1
|
Landberg R, Karra P, Hoobler R, Loftfield E, Huybrechts I, Rattner JI, Noerman S, Claeys L, Neveu V, Vidkjaer NH, Savolainen O, Playdon MC, Scalbert A. Dietary biomarkers-an update on their validity and applicability in epidemiological studies. Nutr Rev 2024; 82:1260-1280. [PMID: 37791499 PMCID: PMC11317775 DOI: 10.1093/nutrit/nuad119] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
The aim of this literature review was to identify and provide a summary update on the validity and applicability of the most promising dietary biomarkers reflecting the intake of important foods in the Western diet for application in epidemiological studies. Many dietary biomarker candidates, reflecting intake of common foods and their specific constituents, have been discovered from intervention and observational studies in humans, but few have been validated. The literature search was targeted for biomarker candidates previously reported to reflect intakes of specific food groups or components that are of major importance in health and disease. Their validity was evaluated according to 8 predefined validation criteria and adapted to epidemiological studies; we summarized the findings and listed the most promising food intake biomarkers based on the evaluation. Biomarker candidates for alcohol, cereals, coffee, dairy, fats and oils, fruits, legumes, meat, seafood, sugar, tea, and vegetables were identified. Top candidates for all categories are specific to certain foods, have defined parent compounds, and their concentrations are unaffected by nonfood determinants. The correlations of candidate dietary biomarkers with habitual food intake were moderate to strong and their reproducibility over time ranged from low to high. For many biomarker candidates, critical information regarding dose response, correlation with habitual food intake, and reproducibility over time is yet unknown. The nutritional epidemiology field will benefit from the development of novel methods to combine single biomarkers to generate biomarker panels in combination with self-reported data. The most promising dietary biomarker candidates that reflect commonly consumed foods and food components for application in epidemiological studies were identified, and research required for their full validation was summarized.
Collapse
Affiliation(s)
- Rikard Landberg
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Prasoona Karra
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
- Cancer Control and Population Sciences Program, Huntsman Cancer Institute, University of Utah Salt Lake City, UT, USA
| | - Rachel Hoobler
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
- Cancer Control and Population Sciences Program, Huntsman Cancer Institute, University of Utah Salt Lake City, UT, USA
| | - Erikka Loftfield
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Inge Huybrechts
- International Agency for Research on Cancer, Nutrition and Metabolism Branch, Lyon, France
| | - Jodi I Rattner
- International Agency for Research on Cancer, Nutrition and Metabolism Branch, Lyon, France
| | - Stefania Noerman
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Liesel Claeys
- International Agency for Research on Cancer, Molecular Mechanisms and Biomarkers Group, Lyon, France
| | - Vanessa Neveu
- International Agency for Research on Cancer, Nutrition and Metabolism Branch, Lyon, France
| | - Nanna Hjort Vidkjaer
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Otto Savolainen
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Mary C Playdon
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
- Cancer Control and Population Sciences Program, Huntsman Cancer Institute, University of Utah Salt Lake City, UT, USA
| | - Augustin Scalbert
- International Agency for Research on Cancer, Nutrition and Metabolism Branch, Lyon, France
| |
Collapse
|
2
|
Cuparencu C, Bulmuş-Tüccar T, Stanstrup J, La Barbera G, Roager HM, Dragsted LO. Towards nutrition with precision: unlocking biomarkers as dietary assessment tools. Nat Metab 2024; 6:1438-1453. [PMID: 38956322 DOI: 10.1038/s42255-024-01067-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/20/2024] [Indexed: 07/04/2024]
Abstract
Precision nutrition requires precise tools to monitor dietary habits. Yet current dietary assessment instruments are subjective, limiting our understanding of the causal relationships between diet and health. Biomarkers of food intake (BFIs) hold promise to increase the objectivity and accuracy of dietary assessment, enabling adjustment for compliance and misreporting. Here, we update current concepts and provide a comprehensive overview of BFIs measured in urine and blood. We rank BFIs based on a four-level utility scale to guide selection and identify combinations of BFIs that specifically reflect complex food intakes, making them applicable as dietary instruments. We discuss the main challenges in biomarker development and illustrate key solutions for the application of BFIs in human studies, highlighting different strategies for selecting and combining BFIs to support specific study designs. Finally, we present a roadmap for BFI development and implementation to leverage current knowledge and enable precision in nutrition research.
Collapse
Affiliation(s)
- Cătălina Cuparencu
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark.
| | - Tuğçe Bulmuş-Tüccar
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
- Department of Nutrition and Dietetics, Yüksek İhtisas University, Ankara, Turkey
| | - Jan Stanstrup
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Giorgia La Barbera
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Henrik M Roager
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Lars O Dragsted
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
3
|
Wu X, Pan D, Xia Q, Sun Y, Geng F, Cao J, Zhou C. The combination of high-throughput sequencing and LC-MS/MS reveals the mechanism of Staphylococcus inoculation on bacterial community succession and taste development during the processing of dry-cured bacon. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7187-7198. [PMID: 37351843 DOI: 10.1002/jsfa.12806] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND To understand the mechanism of co-inoculation of Staphylococcus vitulinus and Staphylococcus xylosus (SX&SV) on taste quality of dry-cured bacon, physicochemical parameters, microbial community, metabolite compositions and taste attributes were investigated during the processing of dry-cured bacon with Staphylococcus inoculation. The potential correlation between core bacteria and metabolites was evaluated, and the metabolic pathway of key metabolites was further explored. RESULTS The values of pH, water activity and adhesiveness were significantly lower in SX&SV, and more than 2.56- and 2.15-fold higher values in richness and overall acceptance were found in SX&SV bacon than in CK bacon. The overwhelming advantage of Staphylococcus was confirmed in SX&SV by high-throughput sequencing. Sixty-six metabolites were identified by liquid chromatography-tandem mass spectrometry, and oligopeptides, amino acid derivatives and organic acids were the key components. Pearson correlation demonstrated that the accumulation of oligopeptides, amino acid derivatives and organic acids were positively correlated with high abundance of Staphylococcus. The pathways of purine metabolism, glutathione metabolism and glutamate metabolism were mainly involved in developing the taste quality of SX&SV. CONCLUSION The co-inoculation of Staphylococcus vitulinus and Staphylococcus xylosus enhanced the taste attributes of dry-cured bacon. The present study provides the theoretical reference with respect to regulating the taste quality of fermented meat products by starter cultures of Staphylococcus during manufacture. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xueyi Wu
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; college of food science and pharmaceutical sciences, Ningbo University, Ningbo, China
| | - Daodong Pan
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; college of food science and pharmaceutical sciences, Ningbo University, Ningbo, China
| | - Qiang Xia
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; college of food science and pharmaceutical sciences, Ningbo University, Ningbo, China
| | - Yangying Sun
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; college of food science and pharmaceutical sciences, Ningbo University, Ningbo, China
| | - Fang Geng
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Jinxuan Cao
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; college of food science and pharmaceutical sciences, Ningbo University, Ningbo, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Changyu Zhou
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; college of food science and pharmaceutical sciences, Ningbo University, Ningbo, China
| |
Collapse
|
4
|
Tang YP, Zhang XB, Hu ZX, Lin K, Lin Z, Chen TY, Wu RH, Chi ZL. Vitreous metabolomic signatures of pathological myopia with complications. Eye (Lond) 2023; 37:2987-2993. [PMID: 36841867 PMCID: PMC10516974 DOI: 10.1038/s41433-023-02457-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/17/2023] [Accepted: 02/15/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Pathological myopia (PM) is closely associated with blinding ocular morbidities. Identifying biomarkers can provide clues on pathogeneses. This study aimed to identify metabolic biomarkers and underlying mechanisms in the vitreous humour (VH) of PM patients with complications. METHODS VH samples were collected from 39 PM patients with rhegmatogenous retinal detachment (RRD) (n = 23) or macular hole (MH)/myopic retinoschisis (MRS) (n = 16) and 23 controls (MH with axial length < 26 mm) who underwent surgical treatment. VH metabolomic profiles were investigated using ultra-performance liquid chromatography‒mass spectrometry. The area under the receiver operating characteristic curve (AUC) was computed to identify potential biomarkers for PM diagnosis. RESULTS Bioinformatics analysis identified nineteen and four metabolites altered in positive and negative modes, respectively, and these metabolites were involved in tryptophan metabolism. Receiver operating characteristic analysis showed that seventeen metabolites (AUC > 0.6) in the positive mode and uric acid in the negative mode represent potential biomarkers for PM with complications (AUC = 0.894). Pairwise and pathway analyses among the RRD-PM, MH/MRS-PM and control groups showed that tryptophan metabolism and uric acid were closely correlated with PM. Altered metabolites and pathways in our study were characterized by increased oxidative stress and altered energy metabolism. These results contribute to a better understanding of myopia progression with or without related complications. CONCLUSIONS Our study provides metabolomic signatures and related immunopathological features in the VH of PM patients, revealing new insight into the prevention and treatment of PM and related complications.
Collapse
Affiliation(s)
- Yong-Ping Tang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiao-Bo Zhang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhi-Xiang Hu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ke Lin
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhong Lin
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Tian-Yu Chen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Rong-Han Wu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Zai-Long Chi
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
5
|
Ong ES. Urine Metabolites and Bioactive Compounds from Functional Food: Applications of Liquid Chromatography Mass Spectrometry. Crit Rev Anal Chem 2023; 54:3196-3211. [PMID: 37454386 DOI: 10.1080/10408347.2023.2235442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Bioactive compounds in functional foods, medicinal plants and others are considered attractive value-added molecules based on their wide range of bioactivity. It is clear that an important role is occupied by polyphenol, phenolic compounds and others. Urine is an effective biofluid to evaluate and monitor alterations in homeostasis and other processes related to metabolism. The current review provides a detailed description of the formation of urine in human body, various aspects relevant to sampling and analysis of urinary metabolites before presenting recent developments leveraging on metabolite profiling of urine. For the profiling of small molecules in urine, advancement of liquid chromatography mass tandem spectrometry (LC/MS/MS), establishment of standardized chemical fragmentation libraries, computational resources, data-analysis approaches with pattern recognition tools have made it an attractive option. The profiling of urinary metabolites gives an overview of the biomarkers associated with the diet and evaluates its biological effects. Metabolic pathways such as glycolysis, tricarboxylic acid cycle, amino acid metabolism, energy metabolism, purine metabolism and others can be evaluated. Finally, a combination of metabolite profiling with chemical standardization and bioassay in functional food and medicinal plants will likely lead to the identification of new biomarkers and novel biochemical insights.
Collapse
Affiliation(s)
- Eng Shi Ong
- Singapore University of Technology and Design, Singapore, Republic of Singapore
| |
Collapse
|
6
|
Trius-Soler M, Praticò G, Gürdeniz G, Garcia-Aloy M, Canali R, Fausta N, Brouwer-Brolsma EM, Andrés-Lacueva C, Dragsted LO. Biomarkers of moderate alcohol intake and alcoholic beverages: a systematic literature review. GENES & NUTRITION 2023; 18:7. [PMID: 37076809 PMCID: PMC10114415 DOI: 10.1186/s12263-023-00726-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 04/04/2023] [Indexed: 04/21/2023]
Abstract
The predominant source of alcohol in the diet is alcoholic beverages, including beer, wine, spirits and liquors, sweet wine, and ciders. Self-reported alcohol intakes are likely to be influenced by measurement error, thus affecting the accuracy and precision of currently established epidemiological associations between alcohol itself, alcoholic beverage consumption, and health or disease. Therefore, a more objective assessment of alcohol intake would be very valuable, which may be established through biomarkers of food intake (BFIs). Several direct and indirect alcohol intake biomarkers have been proposed in forensic and clinical contexts to assess recent or longer-term intakes. Protocols for performing systematic reviews in this field, as well as for assessing the validity of candidate BFIs, have been developed within the Food Biomarker Alliance (FoodBAll) project. The aim of this systematic review is to list and validate biomarkers of ethanol intake per se excluding markers of abuse, but including biomarkers related to common categories of alcoholic beverages. Validation of the proposed candidate biomarker(s) for alcohol itself and for each alcoholic beverage was done according to the published guideline for biomarker reviews. In conclusion, common biomarkers of alcohol intake, e.g., as ethyl glucuronide, ethyl sulfate, fatty acid ethyl esters, and phosphatidyl ethanol, show considerable inter-individual response, especially at low to moderate intakes, and need further development and improved validation, while BFIs for beer and wine are highly promising and may help in more accurate intake assessments for these specific beverages.
Collapse
Affiliation(s)
- Marta Trius-Soler
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 1958, Frederiksberg C, Denmark
- Polyphenol Research Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XIA School of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921, Santa Coloma de Gramanet, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Giulia Praticò
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 1958, Frederiksberg C, Denmark
| | - Gözde Gürdeniz
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 1958, Frederiksberg C, Denmark
| | - Mar Garcia-Aloy
- Biomarker & Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
- Metabolomics Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, Italy
| | - Raffaella Canali
- Consiglio Per La Ricerca in Agricoltura E L'analisi Dell'economia Agraria (CREA) Research Centre for Food and Nutrition, Rome, Italy
| | - Natella Fausta
- Consiglio Per La Ricerca in Agricoltura E L'analisi Dell'economia Agraria (CREA) Research Centre for Food and Nutrition, Rome, Italy
| | - Elske M Brouwer-Brolsma
- Division of Human Nutrition and Health, Department Agrotechnology and Food Sciences, Wageningen University and Research, P.O. Box 17, 6700 AA, Wageningen, The Netherlands
| | - Cristina Andrés-Lacueva
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921, Santa Coloma de Gramanet, Spain
- Biomarker & Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Lars Ove Dragsted
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 1958, Frederiksberg C, Denmark.
| |
Collapse
|
7
|
Ambra R, Pastore G, Lucchetti S. The Role of Bioactive Phenolic Compounds on the Impact of Beer on Health. Molecules 2021; 26:486. [PMID: 33477637 PMCID: PMC7831491 DOI: 10.3390/molecules26020486] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 11/16/2022] Open
Abstract
This review reports recent knowledge on the role of ingredients (barley, hop and yeasts), including genetic factors, on the final yield of phenolic compounds in beer, and how these molecules generally affect resulting beer attributes, focusing mainly on new attempts at the enrichment of beer phenols, with fruits or cereals other than barley. An entire section is dedicated to health-related effects, analyzing the degree up to which studies, investigating phenols-related health effects of beer, have appropriately considered the contribution of alcohol (pure or spirits) intake. For such purpose, we searched Scopus.com for any kind of experimental model (in vitro, animal, human observational or intervention) using beer and considering phenols. Overall, data reported so far support the existence of the somehow additive or synergistic effects of phenols and ethanol present in beer. However, findings are inconclusive and thus deserve further animal and human studies.
Collapse
Affiliation(s)
- Roberto Ambra
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, 00178 Rome, Italy; (G.P.); (S.L.)
| | | | | |
Collapse
|
8
|
Sommer T, Göen T, Budnik N, Pischetsrieder M. Absorption, Biokinetics, and Metabolism of the Dopamine D2 Receptor Agonist Hordenine ( N, N-Dimethyltyramine) after Beer Consumption in Humans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1998-2006. [PMID: 31984737 DOI: 10.1021/acs.jafc.9b06029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Hordenine, a natural constituent of germinated barley, is a biased agonist of the dopamine D2 receptor. This pilot study investigated the biokinetics of hordenine and its metabolites in four volunteers consuming beer equal to 0.075 mg hordenine/kg body weight. A new ultrahigh-performance liquid chromatography method coupled to electrospray ionization tandem mass spectrometry (UHPLC-ESI-MS/MS) method determined maximum plasma concentrations of 12.0-17.3 nM free hordenine after 0-60 min. Hordenine phase-II metabolism was first dominated by sulfation, but later by glucuronidation. The elimination half-lives in plasma were 52.7-66.4 min for free hordenine and about 60/80 min longer for hordenine sulfate and hordenine glucuronide. Urinary excretion peaked 2-3.5 h after consumption and accumulated to 3.78 μmol within 24 h, corresponding to 9.9% of the ingested dose. The observed hordenine levels in plasma seem too low to provoke direct interaction with the dopamine D2 receptor related to food reward, but synergistic or additive effects with alcohol or N-methyltyramine may occur.
Collapse
Affiliation(s)
- Thomas Sommer
- Department of Chemistry and Pharmacy, Food Chemistry , Friedrich-Alexander-Universität Erlangen-Nürnberg , Nikolaus-Fiebiger-Str. 10 , 91058 Erlangen , Germany
- Department of Chemistry and Pharmacy, Computer Chemistry Center , Friedrich-Alexander-Universität Erlangen-Nürnberg , Nägelsbachstr. 25 , 91052 Erlangen , Germany
| | - Thomas Göen
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine , Friedrich-Alexander-Universität Erlangen-Nürnberg , Schillerstr. 25/29 , 91054 Erlangen , Germany
| | - Nadja Budnik
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine , Friedrich-Alexander-Universität Erlangen-Nürnberg , Schillerstr. 25/29 , 91054 Erlangen , Germany
| | - Monika Pischetsrieder
- Department of Chemistry and Pharmacy, Food Chemistry , Friedrich-Alexander-Universität Erlangen-Nürnberg , Nikolaus-Fiebiger-Str. 10 , 91058 Erlangen , Germany
| |
Collapse
|
9
|
Voutilainen T, Kärkkäinen O. Changes in the Human Metabolome Associated With Alcohol Use: A Review. Alcohol Alcohol 2019; 54:225-234. [PMID: 31087088 DOI: 10.1093/alcalc/agz030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/15/2019] [Accepted: 03/20/2019] [Indexed: 12/28/2022] Open
Abstract
AIMS The metabolome refers to the functional status of the cell, organ or the whole body. Metabolomic methods measure the metabolome (metabolite profile) which can be used to examine disease progression and treatment responses. Here, our aim was to review metabolomics studies examining effects of alcohol use in humans. METHODS We performed a literature search using PubMed and Web of Science for reports on changes in the human metabolite profile associated with alcohol use; we found a total of 23 articles published before end of 2018. RESULTS Most studies had investigated plasma, serum or urine samples; only four studies had examined other sample types (liver, faeces and broncho-alveolar lavage fluid). Levels of 51 metabolites were altered in two or more of the reviewed studies. Alcohol use was associated with changes in the levels of lipids and amino acids. In general, levels of fatty acids, phosphatidylcholine diacyls and steroid metabolites tended to increase, whereas those of phosphatidylcholine acyl-alkyls and hydroxysphingomyelins declined. Common alterations in circulatory levels of amino acids included decreased levels of glutamine, and increased levels of tyrosine and alanine. CONCLUSIONS More studies, especially with a longitudinal study design, or using more varied sample materials (e.g. organs or saliva), are needed to clarify alcohol-induced diseases and alterations at a target organ level. Hopefully, this will lead to the discovery of new treatments, improved recognition of individuals at high risk and identification of those subjects who would benefit most from certain treatments.
Collapse
Affiliation(s)
- Taija Voutilainen
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, Kuopio, Finland
| | - Olli Kärkkäinen
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, Kuopio, Finland
| |
Collapse
|
10
|
Bocato MZ, Bianchi Ximenez JP, Hoffmann C, Barbosa F. An overview of the current progress, challenges, and prospects of human biomonitoring and exposome studies. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2019; 22:131-156. [PMID: 31543064 DOI: 10.1080/10937404.2019.1661588] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Human Biomonitoring (HB), the process for determining whether and to what extent chemical substances penetrated our bodies, serves as a useful tool to quantify human exposure to pollutants. In cases of nutrition and physiologic status, HB plays a critical role in the identification of excess or deficiency of essential nutrients. In pollutant HB studies, levels of substances measured in body fluids (blood, urine, and breast milk) or tissues (hair, nails or teeth) aid in the identification of potential health risks or associated adverse effects. However, even as a widespread practice in several countries, most HB studies reflect exposure to a single compound or mixtures which are measured at a single time point in lifecycle. On the other hand, throughout an individual's lifespan, the contact with different physical, chemical, and social stressors occurs at varying intensities, differing times and durations. Further, the interaction between stressors and body receptors leads to dynamic responses of the entire biological system including proteome, metabolome, transcriptome, and adductome. Bearing this in mind, a relatively new vision in exposure science, defined as the exposome, is postulated to expand the traditional practice of measuring a single exposure to one or few chemicals at one-time point to an approach that addresses measures of exposure to multiple stressors throughout the lifespan. With the exposome concept, the science of exposure advances to an Environment-Wide Association Perspective, which might exhibit a stronger relationship with good health or disease conditions for an individual (phenotype). Thus, this critical review focused on the current progress of HB and exposome investigations, anticipating some challenges, strategies, and future needs to be taken into account for designing future surveys.
Collapse
Affiliation(s)
- Mariana Zuccherato Bocato
- Laboratório de Toxicologia Analítica e de Sistemas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo , Ribeirão Preto , Brazil
| | - João Paulo Bianchi Ximenez
- Laboratório de Toxicologia Analítica e de Sistemas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo , Ribeirão Preto , Brazil
| | - Christian Hoffmann
- Departmento de Alimentos e Nutrição Experimental Faculdade de Ciências Farmacêuticas, Universidade de São Paulo , São Paulo , Brazil
| | - Fernando Barbosa
- Laboratório de Toxicologia Analítica e de Sistemas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo , Ribeirão Preto , Brazil
| |
Collapse
|