1
|
Liu S, Wang S, Zhao L, Li T, Zhang Y, Wang H, Bao Z, Hu X. Functional Analysis of β-Carotene Oxygenase 2 ( BCO2) Gene in Yesso Scallop ( Patinopecten yessoensis). Int J Mol Sci 2024; 25:3947. [PMID: 38612756 PMCID: PMC11012205 DOI: 10.3390/ijms25073947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Carotenoids are essential nutrients for humans and animals, and carotenoid coloration represents an important meat quality parameter for many farmed animals. Increasingly, studies have demonstrated that vertebrate carotenoid cleavage oxygenases (CCOs) are essential enzymes in carotenoid metabolism and are therefore potential candidate genes for improving carotenoid deposition. However, our understanding of carotenoid bioavailability and CCOs functions in invertebrates, particularly marine species, is currently quite limited. We previously identified that a CCO homolog, PyBCO-like 1, was the causal gene for carotenoid coloration in the 'Haida golden scallop', a variety of Yesso scallop (Patinopecten yessoensis) characterized by carotenoid enrichment. Here, we found that another CCO-encoding gene named PyBCO2 (β-carotene oxygenase 2) was widely expressed in P. yessoensis organs/tissues, with the highest expression in striated muscle. Inhibiting BCO2 expression in P. yessoensis through RNA interference led to increased carotenoid (pectenolone and pectenoxanthin) deposition in the striated muscle, and the color of the striated muscle changed from white to light orange. Our results indicate that PyBCO2 might be a candidate gene used for improving carotenoid content in normal Yesso scallops, and also in 'Haida golden scallops'.
Collapse
Affiliation(s)
- Shiqi Liu
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (S.L.); (S.W.); (Y.Z.)
| | - Shuyue Wang
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (S.L.); (S.W.); (Y.Z.)
| | - Liang Zhao
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (S.L.); (S.W.); (Y.Z.)
| | - Tingting Li
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (S.L.); (S.W.); (Y.Z.)
| | - Yihan Zhang
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (S.L.); (S.W.); (Y.Z.)
| | - Huizhen Wang
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (S.L.); (S.W.); (Y.Z.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Zhenmin Bao
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (S.L.); (S.W.); (Y.Z.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Xiaoli Hu
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (S.L.); (S.W.); (Y.Z.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
2
|
Terao J. Revisiting carotenoids as dietary antioxidants for human health and disease prevention. Food Funct 2023; 14:7799-7824. [PMID: 37593767 DOI: 10.1039/d3fo02330c] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Humans are unique indiscriminate carotenoid accumulators, so the human body accumulates a wide range of dietary carotenoids of different types and to varying concentrations. Carotenoids were once recognized as physiological antioxidants because of their ability to quench singlet molecular oxygen (1O2). In the 1990s, large-scale intervention studies failed to demonstrate that supplementary β-carotene intake reduces the incidence of lung cancer, although its antioxidant activity was supposed to contribute to the prevention of oxidative stress-induced carcinogenesis. Nevertheless, the antioxidant activity of carotenoids has attracted renewed attention as the pathophysiological role of 1O2 has emerged, and as the ability of dietary carotenoids to induce antioxidant enzymes has been revealed. This review focuses on six major carotenoids from fruit and vegetables and revisits their physiological functions as biological antioxidants from the standpoint of health promotion and disease prevention. β-Carotene 9',10'-oxygenase-derived oxidative metabolites trigger increases in the activities of antioxidant enzymes. Lutein and zeaxanthin selectively accumulate in human macular cells to protect against light-induced macular impairment by acting as antioxidants. Lycopene accumulates exclusively and to high concentrations in the testis, where its antioxidant activity may help to eliminate oxidative damage. Dietary carotenoids appear to exert their antioxidant activity in photo-irradiated skin after their persistent deposition in the skin. An acceptable level of dietary carotenoids for disease prevention should be established because they can have deleterious effects as prooxidants if they accumulate to excess levels. Finally, it is expected that the reason why humans are indiscriminate carotenoid accumulators will be understood soon.
Collapse
Affiliation(s)
- Junji Terao
- Faculty of Medicine, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan.
| |
Collapse
|
3
|
Goggans ML, Bilbrey EA, Quiroz-Moreno CD, Francis DM, Jacobi SK, Kovac J, Cooperstone JL. Short-Term Tomato Consumption Alters the Pig Gut Microbiome toward a More Favorable Profile. Microbiol Spectr 2022; 10:e0250622. [PMID: 36346230 PMCID: PMC9769997 DOI: 10.1128/spectrum.02506-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022] Open
Abstract
Diets rich in fruits and vegetables have been shown to exert positive effects on the gut microbiome. However, little is known about the specific effect of individual fruits or vegetables on gut microbe profiles. This study aims to elucidate the effects of tomato consumption on the gut microbiome, as tomatoes account for 22% of vegetable consumption in Western diets, and their consumption has been associated with positive health outcomes. Using piglets as a physiologically relevant model of human metabolism, 20 animals were assigned to either a control or a tomato powder-supplemented diet (both macronutrient matched and isocaloric) for 14 days. The microbiome was sampled rectally at three time points: day 0 (baseline), day 7 (midpoint), and day 14 (end of study). DNA was sequenced using shotgun metagenomics, and reads were annotated using MG-RAST. There were no differences in body weight or feed intake between our two treatment groups. There was a microbial shift which included a higher ratio of Bacteroidota to Bacillota (formerly known as Bacteroidetes and Firmicutes, respectively) and higher alpha-diversity in tomato-fed animals, indicating a shift to a more desirable phenotype. Analyses at both the phylum and genus levels showed global microbiome profile changes (permutational multivariate analysis of variance [PERMANOVA], P ≤ 0.05) over time but not with tomato consumption. These data suggest that short-term tomato consumption can beneficially influence the gut microbial profile, warranting further investigation in humans. IMPORTANCE The composition of the microorganisms in the gut is a contributor to overall health, prompting the development of strategies to alter the microbiome composition. Studies have investigated the role of the diet on the microbiome, as it is a major modifiable risk factor contributing to health; however, little is known about the causal effects of consumption of specific foods on the gut microbiota. A more complete understanding of how individual foods impact the microbiome will enable more evidence-based dietary recommendations for long-term health. Tomatoes are of interest as the most consumed nonstarchy vegetable and a common source of nutrients and phytochemicals across the world. This study aimed to elucidate the effect of short-term tomato consumption on the microbiome, using piglets as a physiologically relevant model to humans. We found that tomato consumption can positively affect the gut microbial profile, which warrants further investigation in humans.
Collapse
Affiliation(s)
- Mallory L. Goggans
- Food Science and Technology, The Ohio State University, Columbus, Ohio, USA
| | - Emma A. Bilbrey
- Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, USA
| | | | - David M. Francis
- Horticulture and Crop Science, The Ohio State University, Wooster, Ohio, USA
| | | | - Jasna Kovac
- Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
- Microbiome Center, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jessica L. Cooperstone
- Food Science and Technology, The Ohio State University, Columbus, Ohio, USA
- Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
4
|
Wang Z, Ma R, Jia Z, Lin P, Zhao Z, Wang W, Yi S, Li X, Li J. Investigating on the influence mechanism of sausage of sea bass on calcium absorption and transport based on Caco-2 cell monolayer model. Front Nutr 2022; 9:1046945. [PMID: 36330132 PMCID: PMC9623112 DOI: 10.3389/fnut.2022.1046945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/03/2022] [Indexed: 11/25/2022] Open
Abstract
A monolayer Caco-2 cell model was established to explore the effects of sea bass sausage digestive juice containing phosphate on calcium ion transport. Differential proteins of Caco-2 cells treated with fish sausage juice were detected and analyzed by gene ontology (GO) functional annotation and kyoto encyclopedia of genes and genomes (KEGG) pathway analyses. Results revealed that after treatment with 0.23 mg/mL digestive juice of perch sausage in vitro, Caco-2 cell viability was the highest at 72 h (99.84%). Additionally, 0.23 mg/mL digestive juice of perch sausage in vitro significantly increased calcium ion transport. The transfer volume was 1.396 μg/well. Fish sausages containing phosphate significantly affected the protein expression levels of Caco-2 cells. Two hundred one differential proteins were detected, including 114 up-regulated and 87 down-regulated proteins. The main differential proteins included P02795, Q9P0W0, Q96PU5, Q9GZT9 and Q5EBL8. The adjustment ratios of the fish sausage group were 0.7485, 1.373, 1.2535, 0.6775, and 0.809, respectively. The pathway analysis showed that phosphate affected calcium ion absorption and transport through the P02795 enrichment pathway. The fish sausage group showed that the immune-related functions of cells were affected. This study expounds the effects of water-retaining agents on the nutritional quality of aquatic products and provides theoretical support for the research and application of surimi products.
Collapse
|
5
|
Holloway C, Zhong G, Kim YK, Ye H, Sampath H, Hammerling U, Isoherranen N, Quadro L. Retinoic acid regulates pyruvate dehydrogenase kinase 4 (Pdk4) to modulate fuel utilization in the adult heart: Insights from wild-type and β-carotene 9',10' oxygenase knockout mice. FASEB J 2022; 36:e22513. [PMID: 36004605 PMCID: PMC9544431 DOI: 10.1096/fj.202101910rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 11/11/2022]
Abstract
Regulation of the pyruvate dehydrogenase (PDH) complex by the pyruvate dehydrogenase kinase PDK4 enables the heart to respond to fluctuations in energy demands and substrate availability. Retinoic acid, the transcriptionally active form of vitamin A, is known to be involved in the regulation of cardiac function and growth during embryogenesis as well as under pathological conditions. Whether retinoic acid also maintains cardiac health under physiological conditions is unknown. However, vitamin A status and intake of its carotenoid precursor β-carotene have been linked to the prevention of heart diseases. Here, we provide in vitro and in vivo evidence that retinoic acid regulates cardiac Pdk4 expression and thus PDH activity. Furthermore, we show that mice lacking β-carotene 9',10'-oxygenase (BCO2), the only enzyme of the adult heart that cleaves β-carotene to generate retinoids (vitamin A and its derivatives), displayed cardiac retinoic acid insufficiency and impaired metabolic flexibility linked to a compromised PDK4/PDH pathway. These findings provide novel insights into the functions of retinoic acid in regulating energy metabolism in adult tissues, especially the heart.
Collapse
Affiliation(s)
- Chelsee Holloway
- Graduate Program in Endocrinology and Animal Bioscience, Rutgers University, New Brunswick, New Jersey, USA.,Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA.,Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Guo Zhong
- Department of Pharmaceutics Health Sciences, University of Washington, Seattle, Washington, USA
| | - Youn-Kyung Kim
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA.,Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Hong Ye
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA.,Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, New Jersey, USA.,Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Harini Sampath
- Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, New Jersey, USA.,Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Ulrich Hammerling
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA.,Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Nina Isoherranen
- Department of Pharmaceutics Health Sciences, University of Washington, Seattle, Washington, USA
| | - Loredana Quadro
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA.,Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
6
|
Egeland TB, Egeland ES, Nordeide JT. Does egg carotenoid improve larval quality in Arctic charr (
Salvelinus alpinus
)? Ecol Evol 2022; 12:e8812. [PMID: 35432935 PMCID: PMC9001117 DOI: 10.1002/ece3.8812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Females in mutually ornamented species are often less conspicuously ornamented than their male conspecifics. It has been hypothesized that offspring quality may decrease if females invest more resources into ornaments at the expense of resources in eggs. An experiment was carried out to test whether natural variation in carotenoid in the eggs from a wild population of Arctic charr (Salvelinus alpinus) was associated with survival and growth of their offspring until hatching. Wild Arctic charr were caught at a spawning ground during the spawning period. Eggs from two different females, one female with yellowish carotenoid‐rich eggs and one with paler eggs, were fertilized by sperm from the same male. This was repeated until gametes were collected from 42 females and 21 males, giving a total of 21 groups. After fertilization, the zygotes from each of the two females were reared in four replicated groups. These 168 groups were reared separately until hatching when the surviving larvae were counted and their body length measured. For the two response variables survival and body length at hatching, no effect was demonstrated of any of the predictors (i) amount of carotenoid in the unfertilized eggs, (ii) the mothers' body condition, or (iii) ornament intensity of their red carotenoid‐based abdominal ornament. Thus, this study gives no support for the hypothesis that females investing less carotenoid into their eggs suffer from decreased offspring quality until hatching. This lack of association between female ornament intensity and their fitness is not as expected if female ornaments evolved due to direct sexual selection from males on the more ornamented females (“direct selection hypothesis”).
Collapse
Affiliation(s)
- Torvald Blikra Egeland
- Faculty of Biosciences and Aquaculture Nord University Bodø Norway
- Faculty of Education and Arts Nord University Bodø Norway
| | | | | |
Collapse
|
7
|
Transcriptional Profiling of the Small Intestine and the Colon Reveals Modulation of Gut Infection with Citrobacter rodentium According to the Vitamin A Status. Nutrients 2022; 14:nu14081563. [PMID: 35458125 PMCID: PMC9026425 DOI: 10.3390/nu14081563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/10/2022] Open
Abstract
Vitamin A (VA) deficiency and diarrheal diseases are both serious public health issues worldwide. VA deficiency is associated with impaired intestinal barrier function and increased risk of mucosal infection-related mortality. The bioactive form of VA, retinoic acid, is a well-known regulator of mucosal integrity. Using Citrobacter rodentium-infected mice as a model for diarrheal diseases in humans, previous studies showed that VA-deficient (VAD) mice failed to clear C. rodentium as compared to their VA-sufficient (VAS) counterparts. However, the distinct intestinal gene responses that are dependent on the host’s VA status still need to be discovered. The mRNAs extracted from the small intestine (SI) and the colon were sequenced and analyzed on three levels: differential gene expression, enrichment, and co-expression. C. rodentium infection interacted differentially with VA status to alter colon gene expression. Novel functional categories downregulated by this pathogen were identified, highlighted by genes related to the metabolism of VA, vitamin D, and ion transport, including improper upregulation of Cl− secretion and disrupted HCO3− metabolism. Our results suggest that derangement of micronutrient metabolism and ion transport, together with the compromised immune responses in VAD hosts, may be responsible for the higher mortality to C. rodentium under conditions of inadequate VA.
Collapse
|
8
|
Nishida Y, Nawaz A, Hecht K, Tobe K. Astaxanthin as a Novel Mitochondrial Regulator: A New Aspect of Carotenoids, beyond Antioxidants. Nutrients 2021; 14:nu14010107. [PMID: 35010981 PMCID: PMC8746862 DOI: 10.3390/nu14010107] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
Astaxanthin is a member of the carotenoid family that is found abundantly in marine organisms, and has been gaining attention in recent years due to its varied biological/physiological activities. It has been reported that astaxanthin functions both as a pigment, and as an antioxidant with superior free radical quenching capacity. We recently reported that astaxanthin modulated mitochondrial functions by a novel mechanism independent of its antioxidant function. In this paper, we review astaxanthin’s well-known antioxidant activity, and expand on astaxanthin’s lesser-known molecular targets, and its role in mitochondrial energy metabolism.
Collapse
Affiliation(s)
- Yasuhiro Nishida
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
- Fuji Chemical Industries, Co., Ltd., 55 Yokohoonji, Kamiich-machi, Nakaniikawa-gun, Toyama 930-0405, Japan
- Correspondence: (Y.N.); (A.N.); (K.T.)
| | - Allah Nawaz
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
- Correspondence: (Y.N.); (A.N.); (K.T.)
| | - Karen Hecht
- AstaReal, Inc., 3 Terri Lane, Unit 12, Burlington, NJ 08016, USA;
| | - Kazuyuki Tobe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
- Correspondence: (Y.N.); (A.N.); (K.T.)
| |
Collapse
|
9
|
Enbody ED, Sprehn CG, Abzhanov A, Bi H, Dobreva MP, Osborne OG, Rubin CJ, Grant PR, Grant BR, Andersson L. A multispecies BCO2 beak color polymorphism in the Darwin's finch radiation. Curr Biol 2021; 31:5597-5604.e7. [PMID: 34687609 DOI: 10.1016/j.cub.2021.09.085] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/25/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
Carotenoid-based polymorphisms are widespread in populations of birds, fish, and reptiles,1 but generally little is known about the factors affecting their maintenance in populations.2 We report a combined field and molecular-genetic investigation of a nestling beak color polymorphism in Darwin's finches. Beaks are pink or yellow, and yellow is recessive.3 Here we show that the polymorphism arose in the Galápagos half a million years ago through a mutation associated with regulatory change in the BCO2 gene and is shared by 14 descendant species. The polymorphism is probably a balanced polymorphism, maintained by ecological selection associated with survival and diet. In cactus finches, the frequency of the yellow genotype is correlated with cactus fruit abundance and greater hatching success and may be altered by introgressive hybridization. Polymorphisms that are hidden as adults, as here, may be far more common than is currently recognized, and contribute to diversification in ways that are yet to be discovered.
Collapse
Affiliation(s)
- Erik D Enbody
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden.
| | - C Grace Sprehn
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Arhat Abzhanov
- Department of Life Sciences, Imperial College London, Silwood Park Campus, SL5 7PY Ascot, UK
| | - Huijuan Bi
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Mariya P Dobreva
- Department of Life Sciences, Imperial College London, Silwood Park Campus, SL5 7PY Ascot, UK
| | - Owen G Osborne
- School of Natural Sciences, Bangor University, Environment Centre Wales, Deiniol Road, Bangor LL57 2UW, UK
| | - Carl-Johan Rubin
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Peter R Grant
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - B Rosemary Grant
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden; Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden; Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA.
| |
Collapse
|
10
|
Zalesak-Kravec S, Huang W, Wang P, Yu J, Liu T, Defnet AE, Moise AR, Farese AM, MacVittie TJ, Kane MA. Multi-omic Analysis of Non-human Primate Heart after Partial-body Radiation with Minimal Bone Marrow Sparing. HEALTH PHYSICS 2021; 121:352-371. [PMID: 34546217 PMCID: PMC8554778 DOI: 10.1097/hp.0000000000001478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
ABSTRACT High-dose radiation exposure results in hematopoietic and gastrointestinal acute radiation syndromes followed by delayed effects of acute radiation exposure, which encompasses multiple organs, including heart, kidney, and lung. Here we sought to further characterize the natural history of radiation-induced heart injury via determination of differential protein and metabolite expression in the heart. We quantitatively profiled the proteome and metabolome of left and right ventricle from non-human primates following 12 Gy partial body irradiation with 2.5% bone marrow sparing over a time period of 3 wk. Global proteome profiling identified more than 2,200 unique proteins, with 220 and 286 in the left and right ventricles, respectively, showing significant responses across at least three time points compared to baseline levels. High-throughput targeted metabolomics analyzed a total of 229 metabolites and metabolite combinations, with 18 and 22 in the left and right ventricles, respectively, showing significant responses compared to baseline levels. Bioinformatic analysis performed on metabolomic and proteomic data revealed pathways related to inflammation, energy metabolism, and myocardial remodeling were dysregulated. Additionally, we observed dysregulation of the retinoid homeostasis pathway, including significant post-radiation decreases in retinoic acid, an active metabolite of vitamin A. Significant differences between left and right ventricles in the pathology of radiation-induced injury were identified. This multi-omic study characterizes the natural history and molecular mechanisms of radiation-induced heart injury in NHP exposed to PBI with minimal bone marrow sparing.
Collapse
Affiliation(s)
- Stephanie Zalesak-Kravec
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Weiliang Huang
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Pengcheng Wang
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Jianshi Yu
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Tian Liu
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Amy E. Defnet
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Alexander R. Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON, Canada; Departments of Chemistry and Biochemistry, and Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON, Canada
| | - Ann M. Farese
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | - Thomas J. MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD
| | - Maureen A. Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| |
Collapse
|
11
|
Toomey MB, Ronald KL. Avian color expression and perception: is there a carotenoid link? J Exp Biol 2021; 224:269205. [PMID: 34142139 DOI: 10.1242/jeb.203844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Carotenoids color many of the red, orange and yellow ornaments of birds and also shape avian vision. The carotenoid-pigmented oil droplets in cone photoreceptors filter incoming light and are predicted to aid in color discrimination. Carotenoid use in both avian coloration and color vision raises an intriguing question: is the evolution of visual signals and signal perception linked through these pigments? Here, we explore the genetic, physiological and functional connections between these traits. Carotenoid color and droplet pigmentation share common mechanisms of metabolic conversion and are both affected by diet and immune system challenges. Yet, the time scale and magnitude of these effects differ greatly between plumage and the visual system. Recent observations suggest a link between retinal carotenoid levels and color discrimination performance, but the mechanisms underlying these associations remain unclear. Therefore, we performed a modeling exercise to ask whether and how changes in droplet carotenoid content could alter the perception of carotenoid-based plumage. This exercise revealed that changing oil droplet carotenoid concentration does not substantially affect the discrimination of carotenoid-based colors, but might change how reliably a receiver can predict the carotenoid content of an ornament. These findings suggest that, if present, a carotenoid link between signal and perception is subtle. Deconstructing this relationship will require a deeper understanding of avian visual perception and the mechanisms of color production. We highlight several areas where we see opportunities to gain new insights, including comparative genomic studies of shared mechanisms of carotenoid processing and alternative approaches to investigating color vision.
Collapse
Affiliation(s)
- Matthew B Toomey
- Department of Biological Science, University of Tulsa, 800 S Tucker Dr., Tulsa, OK 74104, USA
| | - Kelly L Ronald
- Department of Biology, Hope College, 35 East 12th Street, Holland, MI 49422, USA
| |
Collapse
|
12
|
Wu L, Lu P, Guo X, Song K, Lyu Y, Bothwell J, Wu J, Hawkins O, Clarke SL, Lucas EA, Smith BJ, Chowanadisai W, Hartson SD, Ritchey JW, Wang W, Medeiros DM, Li S, Lin D. β-carotene oxygenase 2 deficiency-triggered mitochondrial oxidative stress promotes low-grade inflammation and metabolic dysfunction. Free Radic Biol Med 2021; 164:271-284. [PMID: 33453359 PMCID: PMC7946548 DOI: 10.1016/j.freeradbiomed.2021.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/30/2020] [Accepted: 01/03/2021] [Indexed: 02/06/2023]
Abstract
Low-grade inflammation is a critical pathological factor contributing to the development of metabolic disorders. β-carotene oxygenase 2 (BCO2) was initially identified as an enzyme catalyzing carotenoids in the inner mitochondrial membrane. Mutations in BCO2 are associated with inflammation and metabolic disorders in humans, yet the underlying mechanisms remain unknown. Here, we used loss-of-function approaches in mice and cell culture models to investigate the role of BCO2 in inflammation and metabolic dysfunction. We demonstrated decreases in BCO2 mRNA and protein levels and suppression of mitochondrial respiratory complex I proteins and mitochondrial superoxide dismutase levels in the liver of type 2 diabetic human subjects. Deficiency of BCO2 caused disruption of assembly of the mitochondrial respiratory supercomplexes, such as supercomplex III2+IV in mice, and overproduction of superoxide radicals in primary mouse embryonic fibroblasts. Further, deficiency of BCO2 increased protein carbonylation and populations of natural killer cells and M1 macrophages, and decreased populations of T cells, including CD4+ and/or CD8+ in the bone marrow and white adipose tissues. Elevation of plasma inflammatory cytokines and adipose tissue hypertrophy and inflammation were also characterized in BCO2 deficient mice. Moreover, BCO2 deficient mice were more susceptible to high-fat diet-induced obesity and hyperglycemia. Double knockout of BCO2 and leptin receptor genes caused a significantly greater elevation of the fasting blood glucose level in mice at 4 weeks of age, compared to the age- and sex-matched leptin receptor knockout. Finally, administration of Mito-TEMPO, a mitochondrial specific antioxidant attenuated systemic low-grade inflammation induced by BCO2 deficiency. Collectively, these findings suggest that BCO2 is essential for mitochondrial respiration and metabolic homeostasis in mammals. Loss or decreased expression of BCO2 leads to mitochondrial oxidative stress, low-grade inflammation, and the subsequent development of metabolic disorders.
Collapse
Affiliation(s)
- Lei Wu
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Peiran Lu
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Xin Guo
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Kun Song
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA, 70112, USA
| | - Yi Lyu
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - James Bothwell
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Jinglong Wu
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Olivia Hawkins
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Stephen L Clarke
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Edralin A Lucas
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Brenda J Smith
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Winyoo Chowanadisai
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Steve D Hartson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Jerry W Ritchey
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Weiqun Wang
- Department of Food, Nutrition, Dietetics, and Health, Kansas State University, Manhattan, KS, 66506, USA
| | - Denis M Medeiros
- Department of Molecular Biology and Biochemistry, University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| | - Shitao Li
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA, 70112, USA
| | - Dingbo Lin
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
13
|
Filippov MA, Tatarnikova OG, Pozdnyakova NV, Vorobyov VV. Inflammation/bioenergetics-associated neurodegenerative pathologies and concomitant diseases: a role of mitochondria targeted catalase and xanthophylls. Neural Regen Res 2021; 16:223-233. [PMID: 32859768 PMCID: PMC7896239 DOI: 10.4103/1673-5374.290878] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 02/23/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
Various inflammatory stimuli are able to modify or even "re-program" the mitochondrial metabolism that results in generation of reactive oxygen species. In noncommunicable chronic diseases such as atherosclerosis and other cardiovascular pathologies, type 2 diabetes and metabolic syndrome, these modifications become systemic and are characterized by chronic inflammation and, in particular, "neuroinflammation" in the central nervous system. The processes associated with chronic inflammation are frequently grouped into "vicious circles" which are able to stimulate each other constantly amplifying the pathological events. These circles are evidently observed in Alzheimer's disease, atherosclerosis, type 2 diabetes, metabolic syndrome and, possibly, other associated pathologies. Furthermore, chronic inflammation in peripheral tissues is frequently concomitant to Alzheimer's disease. This is supposedly associated with some common genetic polymorphisms, for example, Apolipoprotein-E ε4 allele carriers with Alzheimer's disease can also develop atherosclerosis. Notably, in the transgenic mice expressing the recombinant mitochondria targeted catalase, that removes hydrogen peroxide from mitochondria, demonstrates the significant pathology amelioration and health improvements. In addition, the beneficial effects of some natural products from the xanthophyll family, astaxanthin and fucoxanthin, which are able to target the reactive oxygen species at cellular or mitochondrial membranes, have been demonstrated in both animal and human studies. We propose that the normalization of mitochondrial functions could play a key role in the treatment of neurodegenerative disorders and other noncommunicable diseases associated with chronic inflammation in ageing. Furthermore, some prospective drugs based on mitochondria targeted catalase or xanthophylls could be used as an effective treatment of these pathologies, especially at early stages of their development.
Collapse
Affiliation(s)
| | | | | | - Vasily V. Vorobyov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
14
|
Widjaja-Adhi MAK, Golczak M. The molecular aspects of absorption and metabolism of carotenoids and retinoids in vertebrates. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158571. [PMID: 31770587 PMCID: PMC7244374 DOI: 10.1016/j.bbalip.2019.158571] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 02/08/2023]
Abstract
Vitamin A is an essential nutrient necessary for numerous basic physiological functions, including reproduction and development, immune cell differentiation and communication, as well as the perception of light. To evade the dire consequences of vitamin A deficiency, vertebrates have evolved specialized metabolic pathways that enable the absorption, transport, and storage of vitamin A acquired from dietary sources as preformed retinoids or provitamin A carotenoids. This evolutionary advantage requires a complex interplay between numerous specialized retinoid-transport proteins, receptors, and enzymes. Recent advances in molecular and structural biology resulted in a rapid expansion of our understanding of these processes at the molecular level. This progress opened new avenues for the therapeutic manipulation of retinoid homeostasis. In this review, we summarize current research related to the biochemistry of carotenoid and retinoid-processing proteins with special emphasis on the structural aspects of their physiological actions. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Made Airanthi K Widjaja-Adhi
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America
| | - Marcin Golczak
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America; Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America.
| |
Collapse
|
15
|
von Lintig J, Moon J, Lee J, Ramkumar S. Carotenoid metabolism at the intestinal barrier. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158580. [PMID: 31794861 PMCID: PMC7987234 DOI: 10.1016/j.bbalip.2019.158580] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/17/2022]
Abstract
Carotenoids exert a rich variety of physiological functions in mammals and are beneficial for human health. These lipids are acquired from the diet and metabolized to apocarotenoids, including retinoids (vitamin A and its metabolites). The small intestine is a major site for their absorption and bioconversion. From here, carotenoids and their metabolites are distributed within the body in triacylglycerol-rich lipoproteins to support retinoid signaling in peripheral tissues and photoreceptor function in the eyes. In recent years, much progress has been made in identifying carotenoid metabolizing enzymes, transporters, and binding proteins. A diet-responsive regulatory network controls the activity of these components and adapts carotenoid absorption and bioconversion to the bodily requirements of these lipids. Genetic variability in the genes encoding these components alters carotenoid homeostasis and is associated with pathologies. We here summarize the advanced state of knowledge about intestinal carotenoid metabolism and its impact on carotenoid and retinoid homeostasis of other organ systems, including the eyes, liver, and immune system. The implication of the findings for science-based intake recommendations for these essential dietary lipids is discussed. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America.
| | - Jean Moon
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| | - Joan Lee
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| | - Srinivasagan Ramkumar
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| |
Collapse
|
16
|
Wu L, Lyu Y, Srinivasagan R, Wu J, Ojo B, Tang M, El-Rassi GD, Metzinger K, Smith BJ, Lucas EA, Clarke SL, Chowanadisai W, Shen X, He H, Conway T, von Lintig J, Lin D. Astaxanthin-Shifted Gut Microbiota Is Associated with Inflammation and Metabolic Homeostasis in Mice. J Nutr 2020; 150:2687-2698. [PMID: 32810865 PMCID: PMC8023541 DOI: 10.1093/jn/nxaa222] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/06/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Astaxanthin is a red lipophilic carotenoid that is often undetectable in human plasma due to the limited supply in typical Western diets. Despite its presence at lower than detectable concentrations, previous clinical feeding studies have reported that astaxanthin exhibits potent antioxidant properties. OBJECTIVE We examined astaxanthin accumulation and its effects on gut microbiota, inflammation, and whole-body metabolic homeostasis in wild-type C57BL/6 J (WT) and β-carotene oxygenase 2 (BCO2) knockout (KO) mice. METHODS Six-wk-old male and female BCO2 KO and WT mice were provided with either nonpurified AIN93M (e.g., control diet) or the control diet supplemented with 0.04% astaxanthin (wt/wt) ad libitum for 8 wk. Whole-body energy expenditure was measured by indirect calorimetry. Feces were collected from individual mice for short-chain fatty acid assessment. Hepatic astaxanthin concentrations and liver metabolic markers, cecal gut microbiota profiling, inflammation markers in colonic lamina propria, and plasma samples were assessed. Data were analyzed by 3-way ANOVA followed by Tukey's post hoc analysis. RESULTS BCO2 KO but not WT mice fed astaxanthin had ∼10-fold more of this compound in liver than controls (P < 0.05). In terms of the microbiota composition, deletion of BCO2 was associated with a significantly increased abundance of Mucispirillum schaedleri in mice regardless of gender. In addition to more liver astaxanthin in male KO compared with WT mice fed astaxanthin, the abundance of gut Akkermansia muciniphila was 385% greater, plasma glucagon-like peptide 1 was 27% greater, plasma glucagon and IL-1β were 53% and 30% lower, respectively, and colon NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome activation was 23% lower (all P < 0.05) in male KO mice than the WT mice. CONCLUSIONS Astaxanthin affects the gut microbiota composition in both genders, but the association with reductions in local and systemic inflammation, oxidative stress, and improvement of metabolic homeostasis only occurs in male mice.
Collapse
Affiliation(s)
- Lei Wu
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Yi Lyu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Ramkumar Srinivasagan
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jinlong Wu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Babajide Ojo
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Minghua Tang
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Katherine Metzinger
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Brenda J Smith
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Edralin A Lucas
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Stephen L Clarke
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Winyoo Chowanadisai
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | | | - Hui He
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Tyrrell Conway
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Johannes von Lintig
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | |
Collapse
|
17
|
Carotenoid metabolism in mitochondrial function. FOOD QUALITY AND SAFETY 2020. [DOI: 10.1093/fqsafe/fyaa023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Mitochondria are highly dynamic organelles that are found in most eukaryotic organisms. It is broadly accepted that mitochondria originally evolved from prokaryotic bacteria, e.g. proteobacteria. The mitochondrion has its independent genome that encodes 37 genes, including 13 genes for oxidative phosphorylation. Accumulative evidence demonstrates that mitochondria are not only the powerhouse of the cells by supplying adenosine triphosphate, but also exert roles as signalling organelles in the cell fate and function. Numerous factors can affect mitochondria structurally and functionally. Carotenoids are a large group of fat-soluble pigments commonly found in our diets. Recently, much attention has been paid in carotenoids as dietary bioactives in mitochondrial structure and function in human health and disease, though the mechanistic research is limited. Here, we update the recent progress in mitochondrial functioning as signalling organelles in human health and disease, summarize the potential roles of carotenoids in regulation of mitochondrial redox homeostasis, biogenesis, and mitophagy, and discuss the possible approaches for future research in carotenoid regulation of mitochondrial function.
Collapse
|
18
|
Strong MD, Hart MD, Tang TZ, Ojo BA, Wu L, Nacke MR, Agidew WT, Hwang HJ, Hoyt PR, Bettaieb A, Clarke SL, Smith BJ, Stoecker BJ, Lucas EA, Lin D, Chowanadisai W. Role of zinc transporter ZIP12 in susceptibility-weighted brain magnetic resonance imaging (MRI) phenotypes and mitochondrial function. FASEB J 2020; 34:10702-12725. [PMID: 32716562 DOI: 10.1096/fj.202000772r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/01/2020] [Accepted: 07/10/2020] [Indexed: 12/16/2022]
Abstract
Brain zinc dysregulation is linked to many neurological disorders. However, the mechanisms regulating brain zinc homeostasis are poorly understood. We performed secondary analyses of brain MRI GWAS and exome sequencing data from adults in the UK Biobank. Coding ZIP12 polymorphisms in zinc transporter ZIP12 (SLC39A12) were associated with altered brain susceptibility weighted MRI (swMRI). Conditional and joint association analyses revealed independent GWAS signals in linkage disequilibrium with 2 missense ZIP12 polymorphisms, rs10764176 and rs72778328, with reduced zinc transport activity. ZIP12 rare coding variants predicted to be deleterious were associated with similar impacts on brain swMRI. In Neuro-2a cells, ZIP12 deficiency by short hairpin RNA (shRNA) depletion or CRISPR/Cas9 genome editing resulted in impaired mitochondrial function, increased superoxide presence, and detectable protein carbonylation. Inhibition of Complexes I and IV of the electron transport chain reduced neurite outgrowth in ZIP12 deficient cells. Transcriptional coactivator PGC-1α, mitochondrial superoxide dismutase (SOD2), and chemical antioxidants α-tocopherol, MitoTEMPO, and MitoQ restored neurite extension impaired by ZIP12 deficiency. Mutant forms of α-synuclein and tau linked to familial Parkinson's disease and frontotemporal dementia, respectively, reduced neurite outgrowth in cells deficient in ZIP12. Zinc and ZIP12 may confer resilience against neurological diseases or premature aging of the brain.
Collapse
Affiliation(s)
- Morgan D Strong
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Matthew D Hart
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Tony Z Tang
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Babajide A Ojo
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Lei Wu
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Mariah R Nacke
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Workneh T Agidew
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Hong J Hwang
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
| | - Peter R Hoyt
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee, Knoxville, TN, USA
| | - Stephen L Clarke
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Brenda J Smith
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Barbara J Stoecker
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Edralin A Lucas
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Dingbo Lin
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Winyoo Chowanadisai
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
19
|
Mechanistic understanding of β-cryptoxanthin and lycopene in cancer prevention in animal models. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158652. [PMID: 32035228 DOI: 10.1016/j.bbalip.2020.158652] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/26/2020] [Accepted: 01/28/2020] [Indexed: 02/07/2023]
Abstract
To better understand the potential function of carotenoids in the chemoprevention of cancers, mechanistic understanding of carotenoid action on genetic and epigenetic signaling pathways is critically needed for human studies. The use of appropriate animal models is the most justifiable approach to resolve mechanistic issues regarding protective effects of carotenoids at specific organs and tissue sites. While the initial impetus for studying the benefits of carotenoids in cancer prevention was their antioxidant capacity and pro-vitamin A activity, significant advances have been made in the understanding of the action of carotenoids with regards to other mechanisms. This review will focus on two common carotenoids, provitamin A carotenoid β-cryptoxanthin and non-provitamin A carotenoid lycopene, as promising chemopreventive agents or chemotherapeutic compounds against cancer development and progression. We reviewed animal studies demonstrating that β-cryptoxanthin and lycopene effectively prevent the development or progression of various cancers and the potential mechanisms involved. We highlight recent research that the biological functions of β-cryptoxanthin and lycopene are mediated, partially via their oxidative metabolites, through their effects on key molecular targeting events, such as NF-κB signaling pathway, RAR/PPARs signaling, SIRT1 signaling pathway, and p53 tumor suppressor pathways. The molecular targets by β-cryptoxanthin and lycopene, offer new opportunities to further our understanding of common and distinct mechanisms that involve carotenoids in cancer prevention. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
|
20
|
Carotenoids and fatty liver disease: Current knowledge and research gaps. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158597. [PMID: 31904420 DOI: 10.1016/j.bbalip.2019.158597] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/20/2022]
Abstract
Carotenoids form an important part of the human diet, consumption of which has been associated with many health benefits. With the growing global burden of liver disease, increasing attention has been paid on the possible beneficial role that carotenoids may play in the liver. This review focuses on carotenoid actions in non-alcoholic fatty liver disease (NAFLD), and alcoholic liver disease (ALD). Indeed, many human studies have suggested an association between decreased circulating levels of carotenoids and increased incidence of NAFLD and ALD. The literature describing supplementation of individual carotenoids in rodent models of NAFLD and ALD is reviewed, with particular attention paid to β-carotene and lycopene, but also including β-cryptoxanthin, lutein, zeaxanthin, and astaxanthin. The effect of beta-carotene oxygenase 1 and 2 knock-out mice on hepatic lipid metabolism is also discussed. In general, there is evidence to suggest that carotenoids have beneficial effects in animal models of both NAFLD and ALD. Mechanistically, these benefits may occur via three possible modes of action: 1) improved hepatic antioxidative status broadly attributed to carotenoids in general, 2) the generation of vitamin A from β-carotene and β-cryptoxanthin, leading to improved hepatic retinoid signaling, and 3) the generation of apocarotenoid metabolites from β-carotene and lycopene, that may regulate hepatic signaling pathways. Gaps in our knowledge regarding carotenoid mechanisms of action in the liver are highlighted throughout, and the review ends by emphasizing the importance of dose effects, mode of delivery, and mechanism of action as important areas for further study. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
|
21
|
Lehnert SJ, Christensen KA, Vandersteen WE, Sakhrani D, Pitcher TE, Heath JW, Koop BF, Heath DD, Devlin RH. Carotenoid pigmentation in salmon: variation in expression at BCO2-l locus controls a key fitness trait affecting red coloration. Proc Biol Sci 2019; 286:20191588. [PMID: 31615356 DOI: 10.1098/rspb.2019.1588] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Carotenoids are primarily responsible for the characteristic red flesh coloration of salmon. Flesh coloration is an economically and evolutionarily significant trait that varies inter- and intra-specifically, yet the underlying genetic mechanism is unknown. Chinook salmon (Oncorhynchus tshawytscha) represents an ideal system to study carotenoid variation as, unlike other salmonids, they exhibit extreme differences in carotenoid utilization due to genetic polymorphisms. Here, we crossed populations of Chinook salmon with fixed differences in flesh coloration (red versus white) for a genome-wide association study to identify loci associated with pigmentation. Here, the beta-carotene oxygenase 2-like (BCO2-l) gene was significantly associated with flesh colour, with the most significant single nucleotide polymorphism explaining 66% of the variation in colour. BCO2 gene disruption is linked to carotenoid accumulation in other taxa, therefore we hypothesize that an ancestral mutation partially disrupting BCO2-l activity (i.e. hypomorphic mutation) allowed the deposition and accumulation of carotenoids within Salmonidae. Indeed, we found elevated transcript levels of BCO2-l in white Chinook salmon relative to red. The long-standing mystery of why salmon are red, while no other fishes are, is thus probably explained by a hypomorphic mutation in the proto-salmonid at the time of divergence of red-fleshed salmonid genera (approx. 30 Ma).
Collapse
Affiliation(s)
- S J Lehnert
- Fisheries and Oceans Canada, West Vancouver, British Columbia, Canada.,Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
| | - K A Christensen
- Fisheries and Oceans Canada, West Vancouver, British Columbia, Canada.,University of Victoria, Victoria, British Columbia, Canada
| | - W E Vandersteen
- Fisheries and Oceans Canada, West Vancouver, British Columbia, Canada
| | - D Sakhrani
- Fisheries and Oceans Canada, West Vancouver, British Columbia, Canada
| | - T E Pitcher
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada.,Department of Integrative Biology, University of Windsor, Windsor, Ontario, Canada
| | - J W Heath
- Yellow Island Aquaculture Ltd., Quadra Island, British Columbia, Canada
| | - B F Koop
- University of Victoria, Victoria, British Columbia, Canada
| | - D D Heath
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada.,Department of Integrative Biology, University of Windsor, Windsor, Ontario, Canada
| | - R H Devlin
- Fisheries and Oceans Canada, West Vancouver, British Columbia, Canada
| |
Collapse
|
22
|
Fallahshahroudi A, Sorato E, Altimiras J, Jensen P. The Domestic BCO2 Allele Buffers Low-Carotenoid Diets in Chickens: Possible Fitness Increase Through Species Hybridization. Genetics 2019; 212:1445-1452. [PMID: 31160321 PMCID: PMC6707467 DOI: 10.1534/genetics.119.302258] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/29/2019] [Indexed: 01/04/2023] Open
Abstract
Domestic animals are adapted to conditions vastly different from those of their wild ancestors, and this is particularly true for their diets. The most numerous of all domestic species, the chicken, originated from the Red Junglefowl (RJF), a native of subtropical forests in Southeast Asia. Surprisingly however, in domestic chicken breeds, a common haplotype of the β-carotene oxygenase 2 (BCO2) gene, which is involved in carotenoid metabolism, is introgressed from a related species, the Gray Junglefowl, and has been under strong selective pressure during domestication. This suggests that a hybridization event may have conferred a fitness advantage on chickens carrying the derived allele. To investigate the possible biological function of the introgressed BCO2 allele in chicken, we introgressed the ancestral BCO2 allele into domestic White Leghorn chickens. We measured gene expression as well as carotenoid accumulation in skin and eggs of chickens carrying either the ancestral or the derived BCO2 allele. The derived haplotype was associated with down-regulation of BCO2 in skin, muscle, and adipose tissue, but not in liver or duodenum, indicating that carotenoid accumulation occurred in the tissues with reduced gene expression. Most importantly, we found that hens with the derived BCO2 genotype were capable of allocating stored carotenoids to their eggs, suggesting a functional benefit through buffering any shortage in the diet during egg production. Nevertheless, it is of interest that loss of function mutations in BCO2 gene are prevalent in other domesticates including cows, rabbits, and sheep, and, given the importance of carotenoids in development, reproduction, and immunity, it is possible that derived BCO2 alleles may provide a general mechanism in multiple domestic species to deal with higher demand for carotenoids in an environment with carotenoid shortage in the diet.
Collapse
Affiliation(s)
- Amir Fallahshahroudi
- Department of Medical Biochemistry and Microbiology, Biomedicine Centrum (BMC), Uppsala University, 752 37, Sweden
| | - Enrico Sorato
- Reneco International Wildlife Consultants, Abu Dhabi, UAE
| | - Jordi Altimiras
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, 58183, Sweden
| | - Per Jensen
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, 58183, Sweden
| |
Collapse
|
23
|
Intrinsic Effects of Gold Nanoparticles on Oxygen-Glucose Deprivation/Reperfusion Injury in Rat Cortical Neurons. Neurochem Res 2019; 44:1549-1566. [PMID: 31093902 DOI: 10.1007/s11064-019-02776-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 01/14/2023]
Abstract
This study aimed to investigate the potential effects of gold nanoparticles (Au-NPs) on rat cortical neurons exposed to oxygen-glucose deprivation/reperfusion (OGD/R) and to elucidate the corresponding mechanisms. Primary rat cortical neurons were exposed to OGD/R, which is commonly used in vitro to mimic ischemic injury, and then treated with 5- or 20-nm Au-NPs. We then evaluated cell viability, apoptosis, oxidative stress, and mitochondrial respiration in these neurons. We found that 20-nm Au-NPs increased cell viability, alleviated neuronal apoptosis and oxidative stress, and improved mitochondrial respiration after OGD/R injury, while opposite effects were observed for 5-nm Au-NPs. In terms of the underlying mechanisms, we found that Au-NPs could regulate Akt signaling. Taken together, these results show that 20-nm Au-NPs can protect primary cortical neurons against OGD/R injury, possibly by decreasing apoptosis and oxidative stress, while activating Akt signaling and mitochondrial pathways. Our results suggest that Au-NPs may be potential therapeutic agents for ischemic stroke.
Collapse
|
24
|
What if? Mouse proteomics after gene inactivation. J Proteomics 2019; 199:102-122. [DOI: 10.1016/j.jprot.2019.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/09/2019] [Accepted: 03/10/2019] [Indexed: 12/17/2022]
|
25
|
Cooperstone JL, Novotny JA, Riedl KM, Cichon MJ, Francis DM, Curley RW, Schwartz SJ, Harrison EH. Limited appearance of apocarotenoids is observed in plasma after consumption of tomato juices: a randomized human clinical trial. Am J Clin Nutr 2018; 108:784-792. [PMID: 30239552 PMCID: PMC6186210 DOI: 10.1093/ajcn/nqy177] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/03/2018] [Indexed: 12/28/2022] Open
Abstract
Background Nonvitamin A apocarotenoids occur in foods. Some function as retinoic acid receptor antagonists in vitro, though it is unclear if apocarotenoids are absorbed or accumulate to levels needed to elicit biological function. Objective The aim of this study was to quantify carotenoids and apocarotenoids (β-apo-8'-, -10'-, -12'-, and -14'-carotenal, apo-6'-, -8'-, -10'-, -12'-, and -14'-lycopenal, retinal, acycloretinal, β-apo-13-carotenone, and apo-13-lycopenone) in human plasma after controlled consumption of carotenoid-rich tomato juices. Design Healthy subjects (n = 35) consumed a low-carotenoid diet for 2 wk, then consumed 360 mL of high-β-carotene tomato juice (30.4 mg of β-carotene, 34.5 μg total β-apocarotenoids/d), high-lycopene tomato juice (42.5 mg of lycopene, 119.2 μg total apolycopenoids/d), or a carotenoid-free control (cucumber juice) per day for 4 wk. Plasma was sampled at baseline (after washout) and after 2 and 4 wk, and analyzed for carotenoids and apocarotenoids using high-pressure liquid chromatography (HPLC) and HPLC-tandem mass spectrometry, respectively. The methods used to analyze the apocarotenoids had limits of detection of ∼ 100 pmol/L. Results Apocarotenoids are present in tomato juices at 0.1-0.5% of the parent carotenoids. Plasma lycopene and β-carotene increased (P < 0.001) after consuming high-lycopene and β-carotene tomato juices, respectively, while retinol remained unchanged. β-Apo-13-carotenone was found in the blood of all subjects at every visit, although elevated (P < 0.001) after consuming β-carotene tomato juice for 4 wk (1.01 ± 0.27 nmol/L) compared with both baseline (0.37 ± 0.17 nmol/L) and control (0.46 ± 0.11 nmol/L). Apo-6'-lycopenal was detected or quantifiable in 29 subjects, while β-apo-10'- and 12'-carotenal were detected in 6 and 2 subjects, respectively. No other apolycopenoids or apocarotenoids were detected. Conclusions β-Apo-13-carotenone was the only apocarotenoid that was quantifiable in all subjects, and was elevated in those consuming high-β-carotene tomato juice. Levels were similar to previous reports of all-trans-retinoic acid. Other apocarotenoids are either poorly absorbed or rapidly metabolized or cleared, and so are absent or limited in blood. β-Apo-13-carotenone may form from vitamin A and its presence warrants further investigation. This trial was registered at clinicaltrials.gov as NCT02550483.
Collapse
Affiliation(s)
- Jessica L Cooperstone
- Horticulture and Crop Sciences, The Ohio State University, Columbus, OH,Food Science and Technology, The Ohio State University, Columbus, OH,Address correspondence to JLC (e-mail: )
| | - Janet A Novotny
- USDA Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD
| | - Ken M Riedl
- Food Science and Technology, The Ohio State University, Columbus, OH
| | - Morgan J Cichon
- Food Science and Technology, The Ohio State University, Columbus, OH
| | - David M Francis
- Horticulture and Crop Sciences, The Ohio State University, Columbus, OH
| | - Robert W Curley
- Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, OH
| | - Steven J Schwartz
- Food Science and Technology, The Ohio State University, Columbus, OH
| | - Earl H Harrison
- Human Sciences, Human Nutrition, The Ohio State University, Columbus, OH,Address correspondence to EHH (e-mail: )
| |
Collapse
|
26
|
Koriem KMM, Arbid MS. Evaluating of β-carotene role in ameliorating of favism-induced disturbances in blood and testis. ACTA ACUST UNITED AC 2018; 15:/j/jcim.ahead-of-print/jcim-2017-0164/jcim-2017-0164.xml. [DOI: 10.1515/jcim-2017-0164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/20/2018] [Indexed: 01/08/2023]
Abstract
Abstract
Background
Favism is an acute hemolytic anemia occurs in glucose 6-phosphate dehydrogenase (G6-PD) deficient individuals. β-Carotene occurs in vegetables such as carrots. This study aimed to establish the therapeutic effect of β-carotene to rebalance the testicular and blood proteins disturbances in favism.
Methods
Forty-eight male rats were divided into six equal groups; Groups 1, 2 and 3: normal rats were daily oral administrated with 1 ml saline, 1 ml corn oil and β-carotene (60 mg/kg dissolved in 1 ml corn oil), respectively, once a day over 15 days period. Group 4 (favism-induced group): normal rats injected intraperitoneal (ip) with diethyl maleate (5 μl/rat) and after 1 h injected ip with 1/3 LD50 of faba beans ethanolic extract for 15 day to induce favism. Groups 5 and 6: favism-induced rats were daily oral administered with 30 and 60 mg/kg β-carotene dissolved in 1 ml corn oil, respectively, once a day over 15 days.
Results
The results revealed that oral administration of corn oil or β-carotene into normal rats over 15 days period did not induce any change. In favism-induced groups, hematological parameters, liver function, serum glucose, G6-PD, luteinizing and follicle-stimulating hormones and sex-hormone binding globulin showed significant increase. Moreover, serum testosterone and dehydroepiandrosterone sulfate, testicular G6-PD, 3β-hydroxy steroid dehydrogenase, cholesterol and total protein were decreased. Treatment with both doses of β-carotene into favism groups restored all the abovementioned parameters to approach normal values. Favism inhibited blood proteins while β-carotene treatment into favism group stopped blood cells damage and blood proteins inhibition. These results were supported by histological studies.
Conclusions
In conclusion, taken β-carotene into favism group abolished testicular and blood proteins disturbances and this effect was dose dependent.
Collapse
|
27
|
Lim JY, Liu C, Hu KQ, Smith DE, Wang XD. Ablation of carotenoid cleavage enzymes (BCO1 and BCO2) induced hepatic steatosis by altering the farnesoid X receptor/miR-34a/sirtuin 1 pathway. Arch Biochem Biophys 2018; 654:1-9. [PMID: 30006135 DOI: 10.1016/j.abb.2018.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 12/12/2022]
Abstract
β-Carotene-15, 15'-oxygenase (BCO1) and β-carotene-9', 10'-oxygenase (BCO2) are essential enzymes in carotenoid metabolism. While BCO1/BCO2 polymorphisms have been associated with alterations to human and animal carotenoid levels, experimental studies have suggested that BCO1 and BCO2 may have specific physiological functions beyond the cleavage of carotenoids. In the present study, we investigated the effect of ablation of both BCO1/BCO2 in the development of non-alcoholic fatty liver disease (NAFLD) and its underlying molecular mechanism(s). BCO1/BCO2 double knock out (DKO) mice developed hepatic steatosis (8/8) and had significantly higher levels of hepatic and plasma triglyceride and total cholesterol compared to WT (0/8). Hepatic changes in the BCO1/BCO2 DKO mice were associated with significant: 1) increases in lipogenesis markers, and decreases in fatty acid β-oxidation markers; 2) upregulation of cholesterol metabolism markers; 3) alterations to microRNAs related to TG accumulation and cholesterol metabolism; 4) increases in an hepatic oxidative stress marker (HO-1) but decreases in anti-oxidant enzymes; and 5) decreases in farnesoid X receptor (FXR), small heterodimer partner (SHP), and sirtuin 1 (SIRT1). The present study provided novel experimental evidence that BCO1 and BCO2 could play a significant role in maintaining normal hepatic lipid and cholesterol homeostasis, potentially through the regulation of the FXR/miR-34a/SIRT1 pathway.
Collapse
Affiliation(s)
- Ji Ye Lim
- Nutrition and Cancer Biology Lab, USA; Biochemical and Molecular Nutrition Program, Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Chun Liu
- Nutrition and Cancer Biology Lab, USA
| | | | - Donald E Smith
- Comparative Biology Unit, JM USDA-HNRCA at Tufts University, Boston, MA, USA
| | - Xiang-Dong Wang
- Nutrition and Cancer Biology Lab, USA; Biochemical and Molecular Nutrition Program, Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA.
| |
Collapse
|
28
|
Abstract
Apocarotenoids are cleavage products of C40 isoprenoid pigments, named carotenoids, synthesized exclusively by plants and microorganisms. The colors of flowers and fruits and the photosynthetic process are examples of the biological properties conferred by carotenoids to these organisms. Mammals do not synthesize carotenoids but obtain them from foods of plant origin. Apocarotenoids are generated upon enzymatic and nonenzymatic cleavage of the parent compounds both in plants and in the tissues of mammals that have ingested carotenoid-containing foods. The best-characterized apocarotenoids are retinoids (vitamin A and its derivatives), generated upon central oxidative cleavage of provitamin A carotenoids, mainly β-carotene. In addition to the well-known biological actions of vitamin A, it is becoming apparent that nonretinoid apocarotenoids also have the potential to regulate a broad spectrum of critical cellular functions, thus influencing mammalian health. This review discusses the current knowledge about the generation and biological activities of nonretinoid apocarotenoids in mammals.
Collapse
Affiliation(s)
- Earl H Harrison
- Department of Human Sciences, The Ohio State University, Columbus, Ohio 43210, USA;
| | - Loredana Quadro
- Department of Food Science; Rutgers Center for Lipid Research; and New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901, USA;
| |
Collapse
|
29
|
Wu L, Guo X, Lyu Y, Clarke SL, Lucas EA, Smith BJ, Hildebrand D, Wang W, Medeiros DM, Shen X, Lin D. Targeted Metabolomics Reveals Abnormal Hepatic Energy Metabolism by Depletion of β-Carotene Oxygenase 2 in Mice. Sci Rep 2017; 7:14624. [PMID: 29116185 PMCID: PMC5677115 DOI: 10.1038/s41598-017-15222-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/23/2017] [Indexed: 12/20/2022] Open
Abstract
β-carotene oxygenase 2 (BCO2) is a carotenoid cleavage enzyme located in the inner mitochondrial membrane. Ablation of BCO2 impairs mitochondrial function leading to oxidative stress. Herein, we performed a targeted metabolomics study using ultrahigh performance liquid chromatography-tandem mass spectroscopy and gas chromatography-mass spectroscopy to discriminate global metabolites profiles in liver samples from six-week-old male BCO2 systemic knockout (KO), heterozygous (Het), and wild type (WT) mice fed a chow diet. Principal components analysis revealed distinct differences in metabolites in the livers of KO mice, compared to WT and Het mice. However, no marked difference was found in the metabolites of the Het mouse liver compared to the WT. We then conducted random forest analysis to classify the potential biomarkers to further elucidate the different metabolomics profiles. We found that systemic ablation of BCO2 led to perturbations in mitochondrial function and metabolism in the TCA cycle, amino acids, carnitine, lipids, and bile acids. In conclusion, BCO2 is essential to macronutrient and mitochondrial metabolism in the livers of mice. The ablation of BCO2 causes dysfunctional mitochondria and altered energy metabolism, which further leads to systemic oxidative stress and inflammation. A single functional copy of BCO2 largely rescues the hepatic metabolic homeostasis in mice.
Collapse
Affiliation(s)
- Lei Wu
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| | - Xin Guo
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| | - Yi Lyu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210046, China
| | - Stephen L Clarke
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| | - Edralin A Lucas
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| | - Brenda J Smith
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| | - Deana Hildebrand
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| | - Weiqun Wang
- Department of Food, Nutrition, Dietetics, and Health, Kansas State University, Manhattan, KS, 66506, USA
| | - Denis M Medeiros
- Graduate School, University of Missouri, Kansas City, MO, 64110, USA
| | - Xinchun Shen
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210046, China
| | - Dingbo Lin
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, Oklahoma, 74078, USA.
| |
Collapse
|