1
|
Lamkin K, Xu L, Wang K, Liu Y, Yang K, Wu H, Lu L, Shen X, Johnson CM, Jia J, Zhu J. Choline and betaine intakes during pregnancy in relation to risk of gestational diabetes mellitus among Chinese women. Br J Nutr 2024; 132:971-978. [PMID: 39429119 PMCID: PMC11576091 DOI: 10.1017/s0007114524001995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 06/04/2024] [Accepted: 07/11/2024] [Indexed: 10/22/2024]
Abstract
Previous animal studies found beneficial effects of choline and betaine on maternal glucose metabolism during pregnancy, but few human studies explored the association between choline or betaine intake and incident gestational diabetes mellitus (GDM). We aimed to explore the correlation of dietary choline or betaine intake with GDM risk among Chinese pregnant women. A total of 168 pregnant women with GDM cases and 375 healthy controls were enrolled at the Seventh People's Hospital in Shanghai during their GDM screening at 24-28 gestational weeks. A validated semi-quantitative FFQ was used to estimate choline and betaine consumption through face-to-face interviews. An unconditional logistic regression model was adopted to examine OR and 95 % CI. Compared with the controls, those women with GDM incidence were likely to have higher pre-pregnancy BMI, be older, have more parities and have higher plasma TAG and lower plasma HDL-cholesterol. No significant correlation was observed between the consumption of choline or betaine and incident GDM (adjusted OR (95 % CI), 0·77 (0·41, 1·43) for choline; 0·80 (0·42, 1·52) for betaine). However, there was a significant interaction between betaine intake and parity on the risk of GDM (Pfor interaction = 0·01). Among those women with no parity history, there was a significantly inverse correlation between betaine intake and GDM risk (adjusted OR (95 % CI), 0·25 (0·06, 0·81)). These findings indicated that higher dietary betaine intake during pregnancy might be considered a protective factor for GDM among Chinese women with no parity history.
Collapse
Affiliation(s)
- Kallie Lamkin
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, TX78666, USA
| | - Lan Xu
- Department of Epidemiology, School of Medicine, Shanghai Jiao Tong University, Shanghai200025, People’s Republic of China
| | - Kaipeng Wang
- Graduate School of Social Work, University of Denver, Denver, CO80208, USA
| | - Yuhong Liu
- Department of Gynecology and Obstetrics, Shanghai Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai200137, People’s Republic of China
| | - Kefeng Yang
- Department of Clinical Nutrition, College of Heath Science and Technology, School of Medicine, Shanghai Jiao Tong University, Shanghai200025, People’s Republic of China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai200092, People’s Republic of China
| | - Hui Wu
- Department of Clinical Nutrition, Shanghai Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai200137, People’s Republic of China
| | - Lingpeng Lu
- Department of Clinical Laboratory, Shanghai Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai200137, People’s Republic of China
| | - Xiaoxi Shen
- Department of Mathematics, Texas State University, San Marcos, TX78666, USA
| | - Cassandra M. Johnson
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, TX78666, USA
| | - Jie Jia
- Department of Clinical Nutrition, College of Heath Science and Technology, School of Medicine, Shanghai Jiao Tong University, Shanghai200025, People’s Republic of China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai200092, People’s Republic of China
| | - Jie Zhu
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, TX78666, USA
| |
Collapse
|
2
|
Ma S, Wang Y, Chen L, Wang W, Zhuang X, Liu Y, Zhao R. Parental betaine supplementation promotes gosling growth with epigenetic modulation of IGF gene family in the liver. J Anim Sci 2024; 102:skae065. [PMID: 38483185 PMCID: PMC10980284 DOI: 10.1093/jas/skae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/13/2024] [Indexed: 04/01/2024] Open
Abstract
Betaine is widely used as a feed additive in the chicken industry to promote laying performance and growth performance, yet it is unknown whether betaine can be used in geese to improve the laying performance of goose breeders and the growth traits of offspring goslings. In this study, laying goose breeders at 39 wk of age were fed basal (Control, CON) or betaine-supplemented diets at low (2.5 g/kg, LBT) or high (5 g/kg, HBT) levels for 7 wk, and the breeder eggs laid in the last week were collected for incubation. Offspring goslings were examined at 35 and 63 d of age. The laying rate tended to be increased (P = 0.065), and the feed efficiency of the breeders was improved by betaine supplementation, while the average daily gain of the offspring goslings was significantly increased (P < 0.05). Concentrations of insulin-like growth factor 2 (IGF-2) in serum and liver were significantly increased in the HBT group (P < 0.05), with age-dependent alterations of serum T3 levels. Concurrently, hepatic mRNA expression of the IGF gene family was significantly increased in goslings derived from betaine-treated breeders (P < 0.05). A higher ratio of proliferating cell nuclear antigen (PCNA)-immunopositive nuclei was found in the liver sections of the HBT group, which was confirmed by significantly upregulated hepatic expression of PCNA mRNA and protein (P < 0.05). Moreover, hepatic expression of thyroxine deiodinase type 1 (Dio1) and thyroid hormone receptor β (TRβ) was also significantly upregulated in goslings of the HBT group (P < 0.05). These changes were associated with significantly higher levels of global DNA 5-mC methylation, together with increased expression of methyl transfer genes (P < 0.05), including betaine-homocysteine methyltransferase (BHMT), glycine N-methyltransferase (GNMT), and DNA (cytosine-5-)-methyltransferase 1 (DNMT1). The promoter regions of IGF-2 genes, as well as the predicted TRβ binding site on the IGF-2 gene, were significantly hypomethylated (P < 0.05). These results indicate that gosling growth can be improved by dietary betaine supplementation in goose breeders via epigenetic modulation of the IGF gene family, especially IGF-2, in the liver.
Collapse
Affiliation(s)
- Shuai Ma
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yan Wang
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Liang Chen
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wenzheng Wang
- Jiangsu Lihua Animal Husbandry Co., Ltd., Changzhou, Jiangsu 213168, China
| | - Xinjuan Zhuang
- Jiangsu Lihua Animal Husbandry Co., Ltd., Changzhou, Jiangsu 213168, China
| | - Yuelong Liu
- Jiangsu Lihua Animal Husbandry Co., Ltd., Changzhou, Jiangsu 213168, China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
- National Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing 210095, PR China
| |
Collapse
|
3
|
Luo SS, Zou KX, Zhu H, Cheng Y, Yan YS, Sheng JZ, Huang HF, Ding GL. Integrated Multi-Omics Analysis Reveals the Effect of Maternal Gestational Diabetes on Fetal Mouse Hippocampi. Front Cell Dev Biol 2022; 10:748862. [PMID: 35237591 PMCID: PMC8883435 DOI: 10.3389/fcell.2022.748862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/19/2022] [Indexed: 11/25/2022] Open
Abstract
Growing evidence suggests that adverse intrauterine environments could affect the long-term health of offspring. Recent evidence indicates that gestational diabetes mellitus (GDM) is associated with neurocognitive changes in offspring. However, the mechanism remains unclear. Using a GDM mouse model, we collected hippocampi, the structure critical to cognitive processes, for electron microscopy, methylome and transcriptome analyses. Reduced representation bisulfite sequencing (RRBS) and RNA-seq in the GDM fetal hippocampi showed altered methylated modification and differentially expressed genes enriched in common pathways involved in neural synapse organization and signal transmission. We further collected fetal mice brains for metabolome analysis and found that in GDM fetal brains, the metabolites displayed significant changes, in addition to directly inducing cognitive dysfunction, some of which are important to methylation status such as betaine, fumaric acid, L-methionine, succinic acid, 5-methyltetrahydrofolic acid, and S-adenosylmethionine (SAM). These results suggest that GDM affects metabolites in fetal mice brains and further affects hippocampal DNA methylation and gene regulation involved in cognition, which is a potential mechanism for the adverse neurocognitive effects of GDM in offspring.
Collapse
Affiliation(s)
- Si-Si Luo
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Ke-Xin Zou
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Hong Zhu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yi Cheng
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yi-Shang Yan
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou, China
| | - Jian-Zhong Sheng
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou, China
| | - He-Feng Huang
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.,Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China.,The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou, China
| | - Guo-Lian Ding
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
4
|
Wang C, Ma C, Gong L, Dai S, Li Y. Preventive and therapeutic role of betaine in liver disease: A review on molecular mechanisms. Eur J Pharmacol 2021; 912:174604. [PMID: 34743980 DOI: 10.1016/j.ejphar.2021.174604] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/29/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022]
Abstract
Betaine is a kind of water-soluble quaternary amine-type alkaloid widely existing in food, such as wheat germ, beet, spinach, shrimp and wolfberry. As an important methyl donor and osmotic pressure regulator in human body, betaine plays an important role in a variety of physiological activities. In recent years, a large number of literatures have shown that betaine has good preventive and therapeutic effects on many liver diseases, including chemical or drug-induced liver injury, nonalcoholic fatty liver disease, alcoholic fatty liver disease, liver fibrosis, hepatitis B and hepatitis C. Therefore, by searching the databases of Web of Science, PubMed, SciFinder and CNKI, this paper has summarized the molecular mechanisms of betaine in improving liver diseases. The results show that the improvement of liver diseases by betaine is closely related to a variety of molecular mechanisms, including inhibition of inflammatory response, improvement of insulin resistance, reduction of endoplasmic reticulum stress, alleviation of liver oxidative stress, increase of autophagy, remodeling of intestinal flora and regulation of epigenetic modification. More importantly, nuclear transcription factor kappa (NF-κB), AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor α/γ (PPAR-α/γ), liver X receptor α (LXRα), protein kinase B (Akt), toll-like receptor 4 (TLR4) and cysteinyl aspartate specific proteinase-3 (Caspase-3) signaling pathways are considered as important molecular targets for betaine to improve liver diseases. These important findings will provide a direction and basis for further exploring the pathogenesis of various liver diseases and tapping the potential of betaine in the clinical treatment.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
5
|
Development of plasma functionalized polypropylene wound dressing for betaine hydrochloride controlled drug delivery on diabetic wounds. Sci Rep 2021; 11:9641. [PMID: 33953292 PMCID: PMC8100292 DOI: 10.1038/s41598-021-89105-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetes Mellitus is one of the most worrying issues among illnesses, and its chronic subsequences almost refer to inflammations and infections. The loading and local release of antioxidants to wounds may decrease inflammations. However, the low wettability of PolyPropylene (PP) restricts the drug from loading. So, to increase the adhesion of PP for loading an optimum amount of Betaine Hydrochloride (BET), plasma has been applied in two steps of functionalization and polymerization, which has been confirmed with FE-SEM, ATR-FTIR, and EDX. The new chemistry of the surface led to almost 80% of BET loaded. The drug-releasing ratio studied by HPLC approved the presence of a PEG-like layer, which was coated by polymerization of tetraglyme. To evaluate the wound healing potential of the application of PP meshes treated by plasma, 72 Wistar rats were subdivided into four groups. The skin injury site was removed and underwent biomechanical tests, stereological analysis, and RNA extraction. The results showed a significant improvement in the polymerized scaffold containing BET for skin injury. The present study suggests that the use of a modified PP mesh can induce tissue regeneration and accelerate wound healing at the skin injury site.
Collapse
|
6
|
He Q, Zou T, Chen J, Jian L, He J, Xia Y, Xie F, Wang Z, You J. Maternal Methyl-Donor Micronutrient Supplementation During Pregnancy Promotes Skeletal Muscle Differentiation and Maturity in Newborn and Weaning Pigs. Front Nutr 2020; 7:609022. [PMID: 33330599 PMCID: PMC7734050 DOI: 10.3389/fnut.2020.609022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022] Open
Abstract
Adequate maternal methyl-donor micronutrient (MET) intake is an important determinant of the organ development and metabolic renovation of offspring. The mechanism involved in skeletal myogenesis and the effect of MET supplementation during pregnancy on the maternal body remain unclear. Thus, this study aimed to investigate the potential effect of methyl donor micronutrients (MET) on skeletal muscle development and metabolism in offspring using pig models. Forty-three Duroc × Erhualian gilts were assigned to two dietary groups during gestation: control diet (CON) and CON diet supplemented with MET (folic acid, methionine, choline, vitamin B6, and vitamin B12). The results showed that maternal MET exposure during pregnancy significantly increased the concentrations of protein, triiodothyronine (T3), and thyroxine (T4) in colostrum and methyl metabolites, including S-adenosylmethionine (SAM), S-adenosyl-L-homocysteine (SAH), 5-methyl-tetrahydrofolate (5-MTHF), and betaine, in the maternal and offspring umbilical vein serum. A similar pattern was demonstrated in the body weight gain and myofiber diameters in offspring. In addition, maternal MET supplementation significantly increased the concentration of offspring serum insulin-like growth factor 1 (IGF-1), T3, and T4; upregulated the mRNA expression of IGF-1 and IGF-1 receptor (IGF-1r) and the phosphorylation level of protein kinases in offspring longissimus dorsi muscle; and upregulated the expression of myogenic genes and fast myosin heavy chain (fast MyHC) in offspring skeletal muscle. Supplementing sows with higher levels of MET during gestation may promote skeletal muscle differentiation and maturity and improve the skeletal muscle mass of the piglets.
Collapse
Affiliation(s)
- Qin He
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China.,Key Innovation Center for Industry-Education Integration of High-Quality and Safety Livestock Production in Jiangxi Province, Nanchang, China
| | - Tiande Zou
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China.,Key Innovation Center for Industry-Education Integration of High-Quality and Safety Livestock Production in Jiangxi Province, Nanchang, China
| | - Jun Chen
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China.,Key Innovation Center for Industry-Education Integration of High-Quality and Safety Livestock Production in Jiangxi Province, Nanchang, China
| | - Li Jian
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China.,Key Innovation Center for Industry-Education Integration of High-Quality and Safety Livestock Production in Jiangxi Province, Nanchang, China
| | - Jia He
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China.,Key Innovation Center for Industry-Education Integration of High-Quality and Safety Livestock Production in Jiangxi Province, Nanchang, China
| | - Yingying Xia
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China.,Key Innovation Center for Industry-Education Integration of High-Quality and Safety Livestock Production in Jiangxi Province, Nanchang, China
| | - Fei Xie
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China.,Key Innovation Center for Industry-Education Integration of High-Quality and Safety Livestock Production in Jiangxi Province, Nanchang, China
| | - Zirui Wang
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China.,Key Innovation Center for Industry-Education Integration of High-Quality and Safety Livestock Production in Jiangxi Province, Nanchang, China
| | - Jinming You
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China.,Key Innovation Center for Industry-Education Integration of High-Quality and Safety Livestock Production in Jiangxi Province, Nanchang, China
| |
Collapse
|
7
|
Yang Y, Yang S, Jia Y, Yin C, Zhao R. Sex-biased transgenerational transmission of betaine-induced epigenetic modifications in glucocorticoid receptor gene and its down-stream BDNF/ERK pathway in rat hippocampus. Nutr Neurosci 2020; 25:746-757. [PMID: 32840180 DOI: 10.1080/1028415x.2020.1807711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Objectives: Glucocorticoid receptor (GR) expressed in hippocampus is critical for the homeostasis of stress responses and susceptible to epigenetic modulation caused by maternal factors. Here we show that maternal methyl nutrition causes sex-biased changes in hippocampal expression of GR exon 1 mRNA variants, associated with promoter DNA methylation, across two offspring generations in rats.Methods: Three-month-old female Sprague-Dawley rats (F0) were fed a diet supplemented with 1% betaine throughout the gestation and lactation. F0 dams and their F1 and F2 offspring of both sexes at weaning were used in the study.Results: A sex-specific transgenerational effect was observed. F2 females, but not males, followed the same pattern of their grand dams showing increased mRNA expression of total GR and its exons 1.4, 1.7, 1.10 and 1.11 variants coincided with promoter DNA hypomethylation in the hippocampus. However, F1 females, but not males, exhibited an opposite pattern, showing decreased expression of GR and its mRNA variants accompanied with promoter hypermethylation. The protein content of phospho-GR and BDNF/ERK in the hippocampus displayed the same sex and generation specificity.Discussion: These results indicate that maternal betaine exerts transgenerational effects on hippocampal GR expression and BDNF/ERK pathway in female rat offspring, with generation-dependent patterns of DNA methylation on alternative GR promoters.
Collapse
Affiliation(s)
- Yang Yang
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, People's Republic of China.,Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Shu Yang
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, People's Republic of China.,Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Yimin Jia
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, People's Republic of China.,Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Chao Yin
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, People's Republic of China.,Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Ruqian Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, People's Republic of China.,Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, People's Republic of China
| |
Collapse
|
8
|
The Effects of Maternal and Postnatal Dietary Methyl Nutrients on Epigenetic Changes that Lead to Non-Communicable Diseases in Adulthood. Int J Mol Sci 2020; 21:ijms21093290. [PMID: 32384688 PMCID: PMC7246552 DOI: 10.3390/ijms21093290] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022] Open
Abstract
The risk for non-communicable diseases in adulthood can be programmed by early nutrition. This programming is mediated by changes in expression of key genes in various metabolic pathways during development, which persist into adulthood. These developmental modifications of genes are due to epigenetic alterations in DNA methylation patterns. Recent studies have demonstrated that DNA methylation can be affected by maternal or early postnatal diets. Because methyl groups for methylation reactions come from methionine cycle nutrients (i.e., methionine, choline, betaine, folate), deficiency or supplementation of these methyl nutrients can directly change epigenetic regulation of genes permanently. Although many studies have described the early programming of adult diseases by maternal and infant nutrition, this review discusses studies that have associated early dietary methyl nutrient manipulation with direct effects on epigenetic patterns that could lead to chronic diseases in adulthood. The maternal supply of methyl nutrients during gestation and lactation can alter epigenetics, but programming effects vary depending on the timing of dietary intervention, the type of methyl nutrient manipulated, and the tissue responsible for the phenotype. Moreover, the postnatal manipulation of methyl nutrients can program epigenetics, but more research is needed on whether this approach can rescue maternally programmed offspring.
Collapse
|
9
|
Yang S, Zhao N, Sun B, Yang Y, Hu Y, Zhao R. Grandmaternal betaine supplementation enhances hepatic IGF2 expression in F2 rat offspring through modification of promoter DNA methylation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:1486-1494. [PMID: 31756772 DOI: 10.1002/jsfa.10156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/07/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND We reported previously that maternal betaine promotes hepatic insulin-like growth factor (IGF2) expression in F1 offspring rats through hypermethylation of the IGF2/H19 imprinting control region (ICR). It remains unknown whether this acquired trait can be transmitted to the F2 generation. This study aimed to determine whether dietary betaine supplementation to grand dams affects the hepatic IGF2 expression in F2 rat offspring and how it is related to alterations in DNA methylation. F2 rat offspring derived from grand dams fed basal or betaine-supplemented diet (10 g kg-1 ) were examined at weaning. Serum IGF2 concentration was measured with enzyme-linked immunosorbent assay (ELISA). Hepatic expression of IGF2, together with other proliferation and apoptosis markers, was determined by using quantitative polymerase chain reaction (qPCR), western blot, and immunohistochemistry. The methylation status of the IGF2/H19 ICR and the promoters of IGF2 gene were detected by methylated DNA immunoprecipitation quantitative polymerase chain reaction (MeDIP-qPCR). RESULTS The maternal betaine-induced up-regulation of hepatic IGF2 expression in F1 rat offspring was transmitted to the F2 generation. The F2 rats from the betaine group demonstrated enhanced hepatic IGF2 expression at both mRNA and protein levels, in association with higher serum IGF2 concentration. No alterations were observed in the ICR methylation of the IGF2/H19 locus, and hypomethylation was detected in promoters of IGF2 gene in betaine group. CONCLUSION These results indicate that maternal betaine enhances hepatic IGF2 expression in F2 rat offspring through modification of DNA methylation on IGF2 promoters. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shu Yang
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, P. R. China
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, P. R. China
| | - Nannan Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, P. R. China
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, P. R. China
| | - Bo Sun
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, P. R. China
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, P. R. China
| | - Yang Yang
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, P. R. China
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, P. R. China
| | - Yun Hu
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, P. R. China
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, P. R. China
| | - Ruqian Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, P. R. China
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, P. R. China
| |
Collapse
|
10
|
Turi KN, Romick-Rosendale L, Gebretsadik T, Watanabe M, Brunwasser S, Anderson LJ, Moore ML, Larkin EK, Peebles RS, Hartert TV. Using urine metabolomics to understand the pathogenesis of infant respiratory syncytial virus (RSV) infection and its role in childhood wheezing. Metabolomics 2018; 14:135. [PMID: 30830453 PMCID: PMC6557166 DOI: 10.1007/s11306-018-1431-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 09/21/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Respiratory syncytial virus (RSV) infection in infants causes significant morbidity and is the strongest risk factor associated with asthma. Metabolites, which reflect the interactions between host cell and virus, provide an opportunity to identify the pathways that underlie severe infections and asthma development. OBJECTIVE To study metabolic profile differences between infants with RSV infection, and human rhinovirus (HRV) infection, and healthy infants. To compare infant metabolic differences between children who do and do not wheeze. METHODS In a term birth cohort, urine was collected while healthy and during acute viral respiratory infection with RSV and HRV. We used 1H-NMR to identify urinary metabolites. Multivariate and univariate statistics were used to discriminate metabolic profiles of infants with either RSV ARI, or HRV ARI, and healthy infants. Multivariable logistic regression was used to assess the association of urine metabolites with 1st-, 2nd-, and 3rd-year recurrent wheezing. RESULTS Several metabolites in nicotinate and nicotinamide metabolism pathways were down-regulated in infants with RSV infection compared to healthy controls. There were no significant differences in metabolite profiles between infants with RSV infection and infants with HRV Infection. Alanine was strongly associated with reduced risk of 1st-year wheezing (OR 0.18[0.0, 0.46]) and 2nd-year wheezing (OR 0.31[0.13, 0.73]), while 2-hydroxyisobutyric acid was associated with increased 3rd-year wheezing (OR 5.02[1.49, 16.93]) only among the RSV infected subset. CONCLUSION The metabolites associated with infant RSV infection and recurrent-wheezing are indicative of viral takeover of the cellular machinery and resources to enhance virulence, replication, and subversion of the host immune-response, highlighting metabolic pathways important in the pathogenesis of RSV infection and wheeze development.
Collapse
Affiliation(s)
- Kedir N Turi
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, 2525 West End Avenue, Suite 450, Nashville, TN, 37203, USA
| | - Lindsey Romick-Rosendale
- Department of Pathology, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Tebeb Gebretsadik
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Miki Watanabe
- Department of Pathology, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Steven Brunwasser
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, 2525 West End Avenue, Suite 450, Nashville, TN, 37203, USA
| | | | - Martin L Moore
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Emma K Larkin
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, 2525 West End Avenue, Suite 450, Nashville, TN, 37203, USA
| | - Ray Stokes Peebles
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, 2525 West End Avenue, Suite 450, Nashville, TN, 37203, USA
| | - Tina V Hartert
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, 2525 West End Avenue, Suite 450, Nashville, TN, 37203, USA.
| |
Collapse
|
11
|
Jin C, Zhuo Y, Wang J, Zhao Y, Xuan Y, Mou D, Liu H, Zhou P, Fang Z, Che L, Xu S, Feng B, Li J, Jiang X, Lin Y, Wu D. Methyl donors dietary supplementation to gestating sows diet improves the growth rate of offspring and is associating with changes in expression and DNA methylation of insulin-like growth factor-1 gene. J Anim Physiol Anim Nutr (Berl) 2018; 102:1340-1350. [PMID: 29959805 DOI: 10.1111/jpn.12933] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/27/2018] [Accepted: 05/06/2018] [Indexed: 01/08/2023]
Abstract
The study aimed to investigate the effects of maternal dietary methyl donors on the performance of sows and their offspring, and the associated hepatic insulin-like growth factor-1 (IGF-1) expression of the offspring. A total of 24 multiparous sows were randomly fed the control (CON) or the CON diet supplemented with methyl donors (MD) at 3 g/kg betaine, 15 mg/kg folic acid, 400 mg/kg choline and 150 μg/kg VB12 , from mating until delivery. After farrowing, sows were fed a common lactation diet through a 28-days lactation period and six litters per treatment were selected to be fed until at approximately 110 kg BW. Maternal MD supplementation resulted in greater birthweight (p < 0.05) and increased the piglet weights (p < 0.01) and litter weights (p < 0.05) at the age of day 28, compared with that in CON group. The offspring pigs in the MD group had greater ADG (p < 0.05) and tended to lower F:G ratio (p = 0.07) compared with that of CON group from day 28 to 180 of age. The offspring pigs from MD group had greater serum IGF-1 concentrations and expressions of hepatic IGF-1 gene and muscular IGF-1 receptor (IGF-1r) protein at birth (p < 0.05), and greater hepatic IGF-1 protein (p = 0.03) and muscular IGF-1r gene expressions (p < 0.05) at slaughter, than that from the CON group. Moreover, the methylation at the promoter of IGF-1 gene in the liver of newborn piglets and finishing pigs was greater in the MD group than that of the CON group (p < 0.05). In conclusion, maternal MD supplementation throughout gestation could enhance the birthweight and postnatal growth rate of offspring, associated with an increased expression of the IGF-1 gene and IGF-1r, as well as the altered DNA methylation of IGF-1 gene promotor.
Collapse
Affiliation(s)
- Chao Jin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhuo
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jun Wang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yang Zhao
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuedong Xuan
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Daolin Mou
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Hong Liu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Pan Zhou
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Lianqiang Che
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Shengyu Xu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Bin Feng
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Li
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xuemei Jiang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yan Lin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - De Wu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
12
|
Hou Z, Sun Q, Hu Y, Yang S, Zong Y, Zhao R. Maternal betaine administration modulates hepatic type 1 iodothyronine deiodinase (Dio1) expression in chicken offspring through epigenetic modifications. Comp Biochem Physiol B Biochem Mol Biol 2018; 218:30-36. [DOI: 10.1016/j.cbpb.2018.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 10/18/2022]
|
13
|
Zhao N, Yang S, Jia Y, Sun B, He B, Zhao R. Maternal betaine supplementation attenuates glucocorticoid-induced hepatic lipid accumulation through epigenetic modification in adult offspring rats. J Nutr Biochem 2018; 54:105-112. [DOI: 10.1016/j.jnutbio.2017.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/15/2017] [Accepted: 12/06/2017] [Indexed: 12/21/2022]
|
14
|
Yang S, Zhao N, Yang Y, Hu Y, Dong H, Zhao R. Mitotically Stable Modification of DNA Methylation in IGF2/H19 Imprinting Control Region Is Associated with Activated Hepatic IGF2 Expression in Offspring Rats from Betaine-Supplemented Dams. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2704-2713. [PMID: 29376352 DOI: 10.1021/acs.jafc.7b05418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The growth-promoting action of betaine involves activation of GH/IGF-1 signaling, yet it remains unclear whether insulin-like growth factor 2 (IGF2), an imprinting gene, is affected by maternal dietary betaine supplementation. In this study, F1 offspring rats derived from dams fed basal or betaine-supplemented diet were examined at D21 and D63. Maternal betaine significantly upregulated the hepatic expression of IGF2 mRNA and protein in offspring rats at both D21 and D63, which was accompanied by enhanced hepatic IGF2 immunoreactivity and elevated serum IGF-2 level. Higher protein expression of betaine-homocysteine methyltransferase and DNA methyltransferase 1 was detected in the betaine group at D21, but not D63. However, hypermethylation of the imprinting control region of the IGF2/H19 locus at D21 was maintained at D63. These results indicate that maternal betaine modifies DNA methylation of IGF2/H19 imprinting control region in a mitotically stable fasion, which was associated with the activation hepatic IGF2 expression in offspring rats.
Collapse
Affiliation(s)
- Shu Yang
- MOE Joint International Research Laboratory of Animal Health & Food Safety , Nanjing Agricultural University , Nanjing 210095 , P. R. China
- Key Laboratory of Animal Physiology & Biochemistry , Nanjing Agricultural University , Nanjing 210095 , P. R. China
| | - Nannan Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety , Nanjing Agricultural University , Nanjing 210095 , P. R. China
- Key Laboratory of Animal Physiology & Biochemistry , Nanjing Agricultural University , Nanjing 210095 , P. R. China
| | - Yang Yang
- MOE Joint International Research Laboratory of Animal Health & Food Safety , Nanjing Agricultural University , Nanjing 210095 , P. R. China
- Key Laboratory of Animal Physiology & Biochemistry , Nanjing Agricultural University , Nanjing 210095 , P. R. China
| | - Yun Hu
- MOE Joint International Research Laboratory of Animal Health & Food Safety , Nanjing Agricultural University , Nanjing 210095 , P. R. China
- Key Laboratory of Animal Physiology & Biochemistry , Nanjing Agricultural University , Nanjing 210095 , P. R. China
| | - Haibo Dong
- MOE Joint International Research Laboratory of Animal Health & Food Safety , Nanjing Agricultural University , Nanjing 210095 , P. R. China
- Key Laboratory of Animal Physiology & Biochemistry , Nanjing Agricultural University , Nanjing 210095 , P. R. China
| | - Ruqian Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety , Nanjing Agricultural University , Nanjing 210095 , P. R. China
- Key Laboratory of Animal Physiology & Biochemistry , Nanjing Agricultural University , Nanjing 210095 , P. R. China
| |
Collapse
|
15
|
Zhang D, Jing H, Dou C, Zhang L, Wu X, Wu Q, Song H, Li D, Wu F, Liu Y, Li W, Wang R. Supplement of Betaine into Embryo Culture Medium Can Rescue Injury Effect of Ethanol on Mouse Embryo Development. Sci Rep 2018; 8:1761. [PMID: 29379082 PMCID: PMC5789050 DOI: 10.1038/s41598-018-20175-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/15/2018] [Indexed: 02/06/2023] Open
Abstract
Mammal embryos can be impaired by mother’s excessive ethanol uptake, which induces a higher level of reactive oxygen species (ROS) and interferes in one carbon unit metabolism. Here, our analysis by in vitro culture system reveals immediate effect of ethanol in medium on mouse embryo development presents concentration dependent. A preimplantation embryo culture using medium contained 1% ethanol could impact greatly early embryos development, and harmful effect of ethanol on preimplantation embryos would last during the whole development period including of reducing ratio of blastocyst formation and implantation, and deteriorating postimplantation development. Supplement of 50 μg/ml betaine into culture medium can effectively reduce the level of ROS caused by ethanol in embryo cells and rescue embryo development at each stage damaged by ethanol, but supplement of glycine can’t rescue embryo development as does betaine. Results of 5-methylcytosine immunodetection indicate that supplement of betaine into medium can reduce the rising global level of genome DNA methylation in blastocyst cells caused by 1% ethanol, but glycine can’t play the same impact. The current findings demonstrate that betaine can effectively rescue development of embryos harmed by ethanol, and possibly by restoring global level of genome DNA methylation in blastocysts.
Collapse
Affiliation(s)
- Di Zhang
- School of Biological and Food Engineering, Fuyang Teachers College, Fuyang, 236037, China. .,Key Laboratory of Embryo Development and Reproductive Regulation in Anhui, Fuyang, 236037, China.
| | - Huaijiang Jing
- School of Biological and Food Engineering, Fuyang Teachers College, Fuyang, 236037, China.,Key Laboratory of Embryo Development and Reproductive Regulation in Anhui, Fuyang, 236037, China
| | - Changfeng Dou
- School of Biological and Food Engineering, Fuyang Teachers College, Fuyang, 236037, China.,Key Laboratory of Embryo Development and Reproductive Regulation in Anhui, Fuyang, 236037, China
| | - Ling Zhang
- School of Biological and Food Engineering, Fuyang Teachers College, Fuyang, 236037, China.,Key Laboratory of Embryo Development and Reproductive Regulation in Anhui, Fuyang, 236037, China
| | - Xiaoqing Wu
- School of Biological and Food Engineering, Fuyang Teachers College, Fuyang, 236037, China.,Key Laboratory of Embryo Development and Reproductive Regulation in Anhui, Fuyang, 236037, China
| | - Qingqing Wu
- School of Biological and Food Engineering, Fuyang Teachers College, Fuyang, 236037, China.,Key Laboratory of Embryo Development and Reproductive Regulation in Anhui, Fuyang, 236037, China
| | - Haoyang Song
- School of Biological and Food Engineering, Fuyang Teachers College, Fuyang, 236037, China.,Key Laboratory of Embryo Development and Reproductive Regulation in Anhui, Fuyang, 236037, China
| | - Dengkun Li
- School of Biological and Food Engineering, Fuyang Teachers College, Fuyang, 236037, China.,Key Laboratory of Embryo Development and Reproductive Regulation in Anhui, Fuyang, 236037, China
| | - Fengrui Wu
- School of Biological and Food Engineering, Fuyang Teachers College, Fuyang, 236037, China.,Key Laboratory of Embryo Development and Reproductive Regulation in Anhui, Fuyang, 236037, China
| | - Yong Liu
- School of Biological and Food Engineering, Fuyang Teachers College, Fuyang, 236037, China.,Key Laboratory of Embryo Development and Reproductive Regulation in Anhui, Fuyang, 236037, China
| | - Wenyong Li
- School of Biological and Food Engineering, Fuyang Teachers College, Fuyang, 236037, China.,Key Laboratory of Embryo Development and Reproductive Regulation in Anhui, Fuyang, 236037, China
| | - Rong Wang
- School of Biological and Food Engineering, Fuyang Teachers College, Fuyang, 236037, China. .,Key Laboratory of Embryo Development and Reproductive Regulation in Anhui, Fuyang, 236037, China.
| |
Collapse
|