1
|
Haziman ML, Ishaq MI, Qonit MAH, Lestari EG, Susilawati PN, Widarsih W, Syukur C, Herawati H, Arief R, Santosa B, Purba R, Andoyo R, Yursak Z, Tan SS, Musfal M, Mubarok S. Sorghum starch review: Structural properties, interactions with proteins and polyphenols, and modification of physicochemical properties. Food Chem 2025; 463:139810. [PMID: 39293183 DOI: 10.1016/j.foodchem.2024.139810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 09/20/2024]
Abstract
Sorghum, a gluten-free carbohydrate source with high antioxidants and resistant starch, contains anti-nutrients like phytic acid, tannin, and kafirin. Interactions with starch and proteins result in polyphenol-starch, starch-kafirin, and tannin-protein complexes. These interactions yield responses such as V-type amylose inclusion complexes, increased hydrophobic residues, and enzyme resistance, reducing nutrient availability and elevating resistant starch levels. Factors influencing these interactions include starch composition, structure, and Chain Length Distribution (CLD). Starch structure is impacted by enzymes like ADP-glucose pyrophosphorylase, starch synthases, and debranching enzymes, leading to varied chain lengths and distributions. CLD differences significantly affect crystallinity and physicochemical properties of sorghum starch. Despite its potential, the minimal utilization of sorghum starch in food is attributed to anti-nutrient interactions. Various modification approaches, either direct or indirect, offer diverse physicochemical changes with distinct advantages and disadvantages, presenting opportunities to enhance sorghum starch applications in the food industry.
Collapse
Affiliation(s)
- Muhammad Luthfan Haziman
- Department of Food Nanotechnology, AKA Bogor Polytechnic, Jl. Pangeran Sogiri, Bogor, 16154, West Java, Indonesia.
| | - Muhammad Iskandar Ishaq
- Research Center for Food Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Cibinong Science Center, Jl. Raya Jakarta-Bogor, Bogor, 16915, West Java, Indonesia
| | - Muhammad Abdillah Hasan Qonit
- Department of Agronomy, Faculty of Agriculture, Universitas Padjadjaran, Jln. Raya Bandung-Sumedang Km. 21, Jatinangor, 45363, Indonesia
| | - Endang Gati Lestari
- Research Center for Food Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Cibinong Science Center, Jl. Raya Jakarta-Bogor, Bogor, 16915, West Java, Indonesia
| | - Pepi Nur Susilawati
- Research Center for Food Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Cibinong Science Center, Jl. Raya Jakarta-Bogor, Bogor, 16915, West Java, Indonesia
| | - Wiwi Widarsih
- Department of Analytical Chemistry, AKA Bogor Polytechnic, Jl. Pangeran Sogiri, Bogor, 16154, West Java, Indonesia
| | - Cheppy Syukur
- Research Center for Holticulture and Estate Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Cibinong Science Center, Jl. Raya Jakarta-Bogor, Bogor, 16915, West Java, Indonesia
| | - Heny Herawati
- Research Center for Agroindustry, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Cibinong Science Center, Jl. Raya Jakarta-Bogor, Bogor, 16915, West Java, Indonesia
| | - Ramlah Arief
- Research Center for Food Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Cibinong Science Center, Jl. Raya Jakarta-Bogor, Bogor, 16915, West Java, Indonesia
| | - Budi Santosa
- Research Center for Holticulture and Estate Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Cibinong Science Center, Jl. Raya Jakarta-Bogor, Bogor, 16915, West Java, Indonesia
| | - Resmayeti Purba
- Research Center for Food Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Cibinong Science Center, Jl. Raya Jakarta-Bogor, Bogor, 16915, West Java, Indonesia
| | - Robi Andoyo
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jln. Raya Bandung-Sumedang Km. 21, Jatinangor, 45363, Indonesia
| | - Zuraida Yursak
- Research Center for Food Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Cibinong Science Center, Jl. Raya Jakarta-Bogor, Bogor, 16915, West Java, Indonesia
| | - Siti Sehat Tan
- Research Center for Social Welfare, Villages and Connectivity, National Research and Innovation Agency (BRIN), Jakarta, Indonesia
| | - Musfal Musfal
- Research Center for Food Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Cibinong Science Center, Jl. Raya Jakarta-Bogor, Bogor, 16915, West Java, Indonesia
| | - Syariful Mubarok
- Department of Agronomy, Faculty of Agriculture, Universitas Padjadjaran, Jln. Raya Bandung-Sumedang Km. 21, Jatinangor, 45363, Indonesia
| |
Collapse
|
2
|
Zhang D, Wang Q, Li Z, Shen Z, Tan B, Zhai X. Changing the polyphenol composition and enhancing the enzyme activity of sorghum grain by solid-state fermentation with different microbial strains. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6186-6195. [PMID: 38459923 DOI: 10.1002/jsfa.13454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/27/2024] [Accepted: 03/09/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND Solid-state fermentation (SSF) has been widely used in the processing of sorghum grain (SG) because it can produce products with improved sensory characteristics. To clarify the influence of different microbial strains on the SSF of SG, especially on the polyphenols content and composition, Lactiplantibacillus plantarum, Saccharomyces cerevisiae, Rhizopus oryzae, Aspergillus oryzae, and Neurospora sitophila were used separately and together for SSF of SG. Furthermore, the relationship between the dynamic changes in polyphenols and enzyme activity closely related to the metabolism of polyphenols has also been measured and analyzed. Microstructural changes observed after SSF provide a visual representation of the SSF on the SG. RESULTS After SSF, tannin content (TC) and free phenolic content (FPC) were decreased by 56.36% and 23.48%, respectively. Polyphenol oxidase, β-glucosidase and cellulase activities were increased 5.25, 3.27, and 45.57 times, respectively. TC and FPC were negatively correlated with cellulase activity. A positive correlation between FPC and xylanase activity after 30 h SSF became negative after 48 h SSF. The SG surface was fragmented and porous, reducing the blocking effect of cortex. CONCLUSION Cellulase played a crucial role in promoting the degradation of tannin (antinutrient) and phenolic compounds. Xylanase continued to release flavonoids while microbial metabolism consumed them with the extension of SSF time. SSF is an effective way to improve the bioactivity and processing characteristics of SG. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Duqin Zhang
- Institute of Cereal and Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Qi Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhijiang Li
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhujiang Shen
- Institute of Cereal and Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Bin Tan
- Institute of Cereal and Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Xiaotong Zhai
- Institute of Cereal and Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing, China
| |
Collapse
|
3
|
Sayegh M, Ni QQ, Ranawana V, Raikos V, Hayward NJ, Hayes HE, Duncan G, Cantlay L, Farquharson F, Solvang M, Horgan GW, Louis P, Russell WR, Clegg M, Thies F, Neacsu M. Habitual consumption of high-fibre bread fortified with bean hulls increased plasma indole-3-propionic concentration and decreased putrescine and deoxycholic acid faecal concentrations in healthy volunteers. Br J Nutr 2023; 130:1521-1536. [PMID: 36847278 PMCID: PMC10551484 DOI: 10.1017/s0007114523000491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 03/01/2023]
Abstract
Only 6 to 8 % of the UK adults meet the daily recommendation for dietary fibre. Fava bean processing lead to vast amounts of high-fibre by-products such as hulls. Bean hull fortified bread was formulated to increase and diversify dietary fibre while reducing waste. This study assessed the bean hull: suitability as a source of dietary fibre; the systemic and microbial metabolism of its components and postprandial events following bean hull bread rolls. Nine healthy participants (53·9 ± 16·7 years) were recruited for a randomised controlled crossover study attending two 3 days intervention sessions, involving the consumption of two bread rolls per day (control or bean hull rolls). Blood and faecal samples were collected before and after each session and analysed for systemic and microbial metabolites of bread roll components using targeted LC-MS/MS and GC analysis. Satiety, gut hormones, glucose, insulin and gastric emptying biomarkers were also measured. Two bean hull rolls provided over 85 % of the daily recommendation for dietary fibre; but despite being a rich source of plant metabolites (P = 0·04 v. control bread), these had poor systemic bioavailability. Consumption of bean hull rolls for 3 days significantly increased plasma concentration of indole-3-propionic acid (P = 0·009) and decreased faecal concentration of putrescine (P = 0·035) and deoxycholic acid (P = 0·046). However, it had no effect on postprandial plasma gut hormones, bacterial composition and faecal short chain fatty acids amount. Therefore, bean hulls require further processing to improve their bioactives systemic availability and fibre fermentation.
Collapse
Affiliation(s)
- Marietta Sayegh
- The Rowett Institute, University of Aberdeen, AberdeenAB25 2ZD, UK
| | - Qian Qian Ni
- The Rowett Institute, University of Aberdeen, AberdeenAB25 2ZD, UK
| | - Viren Ranawana
- The Rowett Institute, University of Aberdeen, AberdeenAB25 2ZD, UK
| | - Vassilios Raikos
- The Rowett Institute, University of Aberdeen, AberdeenAB25 2ZD, UK
| | | | - Helen E. Hayes
- The Rowett Institute, University of Aberdeen, AberdeenAB25 2ZD, UK
| | - Gary Duncan
- The Rowett Institute, University of Aberdeen, AberdeenAB25 2ZD, UK
| | - Louise Cantlay
- The Rowett Institute, University of Aberdeen, AberdeenAB25 2ZD, UK
| | | | - Michael Solvang
- The Rowett Institute, University of Aberdeen, AberdeenAB25 2ZD, UK
| | - Graham W. Horgan
- The Rowett Institute, University of Aberdeen, AberdeenAB25 2ZD, UK
- BIOSS Aberdeen, Aberdeen, UK
| | - Petra Louis
- The Rowett Institute, University of Aberdeen, AberdeenAB25 2ZD, UK
| | - Wendy R. Russell
- The Rowett Institute, University of Aberdeen, AberdeenAB25 2ZD, UK
| | - Miriam Clegg
- Institute for Food, Nutrition and Health and Department of Food and Nutritional Sciences, University of Reading, Whiteknights, UK
| | - Frank Thies
- The Rowett Institute, University of Aberdeen, AberdeenAB25 2ZD, UK
| | - Madalina Neacsu
- The Rowett Institute, University of Aberdeen, AberdeenAB25 2ZD, UK
| |
Collapse
|
4
|
Grohmann T, Walker AW, Russell WR, Hoggard N, Zhang X, Horgan G, de Roos B. A grape seed and bilberry extract reduces blood pressure in individuals at risk of developing type 2 diabetes: the PRECISE study, a double-blind placebo-controlled cross-over intervention study. Front Nutr 2023; 10:1139880. [PMID: 37351191 PMCID: PMC10283353 DOI: 10.3389/fnut.2023.1139880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/26/2023] [Indexed: 06/24/2023] Open
Abstract
Background Type 2 Diabetes Mellitus (T2DM) is a major risk factor for the development of cardiometabolic diseases. T2DM prevention is largely based on weight-loss and whole diet changes, but intervention with dietary plant bioactives may also improve metabolic health. Objective To assess whether supplementation with bilberry and grape seed extract for 12 weeks improves cardiometabolic outcomes in individuals at risk of developing T2DM, and to determine whether individual treatment response is associated with differences in gut microbiota composition and levels of phenolic metabolites in blood and feces. Methods In the randomized, double-blind, placebo-controlled, cross-over PRECISE intervention study, 14 participants, aged ≥45 years, with a BMI >28 kg/m2, and having an increased risk of T2DM, received a supplement containing 250 mg of bilberry plus 300 mg of grape seed extract, or 550 mg of a control extract, per day, for 12 weeks each. Blood samples were obtained for the assessment of HbA1c, fasting glucose, oral glucose tolerance tests, insulin, glucagon levels, total, LDL and HDL cholesterol, and phenolic acids. We also assessed advanced glycation end products in the skin, ambulatory 24 hours blood pressure, 7-day dietary intake by weighed food diaries, fecal levels of phenolic metabolites using LC-MS/MS and gut microbiota composition using 16S rRNA gene sequencing analysis. Results The combined bilberry and grape seed extract did not affect glucose and cholesterol outcomes, but it decreased systolic and diastolic ambulatory blood pressure by 4.7 (p < 0.001) and 2.3 (p = 0.0009) mmHg, respectively. Eight out of fourteen participants were identified as blood pressure 'responders'. These responders had higher levels of phenylpropionic and phenyllactic acids in their fecal samples, and a higher proportional abundance of Fusicatenibacter-related bacteria (p < 0.01) in their baseline stool samples. Conclusion Long-term supplementation with bilberry and grape seed extract can improve systolic and diastolic blood pressure in individuals at risk of T2DM. Individual responsiveness was correlated with the presence of certain fecal bacterial strains, and an ability to metabolize (epi)catechin into smaller phenolic metabolites.Clinical trial registry number: Research Registry (number 4084).
Collapse
Affiliation(s)
- Teresa Grohmann
- Rowett Institute, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Alan W. Walker
- Rowett Institute, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Wendy R. Russell
- Rowett Institute, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Nigel Hoggard
- Rowett Institute, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | | | - Graham Horgan
- Biomathematics and Statistics Scotland, Aberdeen, United Kingdom
| | - Baukje de Roos
- Rowett Institute, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| |
Collapse
|
5
|
Shah UA, Parikh R, Castro F, Bellone M, Lesokhin AM. Dietary and microbiome evidence in multiple myeloma and other plasma cell disorders. Leukemia 2023; 37:964-980. [PMID: 36997677 PMCID: PMC10443185 DOI: 10.1038/s41375-023-01874-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/23/2023] [Accepted: 03/09/2023] [Indexed: 05/11/2023]
Abstract
Multiple Myeloma (MM) remains an incurable plasma cell neoplasm. Although little is known about the etiology of MM, several metabolic risk factors such as obesity, diabetes mellitus, diet, and the human intestinal microbiome have been linked to the pathogenesis of MM. In this article, we provide a detailed review of dietary and microbiome factors involved in the pathogenesis of MM and their impact on outcomes. Concurrent with treatment advancements that have improved survival in MM, focused efforts are needed to reduce the burden of MM as well as improve MM specific and overall outcomes once MM is diagnosed. The findings presented in this review will provide a comprehensive guide on the evidence available to date of the impact of dietary and other lifestyle interventions on the gut microbiome and on MM incidence, outcomes, and quality of life. Data generated from such studies can help formulate evidence-based guidelines for healthcare providers to counsel individuals at risk such as those with Monoclonal Gammopathy of Undetermined Significance (MGUS) and Smoldering Multiple Myeloma (SMM) as well as MM survivors with respect to their dietary habits.
Collapse
Affiliation(s)
- Urvi A Shah
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Richa Parikh
- Department of Hematology/Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Francesca Castro
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matteo Bellone
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Alexander M Lesokhin
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
6
|
Freijy TM, Cribb L, Oliver G, Metri NJ, Opie RS, Jacka FN, Hawrelak JA, Rucklidge JJ, Ng CH, Sarris J. Effects of a high-prebiotic diet versus probiotic supplements versus synbiotics on adult mental health: The "Gut Feelings" randomised controlled trial. Front Neurosci 2023; 16:1097278. [PMID: 36815026 PMCID: PMC9940791 DOI: 10.3389/fnins.2022.1097278] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/15/2022] [Indexed: 02/09/2023] Open
Abstract
Background Preliminary evidence supports the use of dietary interventions and gut microbiota-targeted interventions such as probiotic or prebiotic supplementation for improving mental health. We report on the first randomised controlled trial (RCT) to examine the effects of a high-prebiotic dietary intervention and probiotic supplements on mental health. Methods "Gut Feelings" was an 8-week, 2 × 2 factorial RCT of 119 adults with moderate psychological distress and low prebiotic food intake. Treatment arms: (1) probiotic supplement and diet-as-usual (probiotic group); (2) high-prebiotic diet and placebo supplement (prebiotic diet group); (3) probiotic supplement and high-prebiotic diet (synbiotic group); and (4) placebo supplement and diet-as-usual (placebo group). The primary outcome was assessment of total mood disturbance (TMD; Profile of Mood States Short Form) from baseline to 8 weeks. Secondary outcomes included anxiety, depression, stress, sleep, and wellbeing measures. Results A modified intention-to-treat analysis using linear mixed effects models revealed that the prebiotic diet reduced TMD relative to placebo at 8 weeks [Cohen's d = -0.60, 95% confidence interval (CI) = -1.18, -0.03; p = 0.039]. There was no evidence of symptom improvement from the probiotic (d = -0.19, 95% CI = -0.75, 0.38; p = 0.51) or synbiotic treatments (d = -0.03, 95% CI = -0.59, 0.53; p = 0.92). Improved anxiety, stress, and sleep were noted in response to the prebiotic diet while the probiotic tentatively improved wellbeing, relative to placebo. No benefit was found in response to the synbiotic intervention. All treatments were well tolerated with few adverse events. Conclusion A high-prebiotic dietary intervention may improve mood, anxiety, stress, and sleep in adults with moderate psychological distress and low prebiotic intake. A synbiotic combination of high-prebiotic diet and probiotic supplement does not appear to have a beneficial effect on mental health outcomes, though further evidence is required. Results are limited by the relatively small sample size. Clinical trial registration https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=372753, identifier ACTRN12617000795392.
Collapse
Affiliation(s)
- Tanya M. Freijy
- Professorial Unit, The Melbourne Clinic, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia,Faculty of Medicine, Dentistry and Health Sciences, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Lachlan Cribb
- Professorial Unit, The Melbourne Clinic, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| | - Georgina Oliver
- Professorial Unit, The Melbourne Clinic, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| | - Najwa-Joelle Metri
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
| | - Rachelle S. Opie
- IPAN, School of Exercise and Nutrition Sciences, Deakin University, Melbourne, VIC, Australia
| | - Felice N. Jacka
- School of Medicine, Food and Mood Centre, IMPACT Strategic Research Centre, Deakin University, Melbourne, VIC, Australia,Centre for Adolescent Health, Murdoch Children’s Research Institute, Melbourne, VIC, Australia,College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, OLD, Australia
| | - Jason A. Hawrelak
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS, Australia,Human Nutrition and Functional Medicine Department, University of Western States, Portland, OR, United States
| | - Julia J. Rucklidge
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| | - Chee H. Ng
- Professorial Unit, The Melbourne Clinic, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| | - Jerome Sarris
- Professorial Unit, The Melbourne Clinic, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia,Faculty of Medicine, Dentistry and Health Sciences, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia,NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia,*Correspondence: Jerome Sarris,
| |
Collapse
|
7
|
Recent advances in targeted manipulation of the gut microbiome by prebiotics: from taxonomic composition to metabolic function. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Dalile B, La Torre D, Kalc P, Zoppas F, Roye C, Loret C, Lamothe L, Bergonzelli G, Courtin CM, Vervliet B, Oudenhove LV, Verbeke K. Extruded Wheat Bran Consumption Increases Serum Short-Chain Fatty Acids but Does Not Modulate Psychobiological Functions in Healthy Men: A Randomized, Placebo-Controlled Trial. Front Nutr 2022; 9:896154. [PMID: 35694161 PMCID: PMC9178292 DOI: 10.3389/fnut.2022.896154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/15/2022] [Indexed: 01/03/2023] Open
Abstract
Background Incorporation of wheat bran (WB) into food products increases intake of dietary fiber, which has been associated with improved mood and cognition and a lower risk for psychiatric disorders such as depression, with short-chain fatty acids (SCFAs) as candidate mediators of these effects. Modifying WB using extrusion cooking increases SCFA production in vitro relative to unmodified WB. Objective The aim of this study was to evaluate the effects of extruded WB on psychobiological functioning and the mediating role of SCFAs. Methods In a randomized, triple-blind, placebo-controlled trial, 69 healthy male participants consumed 55 g of breakfast cereal containing either extruded WB or placebo daily for 28 days. At pre- and post-intervention visits, the cortisol response to experimentally induced stress was measured as a primary outcome. In addition, serum SCFAs and brain-derived neurotrophic factors were quantified as potential mediators. Secondary psychobiological outcomes included subjective stress responses, responses to experimentally induced fear, cortisol awakening response, heart rate variability, and retrospective subjective mood ratings. Intestinal permeability, fecal SCFAs, and stool consistency were measured as secondary biological outcomes. Results Extruded WB increased serum acetate and butyrate (p < 0.05). None of the primary or secondary outcomes were affected by the intervention. Participants who consumed a placebo exhibited an increase in the percentage of fecal dry weight but did not report increased constipation. Despite these statistically significant effects, these changes were small in magnitude. Conclusions Extruded WB consumption increased serum short-chain fatty acids but did not modulate psychobiological functions in healthy men. Effective modulation of psychobiological functions may require greater increases in SCFAs than those achieved following extruded WB consumption. Rather than attempting to induce health benefits with a single fiber-rich food, combinations of different fibers, particularly highly fermentable ones, might be needed to further increase SCFA production and uptake in the systemic circulation to observe an effect on psychobiological processes.
Collapse
Affiliation(s)
- Boushra Dalile
- Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Danique La Torre
- Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Polona Kalc
- Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Francesca Zoppas
- Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Chiara Roye
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Chrystel Loret
- Nestlé Product Technology Centre, Coffee Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Lisa Lamothe
- Nestlé Institute of Materials Science, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Gabriela Bergonzelli
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Christophe M. Courtin
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Bram Vervliet
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Laboratory of Biological Psychology, Brain & Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Lukas Van Oudenhove
- Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Cognitive and Affective Neuroscience Lab, Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States
| | - Kristin Verbeke
- Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Faculty of Medicine, KU Leuven, Leuven, Belgium
- *Correspondence: Kristin Verbeke
| |
Collapse
|
9
|
McCarty MF, DiNicolantonio JJ. Maintaining Effective Beta Cell Function in the Face of Metabolic Syndrome-Associated Glucolipotoxicity-Nutraceutical Options. Healthcare (Basel) 2021; 10:3. [PMID: 35052168 PMCID: PMC8775473 DOI: 10.3390/healthcare10010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
In people with metabolic syndrome, episodic exposure of pancreatic beta cells to elevated levels of both glucose and free fatty acids (FFAs)-or glucolipotoxicity-can induce a loss of glucose-stimulated insulin secretion (GSIS). This in turn can lead to a chronic state of glucolipotoxicity and a sustained loss of GSIS, ushering in type 2 diabetes. Loss of GSIS reflects a decline in beta cell glucokinase (GK) expression associated with decreased nuclear levels of the pancreatic and duodenal homeobox 1 (PDX1) factor that drives its transcription, along with that of Glut2 and insulin. Glucolipotoxicity-induced production of reactive oxygen species (ROS), stemming from both mitochondria and the NOX2 isoform of NADPH oxidase, drives an increase in c-Jun N-terminal kinase (JNK) activity that promotes nuclear export of PDX1, and impairs autocrine insulin signaling; the latter effect decreases PDX1 expression at the transcriptional level and up-regulates beta cell apoptosis. Conversely, the incretin hormone glucagon-like peptide-1 (GLP-1) promotes nuclear import of PDX1 via cAMP signaling. Nutraceuticals that quell an increase in beta cell ROS production, that amplify or mimic autocrine insulin signaling, or that boost GLP-1 production, should help to maintain GSIS and suppress beta cell apoptosis in the face of glucolipotoxicity, postponing or preventing onset of type 2 diabetes. Nutraceuticals with potential in this regard include the following: phycocyanobilin-an inhibitor of NOX2; agents promoting mitophagy and mitochondrial biogenesis, such as ferulic acid, lipoic acid, melatonin, berberine, and astaxanthin; myo-inositol and high-dose biotin, which promote phosphatidylinositol 3-kinase (PI3K)/Akt activation; and prebiotics/probiotics capable of boosting GLP-1 secretion. Complex supplements or functional foods providing a selection of these agents might be useful for diabetes prevention.
Collapse
Affiliation(s)
| | - James J. DiNicolantonio
- Department of Preventive Cardiology, Saint Luke’s Mid America Heart Institute, Kansas City, MO 64111, USA
| |
Collapse
|
10
|
Neacsu M, Vaughan NJ, Multari S, Haljas E, Scobbie L, Duncan GJ, Cantlay L, Fyfe C, Anderson S, Horgan G, Johnstone AM, Russell WR. Hemp and buckwheat are valuable sources of dietary amino acids, beneficially modulating gastrointestinal hormones and promoting satiety in healthy volunteers. Eur J Nutr 2021; 61:1057-1072. [PMID: 34716790 PMCID: PMC8854285 DOI: 10.1007/s00394-021-02711-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/13/2021] [Indexed: 12/25/2022]
Abstract
Purpose This study evaluated the postprandial effects following consumption of buckwheat, fava bean, pea, hemp and lupin compared to meat (beef); focussing on biomarkers of satiety, gut hormones, aminoacids and plant metabolites bioavailability and metabolism. Methods Ten subjects (n = 3 men; n = 7 women; 42 ± 11.8 years of age; BMI 26 ± 5.8 kg/m2) participated in six 1-day independent acute interventions, each meal containing 30 g of protein from buckwheat, fava bean, pea, hemp, lupin and meat (beef). Blood samples were collected during 24-h and VAS questionnaires over 5-h. Results Volunteers consumed significantly higher amounts of most amino acids from the meat meal, and with few exceptions, postprandial composition of plasma amino acids was not significantly different after consuming the plant-based meals. Buckwheat meal was the most satious (300 min hunger scores, p < 0.05).Significant increase in GLP-1 plasma (AUC, iAUC p = 0.01) found after hemp compared with the other plant-based meals. Decreased plasma ghrelin concentrations (iAUC p < 0.05) found on plant (hemp) vs. meat meal. Several plasma metabolites after hemp meal consumption were associated with hormone trends (partial least squares-discriminant analysis (PLS-DA): 4-hydroxyphenylpyruvic acid, indole 3-pyruvic acid, 5-hydoxytryptophan, genistein and biochanin A with GLP-1, PYY and insulin; 3-hydroxymandelic acid and luteolidin with GLP-1 and ghrelin and 4-hydroxymandelic acid, benzoic acid and secoisolariciresinol with insulin and ghrelin. Plasma branched-chain amino acids (BCAAs), (iAUC, p < 0.001); and phenylalanine and tyrosine (iAUC, p < 0.05) were lower after buckwheat comparison with meat meal. Conclusion Plants are valuable sources of amino acids which are promoting satiety. The impact of hemp and buckwheat on GLP-1 and, respectively, BCAAs should be explored further as could be relevant for aid and prevention of chronic diseases such as type 2 diabetes. Study registered with clinicaltrial.gov on 12th July 2013, study ID number: NCT01898351. Supplementary Information The online version contains supplementary material available at 10.1007/s00394-021-02711-z.
Collapse
Affiliation(s)
- Madalina Neacsu
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK.
| | - Nicholas J Vaughan
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Salvatore Multari
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Elisabeth Haljas
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Lorraine Scobbie
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Gary J Duncan
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Louise Cantlay
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Claire Fyfe
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Susan Anderson
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - Graham Horgan
- Biomathematics and Statistics Scotland, Aberdeen, AB25 2ZD, Scotland, UK
| | | | - Wendy R Russell
- The Rowett Institute, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| |
Collapse
|
11
|
Shibutami E, Takebayashi T. A Scoping Review of the Application of Metabolomics in Nutrition Research: The Literature Survey 2000-2019. Nutrients 2021; 13:3760. [PMID: 34836016 PMCID: PMC8623534 DOI: 10.3390/nu13113760] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 12/29/2022] Open
Abstract
Nutrimetabolomics is an emerging field in nutrition research, and it is expected to play a significant role in deciphering the interaction between diet and health. Through the development of omics technology over the last two decades, the definition of food and nutrition has changed from sources of energy and major/micro-nutrients to an essential exposure factor that determines health risks. Furthermore, this new approach has enabled nutrition research to identify dietary biomarkers and to deepen the understanding of metabolic dynamics and the impacts on health risks. However, so far, candidate markers identified by metabolomics have not been clinically applied and more efforts should be made to validate those. To help nutrition researchers better understand the potential of its application, this scoping review outlined the historical transition, recent focuses, and future prospects of the new realm, based on trends in the number of human research articles from the early stage of 2000 to the present of 2019 by searching the Medical Literature Analysis and Retrieval System Online (MEDLINE). Among them, objective dietary assessment, metabolic profiling, and health risk prediction were positioned as three of the principal applications. The continued growth will enable nutrimetabolomics research to contribute to personalized nutrition in the future.
Collapse
Affiliation(s)
- Eriko Shibutami
- Graduate School of Health Management, Keio University, Kanagawa 252-0883, Japan;
| | - Toru Takebayashi
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
12
|
Kinney GA, Haddad EN, Garrow LS, Ng PKW, Comstock SS. An Intervention With Michigan-Grown Wheat in Healthy Adult Humans to Determine Effect on Gut Microbiota: Protocol for a Crossover Trial. JMIR Res Protoc 2021; 10:e29046. [PMID: 34612840 PMCID: PMC8529466 DOI: 10.2196/29046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/16/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Daily fiber intake can increase the diversity of the human gut microbiota as well as the abundance of beneficial microbes and their metabolites. Whole-grain wheat is high in fiber. OBJECTIVE This manuscript presents a study protocol designed to understand the effects of different types of wheat on gastrointestinal tract microbes. METHODS Human adults will consume crackers made from three types of wheat flour (refined soft white wheat, whole-grain soft white wheat, and whole-grain soft red wheat). In this study, participants will alternate between crackers made from refined soft white wheat flour to those made from whole-grain soft white wheat and whole-grain soft red wheat flour. Survey and stool sample collection will occur after 7-day treatment periods. We will assess how wheat consumption affects gastrointestinal bacteria by sequencing the V4 region of 16S rRNA gene amplicons and the inflammatory state of participants' intestines using enzyme-linked immunosorbent assays. The butyrate production capacity of the gut microbiota will be determined by targeted quantitative real-time polymerase chain reaction. RESULTS We will report the treatment effects on alpha and beta diversity of the microbiota and taxa-specific differences. Microbiota results will be analyzed using the vegan package in R. Butyrate production capacity and biomarkers of intestinal inflammation will be analyzed using parametric statistical methods such as analysis of variance or linear regression. We expect whole wheat intake to increase butyrate production capacity, bacterial alpha diversity, and abundance of bacterial taxa responsive to phenolic compounds. Soft red wheat is also expected to decrease the concentration of inflammatory biomarkers in the stool of participants. CONCLUSIONS This protocol describes the methods to be used in a study on the impact of wheat types on the human gastrointestinal microbiota and biomarkers of intestinal inflammation. The analysis of intestinal responses to the consumption of two types of whole wheat will expand our understanding of how specific foods affect health-associated outcomes. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/29046.
Collapse
Affiliation(s)
- Gigi A Kinney
- Department of Food Science & Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Eliot N Haddad
- Department of Food Science & Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Linda S Garrow
- Department of Food Science & Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Perry K W Ng
- Department of Food Science & Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Sarah S Comstock
- Department of Food Science & Human Nutrition, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
13
|
Nutritional and chemical profiling of UK-grown potato bean (Apios americana Medik) reveal its potential for diet biodiversification and revalorisation. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Enzyme Selection and Hydrolysis under Optimal Conditions Improved Phenolic Acid Solubility, and Antioxidant and Anti-Inflammatory Activities of Wheat Bran. Antioxidants (Basel) 2020; 9:antiox9100984. [PMID: 33066226 PMCID: PMC7602008 DOI: 10.3390/antiox9100984] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023] Open
Abstract
Valorization of wheat bran (WB) into new high-value products is of great interest within the framework of sustainability and circular economy. In the present study, we utilized a multi-step approach to extract nutraceutical compounds (phenolic acids) from WB and improved its antioxidant and anti-inflammatory properties through using sequential hydrothermal and enzymatic hydrolysis. Thirteen commercial glycosidases differing in their specific activity were screened and compared for hydrolytic efficiency to release monosaccharides, ferulic acid, and diferulic acid. Ultraflo XL was selected as the desired enzyme treatment on the basis of its higher WB solubilization, as well as its monosaccharide and phenolic acids yields. The relationships between better hydrolytic performance of Ultraflo XL and its particular activity profile were established. To determine the optimum conditions for Ultraflo XL treatment, we tested different factors (solvent pH, incubation temperature, and time) under 15 experiments. A multicomponent analysis (MCA), including central composite design, model fitness, regression coefficients, analysis of variance, 3D response curves, and desirability, was used for processing optimization. A beneficial effect of autoclave treatment on the release of phenolic compounds was also evidenced. The results of MCA showed involvement of linear, quadratic, and interactive effects of processing factors, although solvent pH was the main determinant factor, affecting enzymatic extraction of phenolics and bioactivity of hydrolysates. As compared to control WB, under optimized conditions (47 °C, pH = 4.4, and 20.8 h), WB hydrolysates showed 4.2, 1.5, 2, and 3 times higher content of ferulic acid (FA) and capacity to scavenge oxygen radicals, chelate transition metals, and inhibit monocyte chemoattractant protein-1 secretion in macrophages, respectively. These approaches could be applied for the sustainable utilization of WB, harnessing its nutraceutical potential.
Collapse
|
15
|
Fu J, Zhang Y, Hu Y, Zhao G, Tang Y, Zou L. Concise review: Coarse cereals exert multiple beneficial effects on human health. Food Chem 2020; 325:126761. [PMID: 32387947 DOI: 10.1016/j.foodchem.2020.126761] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/23/2020] [Accepted: 04/05/2020] [Indexed: 02/08/2023]
Abstract
Coarse cereals (CC) refer to cereal grains except for rice and wheat which are highly-valued as functional foods with nutritional and pharmacological properties. Owing to their diverse positive effect on chronic diseases, coarse cereals exert a vital role in food industry. CC and the main contents prevent tumor pathogenesis through promoting apoptosis, inducing cell cycle arrest as well as modulating metastasis initiation. Meanwhile, CC ameliorates cardiovascular diseases through affecting multiple pathways, such as CaMKII/p-BFAF-3, NF-κB, MAPK, PI3K/Akt, etc. Besides, CC and the main contents have potential as prebiotics which facilitating the activities and growth of probiotics such as Bifidobacteria and Lactobacillus. However, there's a lack of report on CC' beneficial properties and the underlying mechanisms are not fully understood. Here this article explains in detail, the effect and mechanism of CC on chronic diseases like tumor, inflammation and cardiovascular diseases.
Collapse
Affiliation(s)
- Jia Fu
- School of Medicine, Chengdu University, No. 2025, Cheng Luo Road, Chengdu 610106, Sichuan, China
| | - Yan Zhang
- School of Medicine, Chengdu University, No. 2025, Cheng Luo Road, Chengdu 610106, Sichuan, China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, No. 2025, Cheng Luo Road, Chengdu 610106, Sichuan, China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, No. 2025, Cheng Luo Road, Chengdu 610106, Sichuan, China
| | - Yong Tang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Avenue, Wenjiang District, Chengdu 611137, Sichuan, China.
| | - Liang Zou
- School of Medicine, Chengdu University, No. 2025, Cheng Luo Road, Chengdu 610106, Sichuan, China.
| |
Collapse
|
16
|
Gaesser GA, Rodriguez J, Patrie JT, Whisner CM, Angadi SS. Effects of Glycemic Index and Cereal Fiber on Postprandial Endothelial Function, Glycemia, and Insulinemia in Healthy Adults. Nutrients 2019; 11:nu11102387. [PMID: 31590437 PMCID: PMC6835298 DOI: 10.3390/nu11102387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/11/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023] Open
Abstract
Both glycemic index and dietary fiber are associated with cardiovascular disease risk, which may be related in part to postprandial vascular effects. We examined the effects of both glycemic index (GI) and dietary (mainly cereal) fiber on postprandial endothelial function. Eleven adults (5 men; 6 women; age = 42.4 ± 16.1 years; weight = 70.5 ± 10.7 kg; height = 173.7 ± 8.7 cm) consumed four different breakfast meals on separate, randomized occasions: High-Fiber, Low-GI (HF-LGI: Fiber = 20.4 g; GI = 44); Low-Fiber, Low-GI (LF-LGI: Fiber = 4.3 g; GI = 43); Low-Fiber, High-GI (LF-HGI: Fiber = 3.6 g; GI = 70); High-Fiber, High-GI (HF-HGI: Fiber = 20.3 g; GI = 71). Meals were equal in total kcal (~600) and macronutrient composition (~90 g digestible carbohydrate; ~21 g protein; ~15 g fat). The HF-LGI meal resulted in a significant increase in flow-mediated dilation (FMD) 4 h after meal ingestion (7.8% ± 5.9% to 13.2% ± 5.5%; p = 0.02). FMD was not changed after the other meals. Regardless of fiber content, low-GI meals resulted in ~9% lower 4-h glucose area under curve (AUC) (p < 0.05). The HF-LGI meal produced the lowest 4-h insulin AUC, which was ~43% lower than LF-HGI and HF-HGI (p < 0.001), and 28% lower than LF-LGI (p = 0.02). We conclude that in healthy adults, a meal with low GI and high in cereal fiber enhances postprandial endothelial function. Although the effect of a low-GI meal on reducing postprandial glucose AUC was independent of fiber, the effect of a low-GI meal on reducing postprandial insulin AUC was augmented by cereal fiber.
Collapse
Affiliation(s)
- Glenn A Gaesser
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA.
| | | | - James T Patrie
- Public Health Sciences, University of Virginia, Charlottesville, VA 22903, USA.
| | - Corrie M Whisner
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA.
| | - Siddhartha S Angadi
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA.
| |
Collapse
|
17
|
Jefferson A, Adolphus K. The Effects of Intact Cereal Grain Fibers, Including Wheat Bran on the Gut Microbiota Composition of Healthy Adults: A Systematic Review. Front Nutr 2019; 6:33. [PMID: 30984765 PMCID: PMC6449473 DOI: 10.3389/fnut.2019.00033] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/07/2019] [Indexed: 12/14/2022] Open
Abstract
The human microbiota is increasingly recognized as a major factor influencing health and well-being, with potential benefits as diverse as improved immunity, reduced risk of obesity, Type 2 diabetes, and improved cognition and mood. Bacteria inhabiting the gut are dependent on the provision of fermentable dietary substrates making diet a major factor driving the composition of the human gut microbiota. Dietary fiber may modify microbiota abundance, diversity, and metabolism including short-chain fatty acid production. The majority of research to date has explored isolated fibers, and the influence of habitual fiber consumption is less well-established. The aim of the current article was to systematically review evidence from human intervention studies for the effects of intact cereal fibers, and their active sub-fractions, on gut microbiota composition in healthy adults. Studies published in the past 20 years were identified through the PubMed and Cochrane electronic databases. Inclusion criteria were: healthy adult participants (>18 years), inclusion of at least one intact cereal fiber, or its sub-fraction, and measurement of fecal microbiota related outcomes. As every individual has a unique microbiota many trials utilized a cross-over design where individuals acted as their own control. Outcome measures included change to the microbiota, species diversity, or species abundance, or metabolic indicators of microbiota fermentation such as short chain fatty acids or fecal nitrogen. Two hundred and twenty three publications were identified and 40 included in the final review. In discussing the findings, particular attention has been paid to the effects of wheat fiber, bran, and arabinoxylans (AXOS) as this is the dominant source of fiber in many Western countries. Thirty-nine of the forty-two studies demonstrated an increase in microbiota diversity and/or abundance following intact cereal fiber consumption, with effects apparent from 24 h to 52 weeks. Increases in wheat fiber as low as 6–8 g were sufficient to generate significant effects. Study duration ranged from 1 day to 12 weeks, with a single study over 1 year, and exploration of the stability of the microbiota following long-term dietary change is required. Increasing cereal fiber consumption should be encouraged for overall good health and for gut microbiota diversity.
Collapse
|
18
|
Gamel TH, Wright AJ, Tucker AJ, Pickard M, Rabalski I, Podgorski M, Di Ilio N, O'Brien C, Abdel-Aal ESM. Absorption and metabolites of anthocyanins and phenolic acids after consumption of purple wheat crackers and bars by healthy adults. J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2018.11.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Girard AL, Awika JM. Sorghum polyphenols and other bioactive components as functional and health promoting food ingredients. J Cereal Sci 2018. [DOI: 10.1016/j.jcs.2018.10.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Gratz SW, Hazim S, Richardson AJ, Scobbie L, Johnstone AM, Fyfe C, Holtrop G, Lobley GE, Russell WR. Dietary carbohydrate rather than protein intake drives colonic microbial fermentation during weight loss. Eur J Nutr 2018; 58:1147-1158. [PMID: 29464347 PMCID: PMC6499751 DOI: 10.1007/s00394-018-1629-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 01/29/2018] [Indexed: 12/16/2022]
Abstract
Purpose High protein weight loss diets are effective in aiding body weight management. However, high protein and low carbohydrate intakes can alter colonic fermentation profiles in humans and may impact on colonic health. This study aims to identify the most important dietary contributors to colonic fermentation during diet-controlled weight loss. Methods Overweight or obese male volunteers (n = 18) consumed a body weight maintenance diet (fed at 1.5× basic metabolic rate, BMR) followed by three weight loss diets (fed at 1× BMR) for 10 days each in a cross-over design. Weight loss diets were designed as normal protein (NPWL, 15% of energy from protein, 55% from carbohydrate), normal protein enriched with free amino acids and moderate amounts of carbohydrate (NPAAWL, 15% of energy from protein, 15% from free AA, 40% from carbohydrate) or high protein containing moderate amounts of carbohydrate (HPWL, 30% of energy from protein, 40% from carbohydrate). Faecal samples collected at the end of each diet period were profiled for dietary metabolites using LC–MS/MS. Results This study shows that the NPWL diet only induced very minor changes in the faecal metabolome, whereas NPAAWL and HPWL diets decreased carbohydrate-related metabolites (butyrate, ferulic acid) and increased protein-related metabolites. Most faecal metabolites were correlated with dietary carbohydrate and not protein intake. Conclusion This study demonstrates that dietary carbohydrate is the main driver of colonic fermentation in humans and that a balance between dietary carbohydrate and protein should be maintained when designing safe, effective and healthy weight loss diets. Electronic supplementary material The online version of this article (10.1007/s00394-018-1629-x) contains supplementary material, which is available to authorised users.
Collapse
Affiliation(s)
- S W Gratz
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| | - S Hazim
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - A J Richardson
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - L Scobbie
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - A M Johnstone
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - C Fyfe
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - G Holtrop
- Biomathematics and Statistics Scotland, Aberdeen, UK
| | - G E Lobley
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - W R Russell
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
21
|
Papada E, Gioxari A, Brieudes V, Amerikanou C, Halabalaki M, Skaltsounis AL, Smyrnioudis I, Kaliora AC. Bioavailability of Terpenes and Postprandial Effect on Human Antioxidant Potential. An Open-Label Study in Healthy Subjects. Mol Nutr Food Res 2017; 62. [PMID: 29171157 DOI: 10.1002/mnfr.201700751] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/10/2017] [Indexed: 12/15/2022]
Abstract
SCOPE To assess bioavailability of terpenes in human plasma and their effect on oxidative stress biomarkers. METHODS AND RESULTS In this open-label and single arm postprandial trial, seventeen healthy male volunteers (20-40 years old) follow a low-phytochemical diet for 5 days. Next, after overnight fasting, volunteers consume Mastiha powder (a natural resin rich in terpenes) dispersed in water. Blood samples are collected on time points 0 h (before ingestion) and 0.5, 1, 2, 4, 6, and 24 h (post-ingestion). Ultra-high-pressure liquid chromatography high-resolution MS (UHPLC-HRMS/MS) is applied for high throughput analysis of plasma. Serum resistance to oxidation and oxidized LDL (oxLDL) levels are measured. UHPLC-HRMS/MS analysis shows that major terpenes are bioavailable since 0.5 h after administration, reaching a peak between 2 h and 4 h. Serum resistance to oxidation, expressed as difference of tLAG (time point-0 h), starts to increase from 0.5 h. This increase reaches statistical significance at 4 h (402.3 ± 65.0 s), peaks at 6 h (524.6 ± 62.9 s), and remains statistically significant until 24 h (424.2 ± 48.0 s). oxLDL levels, expressed as %change from 0 h, are reduced significantly from time point-1 h until time point-6 h. CONCLUSION Results demonstrate the terpene bioavailability pattern after oral administration of Mastiha. Terpenes are potential mediators of antioxidant defense in vivo.
Collapse
Affiliation(s)
- Efstathia Papada
- Laboratory of Chemistry-Biochemistry and Physical Chemistry of Foods, Department of Dietetics and Nutritional Science, School of Health Science and Education, Harokopio University Athens, Greece
| | - Aristea Gioxari
- Laboratory of Chemistry-Biochemistry and Physical Chemistry of Foods, Department of Dietetics and Nutritional Science, School of Health Science and Education, Harokopio University Athens, Greece
| | - Vincent Brieudes
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, University of Athens, Athens, Greece
| | - Charalampia Amerikanou
- Laboratory of Chemistry-Biochemistry and Physical Chemistry of Foods, Department of Dietetics and Nutritional Science, School of Health Science and Education, Harokopio University Athens, Greece
| | - Maria Halabalaki
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, University of Athens, Athens, Greece
| | - Alexios Leandros Skaltsounis
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, University of Athens, Athens, Greece
| | | | - Andriana C Kaliora
- Laboratory of Chemistry-Biochemistry and Physical Chemistry of Foods, Department of Dietetics and Nutritional Science, School of Health Science and Education, Harokopio University Athens, Greece
| |
Collapse
|
22
|
Olivas-Aguirre FJ, Gaytán-Martínez M, Mendoza-Díaz SO, González-Aguilar GA, Rodrigo-García J, Martínez-Ruiz NDR, Wall-Medrano A. In vitrodigestibility of phenolic compounds from edible fruits: could it be explained by chemometrics? Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13482] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Francisco J. Olivas-Aguirre
- Instituto de Ciencias Biomédicas; Departamento de Ciencias Químico-Biológicas/Ciencias de la Salud; Universidad Autónoma de Ciudad Juárez. Anillo Envolvente del PRONAF y Estocolmo s/n; Ciudad Juárez Chihuahua 32310 Mexico
| | - Marcela Gaytán-Martínez
- Departamento de Investigación y Posgrado en Alimentos (PROPAC); Facultad de Química; Universidad Autónoma de Querétaro; Cerro de las Campanas s/n Santiago de Querétaro 76010 Querétaro Mexico
| | - Sandra O. Mendoza-Díaz
- Departamento de Investigación y Posgrado en Alimentos (PROPAC); Facultad de Química; Universidad Autónoma de Querétaro; Cerro de las Campanas s/n Santiago de Querétaro 76010 Querétaro Mexico
| | - Gustavo A. González-Aguilar
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD); Carretera a Ejido La Victoria, Km. 0.6 Hermosillo Sonora 83304 Mexico
| | - Joaquín Rodrigo-García
- Instituto de Ciencias Biomédicas; Departamento de Ciencias Químico-Biológicas/Ciencias de la Salud; Universidad Autónoma de Ciudad Juárez. Anillo Envolvente del PRONAF y Estocolmo s/n; Ciudad Juárez Chihuahua 32310 Mexico
| | - Nina del Rocío Martínez-Ruiz
- Instituto de Ciencias Biomédicas; Departamento de Ciencias Químico-Biológicas/Ciencias de la Salud; Universidad Autónoma de Ciudad Juárez. Anillo Envolvente del PRONAF y Estocolmo s/n; Ciudad Juárez Chihuahua 32310 Mexico
| | - Abraham Wall-Medrano
- Instituto de Ciencias Biomédicas; Departamento de Ciencias Químico-Biológicas/Ciencias de la Salud; Universidad Autónoma de Ciudad Juárez. Anillo Envolvente del PRONAF y Estocolmo s/n; Ciudad Juárez Chihuahua 32310 Mexico
| |
Collapse
|
23
|
Probst YC, Guan VX, Kent K. Dietary phytochemical intake from foods and health outcomes: a systematic review protocol and preliminary scoping. BMJ Open 2017; 7:e013337. [PMID: 28202499 PMCID: PMC5318549 DOI: 10.1136/bmjopen-2016-013337] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Dietary phytochemicals are found in plant-based foods such as fruits, vegetables and grains and may be categorised in a nested hierarchical manner with many hundred individual phytochemicals identified to date. To associate phytochemical intakes with positive health outcomes, a fundamental step is to accurately estimate the dietary phytochemical intake from foods reported. The purpose of this systematic review protocol is to describe the process to be undertaken to summarise the evidence for food-based dietary phytochemical intakes and health outcomes for adults. METHODS AND ANALYSIS The review will be undertaken following the PRISMA guidelines and the Cochrane Handbook for Systematic Reviews of Interventions using the Review Manager software. Phytochemical subclasses (phenolic acids, flavanols, etc) will be used to search for relevant studies using the Web of Science and Scopus scientific databases. The retrieved studies will be screened based on inclusion of natural whole food items and health outcomes. Phytochemical studies related to cardiovascular disease, cancer, overweight, glucose tolerance, digestive, reproductive, macular and bone health and mental disorders, fatigue and immunity will be examined based on prior scoping. The evidence will be aggregated by the food types and health outcomes. Comparison of differences in the outcomes for randomised controlled trials and observational studies will be undertaken. The strength of the review lies in its focus on whole food items and health conditions rather than one type of phytochemical related to one single health condition. Subgroup and sensitivity analyses will be conducted where an adequate number of publications are found per phytochemical subclass. DISSEMINATION By comparing the outcomes from experimental and observational studies, the review will determine whether the overall conclusions related to the phytochemical subclasses are the same between study types for the identified health conditions. This is useful to public health policymakers and health professionals alike. TRIAL REGISTRATION NUMBER #CRD42014015610.
Collapse
Affiliation(s)
- Yasmine C Probst
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| | - Vivienne X Guan
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| | - Katherine Kent
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia
- Faculty of Health, University of Tasmania, Tasmania, Australia
| |
Collapse
|