1
|
NATH D, SHIVASEKAR M, VINODHINI V. Smoking Induces the Circulating Levels of Matrix Metalloproteinase-9 and Its Association with Cardiovascular Risk in Young Smokers. Medeni Med J 2022; 37:306-312. [PMID: 36578139 PMCID: PMC9808855 DOI: 10.4274/mmj.galenos.2022.45057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Objective Smoking causes cardiovascular risk, which may alter the stability between the production and degradation of the extracellular matrix. Matrix metalloproteinase-9 (MMP-9) is a zinc-containing endopeptidase that degrades the extracellular matrix and is involved in tissue remodelling and several physiological processes. As a result, smoking-induced elevated serum MMP-9 levels, particularly at a younger age, raise the risk of coronary heart disease (CHD). Thus, this study aimed to determine the possible relationship between smoking-induced circulating MMP-9 and the risk of cardiovascular disease in young smokers. Methods In this cross-sectional study, the patients were divided into three groups. Each group contains 120 study participants. Group one consisted of 120 healthy individuals with no physical and mental illness, group two consisted of 120 active smokers with a heart disease, and group three consisted of 120 active smokers with a heart disease and diabetes, who attended Sri Ramaswamy Memorial Hospital for cardiology checkup at the age of 20-55 years. The serum MMP-9, high-sensitivity C-reactive protein (hs-CRP), and apolipoprotein-E (APO-E) levels were analyzed using the ELISA method, and the lipid levels were measured enzymatically using AU480 automatic analyzer (Beckman Coulter). Results Compared with non-smokers, the study shows that the mean serum MMP-9, hs-CRP, and APO-E levels were significantly higher in smokers (p<0.001). A strong relationship was also found between MMP-9 and hs-CRP, APO-E, smoking load, and smoking intensity. Conclusions A significant association was found between cigarette smoking with MMP-9, and relative exposure to circulating inflammation markers plays a potential role in the pathogenesis of CHD.
Collapse
Affiliation(s)
- Dinesh NATH
- SRM Medical College Hospital and Research Centre, SRMIST, Department of Biochemistry, Kattankulthur, Tamil Nadu, India
| | - Meera SHIVASEKAR
- SRM Medical College Hospital and Research Centre, SRMIST, Department of Biochemistry, Kattankulthur, Tamil Nadu, India,* Address for Correspondence: SRM Medical College Hospital and Research Centre, SRMIST, Department of Biochemistry, Kattankulthur, Tamil Nadu, India E-mail:
| | - V.M. VINODHINI
- SRM Medical College Hospital and Research Centre, SRMIST, Department of Biochemistry, Kattankulthur, Tamil Nadu, India
| |
Collapse
|
2
|
Thakkar H, Vincent V, Roy A, Gautam AK, Kutum R, Ramakrishnan L, Singh S, Singh A. Determinants of high-density lipoprotein (HDL) functions beyond proteome in Asian Indians: exploring the fatty acid profile of HDL phospholipids. Mol Cell Biochem 2021; 477:559-570. [PMID: 34843015 DOI: 10.1007/s11010-021-04304-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/17/2021] [Indexed: 02/02/2023]
Abstract
Impaired high-density lipoprotein (HDL) functions are associated with development of coronary artery disease. In this study, we explored the quantitative differences in HDL (i.e. HDL proteome and fatty acid profile of HDL phospholipids) underlying the functional deficits associated with acute coronary syndrome (ACS). The relationship between HDL function and composition was assessed in 65 consecutive ACS patients and 40 healthy controls. Cholesterol efflux capacity (CEC) of HDL and lecithin cholesterol acyl transferase (LCAT) activity were significantly lower in patients with ACS compared to controls. In HDL proteome analysis, HDL isolated from ACS individuals was enriched in apolipoprotein C2 (inhibitor of LCAT), apolipoprotein C4 and serum amyloid A proteins and was deficient in apolipoprotein A-I and A-II. The fatty acid profile of HDL phospholipids analyzed using gas chromatography showed significantly lower percentages of stearic acid (17.4 ± 2.4 vs 15.8 ± 2.8, p = 0.004) and omega-3 fatty acids [eicosapentaenoic acid (1.0 (0.6-1.4) vs 0.7 (0.4-1.0), p = 0.009) and docosahexaenoic acid (1.5 ± 0.7 vs 1.3 ± 0.5, p = 0.03)] in ACS patients compared to controls. Lower percentages of these fatty acids in HDL were associated with higher odds of developing ACS. Our results suggest that distinct phospholipid fatty acid profiles found in HDL from ACS patients could be one of the contributing factors to the deranged HDL functions in these patients apart from the protein content and the inflammatory conditions.
Collapse
Affiliation(s)
- Himani Thakkar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Vinnyfred Vincent
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Ambuj Roy
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, India
| | - Ajay Kumar Gautam
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Rintu Kutum
- Informatics and Big Data Unit, Council of Scientific and Industrial Research (CSIR), Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
| | - Lakshmy Ramakrishnan
- Department of Cardiac Biochemistry, Cardiothoracic and Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Sandeep Singh
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, India
| | - Archna Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
3
|
Njapndounke B, Dandji Saah MB, Foko Kouam ME, Boungo GT, Ngoufack FZ. Optimum biscuit from Musa sapientum L . and Vigna unguiculata L. composite flour: effect on pancreatic histology, biochemical and hematological parameters of diabetic rats. Heliyon 2021; 7:e07987. [PMID: 34585009 PMCID: PMC8455668 DOI: 10.1016/j.heliyon.2021.e07987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/14/2021] [Accepted: 09/10/2021] [Indexed: 11/26/2022] Open
Abstract
This study investigated the effect of consumption of an optimum biscuit from composite flour of Musa sapientum L. ('banana cochon') and Vigna unguiculata L. (cowpea) on the pancreatic histology, biochemical and hematological parameters of streptozotocin-induced diabetic Wistar rats. The optimum biscuit was evaluated for its chemical properties and glycaemic index. The weekly fasting blood glucose level, food intake and weight of the rats were recorded. The effect of 28 days' consumption of different percentages of optimum biscuit with/without Metformin was also evaluated on the pancreatic histology, biochemical and hematological parameters of rats. Results showed that, the optimum biscuit is rich in minerals (potassium, magnesium and calcium), dietary fibre (9.4%) and is a low glycaemic index product (50.91%). Also, the optimum biscuit significantly lowered/maintained the blood glucose level of diabetic rats even though the weekly weights of the rats were reduced while food intake increased. Nonetheless, the hematological parameters of the treated diabetic rats were significantly (P < 0.05) improved when compared to the untreated diabetic rats groups. With the exception of total serum protein, other biochemical parameters such as serum creatinine, urea, alanine aminotransferase, alkaline phosphatase, aspartate aminotransferase and bilirubin in the treated diabetic groups were significantly (P < 0.05) reduced or closer to those of non-diabetic rats. The serum cholesterol, triglyceride, low-density lipoprotein levels were significantly (p < 0.05) reduced while the HDL level significantly increased in treated diabetic groups. Histological examination of the pancreas showed that treatment of diabetic groups with optimum biscuit was able to slow down the destruction (protection) of beta-cells. Thus, optimum biscuit could be used to improve the health status during the management and prevention of complications in diabetic patients.
Collapse
Affiliation(s)
- Bilkissou Njapndounke
- Research Unit of Biochemistry, Medicinal Plants, Food Sciences and Nutrition (URBPMAN), Department of Biochemistry, Faculty of Science, University of Dschang, Cameroon
| | - Marc Bertrand Dandji Saah
- Research Unit of Biochemistry, Medicinal Plants, Food Sciences and Nutrition (URBPMAN), Department of Biochemistry, Faculty of Science, University of Dschang, Cameroon
| | - Marius Edith Foko Kouam
- Research Unit of Biochemistry, Medicinal Plants, Food Sciences and Nutrition (URBPMAN), Department of Biochemistry, Faculty of Science, University of Dschang, Cameroon
| | | | - Francois Zambou Ngoufack
- Research Unit of Biochemistry, Medicinal Plants, Food Sciences and Nutrition (URBPMAN), Department of Biochemistry, Faculty of Science, University of Dschang, Cameroon
| |
Collapse
|
4
|
Papotti B, Escolà-Gil JC, Julve J, Potì F, Zanotti I. Impact of Dietary Lipids on the Reverse Cholesterol Transport: What We Learned from Animal Studies. Nutrients 2021; 13:nu13082643. [PMID: 34444804 PMCID: PMC8401548 DOI: 10.3390/nu13082643] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/14/2022] Open
Abstract
Reverse cholesterol transport (RCT) is a physiological mechanism protecting cells from an excessive accumulation of cholesterol. When this process begins in vascular macrophages, it acquires antiatherogenic properties, as has been widely demonstrated in animal models. Dietary lipids, despite representing a fundamental source of energy and exerting multiple biological functions, may induce detrimental effects on cardiovascular health. In the present review we summarize the current knowledge on the mechanisms of action of the most relevant classes of dietary lipids, such as fatty acids, sterols and liposoluble vitamins, with effects on different steps of RCT. We also provide a critical analysis of data obtained from experimental models which can serve as a valuable tool to clarify the effects of dietary lipids on cardiovascular disease.
Collapse
Affiliation(s)
- Bianca Papotti
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy;
| | - Joan Carles Escolà-Gil
- Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau & Institut d’Investigació Biomèdica (IIB) Sant Pau, 08041 Barcelona, Spain; (J.C.E.-G.); (J.J.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Josep Julve
- Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau & Institut d’Investigació Biomèdica (IIB) Sant Pau, 08041 Barcelona, Spain; (J.C.E.-G.); (J.J.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Francesco Potì
- Unità di Neuroscienze, Dipartimento di Medicina e Chirurgia, Università di Parma, Via Volturno 39/F, 43125 Parma, Italy;
| | - Ilaria Zanotti
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy;
- Correspondence: ; Tel.: +39-0521905040
| |
Collapse
|
5
|
High-Density Lipoprotein Subfractions: Much Ado about Nothing or Clinically Important? Biomedicines 2021; 9:biomedicines9070836. [PMID: 34356900 PMCID: PMC8301429 DOI: 10.3390/biomedicines9070836] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/24/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
High-density lipoproteins (HDL) are a heterogenous group of plasma molecules with a large variety in composition. There is a wide specter in lipid content and the number of different proteins that has been associated with HDL is approaching 100. Given this heterogeneity and the fact that the total amount of HDL is inversely related to the risk of coronary heart disease (CHD), there has been increasing interest in the function of specific HDL subgroups and in what way measuring and quantifying these subgroups could be of clinical importance in determining individual CHD risk. If certain subgroups appear to be more protective than others, it may also in the future be possible to pharmacologically increase beneficial and decrease harmful subgroups in order to reduce CHD risk. In this review we give a short historical perspective, summarize some of the recent clinical findings regarding HDL subclassifications and discuss why such classification may or may not be of clinical relevance.
Collapse
|
6
|
Castro-Rodríguez DC, Reyes-Castro LA, Vega CC, Rodríguez-González GL, Yáñez-Fernández J, Zambrano E. Leuconostoc mesenteroides subsp. mesenteroides SD23 Prevents Metabolic Dysfunction Associated with High-Fat Diet-Induced Obesity in Male Mice. Probiotics Antimicrob Proteins 2021; 12:505-516. [PMID: 31129870 DOI: 10.1007/s12602-019-09556-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
High-fat diet (HFD) consumption induces obesity and increases blood glucose, insulin resistance, and metabolic disorders. Recent studies suggest that probiotics might be a novel approach to counteract these effects in the treatment of obesity. Here, we evaluated the effect of Leuconostoc mesenteroides subsp. mesenteroides SD23 on obesity-related metabolic dysfunction. In the present study, mice were randomly divided into four dietary groups: standard diet (C), HFD (OB), standard diet with L. mesenteroides SD23 (CP), and HFD with L. mesenteroides SD23 (OBP). Diets were maintained for 14 weeks. Animal weight was monitored and biochemical and histological analyses were performed after intervention. OB showed metabolic dysfunction, and increased the number of larger adipocytes compared to C. OB induced liver tumor necrosis factor-α (TNF-α) expression, increased cholesterol, leptin, and glucose levels compared to C. OBP reduced body weight, glucose, cholesterol, and leptin levels and improved glucose tolerance compared to OB. OBP also reduced liver steatosis, the number of larger adipocytes in adipose tissue, and reduced the villus height in the small intestine. OBP decreased expression of TNF-α and increased expression of IL-10 in liver. The parameters evaluated in the CP were similar to the C. This study provides novel evidence that dietary intervention with L. mesenteroides SD23 improves metabolic dysfunction related to obesity in HFD-fed mice.
Collapse
Affiliation(s)
- Diana C Castro-Rodríguez
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Bioprocess Department, Unidad Profesional Interdisciplinaria de Biotecnología (UPIBI), Instituto Politécnico Nacional (IPN), Mexico City, Mexico.,CONACyT-Cátedras, Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Luis A Reyes-Castro
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Claudia C Vega
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Guadalupe L Rodríguez-González
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Jorge Yáñez-Fernández
- Bioprocess Department, Unidad Profesional Interdisciplinaria de Biotecnología (UPIBI), Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Elena Zambrano
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
| |
Collapse
|
7
|
Cedó L, Fernández-Castillejo S, Rubió L, Metso J, Santos D, Muñoz-Aguayo D, Rivas-Urbina A, Tondo M, Méndez-Lara KA, Farràs M, Jauhiainen M, Motilva MJ, Fitó M, Blanco-Vaca F, Solà R, Escolà-Gil JC. Phenol-Enriched Virgin Olive Oil Promotes Macrophage-Specific Reverse Cholesterol Transport In Vivo. Biomedicines 2020; 8:E266. [PMID: 32756328 PMCID: PMC7460104 DOI: 10.3390/biomedicines8080266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022] Open
Abstract
The intake of olive oil (OO) enriched with phenolic compounds (PCs) promotes ex vivo HDL-mediated macrophage cholesterol efflux in humans. We aimed to determine the effects of PC-enriched virgin OO on reverse cholesterol transport (RevCT) from macrophages to feces in vivo. Female C57BL/6 mice were given intragastric doses of refined OO (ROO) and a functional unrefined virgin OO enriched with its own PC (FVOO) for 14 days. Our experiments included two independent groups of mice that received intragastric doses of the phenolic extract (PE) used to prepare the FVOO and the vehicle solution (saline), as control, for 14 days. FVOO intake led to a significant increase in serum HDL cholesterol and its ability to induce macrophage cholesterol efflux in vitro when compared with ROO group. This was concomitant with the enhanced macrophage-derived [3H]cholesterol transport to feces in vivo. PE intake per se also increased HDL cholesterol levels and significantly promoted in vivo macrophage-to-feces RevCT rate when compared with saline group. PE upregulated the expression of the main macrophage transporter involved in macrophage cholesterol efflux, the ATP binding cassettea1. Our data provide direct evidence of the crucial role of OO PCs in the induction of macrophage-specific RevCT in vivo.
Collapse
Affiliation(s)
- Lídia Cedó
- Institut d’Investigacions Biomèdiques IIB Sant Pau, 08041 Barcelona, Spain; (D.S.); (A.R.-U.); (M.T.); (K.A.M.-L.); (M.F.); (F.B.-V.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Sara Fernández-Castillejo
- Surgery Department-Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut), Faculty of Medicine and Health Sciences-Medicine, Universitat Rovira i Virgili, 43201 Reus, Spain; (S.F.-C.); (L.R.); (R.S.)
- Fundació EURECAT—Centre Tecnològic de Nutrició i Salut, 43204 Reus, Spain
| | - Laura Rubió
- Surgery Department-Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut), Faculty of Medicine and Health Sciences-Medicine, Universitat Rovira i Virgili, 43201 Reus, Spain; (S.F.-C.); (L.R.); (R.S.)
- Food Technology Department, Universitat de Lleida-Agrotecnio Center, 25198 Lleida, Spain
| | - Jari Metso
- Minerva Foundation Institute for Medical Research and National Institute for Health and Welfare, Genomics and Biomarkers Unit, 00290 Helsinki, Finland; (J.M.); (M.J.)
| | - David Santos
- Institut d’Investigacions Biomèdiques IIB Sant Pau, 08041 Barcelona, Spain; (D.S.); (A.R.-U.); (M.T.); (K.A.M.-L.); (M.F.); (F.B.-V.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Daniel Muñoz-Aguayo
- IMIM Hospital del Mar Medical Research Institute, Grup de Risc Cardiovascular i Nutrició, 08003 Barcelona, Spain; (D.M.-A.); (M.F.)
- CIBER of Physiopathology of Obesity and Nutrition CIBEROBN, Grup de Risc Cardiovascular i Nutrició, 28029 Madrid, Spain
| | - Andrea Rivas-Urbina
- Institut d’Investigacions Biomèdiques IIB Sant Pau, 08041 Barcelona, Spain; (D.S.); (A.R.-U.); (M.T.); (K.A.M.-L.); (M.F.); (F.B.-V.)
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Mireia Tondo
- Institut d’Investigacions Biomèdiques IIB Sant Pau, 08041 Barcelona, Spain; (D.S.); (A.R.-U.); (M.T.); (K.A.M.-L.); (M.F.); (F.B.-V.)
| | - Karen Alejandra Méndez-Lara
- Institut d’Investigacions Biomèdiques IIB Sant Pau, 08041 Barcelona, Spain; (D.S.); (A.R.-U.); (M.T.); (K.A.M.-L.); (M.F.); (F.B.-V.)
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Marta Farràs
- Institut d’Investigacions Biomèdiques IIB Sant Pau, 08041 Barcelona, Spain; (D.S.); (A.R.-U.); (M.T.); (K.A.M.-L.); (M.F.); (F.B.-V.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research and National Institute for Health and Welfare, Genomics and Biomarkers Unit, 00290 Helsinki, Finland; (J.M.); (M.J.)
| | - Maria-José Motilva
- Instituto de Ciencias de la Vid y del Vino-ICVV (CSIC-Universidad de La Rioja-Gobierno de La Rioja), Finca “La Grajera”, 26007 Logroño, La Rioja, Spain;
| | - Montserrat Fitó
- IMIM Hospital del Mar Medical Research Institute, Grup de Risc Cardiovascular i Nutrició, 08003 Barcelona, Spain; (D.M.-A.); (M.F.)
- CIBER of Physiopathology of Obesity and Nutrition CIBEROBN, Grup de Risc Cardiovascular i Nutrició, 28029 Madrid, Spain
| | - Francisco Blanco-Vaca
- Institut d’Investigacions Biomèdiques IIB Sant Pau, 08041 Barcelona, Spain; (D.S.); (A.R.-U.); (M.T.); (K.A.M.-L.); (M.F.); (F.B.-V.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Rosa Solà
- Surgery Department-Functional Nutrition, Oxidation, and CVD Research Group (NFOC-Salut), Faculty of Medicine and Health Sciences-Medicine, Universitat Rovira i Virgili, 43201 Reus, Spain; (S.F.-C.); (L.R.); (R.S.)
- Fundació EURECAT—Centre Tecnològic de Nutrició i Salut, 43204 Reus, Spain
- Hospital Universitari Sant Joan de Reus HUSJR, NFOC-Salut, 43204 Reus, Spain
| | - Joan Carles Escolà-Gil
- Institut d’Investigacions Biomèdiques IIB Sant Pau, 08041 Barcelona, Spain; (D.S.); (A.R.-U.); (M.T.); (K.A.M.-L.); (M.F.); (F.B.-V.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| |
Collapse
|
8
|
Abstract
Currently, the prevention and treatment of CVD have been a global focus since CVD is the number one cause of mortality and morbidity. In the pathogenesis of CVD, it was generally thought that impaired cholesterol homeostasis might be a risk factor. Cholesterol homeostasis is affected by exogenous factors (i.e. diet) and endogenous factors (i.e. certain receptors, enzymes and transcription factors). In this context, the number of studies investigating the potential mechanisms of dietary fatty acids on cholesterol homeostasis have increased in recent years. As well, the cluster of differentiation 36 (CD36) receptor is a multifunctional membrane receptor involved in fatty acid uptake, lipid metabolism, atherothrombosis and inflammation. CD36 is proposed to be a crucial molecule for cholesterol homeostasis in various mechanisms including absorption/reabsorption, synthesis, and transport of cholesterol and bile acids. Moreover, it has been reported that the amount of fatty acids and fatty acid pattern of the diet influence the CD36 level and CD36-mediated cholesterol metabolism principally in the liver, intestine and macrophages. In these processes, CD36-mediated cholesterol and lipoprotein homeostasis might be impaired by dietary SFA and trans-fatty acids, whereas ameliorated by MUFA in the diet. The effects of PUFA on CD36-mediated cholesterol homeostasis are controversial depending on the amount of n-3 PUFA and n-6 PUFA, and the n-3:n-6 PUFA ratio. Thus, since the CD36 receptor is suggested to be a novel nutrient-sensitive biomarker, the role of CD36 and dietary fatty acids in cholesterol metabolism might be considered in medical nutrition therapy in the near future. Therefore, the novel nutritional target of CD36 and interventions that focus on dietary fatty acids and potential mechanisms underlying cholesterol homeostasis are discussed in this review.
Collapse
|
9
|
O'Reilly ME, Lenighan YM, Dillon E, Kajani S, Curley S, Bruen R, Byrne R, Heslin AM, Moloney AP, Roche HM, McGillicuddy FC. Conjugated Linoleic Acid and Alpha Linolenic Acid Improve Cholesterol Homeostasis in Obesity by Modulating Distinct Hepatic Protein Pathways. Mol Nutr Food Res 2020; 64:e1900599. [DOI: 10.1002/mnfr.201900599] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/11/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Marcella E. O'Reilly
- Nutrigenomics Research Group, School of Public Health Physiotherapy and Sports ScienceUniversity College Dublin Dublin 4 Ireland
- UCD Conway InstituteUniversity College Dublin Dublin 4 Ireland
| | - Yvonne M. Lenighan
- Nutrigenomics Research Group, School of Public Health Physiotherapy and Sports ScienceUniversity College Dublin Dublin 4 Ireland
- UCD Conway InstituteUniversity College Dublin Dublin 4 Ireland
| | - Eugene Dillon
- Mass Spectrometry ResourceUniversity College Dublin Dublin 4 Ireland
- UCD Conway InstituteUniversity College Dublin Dublin 4 Ireland
| | - Sarina Kajani
- Diabetes Complications Research CentreUniversity College Dublin Dublin 4 Ireland
- UCD Conway InstituteUniversity College Dublin Dublin 4 Ireland
- UCD School of MedicineUniversity College Dublin Dublin 4 Ireland
| | - Sean Curley
- Diabetes Complications Research CentreUniversity College Dublin Dublin 4 Ireland
- UCD Conway InstituteUniversity College Dublin Dublin 4 Ireland
- UCD School of MedicineUniversity College Dublin Dublin 4 Ireland
| | - Robyn Bruen
- Diabetes Complications Research CentreUniversity College Dublin Dublin 4 Ireland
- UCD Conway InstituteUniversity College Dublin Dublin 4 Ireland
| | - Rachel Byrne
- Diabetes Complications Research CentreUniversity College Dublin Dublin 4 Ireland
- UCD Conway InstituteUniversity College Dublin Dublin 4 Ireland
- UCD School of MedicineUniversity College Dublin Dublin 4 Ireland
| | - Aoibhin Moore Heslin
- Nutrigenomics Research Group, School of Public Health Physiotherapy and Sports ScienceUniversity College Dublin Dublin 4 Ireland
- UCD Conway InstituteUniversity College Dublin Dublin 4 Ireland
| | - Aidan P. Moloney
- TeagascAnimal & Grassland Research and Innovation Centre Meath Ireland
| | - Helen M. Roche
- Nutrigenomics Research Group, School of Public Health Physiotherapy and Sports ScienceUniversity College Dublin Dublin 4 Ireland
- UCD Institute of Food and HealthUniversity College Dublin Dublin 4 Ireland
- UCD Conway InstituteUniversity College Dublin Dublin 4 Ireland
| | - Fiona C. McGillicuddy
- Diabetes Complications Research CentreUniversity College Dublin Dublin 4 Ireland
- UCD Conway InstituteUniversity College Dublin Dublin 4 Ireland
- UCD School of MedicineUniversity College Dublin Dublin 4 Ireland
| |
Collapse
|
10
|
Wahjuningsih SB, Haslina H, Marsono M. Hypolipidaemic Effects of High Resistant Starch Sago and Red Bean Flour- based Analog Rice on Diabetic Rats. Mater Sociomed 2018; 30:232-239. [PMID: 30936784 PMCID: PMC6377926 DOI: 10.5455/msm.2018.30.232-239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/20/2018] [Indexed: 01/24/2023] Open
Abstract
INTRODUCTION Sago analog rice had known as an example of food with high resistant starch. Recent research shows that sago analog rice and red bean flour also had a low glycemic index (GI). However, Identification of hypolipidaemic mechanism based on the nutrigenomic analysis remains unknown. AIM This study aims to determine the effects of hypolipidaemic in diabetic rats with analog rice treatment. MATERIAL AND METHODS Thirty-five male Wistar rats were divided into 5 groups with different food treatment, such as standard dietary food (STD) group, and four groups of diabetic rats with standard dietary food (STDD), mentik wangi rice diet (MWRD), sago analog rice (SARD) and sago analog rice with 10% red bean flour (SARKBD). Lipid profile was observed every week for a month. Measurement of insulin and blood glucose was performed twice at the beginning and end of treatment. Atherogenic index (AI) was also investigated. Then, the pancreas was collected for histological analysis. RESULTS SARD group showed the highest effect of decreasing the total cholesterol (47.74%) which followed by SARKBD (34.62%). The triglyceride level in SARD group was also significantly decreased (31.14%), followed by SARKBD (19.32%). However, the HDL increase in SARD (48.66%), followed by SARKBD (36.00%). The LDL level in SARD and SARKBD group were significantly decreased, respectively 32.89% and 22.19%. SARD atherogenic index levels lower than SARKBD; 1.00 and 2.06. CONCLUSION The improvement of insulin resistance by SARD and SARKBD were generated by role of resistant starch through the mechanism of bile acid binding, insulin sensitivity escalation and SCFA effect.
Collapse
Affiliation(s)
- Sri Budi Wahjuningsih
- Department of Processing, Agricultural Product, Faculty of Agricultural Technology, Semarang University, Semarang, Indonesia
| | - Haslina Haslina
- Department of Processing, Agricultural Product, Faculty of Agricultural Technology, Semarang University, Semarang, Indonesia
| | - Marsono Marsono
- Department of Food and Agricultural Products Technology, the Faculty of Agricultural Technology, Gadjah Mada University, Yogyakarta, Indonesia
| |
Collapse
|
11
|
Cedó L, Santos D, Roglans N, Julve J, Pallarès V, Rivas-Urbina A, Llorente-Cortes V, Laguna JC, Blanco-Vaca F, Escolà-Gil JC. Human hepatic lipase overexpression in mice induces hepatic steatosis and obesity through promoting hepatic lipogenesis and white adipose tissue lipolysis and fatty acid uptake. PLoS One 2017; 12:e0189834. [PMID: 29244870 PMCID: PMC5731695 DOI: 10.1371/journal.pone.0189834] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/01/2017] [Indexed: 01/07/2023] Open
Abstract
Human hepatic lipase (hHL) is mainly localized on the hepatocyte cell surface where it hydrolyzes lipids from remnant lipoproteins and high density lipoproteins and promotes their hepatic selective uptake. Furthermore, hepatic lipase (HL) is closely associated with obesity in multiple studies. Therefore, HL may play a key role on lipid homeostasis in liver and white adipose tissue (WAT). In the present study, we aimed to evaluate the effects of hHL expression on hepatic and white adipose triglyceride metabolism in vivo. Experiments were carried out in hHL transgenic and wild-type mice fed a Western-type diet. Triglyceride metabolism studies included β-oxidation and de novo lipogenesis in liver and WAT, hepatic triglyceride secretion, and adipose lipoprotein lipase (LPL)-mediated free fatty acid (FFA) lipolysis and influx. The expression of hHL promoted hepatic triglyceride accumulation and de novo lipogenesis without affecting triglyceride secretion, and this was associated with an upregulation of Srebf1 as well as the main genes controlling the synthesis of fatty acids. Transgenic mice also exhibited more adiposity and an increased LPL-mediated FFA influx into the WAT without affecting glucose tolerance. Our results demonstrate that hHL promoted hepatic steatosis in mice mainly by upregulating de novo lipogenesis. HL also upregulated WAT LPL and promoted triglyceride-rich lipoprotein hydrolysis and adipose FFA uptake. These data support the important role of hHL in regulating hepatic lipid homeostasis and confirm the broad cardiometabolic role of HL.
Collapse
Affiliation(s)
- Lídia Cedó
- Institut d’Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Hospitalet de Llobregat, Spain
| | - David Santos
- Institut d’Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Hospitalet de Llobregat, Spain
| | - Núria Roglans
- Department of Pharmacology and Therapeutic Chemistry, School of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Josep Julve
- Institut d’Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Hospitalet de Llobregat, Spain
- Departament de Bioquímica, Biología Molecular i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Victor Pallarès
- Institut d’Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain
| | - Andrea Rivas-Urbina
- Institut d’Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain
- Departament de Bioquímica, Biología Molecular i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vicenta Llorente-Cortes
- Lipids and Cardiovascular Pathology Group. CSIC-ICCC-IIB-Sant Pau and Instituto de Investigaciones Biomédicas de Barcelona (IibB)-CSIC, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, CIBERCV, Madrid, Spain
| | - Joan Carles Laguna
- Department of Pharmacology and Therapeutic Chemistry, School of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Francisco Blanco-Vaca
- Institut d’Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Hospitalet de Llobregat, Spain
- Departament de Bioquímica, Biología Molecular i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- * E-mail: (FBV); (JCE-G)
| | - Joan Carles Escolà-Gil
- Institut d’Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Hospitalet de Llobregat, Spain
- Departament de Bioquímica, Biología Molecular i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- * E-mail: (FBV); (JCE-G)
| |
Collapse
|
12
|
Cedó L, Santos D, Ludwig IA, Silvennoinen R, García-León A, Kaipiainen L, Carbó JM, Valledor AF, Gylling H, Motilva MJ, Kovanen PT, Lee-Rueckert M, Blanco-Vaca F, Escolà-Gil JC. Phytosterol-mediated inhibition of intestinal cholesterol absorption in mice is independent of liver X receptor. Mol Nutr Food Res 2017; 61. [DOI: 10.1002/mnfr.201700055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Lídia Cedó
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau; Barcelona Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas; CIBERDEM, Hospitalet de Llobregat Spain
| | - David Santos
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau; Barcelona Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas; CIBERDEM, Hospitalet de Llobregat Spain
| | - Iziar A. Ludwig
- Food Technology Department, UTPV-XaRTA, Agrotecnio Center; University of Lleida; Lleida Spain
| | | | - Annabel García-León
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau; Barcelona Spain
- Departament de Bioquímica, Biología Molecular i Biomedicina; Universitat Autònoma de Barcelona; Barcelona Spain
| | - Leena Kaipiainen
- University of Helsinki and Helsinki University Central Hospital; Department of Internal Medicine; Helsinki Finland
| | - José M. Carbó
- Department of Cellular Biology, Physiology and Immunology; School of Biology, University of Barcelona; Barcelona Spain
| | - Annabel F. Valledor
- Department of Cellular Biology, Physiology and Immunology; School of Biology, University of Barcelona; Barcelona Spain
| | - Helena Gylling
- University of Helsinki and Helsinki University Central Hospital; Department of Internal Medicine; Helsinki Finland
| | - Maria-José Motilva
- Food Technology Department, UTPV-XaRTA, Agrotecnio Center; University of Lleida; Lleida Spain
| | | | | | - Francisco Blanco-Vaca
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau; Barcelona Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas; CIBERDEM, Hospitalet de Llobregat Spain
- Departament de Bioquímica, Biología Molecular i Biomedicina; Universitat Autònoma de Barcelona; Barcelona Spain
| | - Joan Carles Escolà-Gil
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau; Barcelona Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas; CIBERDEM, Hospitalet de Llobregat Spain
- Departament de Bioquímica, Biología Molecular i Biomedicina; Universitat Autònoma de Barcelona; Barcelona Spain
| |
Collapse
|
13
|
Cedó L, García-León A, Baila-Rueda L, Santos D, Grijalva V, Martínez-Cignoni MR, Carbó JM, Metso J, López-Vilaró L, Zorzano A, Valledor AF, Cenarro A, Jauhiainen M, Lerma E, Fogelman AM, Reddy ST, Escolà-Gil JC, Blanco-Vaca F. ApoA-I mimetic administration, but not increased apoA-I-containing HDL, inhibits tumour growth in a mouse model of inherited breast cancer. Sci Rep 2016; 6:36387. [PMID: 27808249 PMCID: PMC5093413 DOI: 10.1038/srep36387] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/14/2016] [Indexed: 11/24/2022] Open
Abstract
Low levels of high-density lipoprotein cholesterol (HDLc) have been associated with breast cancer risk, but several epidemiologic studies have reported contradictory results with regard to the relationship between apolipoprotein (apo) A-I and breast cancer. We aimed to determine the effects of human apoA-I overexpression and administration of specific apoA-I mimetic peptide (D-4F) on tumour progression by using mammary tumour virus-polyoma middle T-antigen transgenic (PyMT) mice as a model of inherited breast cancer. Expression of human apoA-I in the mice did not affect tumour onset and growth in PyMT transgenic mice, despite an increase in the HDLc level. In contrast, D-4F treatment significantly increased tumour latency and inhibited the development of tumours. The effects of D-4F on tumour development were independent of 27-hydroxycholesterol. However, D-4F treatment reduced the plasma oxidized low-density lipoprotein (oxLDL) levels in mice and prevented oxLDL-mediated proliferative response in human breast adenocarcinoma MCF-7 cells. In conclusion, our study shows that D-4F, but not apoA-I-containing HDL, hinders tumour growth in mice with inherited breast cancer in association with a higher protection against LDL oxidative modification.
Collapse
Affiliation(s)
- Lídia Cedó
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Barcelona, Spain
| | | | - Lucía Baila-Rueda
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - David Santos
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Barcelona, Spain
| | - Victor Grijalva
- Department of Medicine, University of California, Los Angeles, CA, USA
| | - Melanie Raquel Martínez-Cignoni
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José M Carbó
- Nuclear Receptor Group, Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, Barcelona, Spain
| | - Jari Metso
- National Institute for Health and Welfare, Genomics and Biomarkers Unit, and Minerva Foundation Institute for Medical Research, Biomedicum, Helsinki, Finland
| | - Laura López-Vilaró
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain.,Departament de Patologia, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Antonio Zorzano
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| | - Annabel F Valledor
- Nuclear Receptor Group, Department of Cell Biology, Physiology and Immunology, School of Biology, University of Barcelona, Barcelona, Spain
| | - Ana Cenarro
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - Matti Jauhiainen
- National Institute for Health and Welfare, Genomics and Biomarkers Unit, and Minerva Foundation Institute for Medical Research, Biomedicum, Helsinki, Finland
| | - Enrique Lerma
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain.,Departament de Patologia, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Departament de Ciències Morfològiques, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alan M Fogelman
- Department of Medicine, University of California, Los Angeles, CA, USA
| | - Srinivasa T Reddy
- Department of Medicine, University of California, Los Angeles, CA, USA
| | - Joan Carles Escolà-Gil
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francisco Blanco-Vaca
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
14
|
Aggarwal D, Sabikhi L, Lamba H, Chaudhary N, Kapila R. Whole grains and resistant starch rich, reduced-calorie biscuit diet as a hypoglycaemic, hypolipidaemic and insulin stimulator in streptozotocin-induced diabetic rats. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Dipesh Aggarwal
- Dairy Technology Division; National Dairy Research Institute; Karnal 132001 Haryana India
| | - Latha Sabikhi
- Dairy Technology Division; National Dairy Research Institute; Karnal 132001 Haryana India
| | - Heena Lamba
- Dairy Technology Division; National Dairy Research Institute; Karnal 132001 Haryana India
| | - Neha Chaudhary
- Dairy Technology Division; National Dairy Research Institute; Karnal 132001 Haryana India
| | - Rajeev Kapila
- Animal Biochemistry Division; National Dairy Research Institute; Karnal 132001 Haryana India
| |
Collapse
|
15
|
Lepsch J, Farias DR, Vaz JDS, de Jesus Pereira Pinto T, da Silva Lima N, Freitas Vilela AA, Cunha M, Factor-Litvak P, Kac G. Serum saturated fatty acid decreases plasma adiponectin and increases leptin throughout pregnancy independently of BMI. Nutrition 2016; 32:740-7. [PMID: 27036610 DOI: 10.1016/j.nut.2016.01.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/06/2016] [Accepted: 01/20/2016] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The aim of this study was to investigate whether serum concentrations of total saturated fatty acids (SFAs), polyunsaturated fatty acids (PUFAs), and their fractions are associated with plasma adiponectin and leptin concentrations throughout pregnancy. METHODS A prospective cohort of 201 pregnant women was followed from gestational weeks 5 to 13, 20 to 26, and 30 to 36. Blood samples were collected at the three visits after 12 h of fasting. Fatty acid concentrations were determined using fast gas-liquid chromatography. Plasma adiponectin (μg/mL) and leptin (ng/dL) concentrations were evaluated using enzyme-linked immunosorbent assay kits. Statistical analyses included median adipokine concentrations according to the tertiles of fatty acid distribution and multiple linear mixed-effect models adjusted for body mass index, gestational age, total energy intake, alcohol consumption, and smoking. RESULTS Women classified in the third SFA concentration tertile had lower median values of adiponectin compared with those in the first tertile ([first trimester: first tertile = 5.36; third tertile = 5.00]; [second trimester: first tertile = 6.39; third tertile = 4.47]; [third trimester: first tertile = 6.46; third tertile = 4.60]). Similar trends were observed for the 14:0, 16:0 and 18:0 fractions. In the multiple longitudinal models, total SFA (β = -41.039; P = 0.008) and 16:0 were negatively associated with plasma adiponectin (16:0, β = -0.511; P = 0.001). Total PUFA ω-6 (β = 28.961; P = 0.002) and 18:2 ω-6 (β = 0.259, P = 0.006) were positively associated with the adiponectin. Total SFA (β = 0.110, P = 0.007), 14:0 (β = 0.072, P = 0.011), and 20:3 ω-6 (β = 0.039; P = 0.035) were positively associated with plasma leptin. CONCLUSIONS Total serum SFA and the 16:0 fraction were negatively associated with plasma adiponectin and positively associated with leptin concentrations. Total ω-6 PUFA was positively associated only with plasma adiponectin concentrations throughout pregnancy.
Collapse
Affiliation(s)
- Jaqueline Lepsch
- Nutritional Epidemiology Observatory, Josué de Castro Nutrition Institute, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | - Dayana Rodrigues Farias
- Nutritional Epidemiology Observatory, Josué de Castro Nutrition Institute, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | | | - Thatiana de Jesus Pereira Pinto
- Nutritional Epidemiology Observatory, Josué de Castro Nutrition Institute, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | - Natália da Silva Lima
- Nutritional Epidemiology Observatory, Josué de Castro Nutrition Institute, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | - Ana Amélia Freitas Vilela
- Nutritional Epidemiology Observatory, Josué de Castro Nutrition Institute, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | - Marcelo Cunha
- National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Pam Factor-Litvak
- Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Gilberto Kac
- Rio de Janeiro Federal University, Josué de Castro Nutrition Institute, Department of Social and Applied Nutrition, Rio de Janeiro, Brazil.
| |
Collapse
|