1
|
Moralev A, Zenkova MA, Markov AV. Complex Inhibitory Activity of Pentacyclic Triterpenoids against Cutaneous Melanoma In Vitro and In Vivo: A Literature Review and Reconstruction of Their Melanoma-Related Protein Interactome. ACS Pharmacol Transl Sci 2024; 7:3358-3384. [PMID: 39539268 PMCID: PMC11555519 DOI: 10.1021/acsptsci.4c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/13/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Pentacyclic triterpenoids (PTs) are a class of plant metabolites with a wide range of pharmacological activities, including strong antitumor potential against skin malignancies. By acting on multiple signaling pathways that control key cellular processes, PTs are able to exert complex effects on melanoma progression in vitro and in vivo. In this review, we have analyzed the works published in the past decade and devoted to the effects of PTs, both natural and semisynthetic, on cutaneous melanoma pathogenesis, including not only their direct action on melanoma cells but also their influence on the tumor microenvironment and abberant melanogenesis, often associated with melanoma aggressiveness. Special attention will be paid to the molecular basis of the pronounced antimelanoma potency of PTs, including a detailed consideration of the pathways sensitive to PTs in melanoma cells, as well as the reconstruction of the melanoma-related protein interactome of PTs using a network pharmacology approach based on previously published experimentally verified protein targets of PTs. The information collected on the primary targets of PTs was compiled in the Protein Interactome of PTs (PIPTs) database, freely available at http://www.pipts-db.ru/, which can be used to further optimize the mechanistic studies of PTs in the context of melanoma and other malignancies. By summarizing recent research findings, this review provides valuable information to scientists working in the fields related to the evaluation of melanoma pathogenesis and development of PTs-based drug candidates.
Collapse
Affiliation(s)
- Arseny
D. Moralev
- Institute of Chemical Biology and Fundamental
Medicine, Siberian Branch of the Russian
Academy of Sciences, 630090, Lavrent’ev avenue 8, Novosibirsk, Russia
| | - Marina A. Zenkova
- Institute of Chemical Biology and Fundamental
Medicine, Siberian Branch of the Russian
Academy of Sciences, 630090, Lavrent’ev avenue 8, Novosibirsk, Russia
| | - Andrey V. Markov
- Institute of Chemical Biology and Fundamental
Medicine, Siberian Branch of the Russian
Academy of Sciences, 630090, Lavrent’ev avenue 8, Novosibirsk, Russia
| |
Collapse
|
2
|
Yang S, Cao SJ, Li CY, Zhang Q, Zhang BL, Qiu F, Kang N. Berberine directly targets AKR1B10 protein to modulate lipid and glucose metabolism disorders in NAFLD. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118354. [PMID: 38762210 DOI: 10.1016/j.jep.2024.118354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/01/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Berberine (BBR) is the main active component from Coptidis rhizome, a well-known Chinese herbal medicine used for metabolic diseases, especially diabetes for thousands of years. BBR has been reported to cure various metabolic disorders, such as nonalcoholic fatty liver disease (NAFLD). However, the direct proteomic targets and underlying molecular mechanism of BBR against NAFLD remain less understood. AIM OF THE STUDY To investigate the direct target and corresponding molecular mechanism of BBR on NAFLD is the aim of the current study. MATERIALS AND METHODS High-fat diet (HFD)-fed mice and oleic acid (OA) stimulated HepG2 cells were utilized to verify the beneficial impacts of BBR on glycolipid metabolism profiles. The click chemistry in proteomics, DARTS, CETSA, SPR and fluorescence co-localization analysis were conducted to identify the targets of BBR for NAFLD. RNA-seq and shRNA/siRNA were used to investigate the downstream pathways of the target. RESULTS BBR improved hepatic steatosis, ameliorated insulin resistance, and reduced TG levels in the NAFLD models. Importantly, Aldo-keto reductase 1B10 (AKR1B10) was first proved as the target of BBR for NAFLD. The gene expression of AKR1B10 increased significantly in the NAFLD patients' liver tissue. We further demonstrated that HFD and OA increased AKR1B10 expression in the C57BL/6 mice's liver and HepG2 cells, respectively, whereas BBR decreased the expression and activities of AKR1B10. Moreover, the knockdown of AKR1B10 by applying shRNA/siRNA profoundly impacted the beneficial effects on the pathogenesis of NAFLD by BBR. Meanwhile, the changes in various proteins (ACC1, CPT-1, GLUT2, etc.) are responsible for hepatic lipogenesis, fatty acid oxidation, glucose uptake, etc. by BBR were reversed by the knockdown of AKR1B10. Additionally, RNA-seq was used to identify the downstream pathway of AKR1B10 by examining the gene expression of liver tissues from HFD-fed mice. Our findings revealed that BBR markedly increased the protein levels of PPARα while downregulating the expression of PPARγ. However, various proteins of PPAR signaling pathways remained unaffected post the knockdown of AKR1B10. CONCLUSIONS BBR alleviated NAFLD via mediating PPAR signaling pathways through targeting AKR1B10. This study proved that AKR1B10 is a novel target of BBR for NAFLD treatment and helps to find new targets for the treatment of NAFLD by using active natural compounds isolated from traditional herbal medicines as the probe.
Collapse
Affiliation(s)
- Sa Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shi-Jie Cao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Cong-Yu Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Qiang Zhang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Bo-Li Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Ning Kang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
3
|
Liu SJ, Guo BD, Gao QH, Deng YJ, Yan B, Zeng Y, Zhao M, Ren K, Wang F, Guo J. Ursolic acid alleviates chronic prostatitis via regulating NLRP3 inflammasome-mediated Caspase-1/GSDMD pyroptosis pathway. Phytother Res 2024; 38:82-97. [PMID: 37807970 DOI: 10.1002/ptr.8034] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Ursolic acid (UA) is a naturally occurring pentacyclic triterpenoid widely found in fruits and vegetables. It has been reported that UA has anti-inflammatory effects. However, its efficacy and mechanism of action in the treatment of chronic prostatitis (CP) remain unclear. This study aimed to investigate the efficacy of UA treatment in CP and further explore the underlying mechanism. CP rat and pyroptosis cell models were established in vivo and in vitro, respectively. The efficacy of UA in inhibiting CP was evaluated via haematoxylin-eosin (HE) staining and measurement of inflammatory cytokines. RNA sequencing and molecular docking were used to predict the therapeutic targets of UA in CP. The expression of pyroptosis-related proteins was examined using various techniques, including immunohistochemistry, immunofluorescence, and flow cytometry. UA significantly ameliorated pathological damage and reduced the levels of proinflammatory cytokines in the CP model rats. RNA sequencing analysis and molecular docking suggested that NLRP3, Caspase-1, and GSDMD may be key targets. We also found that UA decreased ROS levels, alleviated oxidative stress, and inhibited p-NF-κB protein expression both in vivo and in vitro. UA improved pyroptosis morphology as indicated by electron microscope and inhibited the expression of the pyroptosis-related proteins NLRP3, Caspase-1, ASC, and GSDMD, reversed the levels of IL-1β, IL-18, and lactate dehydrogenase in vivo and in vitro. UA can mitigate CP by regulating the NLRP3 inflammasome-mediated Caspase-1/GSDMD pathway. Therefore, UA may be a potential for the treatment of CP.
Collapse
Affiliation(s)
- Sheng-Jing Liu
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo-da Guo
- Department of Urology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qing-He Gao
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying-Jun Deng
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Bin Yan
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yin Zeng
- Department of Andrology, Beijing Chinese Medicine Hospital affiliated to Capital Medical University, Beijing, China
| | - Ming Zhao
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Kai Ren
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Fu Wang
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Guo
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Wang T, Su X, Peng J, Tan X, Yang G, Zhang T, Chen F, Wang C, Ma K. Deciphering the pharmacological mechanisms of Fraxini Cortex for ulcerative colitis treatment based on network pharmacology and in vivo studies. BMC Complement Med Ther 2023; 23:152. [PMID: 37161415 PMCID: PMC10170718 DOI: 10.1186/s12906-023-03983-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 04/28/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is a common type of inflammatory bowel disease. Due to the elusive pathogenesis, safe and effective treatment strategies are still lacking. Fraxini Cortex (FC) has been widely used as a medicinal herb to treat some diseases. However, the pharmacological mechanisms of FC for UC treatment are still unclear. METHODS An integrated platform combining network pharmacology and experimental studies was introduced to decipher the mechanism of FC against UC. The active compounds, therapeutic targets, and the molecular mechanism of action were acquired by network pharmacology, and the interaction between the compounds and target proteins were verified by molecular docking. Dextran sulfate sodium (DSS)-induced colitis model was employed to assess the therapeutic effect of FC on UC, and validate the molecular mechanisms of action predicted by network pharmacology. RESULTS A total of 20 bioactive compounds were retrieved, and 115 targets were predicted by using the online databases. Ursolic acid, fraxetin, beta-sitosterol, and esculetin were identified as the main active compounds of FC against UC. PPI network analysis identified 28 FC-UC hub genes that were mainly enriched in the IL-17 signaling pathway, the TNF signaling pathway, and pathways in cancer. Molecular docking confirmed that the active compounds had high binding affinities to the predicted target proteins. GEO dataset analysis showed that these target genes were highly expressed in the UC clinical samples compared with that in the healthy controls. Experimental studies showed that FC alleviated DSS-induced colitis symptoms, reduced inflammatory cytokines release, and suppressed the expression levels of IL1β, COX2, MMP3, IL-17 and RORγt in colon tissues. CONCLUSION FC exhibits anti-UC properties through regulating multi-targets and multi-pathways with multi-components. In vivo results demonstrated that FC alleviated DSS-induced colitis.
Collapse
Affiliation(s)
- Tianming Wang
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, People's Republic of China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Xuyang Su
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Jing Peng
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Xiaofen Tan
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Guangshan Yang
- The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, Hefei, 230001, People's Republic of China
| | - Tengyue Zhang
- The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, Hefei, 230001, People's Republic of China
| | - Feng Chen
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Changzhong Wang
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Kelong Ma
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China.
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, People's Republic of China.
| |
Collapse
|
5
|
Liu X, Wang Y, Li J, Wu B, Wang S, Guo Q, Liu Y. To study the protective effect of Huangqi Baihe Granules on Radiation brain injury based on network pharmacology and experiment. JOURNAL OF ETHNOPHARMACOLOGY 2023:116610. [PMID: 37150423 DOI: 10.1016/j.jep.2023.116610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huangqi baihe Granules (HQBHG), which is a key Chinese medical prescription, has a remarkable efficacy in oxidative stress and inflammation. Nevertheless, the therapeutic effect on Radiation brain injury (RBI) has rarely been studied. AIM OF THE STUDY The study aimed to verify the effect of HQBHG against RBI and explore its potential mechanism. METHODS The potential targets and mechanisms of HQBHG against RBI were predicted by network pharmacology and verified by established rat model of RBI Firstly, the therapeutic effect of HQBHG in RBI was confirmed by water maze test, HE staining and Enzyme-linked immunosorbent assay (ELISA). Secondly, the potential critical anti-RBI pathway of HQBHG was further explored by water maze, HE staining, immunofluorescence assays, ELISA and western blot. RESULTS A total of 43 HQBHG anti-RBI targets were obtained. Gene Ontology (Go) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional annotations showed that the treatment of HQBHG in RBI might be mainly related to oxidative stress, inflammation and PI3K/AKT pathway. Experimental studies have indicated that HQBHG can improve spatial learning and memory ability, alleviate pathological damage of brain tissue in RBI of rats. HQBHG also can down-regulate the levels of IL-1β, TNF-α, ROS and MDA, meanwhile, GSH was significantly up-regulated. In addition, the HQBHG can increase the protein expression phosphorylations PI3K (p-PI3K), phosphorylations AKT(p-AKT) and Nrf2 in the brain tissue of RBI. CONCLUSION HQBHG may alleviated RBI by regulated oxidative stress and inflammatory response through PI3K/AKT/Nrf2 pathway.
Collapse
Affiliation(s)
- Xiuzhu Liu
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China.
| | - Yanru Wang
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China.
| | - Jiawei Li
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China.
| | - Bingbing Wu
- 940th Hospital of Chinese People 's Liberation Army Joint Support Force, Lanzhou, 730050, Gansu Province, China.
| | - Siyu Wang
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China.
| | - Qingyang Guo
- 940th Hospital of Chinese People 's Liberation Army Joint Support Force, Lanzhou, 730050, Gansu Province, China.
| | - Yongqi Liu
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu Province, China.
| |
Collapse
|
6
|
Li JX, Han ZX, Cheng X, Zhang FL, Zhang JY, Su ZJ, Li BP, Jiang ZR, Li RZ, Xie Y, Yan PY, Tang L, Yang JS. Combinational study with network pharmacology, molecular docking and preliminary experiments on exploring common mechanisms underlying the effects of weijing decoction on various pulmonary diseases. Heliyon 2023; 9:e15631. [PMID: 37153415 PMCID: PMC10160751 DOI: 10.1016/j.heliyon.2023.e15631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/09/2023] Open
Abstract
Objective 'Homotherapy for heteropathy' is a theory by which different diseases with similar pathogenesis can be treated with one Chinese formula. We aimed to explore the key components and core targets of Weijing decoction (WJD) in treating various lung diseases, namely, pneumonia, chronic obstructive pulmonary disease (COPD), acute lung injury (ALI), pulmonary fibrosis, pulmonary tuberculosis and non-small cell lung cancer (NSCLC), via network pharmacology, molecular docking and some experiments. Significance This is the first study on the mechanism of WJD in treating various lung diseases by 'homotherapy for heteropathy'. This study is helpful for the transformation of TCM formula and development of new drugs. Methods Active components and therapeutic targets of WJD were obtained via TCMSP and UniProt databases. Targets of the six pulmonary diseases were harvested from the GeneCards TTD, DisGeNet, UniProt and OMIM databases. Drug-disease intersection targets, corresponding Venn diagrams, herb-component-target networks and protein-protein interaction networks were established. Furthermore, GO biological function and KEGG enrichment analysis were completed. Moreover, the binding activity between main compounds and core targets was measured through molecular docking. Finally, the xenograft NSCLC mouse model was established. Immune responses were evaluated by flow cytometry and mRNA expression levels of critical targets were measured by real-time PCR. Results JUN, CASP3 and PTGS2 were the most critical targets in six pulmonary diseases. The active compounds beta-sitosterol, tricin and stigmasterol stably bound to many active sites on target proteins. WJD had extensive pharmacological regulation, involving pathways related to cancer, inflammation, infection, hypoxia, immunity and so on. Conclusions Effects of WJD against various lung diseases involve lots of compounds, targets and pathways. These findings will facilitate further research as well as clinical application of WJD.
Collapse
Affiliation(s)
- Jia-Xin Li
- Macau University of Science and Technology, Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macao, China
| | - Zhong-Xiao Han
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xin Cheng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Feng-Lin Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jing-Yi Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zi-Jie Su
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Biao-Ping Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zhi-Rui Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Run-Ze Li
- Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510006, China
| | - Ying Xie
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong Province, China
| | - Pei-Yu Yan
- Macau University of Science and Technology, Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macao, China
- Corresponding author.
| | - Ling Tang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
- Corresponding author.
| | - Jia-Shun Yang
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital of Southern Medical University, Foshan 528244, China
- Corresponding author.
| |
Collapse
|
7
|
Lu YJ, Niu L, Shen FK, Yang W, Xie Y, Li SY, Jiang M, Bai G. Ligustilide attenuates airway remodeling in COPD mice by covalently binding to MH2 domain of Smad3 in pulmonary epithelium, disrupting the Smad3-SARA interaction. Phytother Res 2023; 37:717-730. [PMID: 36216328 DOI: 10.1002/ptr.7655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/30/2022] [Accepted: 09/17/2022] [Indexed: 11/10/2022]
Abstract
Airway remodeling is one of the hallmarks of chronic obstructive pulmonary disease (COPD) and is closely related to the dysregulation of epithelial-mesenchymal transition (EMT). Smad3, an important transcriptional regulator responsible for transducing TGF-β1 signals, is a promising target for EMT modulation. We found that ligustilide (Lig), a novel Smad3 covalent inhibitor, effectively inhibited airway remodeling in cigarette smoke (CS) combined with lipopolysaccharide (LPS)-induced COPD mice. Oral administration of an alkynyl-modified Lig probe was used to capture and trace target proteins in mouse lung tissue, revealing Smad3 in airway epithelium as a key target of Lig. Protein mass spectrometry and Smad3 mutation analysis via in-gel imaging indicated that the epoxidized metabolite of Lig covalently binds to the MH2 domain of Smad3 at Cys331/337. This irreversible bonding destroys the interaction of Smad3-SARA, prevents Smad3 phosphorylation activation, and subsequently suppresses the nuclear transfer of p-Smad3, the EMT process, and collagen deposition in TGF-β1-stimulated BEAS-2B cells and COPD mice. These findings provide experimental support that Lig attenuates COPD by repressing airway remodeling which is attributed to its suppression on the activation of EMT process in the airway epithelium via targeting Smad3 and inhibiting the recruitment of the Smad3-SARA heterodimer in the TGF-β1/Smad3 pathway.
Collapse
Affiliation(s)
- Yu-Jie Lu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China
| | - Lin Niu
- Laboratory of Compound Drugs and Systems Biology, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Fu-Kui Shen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China
| | - Wen Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China
| | - Yang Xie
- Department of Respiratory Diseases, The Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People's Republic of China
| | - Su-Yun Li
- Department of Respiratory Diseases, The Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People's Republic of China.,Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province & Education Ministry of P.R., China, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China
| |
Collapse
|
8
|
Mioc M, Milan A, Malița D, Mioc A, Prodea A, Racoviceanu R, Ghiulai R, Cristea A, Căruntu F, Șoica C. Recent Advances Regarding the Molecular Mechanisms of Triterpenic Acids: A Review (Part I). Int J Mol Sci 2022; 23:ijms23147740. [PMID: 35887090 PMCID: PMC9322890 DOI: 10.3390/ijms23147740] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023] Open
Abstract
Triterpenic acids are phytocompounds with a widespread range of biological activities that have been the subject of numerous in vitro and in vivo studies. However, their underlying mechanisms of action in various pathologies are not completely elucidated. The current review aims to summarize the most recent literature, published in the last five years, regarding the mechanism of action of three triterpenic acids (asiatic acid, oleanolic acid, and ursolic acid), corelated with different biological activities such as anticancer, anti-inflammatory, antidiabetic, cardioprotective, neuroprotective, hepatoprotective, and antimicrobial. All three discussed compounds share several mechanisms of action, such as the targeted modulation of the PI3K/AKT, Nrf2, NF-kB, EMT, and JAK/STAT3 signaling pathways, while other mechanisms that proved to only be specific for a part of the triterpenic acids discussed, such as the modulation of Notch, Hippo, and MALAT1/miR-206/PTGS1 signaling pathway, were highlighted as well. This paper stands as the first part in our literature study on the topic, which will be followed by a second part focusing on other triterpenic acids of therapeutic value.
Collapse
Affiliation(s)
- Marius Mioc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Andreea Milan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Daniel Malița
- Department of Radiology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
- Correspondence: (D.M.); (A.M.); Tel.: +40-256-494-604 (D.M. & A.M.)
| | - Alexandra Mioc
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
- Department of Anatomy, Physiology, Pathophysiology, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
- Correspondence: (D.M.); (A.M.); Tel.: +40-256-494-604 (D.M. & A.M.)
| | - Alexandra Prodea
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Roxana Racoviceanu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Roxana Ghiulai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Andreea Cristea
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
| | - Florina Căruntu
- Department of Medical Semiology II, Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Street, 300041 Timisoara, Romania;
| | - Codruța Șoica
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| |
Collapse
|
9
|
Luan M, Xu Y, Zhang X, Li D, Yan M, Hou G, Meng Q, Zhao F, Zhao F. Design and synthesis of novel aza-ursolic acid derivatives: in vitro cytotoxicity and nitric oxide release inhibitory activity. Future Med Chem 2022; 14:535-555. [PMID: 35286228 DOI: 10.4155/fmc-2021-0319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: Inducible nitric oxide synthase (iNOS) is a validated target for anti-inflammatory treatment. Based on the authors' previous work, novel aza-ursolic acid derivatives were designed and synthesized and their inhibitory activities against lipopolysaccharide (LPS)-induced nitric oxide (NO) release from RAW264.7 cells was evaluated. Materials & results: 16 novel derivatives were screened for their in vitro inhibitory activity against NO release using Griess assays and the cytotoxicity was evaluated using MTT assays. The presence of furoxan joined to the A-ring of ursolic acid and N-methylpiperazine groups in the lead compound was identified for anti-inflammatory activity, and compound 21b showed 94.96% inhibition of NO release at 100 μM with an IC50 value of 8.58 μM. Conclusion: Compound 21b has potential anti-inflammatory activity with low cytotoxicity that warrants further preclinical study and evaluation.
Collapse
Affiliation(s)
- Mingzhu Luan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology & Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System & Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Yaoyao Xu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology & Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System & Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Xiaofan Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology & Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System & Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Dalei Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology & Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System & Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Mengjun Yan
- Yantai Raphael Biotechnology Co., Ltd, Yantai, 264043, PR China
| | - Guige Hou
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, PR China
| | - Qingguo Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology & Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System & Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Feng Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology & Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System & Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Fenglan Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology & Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System & Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| |
Collapse
|
10
|
Pastwińska J, Karaś K, Sałkowska A, Karwaciak I, Chałaśkiewicz K, Wojtczak BA, Bachorz RA, Ratajewski M. Identification of Corosolic and Oleanolic Acids as Molecules Antagonizing the Human RORγT Nuclear Receptor Using the Calculated Fingerprints of the Molecular Similarity. Int J Mol Sci 2022; 23:1906. [PMID: 35163824 PMCID: PMC8837092 DOI: 10.3390/ijms23031906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 02/07/2023] Open
Abstract
RORγT is a protein product of the RORC gene belonging to the nuclear receptor subfamily of retinoic-acid-receptor-related orphan receptors (RORs). RORγT is preferentially expressed in Th17 lymphocytes and drives their differentiation from naive CD4+ cells and is involved in the regulation of the expression of numerous Th17-specific cytokines, such as IL-17. Because Th17 cells are implicated in the pathology of autoimmune diseases (e.g., psoriasis, inflammatory bowel disease, multiple sclerosis), RORγT, whose activity is regulated by ligands, has been recognized as a drug target in potential therapies against these diseases. The identification of such ligands is time-consuming and usually requires the screening of chemical libraries. Herein, using a Tanimoto similarity search, we found corosolic acid and other pentacyclic tritepenes in the library we previously screened as compounds highly similar to the RORγT inverse agonist ursolic acid. Furthermore, using gene reporter assays and Th17 lymphocytes, we distinguished compounds that exert stronger biological effects (ursolic, corosolic, and oleanolic acid) from those that are ineffective (asiatic and maslinic acids), providing evidence that such combinatorial methodology (in silico and experimental) might help wet screenings to achieve more accurate results, eliminating false negatives.
Collapse
Affiliation(s)
- Joanna Pastwińska
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (J.P.); (K.K.); (A.S.); (I.K.); (K.C.)
| | - Kaja Karaś
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (J.P.); (K.K.); (A.S.); (I.K.); (K.C.)
| | - Anna Sałkowska
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (J.P.); (K.K.); (A.S.); (I.K.); (K.C.)
| | - Iwona Karwaciak
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (J.P.); (K.K.); (A.S.); (I.K.); (K.C.)
| | - Katarzyna Chałaśkiewicz
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (J.P.); (K.K.); (A.S.); (I.K.); (K.C.)
| | - Błażej A. Wojtczak
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland;
| | - Rafał A. Bachorz
- Laboratory of Molecular Modeling, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland;
| | - Marcin Ratajewski
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (J.P.); (K.K.); (A.S.); (I.K.); (K.C.)
| |
Collapse
|
11
|
Luan M, Wang H, Wang J, Zhang X, Zhao F, Liu Z, Meng Q. Advances in Anti-inflammatory Activity, Mechanism and Therapeutic Application of Ursolic Acid. Mini Rev Med Chem 2022; 22:422-436. [PMID: 34517797 DOI: 10.2174/1389557521666210913113522] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 06/08/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
In vivo and in vitro studies reveal that Ursolic Acid (UA) is able to counteract endogenous and exogenous inflammatory stimuli and has favorable anti-inflammatory effects. The antiinflammatory mechanisms mainly include decreasing the release of histamine in mast cells, suppressing the activities of lipoxygenase, cyclooxygenase and phospholipase, and reducing the production of nitric oxide and reactive oxygen species, blocking the activation of the signal pathway, downregulating the expression of inflammatory factors, and inhibiting the activities of elastase and complement. These mechanisms can open up new avenues for the scientific community to develop or improve novel therapeutic approaches to tackle inflammatory diseases, such as arthritis, atherosclerosis, neuroinflammation, liver diseases, kidney diseases, diabetes, dermatitis, bowel diseases, cancer. The anti-inflammatory activity, the anti-inflammatory mechanism of ursolic acid and its therapeutic applications are reviewed in this paper.
Collapse
Affiliation(s)
- Mingzhu Luan
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P.R. China
| | - Huiyun Wang
- College of Pharmacy, Jining Medical University, Shandong Province, 276826, P.R. China
| | - Jiazhen Wang
- The Second Hospital of Anhui Medical University, Anhui Province, 230601, P.R. China
| | - Xiaofan Zhang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P.R. China
| | - Fenglan Zhao
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P.R. China
| | - Zongliang Liu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P.R. China
| | - Qingguo Meng
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P.R. China
| |
Collapse
|
12
|
Liu W, Li Z, Chu S, Ma X, Wang X, Jiang M, Bai G. Atractylenolide-I covalently binds to CYP11B2, selectively inhibits aldosterone synthesis, and improves hyperaldosteronism. Acta Pharm Sin B 2022; 12:135-148. [PMID: 35127376 PMCID: PMC8799885 DOI: 10.1016/j.apsb.2021.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/10/2021] [Accepted: 08/31/2021] [Indexed: 01/13/2023] Open
Abstract
Hyperaldosteronism is a common disease that is closely related to endocrine hypertension and other cardiovascular diseases. Cytochrome P450 11B2 (CYP11B2), an important enzyme in aldosterone (ALD) synthesis, is a promising target for the treatment of hyperaldosteronism. However, selective inhibitors targeting CYP11B2 are still lacking due to the high similarity with CYP11B1. In this study, atractylenolide-I (AT-I) was found to significantly reduce the production of ALD but had no effect on cortisol synthesis, which is catalyzed by CYP11B1. Chemical biology studies revealed that due to the presence of Ala320, AT-I is selectively bound to the catalytic pocket of CYP11B2, and the C8/C9 double bond of AT-I can be epoxidized, which then undergoes nucleophilic addition with the sulfhydryl group of Cys450 in CYP11B2. The covalent binding of AT-I disrupts the interaction between heme and CYP11B2 and inactivates CYP11B2, leading to the suppression of ALD synthesis; AT-I shows a significant therapeutic effect for improving hyperaldosteronism.
Collapse
Affiliation(s)
- Wenjuan Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Zhenqiang Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Simeng Chu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Xiaoyao Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Xiaoying Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
- Corresponding authors. Tel./fax: +86 22 23506930.
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
- Corresponding authors. Tel./fax: +86 22 23506930.
| |
Collapse
|
13
|
Zheng Y, Huang C, Zhao L, Chen Y, Liu F. Regulation of decorin by ursolic acid protects against non-alcoholic steatohepatitis. Biomed Pharmacother 2021; 143:112166. [PMID: 34560554 DOI: 10.1016/j.biopha.2021.112166] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 11/21/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) has become a global health issue, which poses additional financial burden to public health care. However, no specific pharmacological therapy is recommended in current guidelines. Ursolic acid (UA) has been proven to perform multiple biological activities, thereby having a broad application prospect in healthcare field. Thus, this current research was conducted to investigate the protective mechanisms of UA on NASH. Integrative genomic analyses were performed to identify characteristic genes for NASH, and human proteomics chip was applied to seek out differentially binding proteins for UA. The combining bioinformatic analyses revealed 529 and 502 differentially expressed genes for NASH and UA, respectively. And further enrichment analyses indicated that IGF-IR signaling pathway was intimately involved in the therapeutic effects of UA on NASH. Experimental studies displayed that UA up-regulated the decorin expression to activate IGF-IR signaling as well as to inhibit HIF-1 signaling, resulting in alleviation on metabolic dysfunction, liver steatosis, inflammation and hypoxia in high-fat-fed mice. And additionally, these results were confirmed by lipotoxic and decorin-interference cell model. Taken together, we found that UA could regulate IGF-IR and HIF-1 signaling pathways via decorin to provide dual protective functions on metabolic dysfunction and liver hypoxia, and therefore turned to be an effective option for the treatment of NASH.
Collapse
Affiliation(s)
- Yiyuan Zheng
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chaoyuan Huang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China; The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lina Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Youlan Chen
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Fengbin Liu
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Baiyun Hospital of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
14
|
Carpio LE, Sanz Y, Gozalbes R, Barigye SJ. Computational strategies for the discovery of biological functions of health foods, nutraceuticals and cosmeceuticals: a review. Mol Divers 2021; 25:1425-1438. [PMID: 34258685 PMCID: PMC8277569 DOI: 10.1007/s11030-021-10277-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/07/2021] [Indexed: 11/29/2022]
Abstract
Scientific and consumer interest in healthy foods (also known as functional foods), nutraceuticals and cosmeceuticals has increased in the recent years, leading to an increased presence of these products in the market. However, the regulations across different countries that define the type of claims that may be made, and the degree of evidence required to support these claims, are rather inconsistent. Moreover, there is also controversy on the effectiveness and biological mode of action of many of these products, which should undergo an exhaustive approval process to guarantee the consumer rights. Computational approaches constitute invaluable tools to facilitate the discovery of bioactive molecules and provide biological plausibility on the mode of action of these products. Indeed, methodologies like QSAR, docking or molecular dynamics have been used in drug discovery protocols for decades and can now aid in the discovery of bioactive food components. Thanks to these approaches, it is possible to search for new functions in food constituents, which may be part of our daily diet, and help to prevent disorders like diabetes, hypercholesterolemia or obesity. In the present manuscript, computational studies applied to this field are reviewed to illustrate the potential of these approaches to guide the first screening steps and the mechanistic studies of nutraceutical, cosmeceutical and functional foods.
Collapse
Affiliation(s)
- Laureano E Carpio
- ProtoQSAR SL, CEEI (Centro Europeo de Empresas Innovadoras), Parque Tecnológico de Valencia, Valencia, Spain
| | - Yolanda Sanz
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Rafael Gozalbes
- ProtoQSAR SL, CEEI (Centro Europeo de Empresas Innovadoras), Parque Tecnológico de Valencia, Valencia, Spain
| | - Stephen J Barigye
- ProtoQSAR SL, CEEI (Centro Europeo de Empresas Innovadoras), Parque Tecnológico de Valencia, Valencia, Spain.
- MolDrug AI Systems SL, Valencia, Spain.
| |
Collapse
|
15
|
Ma XY, Zhang M, Fang G, Cheng CJ, Wang MK, Han YM, Hou XT, Hao EW, Hou YY, Bai G. Ursolic acid reduces hepatocellular apoptosis and alleviates alcohol-induced liver injury via irreversible inhibition of CASP3 in vivo. Acta Pharmacol Sin 2021; 42:1101-1110. [PMID: 33028983 PMCID: PMC8209164 DOI: 10.1038/s41401-020-00534-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
Alcoholic liver disease (ALD) is one of the pathogenic factors of chronic liver disease with the highest clinical morbidity worldwide. Ursolic acid (UA), a pentacyclic terpenoid carboxylic acid, has shown many health benefits including antioxidative, anti-inflammatory, anticancer, and hepatoprotective activities. We previously found that UA was metabolized in vivo into epoxy-modified UA containing an epoxy electrophilic group and had the potential to react with nucleophilic groups. In this study we prepared an alkynyl-modified UA (AM-UA) probe for tracing and capturing the target protein of UA from liver in mice, then investigated the mode by which UA bound to its target in vivo. By conducting proteome identification and bioinformatics analysis, we identified caspase-3 (CASP3) as the primary target protein of UA associated with liver protection. Molecule docking analysis showed that the epoxy group of the UA metabolite reacted with Cys-163 of CASP3, forming a covalent bond with CASP3. The binding mode of the UA metabolites (UA, CM-UA, and EM-UA) was verified by biochemical evaluation, demonstrating that the epoxy group produced by metabolism played an important role in the inhibition of CASP3. In alcohol-treated HepG2 cells, pretreatment with the UA metabolite (10 μM) irreversibly inhibited CASP3 activities, and subsequently decreased the cleavage of PARP and cell apoptosis. Finally, pre-administration of UA (20-80 mg· kg-1 per day, ig, for 1 week) dose-dependently alleviated alcohol-induced liver injury in mice mainly via the inhibition of CASP3. In conclusion, this study demonstrates that UA is a valuable lead compound for the treatment of ALD.
Collapse
Affiliation(s)
- Xiao-Yao Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300000, China
| | - Man Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300000, China
| | - Ge Fang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300000, China
| | - Chuan-Jing Cheng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300000, China
| | - Mu-Kuo Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300000, China
| | - Yi-Man Han
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300000, China
| | - Xiao-Tao Hou
- Guangxi Collaborative Innovation Center for Functional Ingredients Study of Agricultural Residues, Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Er-Wei Hao
- Guangxi Collaborative Innovation Center for Functional Ingredients Study of Agricultural Residues, Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Yuan-Yuan Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300000, China.
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300000, China
| |
Collapse
|
16
|
The glucuronide metabolites of kaempferol and quercetin, targeting to the AKT PH domain, activate AKT/GSK3β signaling pathway and improve glucose metabolism. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
17
|
Fan JP, Lai XH, Zhang XH, Yang L, Yuan TT, Chen HP, Liang X. Synthesis and evaluation of the cancer cell growth inhibitory activity of the ionic derivatives of oleanolic acid and ursolic acid with improved solubility. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115837] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
18
|
Ladurner A, Schwarz PF, Dirsch VM. Natural products as modulators of retinoic acid receptor-related orphan receptors (RORs). Nat Prod Rep 2021; 38:757-781. [PMID: 33118578 DOI: 10.1039/d0np00047g] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: 1994 to 2020 Retinoic acid receptor-related orphan receptors (RORs) belong to a subfamily of the nuclear receptor superfamily and possess prominent roles in circadian rhythm, metabolism, inflammation, and cancer. They have been subject of research for over two decades and represent attractive but challenging drug targets. Natural products were among the first identified ligands of RORs and continue to be of interest to this day. This review focuses on ligands and indirect modulators of RORs from natural sources and explores their roles in a therapeutic context.
Collapse
Affiliation(s)
- Angela Ladurner
- Department of Pharmacognosy, University of Vienna, Vienna, Austria.
| | - Patrik F Schwarz
- Department of Pharmacognosy, University of Vienna, Vienna, Austria.
| | - Verena M Dirsch
- Department of Pharmacognosy, University of Vienna, Vienna, Austria.
| |
Collapse
|
19
|
Feng B, Zhu Y, Yan L, Yan H, Huang X, Jiang D, Li Z, Hua L, Zhuo Y, Fang Z, Che L, Lin Y, Xu S, Huang C, Zou Y, Li L, Wu D. Ursolic acid induces the production of IL6 and chemokines in both adipocytes and adipose tissue. Adipocyte 2020; 9:523-534. [PMID: 32876525 PMCID: PMC7714451 DOI: 10.1080/21623945.2020.1814545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/12/2020] [Accepted: 08/20/2020] [Indexed: 12/19/2022] Open
Abstract
Adipose tissue inflammation plays an important role in the regulation of glucose and lipids metabolism. It is unknown whether Ursolic acid (UA) could regulate adipose tissue inflammation, though it can regulate inflammation in many other tissues. In this study, 3T3-L1 adipocytes, DIO mice and lean mice were treated with UA or vehicle. Gene expression of inflammatory factors, chemokines and immune markers in adipocytes and adipose tissue, cytokines in cell culture medium and serum, and inflammation regulatory pathways in adipocytes were detected. Results showed that UA increased the expression of interleukins and chemokines, but not TNFα, in both adipocytes and adipose tissue. IL6 and MCP1 levels in the cell culture medium and mouse serum were induced by UA treatment. Cd14 expression level and number of CD14+ monocytes were higher in UA treated adipose tissue than those in the control group. Glucose tolerance test was impaired by UA treatment in DIO mice. Mechanistically, UA induced the expression of Tlr4 and the phosphorylation levels of ERK and NFκB in adipocytes. In conclusion, our study indicated that short-term UA administration could induce CD14+ monocytes infiltration by increasing the production of interleukins and chemokines in mouse adipose tissue, which might further impair glucose tolerance test.
Collapse
Affiliation(s)
- Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yingguo Zhu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lijun Yan
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hui Yan
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaohua Huang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dandan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhen Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lun Hua
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yong Zhuo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhengfeng Fang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lianqiang Che
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Lin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Chao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yuanfeng Zou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lixia Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - De Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
20
|
Popov SA, Semenova MD, Baev DS, Frolova TS, Shestopalov MA, Wang C, Qi Z, Shults EE, Turks M. Synthesis and cytotoxicity of hybrids of 1,3,4- or 1,2,5-oxadiazoles tethered from ursane and lupane core with 1,2,3-triazole. Steroids 2020; 162:108698. [PMID: 32687846 DOI: 10.1016/j.steroids.2020.108698] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/05/2020] [Accepted: 07/11/2020] [Indexed: 12/21/2022]
Abstract
Ursane and lupane type (1-((5-aryl-1,3,4-oxadiazol-2-yl)methyl)-1H-1,2,3-triazol-4-yl)methyl and (1-((4-methyl-2-oxido-1,2,5-oxadiazol-3-yl)methyl)-1H-1,2,3-triazol-4-yl)methyl hybrids were prepared by 1,3-cycloaddition reactions of azole-derived azides with alkyne esters connected to positions C-3 and C-28 of triterpene core and tested for cytotoxicity. Hybrid compounds of 1,3,4-oxadiazoles attached at positions 3- and 28- of triterpenoid frame via triazole spacer and combinations of 1,2,5-oxadiazole or 1,3,4-oxadiazole, tethered with succinate linker and 1,2,3-triazole at the position 3- of the ursane backbone, were inactive in relation to all the cancer cells tested. Eventually, combinations of furoxan fragment and 1,2,3-triazole linked to C-28 position of triterpene backbone demonstrated marked cytotoxic activity towards MCF-7 and HepG2 cells. The most active ester of ursolic acid with (1-((4-methyl-2-oxido-1,2,5-oxadiazol-3-yl)methyl)-1H-1,2,3-triazol-4-yl)methyl substituent and 3-O-acetyl group was superior in activity and selectivity over doxorubicin and ursolic acid on MCF-7 cells. The length of the carbon spacer group may be of crucial importance for cytotoxicity. The introduction of the additional ester linker between the C-28 of triterpenoid and triazole or changing triazole spacer between furoxan moiety and triterpenoid core resulted in activity decrease against all the tested cells. In accordance with molecular modeling results, the activity of new derivatives may be explained in terms of the interaction of the new hybrid molecules and Mdm2 binding sites.
Collapse
Affiliation(s)
- Sergey A Popov
- Novosibirsk Institute of Organic Chemistry, Acad. Lavrentyev ave. 9, Novosibirsk 630090, Russia.
| | - Marya D Semenova
- Novosibirsk Institute of Organic Chemistry, Acad. Lavrentyev ave. 9, Novosibirsk 630090, Russia
| | - Dmitry S Baev
- Novosibirsk Institute of Organic Chemistry, Acad. Lavrentyev ave. 9, Novosibirsk 630090, Russia
| | - Tatiana S Frolova
- The Federal Research Center Institute of Cytology and Genetics, Acad. Lavrentyev Ave., 10, 630090 Novosibirsk, Russia; Novosibirsk State University, Pirogova Street, 2, 630090 Novosibirsk, Russia
| | - Michael A Shestopalov
- Nikolaev Institute of Inorganic Chemistry SB RAS, Acad. Lavrentiev ave., 3, 630090 Novosibirsk, Russia
| | - Chengzhang Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Zhiwen Qi
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Elvira E Shults
- Novosibirsk Institute of Organic Chemistry, Acad. Lavrentyev ave. 9, Novosibirsk 630090, Russia
| | - Māris Turks
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, Riga LV-1048, Latvia
| |
Collapse
|
21
|
Wang Z, Wu W, Guan X, Guo S, Li C, Niu R, Gao J, Jiang M, Bai L, Leung EL, Hou Y, Jiang Z, Bai G. 20( S)-Protopanaxatriol promotes the binding of P53 and DNA to regulate the antitumor network via multiomic analysis. Acta Pharm Sin B 2020; 10:1020-1035. [PMID: 32642409 PMCID: PMC7332671 DOI: 10.1016/j.apsb.2020.01.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 12/14/2022] Open
Abstract
Although the tumor suppressor P53 is known to regulate a broad network of signaling pathways, it is still unclear how certain drugs influence these P53 signaling networks. Here, we used a comprehensive single-cell multiomics view of the effects of ginsenosides on cancer cells. Transcriptome and proteome profiling revealed that the antitumor activity of ginsenosides is closely associated with P53 protein. A miRNA–proteome interaction network revealed that P53 controlled the transcription of at least 38 proteins, and proteome-metabolome profiling analysis revealed that P53 regulated proteins involved in nucleotide metabolism, amino acid metabolism and “Warburg effect”. The results of integrative multiomics analysis revealed P53 protein as a potential key target that influences the anti-tumor activity of ginsenosides. Furthermore, by applying affinity mass spectrometry (MS) screening and surface plasmon resonance fragment library screening, we confirmed that 20(S)-protopanaxatriol directly targeted adjacent regions of the P53 DNA-binding pocket and promoted the stability of P53–DNA interactions, which further induced a series of omics changes.
Collapse
|
22
|
Cheng C, Shen F, Ding G, Liu A, Chu S, Ma Y, Hou X, Hao E, Wang X, Hou Y, Bai G. Lepidiline A Improves the Balance of Endogenous Sex Hormones and Increases Fecundity by Targeting HSD17B1. Mol Nutr Food Res 2020; 64:e1900706. [DOI: 10.1002/mnfr.201900706] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 01/11/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Chuanjing Cheng
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai University Tianjin 300353 China
| | - Fukui Shen
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai University Tianjin 300353 China
| | - Guoyu Ding
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai University Tianjin 300353 China
| | - Aina Liu
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai University Tianjin 300353 China
| | - Simeng Chu
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai University Tianjin 300353 China
| | - Yuejiao Ma
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai University Tianjin 300353 China
| | - Xiaotao Hou
- Collaborative Innovation Center of Research on Functional Ingredients from Agricultural ResiduesGuangxi Key Laboratory of Efficacy Study on Chinese Materia MedicaGuangxi University of Chinese Medicine Nanning 530200 China
| | - Erwei Hao
- Collaborative Innovation Center of Research on Functional Ingredients from Agricultural ResiduesGuangxi Key Laboratory of Efficacy Study on Chinese Materia MedicaGuangxi University of Chinese Medicine Nanning 530200 China
| | - Xiaoying Wang
- State Key Laboratory of Modern Chinese MedicineTianjin University of Traditional Chinese Medicine Tianjin 300193 China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai University Tianjin 300353 China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai University Tianjin 300353 China
| |
Collapse
|
23
|
The ERK-MNK-eIF4F signaling pathway mediates TPDHT-induced A549 cell death in vitro and in vivo. Food Chem Toxicol 2020; 137:111158. [DOI: 10.1016/j.fct.2020.111158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 02/08/2023]
|
24
|
Zhang M, Ma X, Xu H, Wu W, He X, Wang X, Jiang M, Hou Y, Bai G. A natural AKT inhibitor swertiamarin targets AKT-PH domain, inhibits downstream signaling, and alleviates inflammation. FEBS J 2019; 287:1816-1829. [PMID: 31665825 DOI: 10.1111/febs.15112] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/10/2019] [Accepted: 10/29/2019] [Indexed: 01/01/2023]
Abstract
Swertiamarin (SW), a representative component in Flos Lonicerae Japonicae, has been reported to exert significant activity in preventing infections. In this research, we aim to clarify the details of SW and its target to explore SW's underlying anti-inflammatory mechanisms. An azide labeled SW probe was synthesized for protein target fishing, and the results demonstrated that AKT could be captured specifically. Immunofluorescence colocalization with AKT was implemented by a click reaction of the SW probe and alkynyl CY5. The result showed that AKT was one of the targets of SW. Then, a competitive combination experiment using a set of AKT inhibitors and a membrane translocation experiment confirmed that SW might target the pleckstrin homology (PH) domain of AKT. This specific binding directly deactivated the phosphorylation of AKT on both Ser473 and Thr308, which induced the dephosphorylation of IKK and NF-κB. Finally, proinflammatory cytokines (TNF-α, IL-6, and IL-8) were suppressed both in cells and in acute lung injury animal model by targeting AKT-PH domain. This study demonstrated that SW functions as a natural AKT inhibitor and presents significant anti-inflammatory activity by directly regulating the AKT-PH domain and inhibiting downstream inflammatory molecules.
Collapse
Affiliation(s)
- Man Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Xiaoyao Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Honglei Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Wenbo Wu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Xin He
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Xiaoying Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| |
Collapse
|
25
|
Preparation of Tungstotellurate(VI)-coated Magnetic Nanoparticles for Separation and Purification of Ovalbumin in Egg White. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/s1872-2040(19)61187-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Ma X, Liu A, Liu W, Wang Z, Chang N, Li S, Li J, Hou Y, Bai G. Analyze and Identify Peiminine Target EGFR Improve Lung Function and Alleviate Pulmonary Fibrosis to Prevent Exacerbation of Chronic Obstructive Pulmonary Disease by Phosphoproteomics Analysis. Front Pharmacol 2019; 10:737. [PMID: 31333459 PMCID: PMC6620478 DOI: 10.3389/fphar.2019.00737] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/07/2019] [Indexed: 01/10/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) has been a major public health problem and is still a formidable challenge for clinicians. It is urgent to find new compounds for minimizing the risk of disease progression and exacerbation especially in the early phase of COPD. A traditional Chinese medicine (TCM) formula, Chuan Bei Pi Pa dropping pills (CBPP), was tested in this study to investigate its potential mechanisms in preventing the exacerbation of COPD. Phosphoproteomics analysis for a smog stimulated early stage COPD mice model was employed to detect the underlying molecular mechanisms of CBPP. In addition, protein–protein interaction (PPI) and bioinformatics analyses were included to analyze the key proteins and predict the key bioactive compounds. The results indicated that peiminine (PEI) target epidermal growth factor receptor (EGFR) prevented the exacerbation of COPD by inhibiting the EGFR signaling pathway, and ursolic acid (UA) can alleviate inflammation disorders via inhibition of CASP3 on mitogen-activated protein kinase (MAPK) signaling pathway. After in vivo and in vitro evaluations, we revealed that PEI from CBPP, as a lead compound, can improve lung function and alleviate pulmonary fibrosis by acting on the EGFR and MLC2 signaling pathways. Furthermore, the approach described here is an effective way to analyze and identify the bioactive ingredients from a mixture by functional proteomics analysis.
Collapse
Affiliation(s)
- Xiaoyao Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Aina Liu
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Wenjuan Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Zhihua Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Nianwei Chang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Suyun Li
- First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Jiansheng Li
- First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| |
Collapse
|
27
|
Habtemariam S. Antioxidant and Anti-inflammatory Mechanisms of Neuroprotection by Ursolic Acid: Addressing Brain Injury, Cerebral Ischemia, Cognition Deficit, Anxiety, and Depression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8512048. [PMID: 31223427 PMCID: PMC6541953 DOI: 10.1155/2019/8512048] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/27/2019] [Accepted: 05/08/2019] [Indexed: 12/19/2022]
Abstract
Ursolic acid (UA) is a pentacyclic triterpene which is found in common herbs and medicinal plants that are reputed for a variety of pharmacological effects. Both as an active principle of these plants and as a nutraceutical ingredient, the pharmacology of UA in the CNS and other organs and systems has been extensively reported in recent years. In this communication, the antioxidant and anti-inflammatory axis of UA's pharmacology is appraised for its therapeutic potential in some common CNS disorders. Classic examples include the traumatic brain injury (TBI), cerebral ischemia, cognition deficit, anxiety, and depression. The pharmacological efficacy for UA is demonstrated through the therapeutic principle of one drug → multitargets → one/many disease(s). Both specific enzymes and receptor targets along with diverse pharmacological effects associated with oxidative stress and inflammatory signalling are scrutinised.
Collapse
Affiliation(s)
- Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK
| |
Collapse
|
28
|
Zhou JX, Wink M. Evidence for Anti-Inflammatory Activity of Isoliquiritigenin, 18β Glycyrrhetinic Acid, Ursolic Acid, and the Traditional Chinese Medicine Plants Glycyrrhiza glabra and Eriobotrya japonica, at the Molecular Level. MEDICINES 2019; 6:medicines6020055. [PMID: 31083310 PMCID: PMC6630209 DOI: 10.3390/medicines6020055] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/05/2019] [Accepted: 05/08/2019] [Indexed: 12/31/2022]
Abstract
Background: We investigated the effect of root extracts from the traditional Chinese medicine (TCM) plants Glycyrrhiza glabra L., Paeonia lactiflora Pall., and the leaf extract of Eriobotrya japonica (Thunb.) Lindl., and their six major secondary metabolites, glycyrrhizic acid, 18β glycyrrhetinic acid, liquiritigenin, isoliquiritigenin, paeoniflorin, and ursolic acid, on lipopolysaccharide (LPS)-induced NF-κB expression and NF-κB-regulated pro-inflammatory factors in murine macrophage RAW 264.7 cells. Methods: The cytotoxicity of the substances was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. RAW 264.7 cells were treated with LPS (1 μg/mL) or LPS plus single substances; the gene expression levels of NF-κB subunits (RelA, RelB, c-Rel, NF-κB1, and NF-κB2), and of ICAM-1, TNF-α, iNOS, and COX-2 were measured employing real-time PCR; nitric oxide (NO) production by the cells was quantified with the Griess assay; nuclear translocation of NF-κB was visualized by immunofluorescence microscopy with NF-κB (p65) staining. Results: All the substances showed moderate cytotoxicity against RAW 264.7 cells except paeoniflorin with an IC50 above 1000 μM. Glycyrrhiza glabra extract and Eriobotrya japonica extract, as well as 18β glycyrrhetinic acid and isoliquiritigenin at low concentrations, inhibited NO production in a dose-dependent manner. LPS upregulated gene expressions of NF-κB subunits and of ICAM-1, TNF-α, iNOS, and COX-2 within 8 h, which could be decreased by 18β glycyrrhetinic acid, isoliquiritigenin and ursolic acid similarly to the anti-inflammatory drug dexamethasone. NF-κB translocation from cytoplasm to nucleus was observed after LPS stimulation for 2 h and was attenuated by extracts of Glycyrrhiza glabra and Eriobotrya japonica, as well as by 18β glycyrrhetinic acid, isoliquiritigenin, and ursolic acid. Conclusions: 18β glycyrrhetinic acid, isoliquiritigenin, and ursolic acid inhibited the gene expressions of ICAM-1, TNF-α, COX-2, and iNOS, partly through inhibiting NF-κB expression and attenuating NF-κB nuclear translocation. These substances showed anti-inflammatory activity. Further studies are needed to elucidate the exact mechanisms and to assess their usefulness in therapy.
Collapse
Affiliation(s)
- Jun-Xian Zhou
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg 69120, Germany.
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg 69120, Germany.
| |
Collapse
|
29
|
Shen Y, Yang S, Hu X, Zhang M, Ma X, Wang Z, Hou Y, Bai G. Natural product puerarin activates Akt and ameliorates glucose and lipid metabolism dysfunction in hepatic cells. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.02.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
30
|
Csuk R, Deigner HP. The potential of click reactions for the synthesis of bioactive triterpenes. Bioorg Med Chem Lett 2019; 29:949-958. [PMID: 30799214 DOI: 10.1016/j.bmcl.2019.02.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 01/03/2023]
Abstract
Click reactions between alkynes and azides using the privileged scaffold of triterpenes have been of interest for biological chemistry. Many publications deal with the synthesis of novel bioactive molecules; these conjugates have also been used for bioanalytical and diagnostic purposes. As a result, conjugates of better physicochemical properties were obtained; even compounds of improved solubility in water and physiological fluids were made through the introduction of a triazol residue. "Hybrid-structures", i.e. molecules consisting of two independently bioactive subunits linked by a triazole residue were higher bioactive than their parent compounds but not as active as expected, and with a few exceptions the ultimate breakthrough has not yet been achieved. Only in the synthesis of compounds with anti-leishmanial activity some new and promising lead structures were found. As a consequence, triazole modified triterpenes seem to hold their greatest future prospect rather as diagnostic reagents and molecular probes than as drugs.
Collapse
Affiliation(s)
- René Csuk
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Hans-Peter Deigner
- Furtwangen University, Medical and Life Sciences Faculty, Jakob-Kienzle Str. 17, D-78054 Villingen-Schwenningen, Germany
| |
Collapse
|
31
|
Yang S, Zhang Y, Shen F, Ma X, Zhang M, Hou Y, Bai G. The flavonoid baicalin improves glucose metabolism by targeting the PH domain of AKT and activating AKT/GSK3β phosphorylation. FEBS Lett 2018; 593:175-186. [PMID: 30489635 DOI: 10.1002/1873-3468.13305] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 10/26/2018] [Accepted: 11/13/2018] [Indexed: 01/21/2023]
Abstract
Baicalin is one of the main flavonoids of the dried root of Scutellaria baicalensis Georgi and is reported to exert beneficial effects on the regulation of glucose/lipid metabolism. However, understanding its specific target and unique mechanism for improving glucose utilization is a challenge. In this paper, target fishing with a baicalin probe reveals that baicalin interacts with AKT. An immunofluorescence assay further demonstrates the colocalization of baicalin with AKT in the cytoplasm. A competitive test and virtual docking show that baicalin might bind to the pleckstrin homology domain of AKT. This specific binding hampers AKT membrane translocation, activates the phosphorylation of AKT on Ser473, induces the downstream glycogen synthase kinase 3β activation, and affects glycogen synthesis.
Collapse
Affiliation(s)
- Shengnan Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Yuan Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Fukui Shen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Xiaoyao Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Man Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| |
Collapse
|
32
|
Li C, Lin J, Wu P, Zhao R, Zou J, Zhou M, Jia L, Shao J. Small Molecule Nanodrug Assembled of Dual-Anticancer Drug Conjugate for Synergetic Cancer Metastasis Therapy. Bioconjug Chem 2018; 29:3495-3502. [DOI: 10.1021/acs.bioconjchem.8b00657] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Chao Li
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Juanfang Lin
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Pengyu Wu
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Ruirui Zhao
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Junjie Zou
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Min Zhou
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Lee Jia
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jingwei Shao
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
33
|
Gao J, He X, Ma Y, Zhao X, Hou X, Hao E, Deng J, Bai G. Chlorogenic Acid Targeting of the AKT PH Domain Activates AKT/GSK3β/FOXO1 Signaling and Improves Glucose Metabolism. Nutrients 2018; 10:nu10101366. [PMID: 30249058 PMCID: PMC6212807 DOI: 10.3390/nu10101366] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/18/2018] [Accepted: 09/21/2018] [Indexed: 01/01/2023] Open
Abstract
Chlorogenic acid (CGA), a bioactive component in the human diet, is reported to exert beneficial effects on the regulation of glucose metabolism. This study was designed to investigate the specific target of CGA, and explore its underlying mechanisms. Beneficial effects of CGA in glucose metabolism were confirmed in insulin-treated human hepatocarcinoma HepG2 cells. Protein fishing, via CGA-modified functionalized magnetic microspheres, demonstrated the binding of CGA with protein kinase B (AKT). Immunofluorescence using a CGA molecular probe further demonstrated the co-localization of CGA with AKT. A competitive combination test and hampering of AKT membrane translocation showed that CGA might bind to the pleckstrin homology (PH) domain of AKT. The specific binding did not lead to the membrane translocation to phosphatidylinositol (3,4,5)-trisphosphate (PIP3), but directly activated the phosphorylation of AKT on Ser-473, induced the phosphorylation of the downstream molecules, glycogen synthase kinase 3β (GSK3β) and forkhead box O1 (FOXO1), and improved glucose metabolism. Collectively, our data demonstrate that CGA exerts regulatory effects on glucose metabolism via direct targeting the PH domain of AKT. This study clarifies the mechanism of the potential benefits of nutrients containing CGA in the complementary therapy of glucose metabolism disorders.
Collapse
Affiliation(s)
- Jie Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China.
| | - Xin He
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China.
| | - Yuejiao Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China.
| | - Xuezhi Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China.
| | - Xiaotao Hou
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, 13 Wuhe Avenue, Nanning 530200, China.
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, 13 Wuhe Avenue, Nanning 530200, China.
| | - Jiagang Deng
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, 13 Wuhe Avenue, Nanning 530200, China.
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China.
| |
Collapse
|
34
|
Xu HL, Wang XT, Cheng Y, Zhao JG, Zhou YJ, Yang JJ, Qi MY. Ursolic acid improves diabetic nephropathy via suppression of oxidative stress and inflammation in streptozotocin-induced rats. Biomed Pharmacother 2018; 105:915-921. [PMID: 30021385 DOI: 10.1016/j.biopha.2018.06.055] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/08/2018] [Accepted: 06/12/2018] [Indexed: 01/17/2023] Open
Abstract
Inflammation plays a pivotal role in the pathogenesis of diabetic nephropathy (DN). Overexpression of inflammatory chemokine and cytokines is involved in the development of DN. Ursolic acid (UA), a common pentacyclic triterpenoid compound, has been reported to have myriad benefits and medicinal properties. However, its protective effects against renal injury in streptozotocin (STZ)-induced diabetic rats have not been firmly established. In the current report, we investigated whether UA inhibits oxidative stress and inflammation in the kidneys of STZ-induced diabetic rats. Diabetes mellitus (DM) was induced by STZ (40 mg/ kg, i.v.). Animals were randomly divided into control group (normal saline, i.g.), DN group (normal saline, i.g.), DN + UA group (35 mg/kg UA + normal saline, i.g.) and DN + telmisartan group (12 mg/kg telmisartan + normal saline, i.g.). Fasting blood glucose (FBG) levels were monitored at regular intervals. The administration of compounds started at 5th week and lasted for 8 weeks. At the beginning of 13th week, rats were humanely euthanized, KW/BW, BUN, SCr, SOD and MDA were measured. Histopathological changes in renal tissue were observed after hematoxylin-eosin (HE) staining. Furthermore, the expressions of TNF-α, MCP-1 and IL-1β in kidney were determined by immunohistochemistry and western blot. Our results showed that UA significantly lowered the levels of FBG, KW/BW, BUN, SCr and MDA in diabetic rats. Additionally, the SOD activity in UA treated group was higher than that in DN group. Furthermore, renal structural abnormalities and the elevation of TNF-α, MCP-1 and IL-1β expression level were blocked by the administration of UA. In conclusion, our data demonstrate that UA could be well used as a protective agent to counter renal dysfunction - through antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Hui-Lin Xu
- Institution of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Xu-Tao Wang
- Institution of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Yin Cheng
- Institution of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Jin-Guo Zhao
- Institution of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Yu-Jie Zhou
- Institution of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Jun-Jie Yang
- Institution of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Min-You Qi
- Institution of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
35
|
Huang H, Zhang G, Zhou Y, Lin C, Chen S, Lin Y, Mai S, Huang Z. Reverse Screening Methods to Search for the Protein Targets of Chemopreventive Compounds. Front Chem 2018; 6:138. [PMID: 29868550 PMCID: PMC5954125 DOI: 10.3389/fchem.2018.00138] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/09/2018] [Indexed: 12/13/2022] Open
Abstract
This article is a systematic review of reverse screening methods used to search for the protein targets of chemopreventive compounds or drugs. Typical chemopreventive compounds include components of traditional Chinese medicine, natural compounds and Food and Drug Administration (FDA)-approved drugs. Such compounds are somewhat selective but are predisposed to bind multiple protein targets distributed throughout diverse signaling pathways in human cells. In contrast to conventional virtual screening, which identifies the ligands of a targeted protein from a compound database, reverse screening is used to identify the potential targets or unintended targets of a given compound from a large number of receptors by examining their known ligands or crystal structures. This method, also known as in silico or computational target fishing, is highly valuable for discovering the target receptors of query molecules from terrestrial or marine natural products, exploring the molecular mechanisms of chemopreventive compounds, finding alternative indications of existing drugs by drug repositioning, and detecting adverse drug reactions and drug toxicity. Reverse screening can be divided into three major groups: shape screening, pharmacophore screening and reverse docking. Several large software packages, such as Schrödinger and Discovery Studio; typical software/network services such as ChemMapper, PharmMapper, idTarget, and INVDOCK; and practical databases of known target ligands and receptor crystal structures, such as ChEMBL, BindingDB, and the Protein Data Bank (PDB), are available for use in these computational methods. Different programs, online services and databases have different applications and constraints. Here, we conducted a systematic analysis and multilevel classification of the computational programs, online services and compound libraries available for shape screening, pharmacophore screening and reverse docking to enable non-specialist users to quickly learn and grasp the types of calculations used in protein target fishing. In addition, we review the main features of these methods, programs and databases and provide a variety of examples illustrating the application of one or a combination of reverse screening methods for accurate target prediction.
Collapse
Affiliation(s)
- Hongbin Huang
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan Scientific Research Center, Guangdong Medical University Dongguan, China.,The Second School of Clinical Medicine, Guangdong Medical University Dongguan, China
| | - Guigui Zhang
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan Scientific Research Center, Guangdong Medical University Dongguan, China.,School of Pharmacy, Guangdong Medical University Dongguan, China
| | - Yuquan Zhou
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan Scientific Research Center, Guangdong Medical University Dongguan, China.,The Second School of Clinical Medicine, Guangdong Medical University Dongguan, China
| | - Chenru Lin
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan Scientific Research Center, Guangdong Medical University Dongguan, China.,School of Pharmacy, Guangdong Medical University Dongguan, China
| | - Suling Chen
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan Scientific Research Center, Guangdong Medical University Dongguan, China.,The Second School of Clinical Medicine, Guangdong Medical University Dongguan, China
| | - Yutong Lin
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan Scientific Research Center, Guangdong Medical University Dongguan, China.,School of Pharmacy, Guangdong Medical University Dongguan, China
| | - Shangkang Mai
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan Scientific Research Center, Guangdong Medical University Dongguan, China.,The Second School of Clinical Medicine, Guangdong Medical University Dongguan, China
| | - Zunnan Huang
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan Scientific Research Center, Guangdong Medical University Dongguan, China.,School of Pharmacy, Guangdong Medical University Dongguan, China
| |
Collapse
|
36
|
Zhai M, Guo J, Ma H, Shi W, Jou D, Yan D, Liu T, Tao J, Duan J, Wang Y, Li S, Lv J, Li C, Lin J, Zhang C, Lin L. Ursolic acid prevents angiotensin II-induced abdominal aortic aneurysm in apolipoprotein E-knockout mice. Atherosclerosis 2018; 271:128-135. [PMID: 29499360 DOI: 10.1016/j.atherosclerosis.2018.02.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND AIMS Abdominal aortic aneurysms (AAA) is a chronic inflammatory disease in which signal transducer and activator of transcription 3 (STAT3), and disintegrin and metalloproteinase 17 (ADAM17) play important roles. However, it remains unclear whether ursolic acid (UA), a natural pentacyclic triterpenoid carboxylic acid, can have an impact on STAT3 and ADAM17 and hence influence the formation of AAA. The objective of this study was to characterize the potential effect of UA on the pathogenesis of AAA and on STAT3 and ADAM17. METHODS Male ApoE-/- mice were infused with angiotensin II (AngII) (1000 ng/kg/min) for 4 weeks to induce AAAs. Daily intragastric gavage with 100 mg/kg UA or tap water containing Tween 80 as controls was provided. Immunohistochemistry, cell viability assay, colony formation, wound healing assay, and Western blot were used to explore the potential effect of UA on AAA. RESULTS UA decreased the incidence of AngII-induced AAA in mice. UA alleviated the degradation of elastin fibers and inflammation and decreased the expression of MMP2, MMP9, ADAM17 and phospho-STAT3 (pSTAT3) in aorta of mice induced with AngII. UA inhibited the constitutive and stimuli-induced (AngII and tumor necrosis factor-α) expression of MMP2, MMP9, ADAM17 and pSTAT3 in vascular smooth muscle cells (VSMCs). Furthermore, UA decreased cell viability, and suppressed colony formation and wound healing in vitro. CONCLUSIONS We demonstrated that UA ameliorated the severity of AAA and exhibited an inhibitory effect on the expression of pSTAT3 and ADAM17. UA might emerge as a promising agent contributing to the prevention or treatment of AAA.
Collapse
MESH Headings
- ADAM17 Protein/metabolism
- Angiotensin II
- Animals
- Anti-Inflammatory Agents/pharmacology
- Aorta, Abdominal/drug effects
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/prevention & control
- Cell Line
- Cell Proliferation/drug effects
- Disease Models, Animal
- Elastin/metabolism
- Male
- Matrix Metalloproteinase 2/metabolism
- Matrix Metalloproteinase 9/metabolism
- Mice, Knockout, ApoE
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phosphorylation
- STAT3 Transcription Factor/metabolism
- Signal Transduction/drug effects
- Triterpenes/pharmacology
- Vascular Remodeling/drug effects
- Wound Healing/drug effects
- Ursolic Acid
Collapse
Affiliation(s)
- Maocai Zhai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junyi Guo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haiyan Ma
- Division of Cardiology, Department of Internal Medicine, First People's Hospital of Shangqiu, Shangqiu, China
| | - Wei Shi
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - David Jou
- Center for Childhood Cancer, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, College of Medicine, The Ohio State University, Columbus OH, USA
| | - Dan Yan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianshu Liu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingwen Tao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jialin Duan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yina Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiagao Lv
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenglong Li
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville FL, USA
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore MD, USA
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Li Lin
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
37
|
Hu X, Shen Y, Yang S, Lei W, Luo C, Hou Y, Bai G. Metabolite identification of ursolic acid in mouse plasma and urine after oral administration by ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry. RSC Adv 2018; 8:6532-6539. [PMID: 35540410 PMCID: PMC9078307 DOI: 10.1039/c7ra11856b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/30/2018] [Indexed: 11/21/2022] Open
Abstract
Ursolic acid (UA), a pentacyclic terpenoid carboxylic acid widely existing in various medicinal plants, has been reported to have multifarious biological activities such as anti-inflammatory, anticancer and antioxidant activities. In this paper, we analyzed the metabolic profile of UA in mice (including plasma and urine) by using ultra-high performance liquid chromatography (UPLC) coupled with a quadrupole time-of-flight (Q/TOF) method. Principal component analysis (PCA) was applied to differentiate the control and experimental groups. Potential biomarkers were filtered by using loading plots followed by further analysis with UPLC-Q/TOF-MS data. The results showed that 3 metabolites in plasma were identified as markers, one of which was UA and the others were UA epoxides, which belonged to phase I metabolites. Additionally, 5 phase II metabolites were tentatively identified in urine through an accurate mass and characteristic fragment ions. These data suggested that the biotransformation of UA undergoes the major metabolic reactions of the phase I metabolic route of olefin oxidation and phase II metabolic routes of glycine conjugation, glutathione conjugation and glucuronidation. This is the first report of analysis and characterization of the metabolites after the oral administration of UA in mice. The proposed metabolic pathways of UA in mice is also raised for the first time. It might provide further understanding of the potential biological mechanism of UA. First report on metabolism study of ursolic acid (UA) in vivo of mice.![]()
Collapse
Affiliation(s)
- Xueyan Hu
- State Key Laboratory of Medicinal Chemical Biology
- College of Pharmacy
- Tianjin Key Laboratory of Molecular Drug Research
- Nankai University
- Tianjin 300350
| | - Yunbing Shen
- State Key Laboratory of Medicinal Chemical Biology
- College of Pharmacy
- Tianjin Key Laboratory of Molecular Drug Research
- Nankai University
- Tianjin 300350
| | - Shengnan Yang
- State Key Laboratory of Medicinal Chemical Biology
- College of Pharmacy
- Tianjin Key Laboratory of Molecular Drug Research
- Nankai University
- Tianjin 300350
| | - Wei Lei
- State Key Laboratory of Medicinal Chemical Biology
- College of Pharmacy
- Tianjin Key Laboratory of Molecular Drug Research
- Nankai University
- Tianjin 300350
| | - Cheng Luo
- State Key Laboratory of Medicinal Chemical Biology
- College of Pharmacy
- Tianjin Key Laboratory of Molecular Drug Research
- Nankai University
- Tianjin 300350
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology
- College of Pharmacy
- Tianjin Key Laboratory of Molecular Drug Research
- Nankai University
- Tianjin 300350
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology
- College of Pharmacy
- Tianjin Key Laboratory of Molecular Drug Research
- Nankai University
- Tianjin 300350
| |
Collapse
|
38
|
Ma X, Zhang Y, Wang Z, Shen Y, Zhang M, Nie Q, Hou Y, Bai G. Ursolic Acid, a Natural Nutraceutical Agent, Targets Caspase3 and Alleviates Inflammation-Associated Downstream Signal Transduction. Mol Nutr Food Res 2017; 61:1700332. [PMID: 28801966 PMCID: PMC5765441 DOI: 10.1002/mnfr.201700332] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 08/03/2017] [Indexed: 12/14/2022]
Abstract
SCOPE Ursolic acid (UA) is a pentacyclicterpenoid carboxylic acid that is present in a wide variety of plant foods. There are many beneficial health effects that are attributed to the properties of UA. However, the specific cellular targets of UA and the mechanism underlying downstream signal transduction processes linked to the anti-inflammation pathway have not been thoroughly elucidated to date. METHODS AND RESULTS Chemical biology strategies such as target fishing, click reaction synthesis of a UA probe and molecular imaging were used to identify potential target proteins of UA. Cysteinyl aspartate specific proteinase 3 (CASP3) and its downstream signaling pathway were verified as potential targets by molecular docking, intracellular enzyme activity evaluation and accurate pathway analysis. The results indicated that UA acted on CASP3, ERK1 and JNK2 targets, alleviated inflammation-associated downstream multiple signal transduction factors, including ERK1, NF-κB and STAT3, and exhibited anti-inflammation activities. CONCLUSION As a natural dietary supplement, UA demonstrated anti-inflammation activity via inhibition of CASP3 and shows the potential to improve the therapy effect of several inflammation-associated diseases.
Collapse
Affiliation(s)
- Xiaoyao Ma
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| | - Yuan Zhang
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| | - Zengyong Wang
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| | - Yunbing Shen
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| | - Man Zhang
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| | - Quandeng Nie
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| |
Collapse
|