation of p38, ERK and JNK proteins in colon tissues. The findings of the present study suggest that stevioside exhibits anti-inflammatory property by inhibiting NF-κB (p65) and MAPK pathways and can be employed as an adjunct in nutraceuticals to treat IBD.
Collapse
Affiliation(s)
- Sateesh Alavala
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, 500 007, India
| | - Rajendra Sangaraju
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, 500 007, India
| | - Nasiruddin Nalban
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, 500 007, India
| | - Bidya Dhar Sahu
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, 500 007, India
| | - Mahesh Kumar Jerald
- Animal House Facility, CSIR-Centre for Cellular and Molecular Biology(CCMB), Hyderabad, 500 007, India
| | - Eswar Kumar Kilari
- Department of Pharmacology, A.U College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, 530 033, India
| | - Ramakrishna Sistla
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, 500 007, India.
| |
Collapse
|
39
|
Meurer MC, Mees M, Mariano LNB, Boeing T, Somensi LB, Mariott M, da Silva RDCMVDAF, Dos Santos AC, Longo B, Santos França TC, Klein-Júnior LC, de Souza P, de Andrade SF, da Silva LM. Hydroalcoholic extract of Tagetes erecta L. flowers, rich in the carotenoid lutein, attenuates inflammatory cytokine secretion and improves the oxidative stress in an animal model of ulcerative colitis. Nutr Res 2019; 66:95-106. [PMID: 30979660 DOI: 10.1016/j.nutres.2019.03.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/13/2019] [Accepted: 03/04/2019] [Indexed: 01/08/2023]
Abstract
Given the role of oxidative stress in ulcerative colitis (UC) etiology, and the amount of lutein (a carotenoid with antioxidant properties) in the dry hydroalcoholic extract of Tagetes erecta flowers (DHETE), this study investigated the intestinal anti-inflammatory properties of DHETE in an animal model of UC. The amount of lutein in the extract was determined by 1H-nuclear magnetic resonance spectroscopy, and total phenols, radical scavenger capability, cytotoxicity, and effects on reactive oxygen species and nitric oxide production were evaluated in vitro. Experimental UC was established by adding 5% dextran sulfate sodium (DSS) to drinking water, with the effects of DHETE (30-300 mg/kg, once a day for 7 days) on the morphological (colon length and weight), clinical (disease activity index and body weight loss), microscopic (histological score and mucin levels), and biochemical parameters analyzed. The lutein concentration found in DHETE was 8.2%, and DHETE scavenged 2,2-diphenyl-1-picrylhydrazyl radicals at 1000 μg/mL The exposure of intestinal epithelial cells to DHETE did not change its viability but reduced reactive oxygen species and nitric oxide production after lipopolysaccharide stimulation. In vivo, DHETE (300 mg/kg) attenuated weight loss, disease activity index, colon shortening, and histopathological changes promoted by DSS intake. Moreover, DHETE increased mucin colonic staining. The treatment with DHETE decreased myeloperoxidase activity as well as tumor necrosis factor and interleukin-6 levels. The extract also increased reduced glutathione levels and catalase activity and normalized superoxide dismutase and glutathione-S-transferase activities. In conclusion, DHETE reduced colitis severity by attenuating inflammatory cytokine secretion and improved the endogenous antioxidant defense in DSS-induced UC in mice.
Collapse
Affiliation(s)
- Marianne Caroline Meurer
- Programa de Pós-Graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI)-Campus Itajaí, Santa Catarina, Brazil. Rua Uruguai, 458, Centro. CEP: 88302-901
| | - Mariéli Mees
- Programa de Pós-Graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI)-Campus Itajaí, Santa Catarina, Brazil. Rua Uruguai, 458, Centro. CEP: 88302-901
| | - Luísa Nathalia Bolda Mariano
- Programa de Pós-Graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI)-Campus Itajaí, Santa Catarina, Brazil. Rua Uruguai, 458, Centro. CEP: 88302-901
| | - Thaise Boeing
- Programa de Pós-Graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI)-Campus Itajaí, Santa Catarina, Brazil. Rua Uruguai, 458, Centro. CEP: 88302-901
| | - Lincon Bordignon Somensi
- Programa de Pós-Graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI)-Campus Itajaí, Santa Catarina, Brazil. Rua Uruguai, 458, Centro. CEP: 88302-901
| | - Marihá Mariott
- Programa de Pós-Graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI)-Campus Itajaí, Santa Catarina, Brazil. Rua Uruguai, 458, Centro. CEP: 88302-901
| | - Rita de Cássia Melo Vilhena de Andrade Fonseca da Silva
- Programa de Pós-Graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI)-Campus Itajaí, Santa Catarina, Brazil. Rua Uruguai, 458, Centro. CEP: 88302-901
| | - Ana Caroline Dos Santos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI)-Campus Itajaí, Santa Catarina, Brazil. Rua Uruguai, 458, Centro. CEP: 88302-901
| | - Bruna Longo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI)-Campus Itajaí, Santa Catarina, Brazil. Rua Uruguai, 458, Centro. CEP: 88302-901
| | - Tauini Caroline Santos França
- Programa de Pós-Graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI)-Campus Itajaí, Santa Catarina, Brazil. Rua Uruguai, 458, Centro. CEP: 88302-901
| | - Luiz Carlos Klein-Júnior
- Programa de Pós-Graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI)-Campus Itajaí, Santa Catarina, Brazil. Rua Uruguai, 458, Centro. CEP: 88302-901
| | - Priscila de Souza
- Programa de Pós-Graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI)-Campus Itajaí, Santa Catarina, Brazil. Rua Uruguai, 458, Centro. CEP: 88302-901
| | - Sérgio Faloni de Andrade
- Programa de Pós-Graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI)-Campus Itajaí, Santa Catarina, Brazil. Rua Uruguai, 458, Centro. CEP: 88302-901
| | - Luísa Mota da Silva
- Programa de Pós-Graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI)-Campus Itajaí, Santa Catarina, Brazil. Rua Uruguai, 458, Centro. CEP: 88302-901.
| |
Collapse
|
40
|
Wang K, Jin X, Li Q, Sawaya ACHF, Le Leu RK, Conlon MA, Wu L, Hu F. Propolis from Different Geographic Origins Decreases Intestinal Inflammation and Bacteroides
spp. Populations in a Model of DSS-Induced Colitis. Mol Nutr Food Res 2018; 62:e1800080. [DOI: 10.1002/mnfr.201800080] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/22/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Kai Wang
- Institute of Apicultural Research; Chinese Academy of Agricultural Sciences; Beijing 100093 China
| | - Xiaolu Jin
- State Key Laboratory of Animal Nutrition; College of Animal Science and Technology; China Agricultural University; Beijing 100193 China
| | - Qiangqiang Li
- Institute of Apicultural Research; Chinese Academy of Agricultural Sciences; Beijing 100093 China
| | | | - Richard K. Le Leu
- Central and Northern Adelaide Renal and Transplantation Service; Royal Adelaide Hospital; Adelaide SA 5000 Australia
| | | | - Liming Wu
- Institute of Apicultural Research; Chinese Academy of Agricultural Sciences; Beijing 100093 China
| | - Fuliang Hu
- College of Animal Sciences; Zhejiang University; Hangzhou 310058 China
| |
Collapse
|
41
|
Juritsch AF, Moreau R. Role of soybean-derived bioactive compounds in inflammatory bowel disease. Nutr Rev 2018; 76:618-638. [PMID: 29800381 DOI: 10.1093/nutrit/nuy021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, inflammatory condition of the gastrointestinal tract. Patients with IBD present with debilitating symptoms that alter the quality of life and can develop into severe complications requiring surgery. Epidemiological evidence indicates Westernized societies have an elevated IBD burden when compared with Asian societies. Considering the stark contrast between the typical Western and Eastern dietary patterns, it is postulated that differences in food and lifestyle contribute to lower IBD incidence in Asian countries. Soybeans (Glycine max), which are consumed in high quantities and as various preparations in Eastern societies, contain a wealth of natural, biologically active compounds that include isoflavones, bioactive peptides, protease inhibitors, and phytosterols, among many others. These compounds have been shown to improve human health, and preclinical evidence suggests they have potential to improve the prognosis of IBD. This review summarizes the current state of evidence regarding the effects and the mechanisms of action of these soybean-derived bioactive compounds in experimental models of IBD.
Collapse
Affiliation(s)
- Anthony F Juritsch
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Régis Moreau
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
42
|
Polysaccharide of Hericium erinaceus attenuates colitis in C57BL/6 mice via regulation of oxidative stress, inflammation-related signaling pathways and modulating the composition of the gut microbiota. J Nutr Biochem 2018; 57:67-76. [DOI: 10.1016/j.jnutbio.2018.03.005] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/25/2018] [Accepted: 03/06/2018] [Indexed: 12/13/2022]
|
43
|
Brazilian green propolis hydroalcoholic extract reduces colon damages caused by dextran sulfate sodium-induced colitis in mice. Inflammopharmacology 2018; 26:1283-1292. [DOI: 10.1007/s10787-018-0467-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/12/2018] [Indexed: 12/13/2022]
|
44
|
Aranda-Olmedo I, Ruiz R, Peinado MJ, Rubio LA. A pea (Pisum sativum L.) seed albumin extract prevents colonic DSS induced dysbiosis in mice. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.05.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
45
|
Fábrega MJ, Rodríguez-Nogales A, Garrido-Mesa J, Algieri F, Badía J, Giménez R, Gálvez J, Baldomà L. Intestinal Anti-inflammatory Effects of Outer Membrane Vesicles from Escherichia coli Nissle 1917 in DSS-Experimental Colitis in Mice. Front Microbiol 2017; 8:1274. [PMID: 28744268 PMCID: PMC5504144 DOI: 10.3389/fmicb.2017.01274] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/26/2017] [Indexed: 12/19/2022] Open
Abstract
Escherichia coli Nissle 1917 (EcN) is a probiotic strain with proven efficacy in inducing and maintaining remission of ulcerative colitis. However, the microbial factors that mediate these beneficial effects are not fully known. Gram-negative bacteria release outer membrane vesicles (OMVs) as a direct pathway for delivering selected bacterial proteins and active compounds to the host. In fact, vesicles released by gut microbiota are emerging as key players in signaling processes in the intestinal mucosa. In the present study, the dextran sodium sulfate (DSS)-induced colitis mouse model was used to investigate the potential of EcN OMVs to ameliorate mucosal injury and inflammation in the gut. The experimental protocol involved pre-treatment with OMVs for 10 days before DSS intake, and a 5-day recovery period. Oral administration of purified EcN OMVs (5 μg/day) significantly reduced DSS-induced weight loss and ameliorated clinical symptoms and histological scores. OMVs treatment counteracted altered expression of cytokines and markers of intestinal barrier function. This study shows for the first time that EcN OMVs can mediate the anti-inflammatory and barrier protection effects previously reported for this probiotic in experimental colitis. Remarkably, translation of probiotics to human healthcare requires knowledge of the molecular mechanisms involved in probiotic–host interactions. Thus, OMVs, as a non-replicative bacterial form, could be explored as a new probiotic-derived therapeutic approach, with even lower risk of adverse events than probiotic administration.
Collapse
Affiliation(s)
- María-José Fábrega
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Institut de Biomedicina de la, Universitat de BarcelonaBarcelona, Spain.,Microbiota Intestinal, Institut de Recerca Sant Joan de DéuEsplugues de Llobregat, Spain
| | - Alba Rodríguez-Nogales
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research, University of GranadaGranada, Spain
| | - José Garrido-Mesa
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research, University of GranadaGranada, Spain
| | - Francesca Algieri
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research, University of GranadaGranada, Spain
| | - Josefa Badía
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Institut de Biomedicina de la, Universitat de BarcelonaBarcelona, Spain.,Microbiota Intestinal, Institut de Recerca Sant Joan de DéuEsplugues de Llobregat, Spain
| | - Rosa Giménez
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Institut de Biomedicina de la, Universitat de BarcelonaBarcelona, Spain.,Microbiota Intestinal, Institut de Recerca Sant Joan de DéuEsplugues de Llobregat, Spain
| | - Julio Gálvez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research, University of GranadaGranada, Spain
| | - Laura Baldomà
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Institut de Biomedicina de la, Universitat de BarcelonaBarcelona, Spain.,Microbiota Intestinal, Institut de Recerca Sant Joan de DéuEsplugues de Llobregat, Spain
| |
Collapse
|
46
|
Bibi S, de Sousa Moraes LF, Lebow N, Zhu MJ. Dietary Green Pea Protects against DSS-Induced Colitis in Mice Challenged with High-Fat Diet. Nutrients 2017; 9:E509. [PMID: 28524086 PMCID: PMC5452239 DOI: 10.3390/nu9050509] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 02/07/2023] Open
Abstract
Obesity is a risk factor for developing inflammatory bowel disease. Pea is unique with its high content of dietary fiber, polyphenolics, and glycoproteins, all of which are known to be health beneficial. We aimed to investigate the impact of green pea (GP) supplementation on the susceptibility of high-fat diet (HFD)-fed mice to dextran sulfate sodium (DSS)-induced colitis. Six-week-old C57BL/6J female mice were fed a 45% HFD or HFD supplemented with 10% GP. After 7-week dietary supplementation, colitis was induced by adding 2.5% DSS in drinking water for 7 days followed by a 7-day recovery period. GP supplementation ameliorated the disease activity index score in HFD-fed mice during the recovery stage, and reduced neutrophil infiltration, mRNA expression of monocyte chemoattractant protein-1 (MCP-1) and inflammatory markers interleukin (IL)-6, cyclooxygenase-2 (COX-2), IL-17, interferon-γ (IFN-γ), and inducible nitric oxide synthase (iNOS) in HFD-fed mice. Further, GP supplementation increased mucin 2 content and mRNA expression of goblet cell differentiation markers including Trefoil factor 3 (Tff3), Krüppel-like factor 4 (Klf4), and SAM pointed domain ETS factor 1 (Spdef1) in HFD-fed mice. In addition, GP ameliorated endoplasmic reticulum (ER) stress as indicated by the reduced expression of Activating transcription factor-6 (ATF-6) protein and its target genes chaperone protein glucose-regulated protein 78 (Grp78), the CCAAT-enhancer-binding protein homologous protein (CHOP), the ER degradation-enhancing α-mannosidase-like 1 protein (Edem1), and the X-box binding protein 1 (Xbp1) in HFD-fed mice. In conclusion, GP supplementation ameliorated the severity of DSS-induced colitis in HFD-fed mice, which was associated with the suppression of inflammation, mucin depletion, and ER stress in the colon.
Collapse
Affiliation(s)
- Shima Bibi
- School of Food Science, Washington State University, Pullman, WA 99164, USA.
| | | | - Noelle Lebow
- School of Food Science, Washington State University, Pullman, WA 99164, USA.
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
47
|
|
48
|
Indarte M, Lazza CM, Assis D, Caffini NO, Juliano MA, Avilés FX, Daura X, López LMI, Trejo SA. A Bowman-Birk protease inhibitor purified, cloned, sequenced and characterized from the seeds of Maclura pomifera (Raf.) Schneid. PLANTA 2017; 245:343-353. [PMID: 27778107 DOI: 10.1007/s00425-016-2611-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/17/2016] [Indexed: 06/06/2023]
Abstract
A new BBI-type protease inhibitor with remarkable structural characteristics was purified, cloned, and sequenced from seeds of Maclura pomifera , a dicotyledonous plant belonging to the Moraceae family. In this work, we report a Bowman-Birk inhibitor (BBI) isolated, purified, cloned, and characterized from Maclura pomifera seeds (MpBBI), the first of this type from a species belonging to Moraceae family. MpBBI was purified to homogeneity by RP-HPLC, total RNA was extracted from seeds of M. pomifera, and the 3'RACE-PCR method was applied to obtain the cDNA, which was cloned and sequenced. Peptide mass fingerprinting (PMF) analysis showed correspondence between the in silico-translated protein and MpBBI, confirming that it corresponds to a new plant protease inhibitor. The obtained cDNA encoded a polypeptide of 65 residues and possesses 10 cysteine residues, with molecular mass of 7379.27, pI 6.10, and extinction molar coefficient of 9105 M-1 cm-1. MpBBI inhibits strongly trypsin with K i in the 10-10 M range and was stable in a wide array of pH and extreme temperatures. MpBBI comparative modeling was applied to gain insight into its 3D structure and highlighted some distinguishing features: (1) two non-identical loops, (2) loop 1 (CEEESRC) is completely different from any known BBI, and (3) the amount of disulphide bonds is also different from any reported BBI from dicot plants.
Collapse
Affiliation(s)
- Martín Indarte
- PHusisTherapeutics, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Cristian M Lazza
- Centro de Investigación de Proteínas Vegetales, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900, La Plata, Argentina
| | - Diego Assis
- Departamento de Biofisica, Universidade Federal de São Paulo, Vila Clementino, São Paulo, 04044-020, Brazil
| | - Néstor O Caffini
- Centro de Investigación de Proteínas Vegetales, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900, La Plata, Argentina
| | - María A Juliano
- Departamento de Biofisica, Universidade Federal de São Paulo, Vila Clementino, São Paulo, 04044-020, Brazil
| | - Francesc X Avilés
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Xavier Daura
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Laura M I López
- Instituto de Ciencias de la Salud, Universidad Nacional Arturo Jauretche, 1888 Florencio Varela, Buenos Aires, Argentina.
- CITEC, Gonnet, B1897, Buenos Aires, Argentina.
| | - Sebastián A Trejo
- Laboratorio de Neurofisiología del Instituto Multidisciplinar de Biología Celular (IMBICE), La Plata, B1906APO, Buenos Aires, Argentina.
| |
Collapse
|
49
|
Protective effect of sugar cane extract against dextran sulfate sodium-induced colonic inflammation in mice. Tissue Cell 2017; 49:8-14. [DOI: 10.1016/j.tice.2016.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/13/2016] [Accepted: 12/24/2016] [Indexed: 12/11/2022]
|
50
|
Abstract
Pisum sativum (Family: Fabaceae), as known as green pea or garden pea, has long been important in diet due to its content of fiber, protein, starch, trace elements, and many phytochemical substances. It has been shown to possess antibacterial, antidiabetic, antifungal, anti-inflammatory, antihypercholesterolemia, and antioxidant activities and also shown anticancer property. Its nonnutritive biologically active components include alkaloids, flavonoids, glycosides, isoflavones, phenols, phytosterols, phytic acid, protease inhibitors, saponins, and tannins. This plant is rich in apigenin, hydroxybenzoic, hydroxycinnamic, luteolin, and quercetin, all of which have been reported to contribute to its remedial properties including anticarcinogenesis property. Based on established literature on the anticancer property of P. sativum and possible mode of action, this review article has focused to demonstrate that P. sativum could be further explored for the development of anticancer treatment.
Collapse
Affiliation(s)
- Runchana Rungruangmaitree
- Mahidol University International College, Mahidol University, Salaya Campus, Nakhon Pathom, Thailand
| | | |
Collapse
|