1
|
Picáns-Leis R, Vázquez-Mosquera ME, Pereira-Hernández M, Vizoso-González M, López-Valverde L, Barbosa-Gouveia S, López-Suárez O, López-Sanguos C, Bravo SB, García-González MA, Couce ML. Characterization of the functional component in human milk and identification of the molecular mechanisms undergoing prematurity. Clin Nutr 2025; 44:178-192. [PMID: 39700709 DOI: 10.1016/j.clnu.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/06/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND AND AIMS Human milk (HM) is the earliest form of extrauterine communication between mother and infant, that could promote early programming. The aim of this study is to look for specific biological processes, particularly those undergoing prematurity, modulated by proteins and miRNAs of HM that could be implicated in growth and development. METHODS This is a prospective, observational, single center study in which we collected 48 human milk (HM) samples at two distinct stages of lactation: colostrum (first 72-96 h) and mature milk (at week 4 post-delivery) from mothers of very preterm newborns (<32 weeks) and term (≥37 and < 42 weeks). Qualitative and quantitative proteomic and transcriptomic analysis was done in our samples. RESULTS We performed isolation and characterization of HM extracellular vesicles (EVs) to carry out proteomic and transcriptomic analysis in colostrum (CM) and mature milk (MM). Proteomic analysis revealed a functional role of CM in immunological protection and MM in metabolic processes. TENA, TSP1 and OLF4, proteins with roles in immune response and inflammatory modulation, were upregulated in CM vs MM, particularly in preterm. HM modulation differed depending on gestational age (GA). The miRNAs identified in HM are implicated in structural functions, including growth and neurological development. miRNA-451a was differentially expressed between groups, and downregulated in preterm CM. CONCLUSIONS Because the particularities of each GA are reflected in the EVs content of HM, providing newborns with HM from their own mother is the optimal way for satisfying their specific needs. Although the role of the proteomic profile of CM and MM of different GA in relation to neurodevelopment has been previously described, this is the first study to show a complete functional characterization of HM (proteome, miRNA at the same time), unmasking the molecular mechanisms related to EVs signaling and their functional role in preterm.
Collapse
Affiliation(s)
- Rosaura Picáns-Leis
- Neonatology Department, Metabolic Unit, RICORS-SAMID, CIBERER, University Clinical Hospital of Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Spain.
| | - María E Vázquez-Mosquera
- Neonatology Department, Metabolic Unit, RICORS-SAMID, CIBERER, University Clinical Hospital of Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Spain.
| | - María Pereira-Hernández
- Health Research Institute of Santiago de Compostela (IDIS), Spain; Group of Genetics and Developmental Biology of Renal Diseases, Nephrology Laboratory, University Clinical Hospital of Santiago de Compostela, Spain; RICORS2040 (Kidney Disease), Santiago de Compostela, Spain.
| | - Marta Vizoso-González
- Health Research Institute of Santiago de Compostela (IDIS), Spain; Group of Genetics and Developmental Biology of Renal Diseases, Nephrology Laboratory, University Clinical Hospital of Santiago de Compostela, Spain.
| | - Laura López-Valverde
- Neonatology Department, Metabolic Unit, RICORS-SAMID, CIBERER, University Clinical Hospital of Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Spain.
| | - Sofía Barbosa-Gouveia
- Neonatology Department, Metabolic Unit, RICORS-SAMID, CIBERER, University Clinical Hospital of Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Spain.
| | - Olalla López-Suárez
- Neonatology Department, Metabolic Unit, RICORS-SAMID, CIBERER, University Clinical Hospital of Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Spain.
| | - Carolina López-Sanguos
- Neonatology Department, Metabolic Unit, RICORS-SAMID, CIBERER, University Clinical Hospital of Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Spain.
| | - Susana B Bravo
- Health Research Institute of Santiago de Compostela (IDIS), Spain; Proteomic Platform, University Clinical Hospital of Santiago de Compostela, Spain.
| | - Miguel A García-González
- Health Research Institute of Santiago de Compostela (IDIS), Spain; Group of Genetics and Developmental Biology of Renal Diseases, Nephrology Laboratory, University Clinical Hospital of Santiago de Compostela, Spain; RICORS2040 (Kidney Disease), Santiago de Compostela, Spain.
| | - María L Couce
- Neonatology Department, Metabolic Unit, RICORS-SAMID, CIBERER, University Clinical Hospital of Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Spain.
| |
Collapse
|
2
|
Di SJ, Cui XW, Liu TJ, Shi YY. Therapeutic potential of human breast milk-derived exosomes in necrotizing enterocolitis. Mol Med 2024; 30:243. [PMID: 39701931 DOI: 10.1186/s10020-024-01010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 11/23/2024] [Indexed: 12/21/2024] Open
Abstract
Necrotizing enterocolitis (NEC) is a severe inflammatory and necrotizing disease of the intestine that primarily affects the neonates, particularly premature infants. It has a high incidence of approximately 8.9% in extremely preterm infants, with a mortality rate ranging from 20 to 30%. In recent years, exosomes, particularly those derived from breast milk, have emerged as potential candidates for NEC therapy. Human breast milk-derived exosomes (BME) have been shown to enhance intestinal barrier function, protect intestinal epithelial cells from oxidative stress, promote the proliferation and migration of intestinal epithelial cells, and reduce the severity of experimental NEC models. As a subset of extracellular vesicles, BME possess the membrane structure, low immunogenicity, and high permeability, making them ideal vehicles for the treatment of NEC. Additionally, exosomes derived from various sources, including stem cells, intestinal epithelial cells, plants, and bacteria, have been implicated in the development and protection of intestinal diseases. This article summarizes the mechanisms through which exosomes, particularly BME, exert their effects on NEC and discusses the feasibility and obstacles associated with this novel therapeutic strategy.
Collapse
Affiliation(s)
- Si-Jia Di
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xue-Wei Cui
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Tian-Jing Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Yong-Yan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
3
|
Gaylord A, Holzhausen EA, Chalifour B, Patterson WB, Tung PW, Baccarelli AA, Goran MI, Alderete TL, Kupsco A. tRNA-derived RNAs in human milk extracellular vesicles and associations with breastfeeding variables and maternal diet. Epigenomics 2024; 16:1429-1441. [PMID: 39580634 PMCID: PMC11622811 DOI: 10.1080/17501911.2024.2430943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024] Open
Abstract
AIMS To describe tDRs in human milk EVs and their associations with maternal body mass index, age, dietary indices, breastfeeding frequency, season and time of milk collection in a Latina population. MATERIALS & METHODS We sequenced small RNAs from EVs from 109 mature human milk samples collected at 1 month after delivery in the Southern California Mother's Milk Study. We grouped tDRs using hierarchical clustering and clusters were compared across tDR characteristics. We analyzed associations of tDRs with intrinsic maternal variables (body mass index, age), maternal nutrition (caloric intake, Healthy Eating Index, Dietary Inflammatory Index), and variables related to feeding and milk collection (breastfeeding frequency, season and time of milk collection) using negative binomial models. RESULTS We identified 338 tDRs expressed in 90% or more of milk EV samples, of which 113 were identified in all samples. tDR-1:26-Gly-CCC-1-M4 accounted for most reads (79%). Pathway analysis revealed a wide array of biological processes and disease mechanisms across the four tDR clusters. tDRs were associated with season of collection, time of collection, breastfeeding frequency, and the dietary inflammatory index. CONCLUSIONS tDRs are abundant in milk EVs and may be sensitive to maternal diet, seasonality, time of day, and breastfeeding frequency.
Collapse
Affiliation(s)
- Abigail Gaylord
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | | | - Bridget Chalifour
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - William B. Patterson
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Pei Wen Tung
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Andrea A. Baccarelli
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Michael I. Goran
- Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Tanya L. Alderete
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Allison Kupsco
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
4
|
Vahkal B, Altosaar I, Ariana A, Jabbour J, Pantieras F, Daniel R, Tremblay É, Sad S, Beaulieu JF, Côté M, Ferretti E. Human milk extracellular vesicles modulate inflammation and cell survival in intestinal and immune cells. Pediatr Res 2024:10.1038/s41390-024-03757-5. [PMID: 39609615 DOI: 10.1038/s41390-024-03757-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/28/2024] [Accepted: 10/04/2024] [Indexed: 11/30/2024]
Abstract
Human milk contains extracellular vesicles (EVs) that carry bioactive molecules such as microRNA, to the newborn intestine. The downstream effects of EV cargo on signaling and immune modulation may shield neonates against inflammatory diseases, including necrotizing enterocolitis. Premature infants are especially at risk, while human milk-feeding may offer protection. The effect of gestational-age specific term and preterm EVs from transitional human milk was characterized on human intestinal epithelial cells (HIECs and Caco-2), primary macrophages, and THP-1 monocytes. We hypothesized that term and preterm EVs differentially influence immune-related cytokines and cell death. We found that preterm EVs were enriched in CD14 surface marker, while both term and preterm EVs increased epidermal growth factor secretion. Following inflammatory stimuli, only term EVs inhibited secretion of IL-6 in HIECs, and reduced expression of pro-inflammatory cytokine IL-1β in macrophages. Term and preterm EVs inhibited secretion of IL-1β and reduced inflammasome related cell death. We proposed that human milk EVs regulate immune-related signaling via their conserved microRNA cargo, which could promote tolerance and a homeostatic immune response. These findings provide basis for further studies into potential therapeutic supplementation with EVs in vulnerable newborn populations by considering functional, gestational age-specific effects. IMPACT: This study reveals distinct functional differences between term and preterm transitional human milk extracellular vesicles (EVs) highlighting the importance of gestational age in their bioactivity. Term EVs uniquely inhibited IL-6 secretion, IL-1β expression, and apoptosis following inflammatory stimuli. Both term and preterm human milk EVs reduced IL-1β secretion and inflammasome-induced cell death. Conserved human milk extracellular vesicle microRNA cargo could be a mediator of the anti-inflammatory effects, particularly targeting cytokine production, the inflammasome, and programmed cell death. These findings underscore the importance of considering gestational age in future research exploring the therapeutic potential of human milk extracellular vesicles to prevent or treat intestinal inflammatory diseases in neonates.
Collapse
Affiliation(s)
- Brett Vahkal
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, ON, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Illimar Altosaar
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Ardeshir Ariana
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, ON, Canada
| | - Josie Jabbour
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Falia Pantieras
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Redaet Daniel
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, ON, Canada
| | - Éric Tremblay
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Subash Sad
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, ON, Canada
| | - Jean-François Beaulieu
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, ON, Canada.
| | - Emanuela Ferretti
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada.
| |
Collapse
|
5
|
Holzhausen EA, Patterson WB, Wong BH, Kim S, Kupsco A, Howe CG, Bode L, Goran MI, Alderete TL. Associations between human milk EV-miRNAs and oligosaccharide concentrations in human milk. Front Immunol 2024; 15:1463463. [PMID: 39635519 PMCID: PMC11614774 DOI: 10.3389/fimmu.2024.1463463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/17/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction Human milk contains human milk oligosaccharides (HMOs) and microRNAs (miRNAs), which are key bioactive components. HMOs are indigestible carbohydrates that impact infant growth and development. miRNAs are small, non-coding RNAs that regulate post-transcriptional gene expression. miRNAs are abundant in human milk and can be contained in extracellular vesicles (EVs). There is evidence that miRNAs are synthesized in the mammary epithelium and may influence mammary gland development and milk synthesis. However, the relationships between miRNAs and HMOs have yet to be fully characterized. Methods This study examined the associations between 210 human milk EV-miRNAs and 19 HMOs in a cohort of 98 Latina mothers. HMO measures included summary measures and concentrations of 19 HMOs. Relationships between EV-miRNAs and HMOs were examined using principal components analysis and associations between individual EV-miRNAs and HMOs were assessed. Results Overall patterns of EV-miRNA levels, summarized using principal components, were associated with HMO summary measures and concentrations. Levels of individual EV-miRNAs were associated with HMO summary measures and individual concentrations of 2'FL, 3FL, 3'SL, 6'SL, FLNH, LNFP I, and LNH. Discussion Results from this study suggest that human milk EV-miRNAs are associated with the concentration of HMOs, which may have important effects on infant growth and development.
Collapse
Affiliation(s)
- Elizabeth A. Holzhausen
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - William B. Patterson
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Benjamin H. Wong
- University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Sewan Kim
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Allison Kupsco
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, United States
| | - Caitlin G. Howe
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Lars Bode
- Department of Pediatrics, Larson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), Human Milk Institute (HMI), University of California, San Diego, San Diego, CA, United States
| | - Michael I. Goran
- Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | - Tanya L. Alderete
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
6
|
Jiang Q, Wang L, Tian J, Zhang W, Cui H, Gui H, Zang Z, Li B, Si X. Food-derived extracellular vesicles: natural nanocarriers for active phytoconstituents in new functional food. Crit Rev Food Sci Nutr 2024; 64:11701-11721. [PMID: 37548408 DOI: 10.1080/10408398.2023.2242947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Extracellular vesicles (EVs) are naturally occurring non-replicating particles released from cells, known for their health-promoting effects and potential as carriers for drug delivery. Extensive research has been conducted on delivery systems based on culture-cell-derived EVs. Nevertheless, they have several limitations including low production yield, high expenses, unsuitability for oral administration, and safety concerns in applications. Conversely, food-derived EVs (FDEVs) offer unique advantages that cannot be easily substituted. This review provides a comprehensive analysis of the biogenesis pathways, composition, and health benefits of FDEVs, as well as the techniques required for constructing oral delivery systems. Furthermore, it explores the advantages and challenges associated with FDEVs as oral nanocarriers, and discusses the current research advancements in delivering active phytoconstituents. FDEVs, functioning as a nanocarrier platform for the oral delivery of active molecules, present numerous benefits such as convenient administration, high biocompatibility, low toxicity, and inherent targeting. Nevertheless, numerous unresolved issues persist in the isolation, characterization, drug loading, and application of FDEVs. Technical innovation and standardization of quality control are the key points to promote the development of FDEVs. The review aimed to provide frontier ideas and basic quality control guidelines for developing new functional food based on FDEVs oral drug delivery system.
Collapse
Affiliation(s)
- Qiao Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Weijia Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Huijun Cui
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Hailong Gui
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Zhihuan Zang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Xu Si
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
7
|
Ahlberg E, Jenmalm MC, Karlsson A, Karlsson R, Tingö L. Proteome characterization of extracellular vesicles from human milk: Uncovering the surfaceome by a lipid-based protein immobilization technology. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70020. [PMID: 39512873 PMCID: PMC11541861 DOI: 10.1002/jex2.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/19/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
Breast milk is an essential source of nutrition and hydration for the infant. In addition, this highly complex fluid is rich in extracellular vesicles (EVs). Here, we have applied a microfluidic technology, lipid-based protein immobilization (LPI) and liquid chromatography with tandem mass spectrometry (LC-MS/MS) to characterize the proteome of human milk EVs. Mature milk from six mothers was subjected to EV isolation by ultracentrifugation followed by size exclusion chromatography. Three of the samples were carefully characterized; suggesting a subset enriched by small EVs. The EVs were digested by trypsin in an LPI flow cell and in-solution digestion, giving rise to two fractions of peptides originating from the surface proteome (LPI fraction) or the complete proteome (in-solution digestion). LC-MS/MS recovered peptides corresponding to 582 proteins in the LPI fraction and 938 proteins in the in-solution digested samples; 400 of these proteins were uniquely found in the in-solution digested samples and were hence denoted "cargo proteome". GeneOntology overrepresentation analysis gave rise to distinctly different functional predictions of the EV surfaceome and the cargo proteome. The surfaceome tends to be overrepresented in functions and components of relevance for the immune system, while the cargo proteome primarily seems to be associated with EV biogenesis.
Collapse
Affiliation(s)
- Emelie Ahlberg
- Department of Biomedical and Clinical Sciences, Division of Inflammation and InfectionLinköping UniversityLinkopingSweden
| | - Maria C. Jenmalm
- Department of Biomedical and Clinical Sciences, Division of Inflammation and InfectionLinköping UniversityLinkopingSweden
| | | | - Roger Karlsson
- Nanoxis Consulting ABGothenburgSweden
- Department of Clinical MicrobiologySahlgrenska University HospitalGothenburgSweden
| | - Lina Tingö
- Department of Biomedical and Clinical Sciences, Division of Inflammation and InfectionLinköping UniversityLinkopingSweden
- School of Medical SciencesÖrebro UniversityOrebroSweden
| |
Collapse
|
8
|
Çelik E, Cemali Ö, Şahin TÖ, Deveci G, Biçer NÇ, Hirfanoğlu İM, Ağagündüz D, Budán F. Human Breast Milk Exosomes: Affecting Factors, Their Possible Health Outcomes, and Future Directions in Dietetics. Nutrients 2024; 16:3519. [PMID: 39458514 PMCID: PMC11510026 DOI: 10.3390/nu16203519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Human breast milk is a complex biological fluid containing multifaceted biological compounds that boost immune and metabolic system development that support the short- and long-term health of newborns. Recent literature suggests that human breast milk is a substantial source of nutrients, bioactive molecules, and exosomes. Objectives: This review examines the factors influencing exosomes noted in human milk and the impacts of exosomes on infant health. Furthermore, it discusses potential future prospects for exosome research in dietetics. Methods: Through a narrative review of the existing literature, we focused on exosomes in breast milk, exosome components and their potential impact on exosome health. Results: Exosomes are single-membrane extracellular vesicles of endosomal origin, with an approximate radius of 20-200 nm. They are natural messengers that cells secrete to transport a wide range of diverse cargoes, including deoxyribonucleic acid, ribonucleic acid, proteins, and lipids between various cells. Some studies have reported that the components noted in exosomes in human breast milk could be transferred to the infant and cause epigenetic changes. Thus, it can affect gene expression and cellular event regulation in several tissues. Conclusions: In this manner, exosomes are associated with several pathways, including the immune system, oxidative stress, and cell cycle, and they can affect the short- and long-term health of infants. However, there is still much to learn about the functions, effectiveness, and certain impacts on the health of human breast milk exosomes.
Collapse
Affiliation(s)
- Elif Çelik
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Süleyman Demirel University, Isparta 32260, Türkiye;
| | - Özge Cemali
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Trakya University, Edirne 22030, Türkiye;
| | - Teslime Özge Şahin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Afyonkarahisar Health Sciences University, Afyonkarahisar 03030, Türkiye;
| | - Gülsüm Deveci
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Çankırı Karatekin University, Çankırı 18100, Türkiye;
| | - Nihan Çakır Biçer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Acıbadem Mehmet Ali Aydınlar University, Istanbul 34752, Türkiye;
| | | | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara 06490, Türkiye
| | - Ferenc Budán
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
| |
Collapse
|
9
|
Scott JL, Gupta RC, Aqil F, Jeyabalan J, Schultz DJ. Exosomal Delivery Enhances the Antiproliferative Effects of Acid-Hydrolyzed Apiaceae Spice Extracts in Breast Cancer Cells. Foods 2024; 13:2811. [PMID: 39272578 PMCID: PMC11395330 DOI: 10.3390/foods13172811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Breast cancer remains a leading cause of death worldwide. The Apiaceae plant family includes many culinary spices that have been shown to have medicinal properties. Many phytochemicals exhibit potent bioactivities but often suffer from poor uptake and oral bioavailability. Bovine milk and colostrum exosomes are a compelling drug delivery platform that could address this issue; these natural nanoparticles can be loaded with hydrophilic and lipophilic small molecules and biologics, resulting in lower doses needed to inhibit cancer growth. Ethanolic extracts of eight Apiaceae spices were examined for phytochemical content and antiproliferative potential. Acid hydrolysis (AH) was employed to remove glycosides, asses its impacts on extract efficacy, and evaluate its effects on exosome loading and subsequent formulation efficacy. Antiproliferative activity was assessed through MTT assays on T-47D, MDA-MB-231, and BT-474 breast cancer cells; all extracts exhibited broad antiproliferative activity. AH enhanced the bioactivity of cumin, caraway, and fennel in T-47D cells. Celery, cumin, anise, and ajwain showed the highest activity and were assayed in exosomal formulations, which resulted in reduced doses required to inhibit cellular proliferation for all extracts except AH-cumin. Apiaceae spice extracts demonstrated antiproliferative activities that can be improved with AH and further enhanced with exosomal delivery.
Collapse
Affiliation(s)
- Jared L Scott
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Ramesh C Gupta
- Brown Cancer Center and Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Farrukh Aqil
- Brown Cancer Center and Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | | | - David J Schultz
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
10
|
Liu F, Meng F, Yang Z, Wang H, Ren Y, Cai Y, Zhang X. Exosome-biomimetic nanocarriers for oral drug delivery. CHINESE CHEM LETT 2024; 35:109335. [DOI: 10.1016/j.cclet.2023.109335] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
11
|
Song Z, Tao Y, Liu Y, Li J. Advances in delivery systems for CRISPR/Cas-mediated cancer treatment: a focus on viral vectors and extracellular vesicles. Front Immunol 2024; 15:1444437. [PMID: 39281673 PMCID: PMC11392784 DOI: 10.3389/fimmu.2024.1444437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/30/2024] [Indexed: 09/18/2024] Open
Abstract
The delivery of CRISPR/Cas systems holds immense potential for revolutionizing cancer treatment, with recent advancements focusing on extracellular vesicles (EVs) and viral vectors. EVs, particularly exosomes, offer promising opportunities for targeted therapy due to their natural cargo transport capabilities. Engineered EVs have shown efficacy in delivering CRISPR/Cas components to tumor cells, resulting in inhibited cancer cell proliferation and enhanced chemotherapy sensitivity. However, challenges such as off-target effects and immune responses remain significant hurdles. Viral vectors, including adeno-associated viruses (AAVs) and adenoviral vectors (AdVs), represent robust delivery platforms for CRISPR/Cas systems. AAVs, known for their safety profile, have already been employed in clinical trials for gene therapy, demonstrating their potential in cancer treatment. AdVs, capable of infecting both dividing and non-dividing cells, offer versatility in CRISPR/Cas delivery for disease modeling and drug discovery. Despite their efficacy, viral vectors present several challenges, including immune responses and off-target effects. Future directions entail refining delivery systems to enhance specificity and minimize adverse effects, heralding personalized and effective CRISPR/Cas-mediated cancer therapies. This article underscores the importance of optimized delivery mechanisms in realizing the full therapeutic potential of CRISPR/Cas technology in oncology. As the field progresses, addressing these challenges will be pivotal for translating CRISPR/Cas-mediated cancer treatments from bench to bedside.
Collapse
Affiliation(s)
- Zhidu Song
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Ying Tao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yue Liu
- Department of Emergency and Critical Care, The Second Hospital of Jilin University, Changchun, China
| | - Jian Li
- Department of Emergency and Critical Care, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Nathani A, Aare M, Sun L, Bagde A, Li Y, Rishi A, Singh M. Unlocking the Potential of Camel Milk-Derived Exosomes as Novel Delivery Systems: Enhanced Bioavailability of ARV-825 PROTAC for Cancer Therapy. Pharmaceutics 2024; 16:1070. [PMID: 39204415 PMCID: PMC11359469 DOI: 10.3390/pharmaceutics16081070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
This study investigates the use of camel milk-derived exosomes (CMEs) as carriers for ARV-825, an anticancer agent targeting bromodomain-containing protein 4 (BRD4), in oral chemotherapy. CMEs were isolated and characterized, and ARV-825-loaded CME formulations were prepared and evaluated through various in vitro and in vivo tests. The ARV-825-CME formulation exhibited an entrapment efficiency of 42.75 ± 5.05%, a particle size of 136.8 ± 1.94 nm, and a zeta potential of -32.75 ± 0.70 mV, ensuring stability and sustained drug release. In vitro studies showed a 5.4-fold enhancement in drug release kinetics compared to the free ARV-825 solution. Permeability studies indicated a 3.2-fold increase in apparent permeability, suggesting improved cellular uptake. Cytotoxicity assays demonstrated potent anticancer activity, with IC50 values decreasing by 1.5 to 2-fold in cancer cell lines SF8628 DIPG and H1975R (resistant to Osimertinib). In vivo pharmacokinetic studies in Sprague-Dawley rats revealed superior systemic absorption and bioavailability of ARV-825 from CMEs, with a 2.55-fold increase in plasma concentration and a 5.56-fold increase in AUC. Distribution studies confirmed absorption through the ileum. This research highlights the potential of CMEs as a promising delivery platform for ARV-825, enhancing its therapeutic efficacy and offering a novel approach to cancer treatment.
Collapse
Affiliation(s)
- Aakash Nathani
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (A.N.); (M.A.); (A.B.)
| | - Mounika Aare
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (A.N.); (M.A.); (A.B.)
| | - Li Sun
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA; (L.S.); (Y.L.)
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32304, USA
| | - Arvind Bagde
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (A.N.); (M.A.); (A.B.)
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA; (L.S.); (Y.L.)
| | - Arun Rishi
- Department of Oncology, John D. Dingell VA Medical Center, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (A.N.); (M.A.); (A.B.)
| |
Collapse
|
13
|
Albiach-Delgado A, Moreno-Casillas JL, Ten-Doménech I, Cascant-Vilaplana MM, Moreno-Giménez A, Gómez-Ferrer M, Sepúlveda P, Kuligowski J, Quintás G. Oxylipin profile of human milk and human milk-derived extracellular vesicles. Anal Chim Acta 2024; 1313:342759. [PMID: 38862207 DOI: 10.1016/j.aca.2024.342759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Small Extracellular Vesicles (sEVs) are nano-sized vesicles that are present in all biofluids including human milk (HM) playing a crucial role in cell-to-cell communication and the stimulation of the neonatal immune system. Oxylipins, which are bioactive lipids formed from polyunsaturated fatty acids, have gained considerable attention due to their potential role in mitigating disease progression and modulating the inflammatory status of breastfed infants. This study aims at an in-depth characterization of the oxylipin profiles of HM and, for the first time, of HM-derived sEVs (HMEVs) employing an ad-hoc developed and validated ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method. RESULTS The UPLC-MS/MS method covered a panel of 13 oxylipins for quantitation and 93 oxylipins for semi-quantitation. In 200 μL of HM and HMEV isolates of 15 individuals, 42 out of 106 oxylipins were detected in either HM or HMEVs, with 38 oxylipins being detected in both matrices. Oxylipins presented distinct profiles in HM and HMEVs, suggesting specific mechanisms responsible for the encapsulation of target molecules in HMEVs. Ten and eight oxylipins were quantified with ranges between 0.03 - 73 nM and 0.30 pM-0.07 nM in HM and HMEVs, respectively. The most abundant oxylipins found in HMEVs were docosahexaenoic acid derivatives (17-HDHA and 14-HDHA) with known anti-inflammatory properties, and linoleic acid derivatives (9-10-DiHOME and 12,13-DiHOME) in HM samples. SIGNIFICANCE AND NOVELTY This is the first time a selective, relative enrichment of anti-inflammatory oxylipins in HMEVs has been described. Future studies will focus on the anti-inflammatory and pro-healing capacity of oxylipins encapsulated in HMEVs, with potential clinical applications in the field of preterm infant care, specifically the prevention of severe intestinal complications including necrotizing enterocolitis.
Collapse
Affiliation(s)
- Abel Albiach-Delgado
- Neonatal Research Group, Health Research Institute Hospital La Fe (IIS La Fe), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin Network (RICORS-SAMID) (RD21/0012/0015), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Análisis de Vesículas Extracelulares (SAVE), Health Research Institute Hospital La Fe (IIS La Fe), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Jose L Moreno-Casillas
- Neonatal Research Group, Health Research Institute Hospital La Fe (IIS La Fe), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain; Servicio de Análisis de Vesículas Extracelulares (SAVE), Health Research Institute Hospital La Fe (IIS La Fe), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Isabel Ten-Doménech
- Neonatal Research Group, Health Research Institute Hospital La Fe (IIS La Fe), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin Network (RICORS-SAMID) (RD21/0012/0015), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Análisis de Vesículas Extracelulares (SAVE), Health Research Institute Hospital La Fe (IIS La Fe), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Mari Merce Cascant-Vilaplana
- Neonatal Research Group, Health Research Institute Hospital La Fe (IIS La Fe), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Alba Moreno-Giménez
- Neonatal Research Group, Health Research Institute Hospital La Fe (IIS La Fe), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Marta Gómez-Ferrer
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Pilar Sepúlveda
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain; Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Carlos III Institute of Health, Madrid, Spain; Cardiology Service, University & Polytechnic Hospital La Fe, Avenida Fernando Abril Martorell 106, 46026, Valencia, Spain; Department of Pathology, University of Valencia, Avenida Blasco Ibáñez 15, 46010, Valencia, Spain.
| | - Julia Kuligowski
- Neonatal Research Group, Health Research Institute Hospital La Fe (IIS La Fe), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain; Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin Network (RICORS-SAMID) (RD21/0012/0015), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Análisis de Vesículas Extracelulares (SAVE), Health Research Institute Hospital La Fe (IIS La Fe), Avda Fernando Abril Martorell 106, 46026, Valencia, Spain.
| | - Guillermo Quintás
- Health and Biomedicine, Leitat Technological Center, Avda Fernando Abril Martorell 106, 46026, Valencia, Spain
| |
Collapse
|
14
|
Norouzi F, Aghajani S, Vosoughi N, Sharif S, Ghahremanzadeh K, Mokhtari Z, Verdi J. Exosomes derived stem cells as a modern therapeutic approach for skin rejuvenation and hair regrowth. Regen Ther 2024; 26:1124-1137. [PMID: 39640923 PMCID: PMC11617408 DOI: 10.1016/j.reth.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/23/2024] [Accepted: 10/03/2024] [Indexed: 12/07/2024] Open
Abstract
Background The skin covers the surface of the body and acts as the first defense barrier against environmental damage. Exposure of the skin to environmental physical and chemical factors such as mechanical injuries, UV rays, air pollution, chemicals, etc. Leads to numerous damages to skin cells such as fibroblasts, keratinocytes, melanocytes, etc. The harmful effects of environmental factors on skin cells could lead to various skin diseases, chronic wounds, wrinkles, and skin aging. Hair is an essential part of the body, serving multiple functions such as regulating body temperature and protecting against external factors like dust (through eyelashes and eyebrows). It also reflects an individual's personality. Therefore, the need for new treatment methods for skin diseases and lesions and at the same time preserving the youth, freshness, and beauty of the skin has been highly noticed by experts. Exosomes are nanovesicles derived from cells that contain various biological compounds such as lipids, proteins, nucleic acids, and carbohydrates. They are secreted by a variety of mammalian cells and even different plants. Exosomes are of great interest as a new therapeutic approach due to their stability, ability to be transported throughout the body, paracrine and endocrine effects, as well as the ability to carry various compounds and drugs to target cells. Aim In this review, we have discussed the characteristics of exosomes, their cellular sources, and their therapeutic effects on wrinkles, skin aging, and rejuvenation and hair regrowth.
Collapse
Affiliation(s)
- Fatemeh Norouzi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sanaz Aghajani
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Vosoughi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shiva Sharif
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kazem Ghahremanzadeh
- Department of Pathology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Mokhtari
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Verdi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Jiang Q, Liu Y, Si X, Wang L, Gui H, Tian J, Cui H, Jiang H, Dong W, Li B. Potential of Milk-Derived Extracellular Vesicles as Carriers for Oral Delivery of Active Phytoconstituents. Annu Rev Food Sci Technol 2024; 15:431-454. [PMID: 38359948 DOI: 10.1146/annurev-food-072023-034354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Extracellular vesicles (EVs) play a crucial role in intercellular communication and have the potential to serve as in vivo carriers for delivering active molecules. The biocompatibility advantages of EVs over artificial nanocarriers create new frontiers for delivering modern active molecules. Milk is a favorable source of EVs because of its high bioavailability, low immunogenicity, and commercial producibility. In this review, we analyzed the advantages of milk-derived EVs in the oral delivery of active molecules, discussed their research progress in delivering active phytoconstituents, and summarized the necessary technologies and critical unit operations required for the development of an oral delivery system based on EVs. The review aims to provide innovative ideas and fundamental quality control guidelines for developing the next-generation oral drug delivery system based on milk-derived EVs.
Collapse
Affiliation(s)
- Qiao Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, China;
| | - Yubo Liu
- College of Food Science, Shenyang Agricultural University, Shenyang, China;
| | - Xu Si
- College of Food Science, Shenyang Agricultural University, Shenyang, China;
| | - Li Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hailong Gui
- College of Food Science, Shenyang Agricultural University, Shenyang, China;
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, China;
| | - Huijun Cui
- College of Food Science, Shenyang Agricultural University, Shenyang, China;
| | - Hongzhou Jiang
- Anhui Ziyue Biological Technology Co., Ltd., Wuhu, China
| | - Wenjiang Dong
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, China;
| |
Collapse
|
16
|
Zhang M, Qiao H, Yang S, Kwok LY, Zhang H, Zhang W. Human Breast Milk: The Role of Its Microbiota and Metabolites in Infant Health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10665-10678. [PMID: 38691667 DOI: 10.1021/acs.jafc.3c07690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
This review explores the role of microorganisms and metabolites in human breast milk and their impact on neonatal health. Breast milk serves as both a primary source of nutrition for newborns and contributes to the development and maturation of the digestive, immunological, and neurological systems. It has the potential to reduce the risks of infections, allergies, and asthma. As our understanding of the properties of human milk advances, there is growing interest in incorporating its benefits into personalized infant nutrition strategies, particularly in situations in which breastfeeding is not an option. Future infant formula products are expected to emulate the composition and advantages of human milk, aligning with an evolving understanding of infant nutrition. The long-term health implications of human milk are still under investigation.
Collapse
Affiliation(s)
- Meng Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Hui Qiao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Shuwei Yang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Wenyi Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
17
|
Ma L, Huo Y, Tang Q, Wang X, Wang W, Wu D, Li Y, Chen L, Wang S, Zhu Y, Wang W, Liu Y, Xu N, Chen L, Yu G, Chen J. Human Breast Milk Exosomal miRNAs are Influenced by Premature Delivery and Affect Neurodevelopment. Mol Nutr Food Res 2024; 68:e2300113. [PMID: 38644336 DOI: 10.1002/mnfr.202300113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 02/27/2024] [Indexed: 04/23/2024]
Abstract
SCOPE This study investigates the exosomal microRNA (miRNA) profiles of term and preterm breast milk, including the most abundant and differentially expressed (DE) miRNAs, and their impact on neurodevelopment in infants. METHODS AND RESULTS Mature milk is collected from the mothers of term and preterm infants. Using high-throughput sequencing and subsequent data analysis, exosomal miRNA profiles of term and preterm human breast milk (HBM) are acquired and it is found that the let-7 and miR-148 families are the most abundant miRNAs. Additionally, 23 upregulated and 15 downregulated miRNAs are identified. MiR-3168 is the most upregulated miRNA in preterm HBM exosome, exhibiting targeting activity toward multiple genes involved in the SMAD and MAPK signaling pathways and playing a crucial role in early neurodevelopment. Additionally, the effects of miR-3168 on neurodevelopment is confirmed and it is determined that it is an essential factor in the differentiation of neural stem cells (NSCs). CONCLUSION This study demonstrates that miRNA expression in breast milk exosomes can be influenced by preterm delivery, thereby potentially impacting neurodevelopment in preterm infants.
Collapse
Affiliation(s)
- Ling Ma
- Department of Child Health Care, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Yanyan Huo
- Department of Child Health Care, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Qingyuan Tang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiulian Wang
- Department of Child Health Care, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Weiqin Wang
- Department of Child Health Care, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Dan Wu
- Department of Child Health Care, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Yicheng Li
- Department of Child Health Care, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Lingyan Chen
- Department of Child Health Care, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
- Department of Occupational Therapy Science, Nagasaki University Graduate School of Biomedical Science, 1-7-1 Sakamoto, Nagasaki, 852-8520, Japan
| | - Shasha Wang
- Department of Child Health Care, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Yiwen Zhu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenli Wang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Nanjie Xu
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Li Chen
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200001, China
| | - Guangjun Yu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jinjin Chen
- Department of Child Health Care, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| |
Collapse
|
18
|
Oliver C, Mishra VSN, Santoro J, Mukhopadhya A, Buckley F, O'Driscoll L, Giblin L, Brodkorb A. Effect of In Vitro Enzyme Digestion and Bile Treatment on Milk Extracellular Vesicles Stability. Mol Nutr Food Res 2024; 68:e2300620. [PMID: 38708685 DOI: 10.1002/mnfr.202300620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/20/2024] [Indexed: 05/07/2024]
Abstract
SCOPE Milk extracellular vesicles (EVs) are nanosized particles with potential immune bioactivities. This study examines their fate during in vitro infant gastrointestinal digestion (GI). METHODS AND RESULTS Bovine milk is digested using the in vitro INFOGEST method, adjusted for the infant. To unravel the contribution of digestive enzymes from bile, milk is treated with digestive enzymes, bile, or a combination of both. EVs are collected posttreatment using differential ultracentrifugation. EVs characterization includes electrophoresis, immunoblotting, nanoparticle tracking analysis, and atomic force microscopy. EVs protein markers programmed cell death 6-interacting protein (ALIX), tumor susceptibility gene 101 (TSG101), cluster of differentiation 9 (CD9), and xanthine dehydrogenase (XDH) are detected after gastric digestion (G60), but their signal intensity is significantly reduced by intestinal conditions (p < 0.05). Enzyme digestion, compared to bile treatment (I60 + bile), results in a significant reduction of signal intensities for TSG101 and CD9 (p < 0.05). Nanoparticle tracking analysis shows a significant reduction (p < 0.05) of EV numbers at the end of the intestinal phase. EVs are detected by atomic force microscopy at the end of the intestinal phase, showing that intact EVs can survive upper gut digestion. CONCLUSION Intact EVs can be found at the end of the intestinal phase. However, digestive enzymes and bile reduce the quantity and characteristics of EVs, with digestive enzymes playing a larger role.
Collapse
Affiliation(s)
- Charlotte Oliver
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61C996, Ireland
- School of Pharmacy and Pharmaceutical Sciences & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Vinay S N Mishra
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61C996, Ireland
| | - Jessie Santoro
- School of Pharmacy and Pharmaceutical Sciences & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Anindya Mukhopadhya
- School of Pharmacy and Pharmaceutical Sciences & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Frank Buckley
- Animal and Grassland Research and Innovation Centre, Teagasc Moorepark, Fermoy, Co. Cork, P61 P302, Ireland
| | - Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical Sciences & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Linda Giblin
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61C996, Ireland
| | - André Brodkorb
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61C996, Ireland
| |
Collapse
|
19
|
Turner NP. Food-derived extracellular vesicles in the human gastrointestinal tract: Opportunities for personalised nutrition and targeted therapeutics. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e154. [PMID: 38939572 PMCID: PMC11080705 DOI: 10.1002/jex2.154] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/25/2024] [Accepted: 04/20/2024] [Indexed: 06/29/2024]
Abstract
Food-derived extracellular vesicles (FDEVs) such as those found in mammalian milk and plants are of great interest for both their health benefits and ability to act as biological nanocarriers. While the extracellular vesicle (EV) field is expanding rapidly to perform characterisation studies on FDEVs from plants, yeasts and bacteria, species-specific differences in EV uptake and function in the human gastrointestinal (GI) tract are poorly understood. Moreover, the effects of food processing on the EV surfaceome and intraluminal content also raises questions surrounding biological viability once consumed. Here, I present a case for increasing community-wide focus on understanding the cellular uptake of FDEVs from different animal, plant, yeast, and bacterial species and how this may impact their function in the human, which will have implications for human health and therapeutic strategies alike.
Collapse
Affiliation(s)
- Natalie P. Turner
- Faculty of HealthQueensland University of TechnologyKelvin GroveQueenslandAustralia
| |
Collapse
|
20
|
Xu YR, Zhao J, Huang HY, Lin YCD, Lee TY, Huang HD, Yang Y, Wang YF. Recent insights into breast milk microRNA: their role as functional regulators. Front Nutr 2024; 11:1366435. [PMID: 38689935 PMCID: PMC11058965 DOI: 10.3389/fnut.2024.1366435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
Breast milk (BM) is a primary biofluid that plays a crucial role in infant development and the regulation of the immune system. As a class of rich biomolecules in BM, microRNAs (miRNAs) are regarded as active factors contributing to infant growth and development. Surprisingly, these molecules exhibit resilience in harsh conditions, providing an opportunity for infants to absorb them. In addition, many studies have shown that miRNAs in breast milk, when absorbed into the gastrointestinal system, can act as a class of functional regulators to effectively regulate gene expression. Understanding the absorption pattern of BM miRNA may facilitate the creation of formula with a more optimal miRNA balance and pave the way for novel drug delivery techniques. In this review, we initially present evidence of BM miRNA absorption. Subsequently, we compile studies that integrate both in vivo and in vitro findings to illustrate the bioavailability and biodistribution of BM miRNAs post-absorption. In addition, we evaluate the strengths and weaknesses of previous studies and discuss potential variables contributing to discrepancies in their outcomes. This literature review indicates that miRNAs can be absorbed and act as regulatory agents.
Collapse
Affiliation(s)
- Yi-Ran Xu
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Jinglu Zhao
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Hsi-Yuan Huang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Yang-Chi-Dung Lin
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Tzong-Yi Lee
- Institute of Bioinformatics and Systems Biology and Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Hsien-Da Huang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Yi Yang
- Department of Nephrology, Center for Regeneration and Aging Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
- Zhejiang-Denmark Joint Laboratory of Regeneration and Aging Medicine, Yiwu, China
| | - Yong-Fei Wang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| |
Collapse
|
21
|
Niazi SK, Magoola M. Transcytosis-Driven Treatment of Neurodegenerative Disorders by mRNA-Expressed Antibody-Transferrin Conjugates. Biomedicines 2024; 12:851. [PMID: 38672205 PMCID: PMC11048317 DOI: 10.3390/biomedicines12040851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The recent setbacks in the withdrawal and approval delays of antibody treatments of neurodegenerative disorders (NDs), attributed to their poor entry across the blood-brain barrier (BBB), emphasize the need to bring novel approaches to enhance the entry across the BBB. One such approach is conjugating the antibodies that bind brain proteins responsible for NDs with the transferrin molecule. This glycoprotein transports iron into cells, connecting with the transferrin receptors (TfRs), piggybacking an antibody-transferrin complex that can subsequently release the antibody in the brain or stay connected while letting the antibody bind. This process increases the concentration of antibodies in the brain, enhancing therapeutic efficacy with targeted delivery and minimum systemic side effects. Currently, this approach is experimented with using drug-transferring conjugates assembled in vitro. Still, a more efficient and safer alternative is to express the conjugate using mRNA technology, as detailed in this paper. This approach will expedite safer discoveries that can be made available at a much lower cost than the recombinant process with in vitro conjugation. Most importantly, the recommendations made in this paper may save the antibodies against the NDs that seem to be failing despite their regulatory approvals.
Collapse
|
22
|
Saavedra LPJ, Piovan S, Moreira VM, Gonçalves GD, Ferreira ARO, Ribeiro MVG, Peres MNC, Almeida DL, Raposo SR, da Silva MC, Barbosa LF, de Freitas Mathias PC. Epigenetic programming for obesity and noncommunicable disease: From womb to tomb. Rev Endocr Metab Disord 2024; 25:309-324. [PMID: 38040983 DOI: 10.1007/s11154-023-09854-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
Several epidemiological, clinical and experimental studies in recent decades have shown the relationship between exposure to stressors during development and health outcomes later in life. The characterization of these susceptible phases, such as preconception, gestation, lactation and adolescence, and the understanding of factors that influence the risk of an adult individual for developing obesity, metabolic and cardiovascular diseases, is the focus of the DOHaD (Developmental Origins of Health and Disease) research line. In this sense, advancements in molecular biology techniques have contributed significantly to the understanding of the mechanisms underlying the observed phenotypes, their morphological and physiological alterations, having as a main driving factor the epigenetic modifications and their consequent modulation of gene expression. The present narrative review aimed to characterize the different susceptible phases of development and associated epigenetic modifications, and their implication in the development of non-communicable diseases. Additionally, we provide useful insights into interventions during development to counteract or prevent long-term programming for disease susceptibility.
Collapse
Affiliation(s)
- Lucas Paulo Jacinto Saavedra
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Silvano Piovan
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Veridiana Mota Moreira
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Gessica Dutra Gonçalves
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Anna Rebeka Oliveira Ferreira
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Maiara Vanusa Guedes Ribeiro
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Maria Natália Chimirri Peres
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Douglas Lopes Almeida
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Scarlett Rodrigues Raposo
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Mariane Carneiro da Silva
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Letícia Ferreira Barbosa
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil
| | - Paulo Cezar de Freitas Mathias
- Department of Biotechnology, Genetics, and Cellular Biology, State University of Maringá, 5790 Av Colombo, Sala 19, Maringá, PR, 87020-900, Brazil.
| |
Collapse
|
23
|
Yung C, Zhang Y, Kuhn M, Armstrong RJ, Olyaei A, Aloia M, Scottoline B, Andres SF. Neonatal enteroids absorb extracellular vesicles from human milk-fed infant digestive fluid. J Extracell Vesicles 2024; 13:e12422. [PMID: 38602306 PMCID: PMC11007820 DOI: 10.1002/jev2.12422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 02/20/2024] [Indexed: 04/12/2024] Open
Abstract
Human milk contains extracellular vesicles (HMEVs). Pre-clinical models suggest that HMEVs may enhance intestinal function and limit inflammation; however, it is unknown if HMEVs or their cargo survive neonatal human digestion. This limits the ability to leverage HMEV cargo as additives to infant nutrition or as therapeutics. This study aimed to develop an EV isolation pipeline from small volumes of human milk and neonatal intestinal contents after milk feeding (digesta) to address the hypothesis that HMEVs survive in vivo neonatal digestion to be taken up intestinal epithelial cells (IECs). Digesta was collected from nasoduodenal sampling tubes or ostomies. EVs were isolated from raw and pasteurized human milk and digesta by density-gradient ultracentrifugation following two-step skimming, acid precipitation of caseins, and multi-step filtration. EVs were validated by electron microscopy, western blotting, nanoparticle tracking analysis, resistive pulse sensing, and super-resolution microscopy. EV uptake was tested in human neonatal enteroids. HMEVs and digesta EVs (dEVs) show typical EV morphology and are enriched in CD81 and CD9, but depleted of β-casein and lactalbumin. HMEV and some dEV fractions contain mammary gland-derived protein BTN1A1. Neonatal human enteroids rapidly take up dEVs in part via clathrin-mediated endocytosis. Our data suggest that EVs can be isolated from digestive fluid and that these dEVs can be absorbed by IECs.
Collapse
Affiliation(s)
- Claire Yung
- Department of PediatricsPediatric GI Division, School of Medicine, Oregon Health and Science UniversityPortlandOregonUSA
| | - Yang Zhang
- Department of PediatricsPediatric GI Division, School of Medicine, Oregon Health and Science UniversityPortlandOregonUSA
| | - Madeline Kuhn
- Department of PediatricsPediatric GI Division, School of Medicine, Oregon Health and Science UniversityPortlandOregonUSA
| | - Randall J. Armstrong
- Knight Cancer InstituteOregon Health and Science UniversityPortlandOregonUSA
- Cancer Early Detection Advanced Research (CEDAR)Oregon Health and Science UniversityPortlandOregonUSA
| | - Amy Olyaei
- Division of Neonatology, Department of PediatricsOregon Health and Science UniversityPortlandOregonUSA
| | - Molly Aloia
- Division of Neonatology, Department of PediatricsOregon Health and Science UniversityPortlandOregonUSA
| | - Brian Scottoline
- Department of PediatricsPediatric GI Division, School of Medicine, Oregon Health and Science UniversityPortlandOregonUSA
- Division of Neonatology, Department of PediatricsOregon Health and Science UniversityPortlandOregonUSA
| | - Sarah F. Andres
- Department of PediatricsPediatric GI Division, School of Medicine, Oregon Health and Science UniversityPortlandOregonUSA
| |
Collapse
|
24
|
Lu D, Liu Y, Kang L, Zhang X, Hu J, Ye H, Huang B, Wu Y, Zhao J, Dai Z, Wang J, Han D. Maternal fiber-rich diet promotes early-life intestinal development in offspring through milk-derived extracellular vesicles carrying miR-146a-5p. J Nanobiotechnology 2024; 22:65. [PMID: 38365722 PMCID: PMC10870446 DOI: 10.1186/s12951-024-02344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/12/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUNDS The intestinal development in early life is profoundly influenced by multiple biological components of breast milk, in which milk-derived extracellular vesicles (mEVs) contain a large amount of vertically transmitted signal from the mother. However, little is known about how maternal fiber-rich diet regulates offspring intestinal development by influencing the mEVs. RESULTS In this study, we found that maternal resistant starch (RS) consumption during late gestation and lactation improved the growth and intestinal health of offspring. The mEVs in breast milk are the primary factor driving these beneficial effects, especially enhancing intestinal cell proliferation and migration. To be specific, administration of mEVs after maternal RS intake enhanced intestinal cell proliferation and migration in vivo (performed in mice model and indicated by intestinal histological observation, EdU assay, and the quantification of cyclin proteins) and in vitro (indicated by CCK8, MTT, EdU, and wound healing experiments). Noteworthily, miR-146a-5p was found to be highly expressed in the mEVs from maternal RS group, which also promotes intestinal cell proliferation in cells and mice models. Mechanically, miR-146a-5p target to silence the expression of ubiquitin ligase 3 gene NEDD4L, thereby inhibiting DVL2 ubiquitination, activating the Wnt pathway, and promoting intestinal development. CONCLUSION These findings demonstrated the beneficial role of mEVs in the connection between maternal fiber rich diet and offspring intestinal growth. In addition, we identified a novel miRNA-146a-5p-NEDD4L-β-catenin/Wnt signaling axis in regulating early intestinal development. This work provided a new perspective for studying the influence of maternal diet on offspring development.
Collapse
Affiliation(s)
- Dongdong Lu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Adaptation Physiology Group, Wageningen University & Research, Wageningen, 6700 AH, The Netherlands
| | - Yisi Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Luyuan Kang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiangyu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jie Hu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hao Ye
- Adaptation Physiology Group, Wageningen University & Research, Wageningen, 6700 AH, The Netherlands
| | - Bingxu Huang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yujun Wu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
25
|
Yung C, Zhang Y, Kuhn M, Armstrong RJ, Olyaei A, Aloia M, Scottoline B, Andres SF. Neonatal enteroids absorb extracellular vesicles from human milk-fed infant digestive fluid. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.03.556067. [PMID: 38187651 PMCID: PMC10769189 DOI: 10.1101/2023.09.03.556067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Human milk contains extracellular vesicles (HMEVs). Pre-clinical models suggest that HMEVs may enhance intestinal function and limit inflammation; however, it is unknown if HMEVs or their cargo survive neonatal human digestion. This limits the ability to leverage HMEV cargo as additives to infant nutrition or as therapeutics. This study aimed to develop an EV isolation pipeline from small volumes of human milk and neonatal intestinal contents after milk feeding (digesta) to address the hypothesis that HMEVs survive in vivo neonatal digestion to be taken up intestinal epithelial cells (IECs). Digesta was collected from nasoduodenal sampling tubes or ostomies. EVs were isolated from raw and pasteurized human milk and digesta by density-gradient ultracentrifugation following two-step skimming, acid precipitation of caseins, and multi-step filtration. EVs were validated by electron microscopy, western blotting, nanoparticle tracking analysis, resistive pulse sensing, and super-resolution microscopy. EV uptake was tested in human neonatal enteroids. HMEVs and digesta EVs (dEVs) show typical EV morphology and are enriched in CD81 and CD9, but depleted of β-casein and lactalbumin. HMEV and some dEV fractions contain mammary gland-derived protein BTN1A1. Neonatal human enteroids rapidly take up dEVs in part via clathrin-mediated endocytosis. Our data suggest that EVs can be isolated from digestive fluid and that these dEVs can be absorbed by IECs.
Collapse
|
26
|
Muse ME, Armstrong DA, Hoen AG, Gilbert-Diamond D, Gui J, Palys TJ, Kolling FW, Christensen BC, Karagas MR, Howe CG. Maternal-Infant Factors in Relation to Extracellular Vesicle and Particle miRNA in Prenatal Plasma and in Postpartum Human Milk. Int J Mol Sci 2024; 25:1538. [PMID: 38338815 PMCID: PMC10855220 DOI: 10.3390/ijms25031538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
MicroRNAs (miRNA) in extracellular vesicles and particles (EVPs) in maternal circulation during pregnancy and in human milk postpartum are hypothesized to facilitate maternal-offspring communication via epigenetic regulation. However, factors influencing maternal EVP miRNA profiles during these two critical developmental windows remain largely unknown. In a pilot study of 54 mother-child dyads in the New Hampshire Birth Cohort Study, we profiled 798 EVP miRNAs, using the NanoString nCounter platform, in paired maternal second-trimester plasma and mature (6-week) milk samples. In adjusted models, total EVP miRNA counts were lower for plasma samples collected in the afternoon compared with the morning (p = 0.024). Infant age at sample collection was inversely associated with total miRNA counts in human milk EVPs (p = 0.040). Milk EVP miRNA counts were also lower among participants who were multiparous after delivery (p = 0.047), had a pre-pregnancy BMI > 25 kg/m2 (p = 0.037), or delivered their baby via cesarean section (p = 0.021). In post hoc analyses, we also identified 22 specific EVP miRNA that were lower among participants who delivered their baby via cesarean section (Q < 0.05). Target genes of delivery mode-associated miRNAs were over-represented in pathways related to satiety signaling in infants (e.g., CCKR signaling) and mammary gland development and lactation (e.g., FGF signaling, EGF receptor signaling). In conclusion, we identified several key factors that may influence maternal EVP miRNA composition during two critical developmental windows, which should be considered in future studies investigating EVP miRNA roles in maternal and child health.
Collapse
Affiliation(s)
- Meghan E. Muse
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH 03755, USA (M.R.K.); (C.G.H.)
| | - David A. Armstrong
- Research Service, V.A. Medical Center, Hartford, VT 05009, USA
- Department of Dermatology, Dartmouth Health, Lebanon, NH 03756, USA
| | - Anne G. Hoen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH 03755, USA (M.R.K.); (C.G.H.)
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Diane Gilbert-Diamond
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH 03755, USA (M.R.K.); (C.G.H.)
| | - Jiang Gui
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Thomas J. Palys
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH 03755, USA (M.R.K.); (C.G.H.)
| | - Frederick W. Kolling
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Brock C. Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH 03755, USA (M.R.K.); (C.G.H.)
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH 03755, USA (M.R.K.); (C.G.H.)
| | - Caitlin G. Howe
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH 03755, USA (M.R.K.); (C.G.H.)
| |
Collapse
|
27
|
Mondal J, Pillarisetti S, Junnuthula V, Surwase SS, Hwang SR, Park IK, Lee YK. Extracellular vesicles and exosome-like nanovesicles as pioneering oral drug delivery systems. Front Bioeng Biotechnol 2024; 11:1307878. [PMID: 38260737 PMCID: PMC10800420 DOI: 10.3389/fbioe.2023.1307878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
As extracellular vesicle (EV)-based nanotechnology has developed rapidly, it has made unprecedented opportunities for nanomedicine possible. EVs and exosome-like nanovesicles (ELNVs) are natural nanocarriers with unique structural, compositional, and morphological characteristics that provide excellent physical, chemical, and biochemical properties. In this literature, we examine the characteristics of EVs, including how they are administered orally and their therapeutic activity. According to the current examples of EVs and ELNVs for oral delivery, milk and plant EVs can exert therapeutic effects through their protein, nucleic acid, and lipid components. Furthermore, several methods for loading drugs into exosomes and targeting exosomes have been employed to investigate their therapeutic capability. Moreover, we discuss EVs as potential drug carriers and the potential role of ELNVs for disease prevention and treatment or as potential drug carriers in the future. In conclusion, the issues associated with the development of EVs and ELNVs from sources such as milk and plants, as well as concerns with standardized applications of these EVs, are discussed.
Collapse
Affiliation(s)
- Jagannath Mondal
- Department of Green Bioengineering, Korea National University of Transportation, Chungju, Republic of Korea
| | - Shameer Pillarisetti
- Department of Biomedical Sciences and Biomedical Science Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju, Republic of Korea
| | | | - Sachin S. Surwase
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Seung Rim Hwang
- College of Pharmacy, Chosun University, Gwangju, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences and Biomedical Science Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Yong-kyu Lee
- Department of Green Bioengineering, Korea National University of Transportation, Chungju, Republic of Korea
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju, Republic of Korea
| |
Collapse
|
28
|
Vahkal B, Altosaar I, Tremblay E, Gagné D, Hüttman N, Minic Z, Côté M, Blais A, Beaulieu J, Ferretti E. Gestational age at birth influences protein and RNA content in human milk extracellular vesicles. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e128. [PMID: 38938674 PMCID: PMC11080785 DOI: 10.1002/jex2.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 06/29/2024]
Abstract
Human milk extracellular vesicles (HM EVs) are proposed to protect against disease development in infants. This protection could in part be facilitated by the bioactive EV cargo of proteins and RNA. Notably, mothers birth infants of different gestational ages with unique needs, wherein the EV cargo of HM may diverge. We collected HM from lactating mothers within two weeks of a term or preterm birth. Following purification of EVs, proteins and mRNA were extracted for proteomics and sequencing analyses, respectively. Over 2000 protein groups were identified, and over 8000 genes were quantified. The total number of proteins and mRNA did not differ significantly between the two conditions, while functional bioinformatics of differentially expressed cargo indicated enrichment in immunoregulatory cargo for preterm HM EVs. In term HM EVs, significantly upregulated cargo was enriched in metabolism-related functions. Based on gene expression signatures from HM-contained single cell sequencing data, we proposed that a larger portion of preterm HM EVs are secreted by immune cells, whereas term HM EVs contain more signatures of lactocyte epithelial cells. Proposed differences in EV cargo could indicate variation in mother's milk based on infants' gestational age and provide basis for further functional characterisation.
Collapse
Affiliation(s)
- Brett Vahkal
- Department of Biochemistry, Microbiology and ImmunologyUniversity of OttawaOttawaCanada
- uOttawa Centre for Infection, Immunity, and InflammationOttawaCanada
- Ottawa Institute of Systems BiologyOttawaCanada
| | - Illimar Altosaar
- Department of Biochemistry, Microbiology and ImmunologyUniversity of OttawaOttawaCanada
| | - Eric Tremblay
- Department of Immunology and Cell BiologyUniversité de SherbrookeSherbrookeCanada
| | - David Gagné
- Department of Immunology and Cell BiologyUniversité de SherbrookeSherbrookeCanada
| | - Nico Hüttman
- Faculty of Science, John L. Holmes Mass Spectrometry FacilityUniversity of OttawaOttawaCanada
| | - Zoran Minic
- Faculty of Science, John L. Holmes Mass Spectrometry FacilityUniversity of OttawaOttawaCanada
| | - Marceline Côté
- Department of Biochemistry, Microbiology and ImmunologyUniversity of OttawaOttawaCanada
- uOttawa Centre for Infection, Immunity, and InflammationOttawaCanada
- Ottawa Institute of Systems BiologyOttawaCanada
| | - Alexandre Blais
- Department of Biochemistry, Microbiology and ImmunologyUniversity of OttawaOttawaCanada
- uOttawa Centre for Infection, Immunity, and InflammationOttawaCanada
- Ottawa Institute of Systems BiologyOttawaCanada
- Brain and Mind InstituteUniversity of OttawaOttawaCanada
- Éric Poulin Centre for Neuromuscular DiseaseOttawaCanada
| | | | - Emanuela Ferretti
- Department of Pediatrics, Division of NeonatologyChildren's Hospital of Eastern OntarioOttawaCanada
| |
Collapse
|
29
|
Słyk-Gulewska P, Kondracka A, Kwaśniewska A. MicroRNA as a new bioactive component in breast milk. Noncoding RNA Res 2023; 8:520-526. [PMID: 37520770 PMCID: PMC10371784 DOI: 10.1016/j.ncrna.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/24/2023] [Accepted: 06/25/2023] [Indexed: 08/01/2023] Open
Abstract
Breast milk is a complex and multifaceted fluid that plays a critical role in the development of infants. It is composed of water, carbohydrates, fats, proteins, vitamins, and minerals, as well as numerous bioactive compounds such as hormones, oligosaccharides, and immune proteins. Additionally, breast milk contains microRNAs, which have been found to regulate gene expression and impact various aspects of infant development. This text provides an overview of the components of human breast milk and their importance in infant development, with a focus on microRNAs. MicroRNAs are short RNA sequences that regulate gene expression posttranscriptionally, and they play an important role in shaping the mechanisms of immunity, protecting against oxidative stress, and promoting thermogenesis. The composition of breast milk can vary in the same mother between different feedings, as it changes in response to various factors such as the infant's age, feeding frequency and duration, time of day, and maternal health status. Despite the variations in breast milk composition, it still provides complete nutrition for the infant. The unique microRNA profiles in breast milk and how they are affected by various factors can have significant implications for disease prevention and treatment. Further research is needed to better understand the functions of individual microRNA molecules and their potential therapeutic applications.
Collapse
|
30
|
Gómez-Ferrer M, Amaro-Prellezo E, Albiach-Delgado A, Ten-Domenech I, Kuligowski J, Sepúlveda P. Identification of omega-3 oxylipins in human milk-derived extracellular vesicles with pro-resolutive actions in gastrointestinal inflammation. Front Immunol 2023; 14:1293737. [PMID: 38054009 PMCID: PMC10694275 DOI: 10.3389/fimmu.2023.1293737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/27/2023] [Indexed: 12/07/2023] Open
Abstract
Introduction Premature infants (PIs) are at risk of suffering necrotizing enterocolitis (NEC), and infants consuming human milk (HM) show a lower incidence than infants receiving formula. The composition of HM has been studied in depth, but the lipid content of HM-derived small extracellular vesicles (HM sEVs) remains unexplored. Identifying these molecules and their biological effects has potential for the treatment of intestinal disorders in PIs and could contribute to the development of HM-based fortified formulas. Methods We isolated HM sEVs from HM samples and analyzed their oxylipin content using liquid chromatography coupled to mass spectrometry, which revealed the presence of anti-inflammatory oxylipins. We then examined the efficacy of a mixture of these oxylipins in combating inflammation and fibrosis, in vitro and in a murine model of inflammatory bowel disease (IBD). Results HM-related sEVs contained higher concentrations of oxylipins derived from docosahexaenoic acid, an omega-3 fatty acid. Three anti-inflammatory oxylipins, 14-HDHA, 17-HDHA, and 19,20-DiHDPA (ω3 OXLP), demonstrated similar efficacy to HM sEVs in preventing cell injury, inducing re-epithelialization, mitigating fibrosis, and modulating immune responses. Both ω3 OXLP and HM sEVs effectively reduced inflammation in IBD-model mice, preventing colon shortening, infiltration of inflammatory cells and tissue fibrosis. Discussion Incorporating this unique cocktail of oxylipins into fortified milk formulas might reduce the risk of NEC in PIs and also provide immunological and neurodevelopmental support.
Collapse
Affiliation(s)
- Marta Gómez-Ferrer
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Valencia, Spain
| | - Elena Amaro-Prellezo
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Valencia, Spain
| | - Abel Albiach-Delgado
- Neonatal Research Group, Health Research Institute Hospital La Fe, Valencia, Spain
| | - Isabel Ten-Domenech
- Neonatal Research Group, Health Research Institute Hospital La Fe, Valencia, Spain
| | - Julia Kuligowski
- Neonatal Research Group, Health Research Institute Hospital La Fe, Valencia, Spain
| | - Pilar Sepúlveda
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Valencia, Spain
- Cardiology Service, Hospital Universitari i Politècnic La Fe, Valencia, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Carlos III Institute of Health, Madrid, Spain
- Department of Pathology, University of Valencia, Valencia, Spain
| |
Collapse
|
31
|
Kaeffer B. Human Breast Milk miRNAs: Their Diversity and Potential for Preventive Strategies in Nutritional Therapy. Int J Mol Sci 2023; 24:16106. [PMID: 38003296 PMCID: PMC10671413 DOI: 10.3390/ijms242216106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The endogenous miRNAs of breast milk are the products of more than 1000 nonprotein-coding genes, giving rise to mature small regulatory molecules of 19-25 nucleotides. They are incorporated in macromolecular complexes, loaded on Argonaute proteins, sequestrated in exosomes and lipid complexes, or present in exfoliated cells of epithelial, endothelial, or immune origins. Their expression is dependent on the stage of lactation; however, their detection depends on progress in RNA sequencing and the reappraisal of the definition of small RNAs. Some miRNAs from plants are detected in breast milk, opening the possibility of the stimulation of immune cells from the allergy repertoire. Each miRNA harbors a seeding sequence, which targets mRNAs, gene promoters, or long noncoding RNAs. Their activities depend on their bioavailability. Efficient doses of miRNAs are estimated to be roughly 100 molecules in the cytoplasm of target cells from in vitro and in vivo experiments. Each miRNA is included in networks of stimulation/inhibition/sequestration, driving the expression of cellular phenotypes. Three types of stress applied during lactation to manipulate miRNA supply were explored using rodent offspring: a foster mother, a cafeteria diet, and early weaning. This review presents the main mature miRNAs described from current mothers' cohorts and their bioavailability in experimental models as well as studies assessing the potential of miR-26 or miR-320 miRNA families to alter offspring phenotypes.
Collapse
Affiliation(s)
- Bertrand Kaeffer
- Nantes Université, INRAE, UMR 1280, PhAN, F-44000 Nantes, France
| |
Collapse
|
32
|
Balduit A, Bulla R, Agostinis C. The last word on COVID-19 vaccines and breastfeeding? EBioMedicine 2023; 97:104830. [PMID: 37837934 PMCID: PMC10585206 DOI: 10.1016/j.ebiom.2023.104830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/16/2023] Open
Affiliation(s)
- Andrea Balduit
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Chiara Agostinis
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy.
| |
Collapse
|
33
|
Kim NH, Kim J, Lee JY, Bae HA, Kim CY. Application of Milk Exosomes for Musculoskeletal Health: Talking Points in Recent Outcomes. Nutrients 2023; 15:4645. [PMID: 37960298 PMCID: PMC10647311 DOI: 10.3390/nu15214645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Milk is a nutrient-rich food source, and among the various milks, breast milk is a nutrient source provided by mothers to newborns in many mammals. Exosomes are nano-sized membranous extracellular vesicles that play important roles in cell-to-cell communication. Exosomes originate from endogenous synthesis and dietary sources such as milk. Discovered through electron microscopy as floating vesicles, the existence of exosomes in human milk was confirmed owing to a density between 1.10 and 1.18 g/mL in a sucrose gradient corresponding to the known density of exosomes and detection of MHC classes I and II, CD63, CD81, and CD86 on the vesicles. To date, milk exosomes have been used for treating many diseases, including cancers, and are widely proposed as promising carriers for the delivery of chemotherapeutic agents. However, few studies on milk exosomes focus on geriatric health, especially sarcopenia and osteoporosis related to bone and muscle. Therefore, the present study focused on milk exosomes and their cargoes, which are potential candidates for dietary supplements, and when combined with drugs, they can be effective in treating musculoskeletal diseases. In this review, we introduce the basic concepts, including the definition, various sources, and cargoes of milk exosomes, and exosome isolation and characterization methods. Additionally, we review recent literature on the musculoskeletal system and milk exosomes. Since inflammation and oxidative stress underly musculoskeletal disorders, studies reporting the antioxidant and anti-inflammatory properties of milk exosomes are also summarized. Finally, the therapeutic potential of milk exosomes in targeting muscle and bone health is proposed.
Collapse
Affiliation(s)
- Na-Hyung Kim
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (N.-H.K.); (J.K.); (J.-Y.L.); (H.-A.B.)
- Department of Food and Nutrition, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Juhae Kim
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (N.-H.K.); (J.K.); (J.-Y.L.); (H.-A.B.)
| | - Joo-Yeon Lee
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (N.-H.K.); (J.K.); (J.-Y.L.); (H.-A.B.)
- Department of Food and Nutrition, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Hyeon-A Bae
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (N.-H.K.); (J.K.); (J.-Y.L.); (H.-A.B.)
- Department of Food and Nutrition, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Choon Young Kim
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (N.-H.K.); (J.K.); (J.-Y.L.); (H.-A.B.)
- Department of Food and Nutrition, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| |
Collapse
|
34
|
Ma T, Meng Z, Ghaffari M, Lv J, Xin H, Zhao Q. Characterization and profiling of the microRNA in small extracellular vesicles isolated from goat milk samples collected during the first week postpartum. JDS COMMUNICATIONS 2023; 4:507-512. [PMID: 38045901 PMCID: PMC10692291 DOI: 10.3168/jdsc.2022-0369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/06/2023] [Indexed: 12/05/2023]
Abstract
Colostrum contains nutrients, immunoglobulins, and various bioactive compounds such as microRNA (miRNA). Less is known about the temporal changes in miRNA profiles in ruminant milk samples during the first week postpartum. In this study, we characterized and compared the profiles of miRNA in the small extracellular vesicles (sEV) isolated from colostrum (CM, collected immediately after parturition, n = 8) and transition milk (TM, collected 7 d postpartum, n = 8) from eight 1-yr-old Guanzhong dairy goats with a milk yield of approximately 500 kg/year. A total of 192 unique sEV-associated miRNA (transcripts per million >1 at least 4 samples in either CM or TM) were identified in all samples. There were 29 miRNA uniquely identified in the TM samples while no miRNA was uniquely identified in the CM samples. The abundance of the top 10 miRNA accounted for 82.4% ± 4.0% (± SD) of the total abundance, with let-7 families (e.g., let-7a/b/c-5p) being predominant in all samples. The top 10 miRNA were predicted to target 1,008 unique genes that may regulate pathways such as focal adhesion, TGF-β signaling, and axon guidance. The expression patterns of EV miRNA were similar between the 2 sample groups, although the abundance of let-7c-5p and miR-30a-3p was higher, whereas that of let-7i-5p and miR-103-3p was lower in CM than in TM. In conclusion, the core miRNAome identified in the samples from CM and TM may play an important role in cell proliferation, bone homeostasis, and neuronal network formation in newborn goat kids. The lack of differential miRNA expression between the CM and TM samples may be due to a relatively short sampling interval in which diet composition, intake and health status of ewes, and environment were relatively stable.
Collapse
Affiliation(s)
- T. Ma
- Institute of Feed Research, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Z. Meng
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot, 010030, China
| | - M.H. Ghaffari
- Institute of Animal Science, University of Bonn, Bonn, 53115, Germany
| | - J. Lv
- College of Animal Sciences and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - H. Xin
- College of Animal Sciences and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Q. Zhao
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot, 010030, China
| |
Collapse
|
35
|
Yeo J. Food-Derived Extracellular Vesicles as Multi-Bioactive Complex and Their Versatile Health Effects. Antioxidants (Basel) 2023; 12:1862. [PMID: 37891941 PMCID: PMC10604675 DOI: 10.3390/antiox12101862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound organelles that are generally released by eukaryotic cells and enclose various cellular metabolic information, such as RNA, meta-proteins, and versatile metabolites. The physiological properties and diverse functions of food-derived EVs have been extensively elucidated, along with a recent explosive upsurge in EV research. Therefore, a concise review of the health effects of food-derived EVs is necessary. This review summarizes the structural stability and uptake pathways of food-derived EVs to target cells and their health benefits, including antioxidant, anti-inflammatory, and anticarcinogenic effects, gut microbiome modulation, and intestinal barrier enhancement.
Collapse
Affiliation(s)
- JuDong Yeo
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
36
|
Zhang Y, Lin Y, He J, Song S, Luo Y, Lu Y, Chen S, Wang Q, Li Y, Ren F, Guo H. Milk-derived small extracellular vesicles: a new perspective on dairy nutrition. Crit Rev Food Sci Nutr 2023; 64:13225-13246. [PMID: 37819268 DOI: 10.1080/10408398.2023.2263573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Milk contains bioactive compounds that have multiple essential benefits. Milk-derived small extracellular vesicles (M-sEVs) have emerged as novel bioactive milk components with various beneficial biological functions and broad applications. The M-sEVs from different mammalian sources have similar composition and bioactive functions. The digestive stability and biocompatibility of the M-sEVs provide a good foundation for their physiological functions. Evidence suggests that M-sEVs promote intestinal, immune, bone, neural, liver, and heart health and show therapeutic effects against cancer, indicating their potential for use in functional foods. In addition, M-sEVs can be developed as natural delivery carriers owing to their superior structural characteristics. Further studies are needed to elucidate the relationship between the specific components and functions of M-sEVs, standardize their extraction processes, and refine relevant clinical trials to advance the future applications of M-sEVs. This review summarizes the structure and composition of M-sEVs isolated from different milk sources and discusses several common extraction methods. Since the introduction of M-sEVs for digestion and absorption, studies have been conducted on their biological functions. Furthermore, we outline the theoretical industrial production route, potential application scenarios of M-sEVs, and the future perspectives of M-sEV research.
Collapse
Affiliation(s)
- Yuning Zhang
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Yingying Lin
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, PR China
- National Center of Technology Innovation for Dairy, Hohhot, PR China
| | - Jian He
- National Center of Technology Innovation for Dairy, Hohhot, PR China
| | - Sijia Song
- Food Laboratory of Zhongyuan, Luohe, PR China
| | - Yujia Luo
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Yao Lu
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | | | - Qingyu Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, PR China
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, PR China
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, PR China
| | - Huiyuan Guo
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, PR China
| |
Collapse
|
37
|
Hanna N, De Mejia CM, Heffes-Doon A, Lin X, Botros B, Gurzenda E, Clauss-Pascarelli C, Nayak A. Biodistribution of mRNA COVID-19 vaccines in human breast milk. EBioMedicine 2023; 96:104800. [PMID: 37734205 PMCID: PMC10514401 DOI: 10.1016/j.ebiom.2023.104800] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND COVID-19 mRNA vaccines play a vital role in the fight against SARS-CoV-2 infection. However, lactating women have been largely excluded from most vaccine clinical trials. As a result, limited research has been conducted on the systemic distribution of vaccine mRNA during lactation and whether it is excreted in human breast milk (BM). Here, we evaluated if COVID-19 vaccine mRNA is detectable in BM after maternal vaccination and determined its potential translational activity. METHODS We collected BM samples from 13 lactating, healthy, post-partum women before and after COVID-19 mRNA vaccination. Vaccine mRNA in whole BM and BM extracellular vesicles (EVs) was assayed using quantitative Droplet Digital PCR, and its integrity and translational activity were evaluated. FINDINGS Of 13 lactating women receiving the vaccine (20 exposures), trace mRNA amounts were detected in 10 exposures up to 45 h post-vaccination. The mRNA was concentrated in the BM EVs; however, these EVs neither expressed SARS-COV-2 spike protein nor induced its expression in the HT-29 cell line. Linkage analysis suggests vaccine mRNA integrity was reduced to 12-25% in BM. INTERPRETATION Our findings demonstrate that the COVID-19 vaccine mRNA is not confined to the injection site but spreads systemically and is packaged into BM EVs. However, as only trace quantities are present and a clear translational activity is absent, we believe breastfeeding post-vaccination is safe, especially 48 h after vaccination. Nevertheless, since the minimum mRNA vaccine dose to elicit an immune reaction in infants <6 months is unknown, a dialogue between a breastfeeding mother and her healthcare provider should address the benefit/risk considerations of breastfeeding in the first two days after maternal vaccination. FUNDING This study was supported by the Department of Pediatrics, NYU-Grossman Long Island School of Medicine.
Collapse
Affiliation(s)
- Nazeeh Hanna
- Division of Neonatology, Department of Pediatrics, NYU Langone Hospital-Long Island, New York University Grossman Long Island School of Medicine, 259 First Street, Mineola, NY 11501, USA; Women and Children's Research Laboratory, New York University Grossman Long Island School of Medicine, 259 First Street, Mineola, NY 11501, USA.
| | - Claudia Manzano De Mejia
- Women and Children's Research Laboratory, New York University Grossman Long Island School of Medicine, 259 First Street, Mineola, NY 11501, USA
| | - Ari Heffes-Doon
- Division of Neonatology, Department of Pediatrics, NYU Langone Hospital-Long Island, New York University Grossman Long Island School of Medicine, 259 First Street, Mineola, NY 11501, USA
| | - Xinhua Lin
- Women and Children's Research Laboratory, New York University Grossman Long Island School of Medicine, 259 First Street, Mineola, NY 11501, USA
| | - Bishoy Botros
- Women and Children's Research Laboratory, New York University Grossman Long Island School of Medicine, 259 First Street, Mineola, NY 11501, USA
| | - Ellen Gurzenda
- Women and Children's Research Laboratory, New York University Grossman Long Island School of Medicine, 259 First Street, Mineola, NY 11501, USA
| | - Christie Clauss-Pascarelli
- Department of Pharmacy, NYU Langone Hospital-Long Island, New York University Grossman Long Island School of Medicine, 259 First Street, Mineola, NY 11501, USA
| | - Amrita Nayak
- Division of Neonatology, Department of Pediatrics, NYU Langone Hospital-Long Island, New York University Grossman Long Island School of Medicine, 259 First Street, Mineola, NY 11501, USA
| |
Collapse
|
38
|
Turner NP, Abeysinghe P, Sadowski P, Mitchell MD. Omics Analysis of Extracellular Vesicles Recovered from Infant Formula Products and Milk: Towards Personalized Infant Nutrition. Mol Nutr Food Res 2023; 67:e2300404. [PMID: 37562982 DOI: 10.1002/mnfr.202300404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/26/2023] [Indexed: 08/12/2023]
Abstract
SCOPE Milk and milk products such as infant formula (IF) play a fundamental role in serving the nutritional needs of the developing infant. Extracellular vesicles (EVs) in human (HM) and cow milk (CM) contain molecular cargo such as proteins and micro(mi)RNAs that serve as functional messengers between cells and may be of importance to infant health. Most IF is derived from a CM protein base, however differences between HM and CM EV molecular cargo have not been extensively studied. METHODS AND RESULTS This study develops a pipeline using advanced proteomics and transcriptomics to enable cross-species comparison of milk and IF EVs. The number of nanoparticles per mL of IF is significantly reduced compared to unprocessed CM. 130 proteins and 514 miRNAs are differentially abundant between HM and CM EVs. While 90% of CM EV miRNAs are also identified in IF EVs, only 20% of CM EV proteins are identified in IF EVs. CONCLUSIONS This workflow identifies key species-specific differences that can be used to optimize IF recipes and enhance infant nutrition. Improved preservation of EV functional molecular cargo in IF products is of critical importance to retaining molecular drivers of good health and should be the focus of future investigations.
Collapse
Affiliation(s)
- Natalie P Turner
- Centre for Children's Health Research (CCHR), Queensland University of Technology (QUT), 62 Graham Street, South Brisbane, QLD, 4101, Australia
| | - Pevindu Abeysinghe
- Centre for Children's Health Research (CCHR), Queensland University of Technology (QUT), 62 Graham Street, South Brisbane, QLD, 4101, Australia
| | - Pawel Sadowski
- Central Analytical Research Facility (CARF), QUT, Gardens Point Campus, 2 George Street, Brisbane City, QLD, 4000, Australia
| | - Murray D Mitchell
- Centre for Children's Health Research (CCHR), Queensland University of Technology (QUT), 62 Graham Street, South Brisbane, QLD, 4101, Australia
| |
Collapse
|
39
|
Freiría-Martínez L, Iglesias-Martínez-Almeida M, Rodríguez-Jamardo C, Rivera-Baltanás T, Comís-Tuche M, Rodrígues-Amorím D, Fernández-Palleiro P, Blanco-Formoso M, Álvarez-Chaver P, Diz-Chaves Y, Gonzalez-Freiria N, Martín-Forero-Maestre M, Fernández-Feijoo CD, Suárez-Albo M, Fernández-Lorenzo JR, Guisán AC, Olivares JM, Spuch C. Proteomic analysis of exosomes derived from human mature milk and colostrum of mothers with term, late preterm, or very preterm delivery. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4905-4917. [PMID: 37718950 DOI: 10.1039/d3ay01114c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The growth and development of the human brain is a long and complex process that requires a precise sequence of genetic and molecular events. This begins in the third week of gestation with the differentiation of neural progenitor cells and extends at least until late adolescence, possibly for life. One of the defects of this development is that we know very little about the signals that modulate this sequence of events. The first 3 years of life, during breastfeeding, is one of the critical periods in brain development. In these first years of life, it is believed that neurodevelopmental problems may be the molecular causes of mental disorders. Therefore, we herein propose a new hypothesis, according to which the chemical signals that could modulate this entire complex sequence of events appear in this early period, and the molecular level study of human breast milk and colostrum of mothers who give birth to children in different gestation periods could give us information on proteins influencing this process. In this work, we collected milk and colostrum samples (term, late preterm and moderate/very preterm) and exosomes were isolated. The samples of exosomes and complete milk from each fraction were analyzed by LC-ESI-MS/MS. In this work, we describe proteins in the different fractions of mature milk and colostrum of mothers with term, late preterm, or very preterm delivery, which could be involved in the regulation of the nervous system by their functions. We describe how they differ in different types of milk, paving the way for the investigation of possible new neuroregulatory pathways as possible candidates to modulate the nervous system.
Collapse
Affiliation(s)
- Luis Freiría-Martínez
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, 36312, Spain.
- University of Vigo, Vigo, 36310, Spain
| | - Marta Iglesias-Martínez-Almeida
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, 36312, Spain.
- University of Vigo, Vigo, 36310, Spain
| | - Cynthia Rodríguez-Jamardo
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, 36312, Spain.
- University of Vigo, Vigo, 36310, Spain
| | - Tania Rivera-Baltanás
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, 36312, Spain.
- CIBERSAM, Madrid, 28029, Spain.
| | - María Comís-Tuche
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, 36312, Spain.
| | - Daniela Rodrígues-Amorím
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, 36312, Spain.
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Patricia Fernández-Palleiro
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, 36312, Spain.
| | - María Blanco-Formoso
- Department of Physical Chemistry, Singular Center for Biomedical Research (CINBIO), Universidade de Vigo, Vigo, 36310, Spain
| | - Paula Álvarez-Chaver
- Structural Determination, Proteomic and Genomic Service, CACTI, University of Vigo, Vigo, Spain
| | - Yolanda Diz-Chaves
- Laboratory of Endocrinology, Singular Center for Biomedical Research (CINBIO), Universidade de Vigo, 36310 Vigo, Spain
| | | | | | | | - María Suárez-Albo
- Neonatal Intensive Care Unit, Alvaro Cunqueiro Hospital, Vigo, 36312, Spain
| | | | | | - Jose Manuel Olivares
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, 36312, Spain.
- CIBERSAM, Madrid, 28029, Spain.
| | - Carlos Spuch
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, 36312, Spain.
- CIBERSAM, Madrid, 28029, Spain.
| |
Collapse
|
40
|
Holzhausen EA, Kupsco A, Chalifour BN, Patterson WB, Schmidt KA, Mokhtari P, Lurmann F, Baccarelli AA, Goran MI, Alderete TL. Human milk EV-miRNAs: a novel biomarker for air pollution exposure during pregnancy. ENVIRONMENTAL RESEARCH, HEALTH : ERH 2023; 1:035002. [PMID: 37692372 PMCID: PMC10486183 DOI: 10.1088/2752-5309/ace075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/23/2023] [Accepted: 06/21/2023] [Indexed: 09/12/2023]
Abstract
Exposure to ambient and near-roadway air pollution during pregnancy has been linked with several adverse health outcomes for pregnant women and their babies. Emerging research indicates that microRNA (miRNA) expression can be altered by exposure to air pollutants in a variety of tissues. Additionally, miRNAs from breast tissue and circulating miRNAs have previously been proposed as a biomarker for breast cancer diagnosis and prognosis. Therefore, this study sought to evaluate the associations between pregnancy exposures to ambient (PM10, PM2.5, NO2, O3) and near-roadway air pollution (total NOx, freeway NOx, non-freeway NOx) with breast milk extracellular vesicle miRNA (EV-miRNA), measured at 1-month postpartum, in a cohort of 108 Latina women living in Southern California. We found that PM10 exposure during pregnancy was positively associated with hsa-miR-200c-3p, hsa-miR-200b-3p, and hsa-let-7c-5p, and was negatively associated with hsa-miR-378d. We also found that pregnancy PM2.5 exposure was positively associated with hsa-miR-200c-3p and hsa-miR-200b-3p. First and second trimester exposure to PM10 and PM2.5 was associated with several EV-miRNAs with putative messenger RNA targets related to cancer. This study provides preliminary evidence that air pollution exposure during pregnancy is associated with human milk EV-miRNA expression.
Collapse
Affiliation(s)
- Elizabeth A Holzhausen
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO,
United States of America
| | - Allison Kupsco
- Department of Environmental Health Sciences, Columbia University Mailman School of Public
Health, New York, NY, United States of America
| | - Bridget N Chalifour
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO,
United States of America
| | - William B Patterson
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO,
United States of America
| | - Kelsey A Schmidt
- Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA, United
States of America
| | - Pari Mokhtari
- Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA, United
States of America
| | | | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public
Health, New York, NY, United States of America
| | - Michael I Goran
- Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA, United
States of America
| | - Tanya L Alderete
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO,
United States of America
| |
Collapse
|
41
|
Fu C, Sun W, Wang X, Zhu X. Human breast milk: A promising treatment for necrotizing enterocolitis. Early Hum Dev 2023; 184:105833. [PMID: 37523802 DOI: 10.1016/j.earlhumdev.2023.105833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/02/2023]
Abstract
Necrotizing enterocolitis (NEC) is a severe gastrointestinal disorder occurring in newborns, with a mortality rate ranging from 20 % to 30 %. The existing therapeutic approaches for NEC are limited in their effectiveness. Various factors contribute to the development of NEC, including disruption of barrier function, dysregulation of the intestinal immune system, and abnormal colonization of the intestinal microbiota. Researchers have shown considerable interest in exploring the therapeutic potential of the constituents present in human breast milk (HBM) for treating NEC. HBM contains numerous bioactive components, such as exosomes, growth factors, and oligosaccharides. However, the precise mechanisms by which HBM exerts its protective effects against NEC remain incompletely understood. In this study, our objective was to comprehensively review the bioactive substances present in HBM, aiming to facilitate the development of novel therapeutic strategies for NEC.
Collapse
Affiliation(s)
- Changchang Fu
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, China
| | - Wenqiang Sun
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, China
| | - Xingyun Wang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xueping Zhu
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
42
|
Zheng Z, Mo J, Lin F, Wang J, Chen J, Luo H, Liu Y, Su C, Gu X, Xiong F, Zha L. Milk Exosomes from Gestational Diabetes Mellitus (GDM) and Healthy Parturient Exhibit Differential miRNAs Profiles and Distinct Regulatory Bioactivity on Hepatocyte Proliferation. Mol Nutr Food Res 2023; 67:e2300005. [PMID: 37357556 DOI: 10.1002/mnfr.202300005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/27/2023] [Indexed: 06/27/2023]
Abstract
SCOPE Exosomes, a novel type of bioactive component in human milk (HM), affect infant development, growth, and health. Recent studies indicate that HM exosomes and miRNAs relate to gestational diabetes mellitus (GDM). However, the miRNAs profiles and functionalities of HM exosomes from GDM parturient remain unclear. This study aims to compare the differential miRNAs in HM exosomes from GDM and healthy parturient, and investigate the HM exosomes bioactivities in regulating hepatocyte proliferation and insulin sensitivity. METHODS AND RESULTS This study extracted HM exosomes from GDM (GDM-EXO) and healthy (NOR-EXO) parturient by ultracentrifugation, high-throughput sequenced and compared the exosomal miRNAs profiles, and explored the regulatory bioactivities on hepatocyte proliferation in HepG2 cells and Balb/c mice. As compared to NOR-EXO, GDM-EXO has similar morphology, size, concentration, and exosome-specific markers (CD9 and TSG101) expression. GDM-EXO and NOR-EXO specifically harbor 1299 and 8 miRNAs, respectively. Moreover, GDM-EXO had 176 upregulated and 47 downregulated miRNAs compared with NOR-EXO. Both GDM-EXO and NOR-EXO were absorbed in cultured HepG2 hepatocytes and mice liver. GDM-EXO inhibited hepatocytes proliferation by downregulating mammalian target of rapamycin (mTOR) possibly via exosomal miR-101-3p delivery. CONCLUSION HM exosomes from GDM and healthy parturient exhibit differential miRNAs profiles and distinct regulatory bioactivity on hepatocyte proliferation.
Collapse
Affiliation(s)
- Zhongdaixi Zheng
- Department of Nutrition and Food Hygiene, School of Public Health, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
- Department of Environmental Health, School of Public Health, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Jiaqi Mo
- Department of Nutrition and Food Hygiene, School of Public Health, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Fengjuan Lin
- Department of Nutrition and Food Hygiene, School of Public Health, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Jiexian Wang
- Department of Nutrition and Food Hygiene, School of Public Health, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Junbin Chen
- Department of Nutrition and Food Hygiene, School of Public Health, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Huiyu Luo
- Department of Nutrition and Food Hygiene, School of Public Health, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Yuguo Liu
- Department of Nutrition and Food Hygiene, School of Public Health, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Chuhong Su
- Department of Nutrition and Food Hygiene, School of Public Health, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Xiangfu Gu
- Department of Nutrition and Food Hygiene, School of Public Health, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Fei Xiong
- Department of Nutrition and Food Hygiene, School of Public Health, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Longying Zha
- Department of Nutrition and Food Hygiene, School of Public Health, National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| |
Collapse
|
43
|
Freiría-Martínez L, Iglesias-Martínez-Almeida M, Rodríguez-Jamardo C, Rivera-Baltanás T, Comís-Tuche M, Rodrígues-Amorím D, Fernández-Palleiro P, Blanco-Formoso M, Diz-Chaves Y, González-Freiria N, Suárez-Albo M, Martín-Forero-Maestre M, Durán Fernández-Feijoo C, Fernández-Lorenzo JR, Concheiro Guisán A, Olivares JM, Spuch C. Human Breast Milk microRNAs, Potential Players in the Regulation of Nervous System. Nutrients 2023; 15:3284. [PMID: 37513702 PMCID: PMC10384760 DOI: 10.3390/nu15143284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Human milk is the biological fluid with the highest exosome amount and is rich in microRNAs (miRNAs). These are key regulators of gene expression networks in both normal physiologic and disease contexts, miRNAs can influence many biological processes and have also shown promise as biomarkers for disease. One of the key aspects in the regeneration of the nervous system is that there are practically no molecules that can be used as potential drugs. In the first weeks of lactation, we know that human breast milk must contain the mechanisms to transmit molecular and biological information for brain development. For this reason, our objective is to identify new modulators of the nervous system that can be used to investigate neurodevelopmental functions based on miRNAs. To do this, we collected human breast milk samples according to the time of delivery and milk states: mature milk and colostrum at term; moderate and very preterm mature milk and colostrum; and late preterm mature milk. We extracted exosomes and miRNAs and realized the miRNA functional assays and target prediction. Our results demonstrate that miRNAs are abundant in human milk and likely play significant roles in neurodevelopment and normal function. We found 132 different miRNAs were identified across all samples. Sixty-nine miRNAs had significant differential expression after paired group comparison. These miRNAs are implicated in gene regulation of dopaminergic/glutamatergic synapses and neurotransmitter secretion and are related to the biological process that regulates neuron projection morphogenesis and synaptic vesicle transport. We observed differences according to the delivery time and with less clarity according to the milk type. Our data demonstrate that miRNAs are abundant in human milk and likely play significant roles in neurodevelopment and normal function.
Collapse
Affiliation(s)
- Luis Freiría-Martínez
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO (Servizo Galego de Saúde-Universidade de Vigo), 36312 Vigo, Spain
- Department of Functional Biology and Health Sciences, Campus Lagoas Marcosende, Universidade de Vigo, 36310 Vigo, Spain
| | - Marta Iglesias-Martínez-Almeida
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO (Servizo Galego de Saúde-Universidade de Vigo), 36312 Vigo, Spain
- Department of Functional Biology and Health Sciences, Campus Lagoas Marcosende, Universidade de Vigo, 36310 Vigo, Spain
| | - Cynthia Rodríguez-Jamardo
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO (Servizo Galego de Saúde-Universidade de Vigo), 36312 Vigo, Spain
- Department of Functional Biology and Health Sciences, Campus Lagoas Marcosende, Universidade de Vigo, 36310 Vigo, Spain
| | - Tania Rivera-Baltanás
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO (Servizo Galego de Saúde-Universidade de Vigo), 36312 Vigo, Spain
| | - María Comís-Tuche
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO (Servizo Galego de Saúde-Universidade de Vigo), 36312 Vigo, Spain
- Department of Functional Biology and Health Sciences, Campus Lagoas Marcosende, Universidade de Vigo, 36310 Vigo, Spain
| | - Daniela Rodrígues-Amorím
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO (Servizo Galego de Saúde-Universidade de Vigo), 36312 Vigo, Spain
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Patricia Fernández-Palleiro
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO (Servizo Galego de Saúde-Universidade de Vigo), 36312 Vigo, Spain
| | - María Blanco-Formoso
- Department of Physical Chemistry, Singular Center for Biomedical Research (CINBIO), Universidade de Vigo, 36310 Vigo, Spain
| | - Yolanda Diz-Chaves
- Laboratory of Endocrinology, Singular Center for Biomedical Research (CINBIO), Universidade de Vigo, 36310 Vigo, Spain
| | | | - María Suárez-Albo
- Neonatal Intensive Care Unit, Alvaro Cunqueiro Hospital, 36312 Vigo, Spain
| | | | | | | | | | - Jose Manuel Olivares
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO (Servizo Galego de Saúde-Universidade de Vigo), 36312 Vigo, Spain
- CIBERSAM (Network Biomedical Research Center on Mental Health), 28029 Madrid, Spain
| | - Carlos Spuch
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO (Servizo Galego de Saúde-Universidade de Vigo), 36312 Vigo, Spain
- CIBERSAM (Network Biomedical Research Center on Mental Health), 28029 Madrid, Spain
| |
Collapse
|
44
|
Krupova Z, Leroux C, Péchoux C, Bevilacqua C, Martin P. Comparison of goat and cow milk-derived extracellular vesicle miRNomes. Sci Data 2023; 10:465. [PMID: 37468505 PMCID: PMC10356914 DOI: 10.1038/s41597-023-02347-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/29/2023] [Indexed: 07/21/2023] Open
Abstract
miRNAs present in milk are mainly found in extracellular vesicles (EVs), which are nanosized membrane vesicles released by most of the cell types to ensure intercellular communication. The majority of the studies performed so far on these vesicles have been conducted on human and cow's milk and focused on their miRNA content. The objectives of this study were to profile the miRNA content of purified EVs from five healthy goats and to compare their miRNome to those obtained from five healthy cows, at an early stage of lactation. EV populations were morphologically characterized using Transmission Electron Microscopy and Nanoparticle Tracking Analysis. The presence of EV protein markers checked by Western blotting and the absence of contamination of preparations by milk proteins. The size distribution and concentration of bovine and goat milk-derived EVs were similar. RNA-sequencing were performed, and all sequences were mapped to the cow genome identifying a total of 295 miRNAs. This study reports for the first-time a goat miRNome from milk EVs and its validation using cow miRNomes.
Collapse
Affiliation(s)
- Zuzana Krupova
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, F-78350, Jouy-en-Josas, France
| | - Christine Leroux
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122, Saint-Genès-Champanelle, France.
- Department of Food Science and Technology, University of California Davis, Davis, CA, USA.
| | - Christine Péchoux
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, F-78350, Jouy-en-Josas, France
| | - Claudia Bevilacqua
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, F-78350, Jouy-en-Josas, France
| | - Patrice Martin
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, F-78350, Jouy-en-Josas, France
| |
Collapse
|
45
|
Holzhausen EA, Kupsco A, Chalifour BN, Patterson WB, Schmidt KA, Mokhtari P, Baccarelli AA, Goran MI, Alderete TL. Influence of technical and maternal-infant factors on the measurement and expression of extracellular miRNA in human milk. Front Immunol 2023; 14:1151870. [PMID: 37492577 PMCID: PMC10363855 DOI: 10.3389/fimmu.2023.1151870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/09/2023] [Indexed: 07/27/2023] Open
Abstract
Breast milk contains thousands of bioactive compounds including extracellular vesicle microRNAs (EV-miRNAs), which may regulate pathways such as infant immune system development and metabolism. We examined the associations between the expression of EV-miRNAs and laboratory variables (i.e., batch effects, sample characteristics), sequencing quality indicators, and maternal-infant characteristics. The study included 109 Latino mother-infant dyads from the Southern California Mother's Milk Study. Mothers were age 28.0 ± 5.6 and 23-46 days postpartum. We used principal components analysis to evaluate whether EV-miRNA expression was associated with factors of interest. Then, we used linear models to estimate relationships between these factors and specific EV-miRNA counts and analyzed functional pathways associated with those EV-miRNAs. Finally, we explored which maternal-infant characteristics predicted sequencing quality indicators. Sequencing quality indicators, predominant breastfeeding, and breastfeedings/day were associated with EV-miRNA principal components. Maternal body mass index and breast milk collection timing predicted proportion of unmapped reads. Expression of 2 EV-miRNAs were associated with days postpartum, 23 EV-miRNAs were associated with breast milk collection time, 23 EV-miRNAs were associated with predominant breastfeeding, and 38 EV-miRNAs were associated with breastfeedings/day. These EV-miRNAs were associated with pathways including Hippo signaling pathway and ECM-receptor interaction, among others. This study identifies several important factors that may contribute to breast milk EV-miRNA expression. Future studies should consider these findings in the design and analysis of breast milk miRNA research.
Collapse
Affiliation(s)
- Elizabeth A. Holzhausen
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Allison Kupsco
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, United States
| | - Bridget N. Chalifour
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - William B. Patterson
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Kelsey A. Schmidt
- Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | - Pari Mokhtari
- Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | - Andrea A. Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, United States
| | - Michael I. Goran
- Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | - Tanya L. Alderete
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
46
|
Timofeeva AM, Paramonik AP, Sedykh SS, Nevinsky GA. Milk Exosomes: Next-Generation Agents for Delivery of Anticancer Drugs and Therapeutic Nucleic Acids. Int J Mol Sci 2023; 24:10194. [PMID: 37373342 DOI: 10.3390/ijms241210194] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Exosomes are nanovesicles 40-120 nm in diameter secreted by almost all cell types and providing humoral intercellular interactions. Given the natural origin and high biocompatibility, the potential for loading various anticancer molecules and therapeutic nucleic acids inside, and the surface modification possibility for targeted delivery, exosomes are considered to be a promising means of delivery to cell cultures and experimental animal organisms. Milk is a unique natural source of exosomes available in semi-preparative and preparative quantities. Milk exosomes are highly resistant to the harsh conditions of the gastrointestinal tract. In vitro studies have demonstrated that milk exosomes have an affinity to epithelial cells, are digested by cells by endocytosis mechanism, and can be used for oral delivery. With milk exosome membranes containing hydrophilic and hydrophobic components, exosomes can be loaded with hydrophilic and lipophilic drugs. This review covers a number of scalable protocols for isolating and purifying exosomes from human, cow, and horse milk. Additionally, it considers passive and active methods for drug loading into exosomes, as well as methods for modifying and functionalizing the surface of milk exosomes with specific molecules for more efficient and specific delivery to target cells. In addition, the review considers various approaches to visualize exosomes and determine cellular localization and bio-distribution of loaded drug molecules in tissues. In conclusion, we outline new challenges for studying milk exosomes, a new generation of targeted delivery agents.
Collapse
Affiliation(s)
- Anna M Timofeeva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Anastasia P Paramonik
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Sergey S Sedykh
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Georgy A Nevinsky
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
47
|
Chen L, Ou Q, Kou X. Extracellular vesicles and their indispensable roles in pathogenesis and treatment of inflammatory bowel disease: A comprehensive review. Life Sci 2023; 327:121830. [PMID: 37286163 DOI: 10.1016/j.lfs.2023.121830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
Inflammatory bowel disease (IBD) is a global disease with rising incidence worldwide, and its debilitating symptoms and dissatisfactory therapies have brought heavy burdens for patients. Extracellular vesicles (EVs), a heterogeneous population of lipid bilayer membranes containing abundant bioactive molecules, have been indicated to play important roles in the pathogenesis and treatment of many diseases. However, to our knowledge, comprehensive reviews summarizing the various roles of diverse source-derived EVs in the pathogenesis and treatment of IBD are still lacking. This review, not only summarizes the EV characteristics, but also focuses on the multiple roles of diverse EVs in IBD pathogenesis and their treatment potential. In addition, hoping to push forward the research frontiers, we point out several challenges that the researchers are faced, about EVs in current IBD research and future therapeutic applications. We also put forward our prospects on future exploration regarding EVs in IBD treatment, including developing IBD vaccines and paying more attention on apoptotic vesicles. This review is aimed to enrich the knowledge on the indispensable roles of EVs in IBD pathogenesis and treatment, providing ideas and reference for future therapeutic strategy for IBD treatment.
Collapse
Affiliation(s)
- Linling Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, 510055 Guangzhou, China
| | - Qianmin Ou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, 510055 Guangzhou, China
| | - Xiaoxing Kou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, 510055 Guangzhou, China; Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510055, China.
| |
Collapse
|
48
|
Feng J, Xiu Q, Huang Y, Troyer Z, Li B, Zheng L. Plant-Derived Vesicle-Like Nanoparticles as Promising Biotherapeutic Tools: Present and Future. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207826. [PMID: 36592157 DOI: 10.1002/adma.202207826] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/11/2022] [Indexed: 06/16/2023]
Abstract
Extracellular vesicles (EVs) are heterogeneous, phospholipid bilayer-enclosed biological particles that regulate cell communication by molecular cargo delivery and surface signaling. EVs are secreted by almost all living cells, including plant cells. Plant-derived vesicle-like nanoparticles (PDVLNs) is a generic term referring to vesicle-like nanostructure particles isolated from plants. Their low immunogenicity and wide availability make PDVLNs safer and more economical to be developed as therapeutic agents and drug carriers. Accumulating evidence indicates the key roles of PDVLNs in regulating interkingdom crosstalk between humans and plants. PDVLNs are capable of entering the human-body systemand delivering effector molecules to cells that modulate cell-signaling pathways. PDVLNs released by or obtained from plants thus have great influenceon human health and diseases. In this review, the biogenesis, detailed preparation methods, various physical and biochemical characteristics, biosafety, and preservation of PDVLNs are introduced, along with how these characteristics pertain to their biosafety and preservability. The potential applications of PDVLNs on different plant and mammalian diseases and PDVLN research standardization are then systematically discussed.
Collapse
Affiliation(s)
- Junjie Feng
- Department of Laboratory Medicine, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Qi Xiu
- Department of Laboratory Medicine, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Yiyao Huang
- Department of Laboratory Medicine, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Zach Troyer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Bo Li
- Department of Laboratory Medicine, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Lei Zheng
- Department of Laboratory Medicine, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| |
Collapse
|
49
|
Loric S, Denis JA, Desbene C, Sabbah M, Conti M. Extracellular Vesicles in Breast Cancer: From Biology and Function to Clinical Diagnosis and Therapeutic Management. Int J Mol Sci 2023; 24:7208. [PMID: 37108371 PMCID: PMC10139222 DOI: 10.3390/ijms24087208] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Breast cancer (BC) is the first worldwide most frequent cancer in both sexes and the most commonly diagnosed in females. Although BC mortality has been thoroughly declining over the past decades, there are still considerable differences between women diagnosed with early BC and when metastatic BC is diagnosed. BC treatment choice is widely dependent on precise histological and molecular characterization. However, recurrence or distant metastasis still occurs even with the most recent efficient therapies. Thus, a better understanding of the different factors underlying tumor escape is mainly mandatory. Among the leading candidates is the continuous interplay between tumor cells and their microenvironment, where extracellular vesicles play a significant role. Among extracellular vesicles, smaller ones, also called exosomes, can carry biomolecules, such as lipids, proteins, and nucleic acids, and generate signal transmission through an intercellular transfer of their content. This mechanism allows tumor cells to recruit and modify the adjacent and systemic microenvironment to support further invasion and dissemination. By reciprocity, stromal cells can also use exosomes to profoundly modify tumor cell behavior. This review intends to cover the most recent literature on the role of extracellular vesicle production in normal and cancerous breast tissues. Specific attention is paid to the use of extracellular vesicles for early BC diagnosis, follow-up, and prognosis because exosomes are actually under the spotlight of researchers as a high-potential source of liquid biopsies. Extracellular vesicles in BC treatment as new targets for therapy or efficient nanovectors to drive drug delivery are also summarized.
Collapse
Affiliation(s)
- Sylvain Loric
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
| | | | - Cédric Desbene
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
| | - Michèle Sabbah
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
| | - Marc Conti
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
- INTEGRACELL SAS, 91160 Longjumeau, France
| |
Collapse
|
50
|
Smilowitz JT, Allen LH, Dallas DC, McManaman J, Raiten DJ, Rozga M, Sela DA, Seppo A, Williams JE, Young BE, McGuire MK. Ecologies, synergies, and biological systems shaping human milk composition-a report from "Breastmilk Ecology: Genesis of Infant Nutrition (BEGIN)" Working Group 2. Am J Clin Nutr 2023; 117 Suppl 1:S28-S42. [PMID: 37173059 DOI: 10.1016/j.ajcnut.2022.11.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 05/15/2023] Open
Abstract
Human milk is universally recognized as the preferred food for infants during the first 6 mo of life because it provides not only essential and conditionally essential nutrients in necessary amounts but also other biologically active components that are instrumental in protecting, communicating important information to support, and promoting optimal development and growth in infants. Despite decades of research, however, the multifaceted impacts of human milk consumption on infant health are far from understood on a biological or physiological basis. Reasons for this lack of comprehensive knowledge of human milk functions are numerous, including the fact that milk components tend to be studied in isolation, although there is reason to believe that they interact. In addition, milk composition can vary greatly within an individual as well as within and among populations. The objective of this working group within the Breastmilk Ecology: Genesis of Infant Nutrition (BEGIN) Project was to provide an overview of human milk composition, factors impacting its variation, and how its components may function to coordinately nourish, protect, and communicate complex information to the recipient infant. Moreover, we discuss the ways whereby milk components might interact such that the benefits of an intact milk matrix are greater than the sum of its parts. We then apply several examples to illustrate how milk is better thought of as a biological system rather than a more simplistic "mixture" of independent components to synergistically support optimal infant health.
Collapse
Affiliation(s)
- Jennifer T Smilowitz
- Department of Food Science and Technology, University of California Davis, Davis, CA, USA; Foods for Health Institute, University of California Davis, Davis, CA, USA.
| | - Lindsay H Allen
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, University of California Davis, Davis, CA, USA
| | - David C Dallas
- Nutrition Program, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - James McManaman
- Division of Reproductive Sciences, University of Colorado, Aurora, CO, USA
| | - Daniel J Raiten
- Pediatric Growth and Nutrition Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Mary Rozga
- Evidence Analysis Center, Academy of Nutrition and Dietetics, Chicago, IL, USA
| | - David A Sela
- Department of Food Science, University of Massachusetts, Amherst, MA, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Antti Seppo
- Department of Pediatrics, Division of Allergy and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Janet E Williams
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, USA
| | - Bridget E Young
- Department of Pediatrics, Division of Allergy and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Michelle K McGuire
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, USA.
| |
Collapse
|