1
|
Margara-Escudero HJ, Paz-Graniel I, García-Gavilán J, Ruiz-Canela M, Sun Q, Clish CB, Toledo E, Corella D, Estruch R, Ros E, Castañer O, Arós F, Fiol M, Guasch-Ferré M, Lapetra J, Razquin C, Dennis C, Deik A, Li J, Gómez-Gracia E, Babio N, Martínez-González MA, Hu FB, Salas-Salvadó J. Plasma metabolite profile of legume consumption and future risk of type 2 diabetes and cardiovascular disease. Cardiovasc Diabetol 2024; 23:38. [PMID: 38245716 PMCID: PMC10800064 DOI: 10.1186/s12933-023-02111-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/29/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Legume consumption has been linked to a reduced risk of type 2 diabetes (T2D) and cardiovascular disease (CVD), while the potential association between plasma metabolites associated with legume consumption and the risk of cardiometabolic diseases has never been explored. Therefore, we aimed to identify a metabolite signature of legume consumption, and subsequently investigate its potential association with the incidence of T2D and CVD. METHODS The current cross-sectional and longitudinal analysis was conducted in 1833 PREDIMED study participants (mean age 67 years, 57.6% women) with available baseline metabolomic data. A subset of these participants with 1-year follow-up metabolomics data (n = 1522) was used for internal validation. Plasma metabolites were assessed through liquid chromatography-tandem mass spectrometry. Cross-sectional associations between 382 different known metabolites and legume consumption were performed using elastic net regression. Associations between the identified metabolite profile and incident T2D and CVD were estimated using multivariable Cox regression models. RESULTS Specific metabolic signatures of legume consumption were identified, these included amino acids, cortisol, and various classes of lipid metabolites including diacylglycerols, triacylglycerols, plasmalogens, sphingomyelins and other metabolites. Among these identified metabolites, 22 were negatively and 18 were positively associated with legume consumption. After adjustment for recognized risk factors and legume consumption, the identified legume metabolite profile was inversely associated with T2D incidence (hazard ratio (HR) per 1 SD: 0.75, 95% CI 0.61-0.94; p = 0.017), but not with CVD incidence risk (1.01, 95% CI 0.86-1.19; p = 0.817) over the follow-up period. CONCLUSIONS This study identified a set of 40 metabolites associated with legume consumption and with a reduced risk of T2D development in a Mediterranean population at high risk of cardiovascular disease. TRIAL REGISTRATION ISRCTN35739639.
Collapse
Affiliation(s)
- Hernando J Margara-Escudero
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentació, Nutrició, Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain
- Alimentació, Nutrició, Desenvolupament i Salut Mental, Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Indira Paz-Graniel
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentació, Nutrició, Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain
- Alimentació, Nutrició, Desenvolupament i Salut Mental, Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y La Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús García-Gavilán
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentació, Nutrició, Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain.
- Alimentació, Nutrició, Desenvolupament i Salut Mental, Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain.
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y La Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| | - Miguel Ruiz-Canela
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y La Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Navarra, Instituto de Investigación Sanitario de Navarra (IdiSNA), Pamplona, Spain
| | - Qi Sun
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Clary B Clish
- The Broad Institute of Harvard and MIT, Boston, MA, 02142, USA
| | - Estefania Toledo
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y La Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Navarra, Instituto de Investigación Sanitario de Navarra (IdiSNA), Pamplona, Spain
- Navarra Institute for Health Research, IdiSNA, Pamplona, Navarre, Spain
| | - Dolores Corella
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y La Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Ramón Estruch
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y La Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Internal Medicine, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Emilio Ros
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y La Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Lipid Clinic, Hospital Clínic, Barcelona, Spain
| | - Olga Castañer
- Centro de Investigación Biomédica en Red (CIBERESP) de Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Research Institute, Barcelona, Spain
| | - Fernando Arós
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y La Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Cardiology, University Hospital of Alava, Vitoria, Spain
| | - Miquel Fiol
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y La Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Illes Balears Health Research Institute (IdISBa), Hospital Son Espases, Palma, Spain
| | - Marta Guasch-Ferré
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - José Lapetra
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y La Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Family Medicine, Research Unit, Distrito Sanitario Atención Primaria Sevilla, Seville, Spain
| | - Cristina Razquin
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y La Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Navarra, Instituto de Investigación Sanitario de Navarra (IdiSNA), Pamplona, Spain
| | - Courtney Dennis
- The Broad Institute of Harvard and MIT, Boston, MA, 02142, USA
| | - Amy Deik
- The Broad Institute of Harvard and MIT, Boston, MA, 02142, USA
| | - Jun Li
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Enrique Gómez-Gracia
- Preventive Medicine and Public Health Department, School of Medicine, University of Málaga, 29010, Malaga, Spain
- Biomedical Research Institute of Malaga-IBIMA Plataforma BIONAND, 29010, Malaga, Spain
| | - Nancy Babio
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentació, Nutrició, Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain.
- Alimentació, Nutrició, Desenvolupament i Salut Mental, Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain.
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y La Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| | - Miguel A Martínez-González
- Department of Preventive Medicine and Public Health, University of Navarra, Instituto de Investigación Sanitario de Navarra (IdiSNA), Pamplona, Spain
| | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jordi Salas-Salvadó
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentació, Nutrició, Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain
- Alimentació, Nutrició, Desenvolupament i Salut Mental, Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y La Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
García-Gavilán JF, Babio N, Toledo E, Semnani-Azad Z, Razquin C, Dennis C, Deik A, Corella D, Estruch R, Ros E, Fitó M, Arós F, Fiol M, Lapetra J, Lamuela-Raventos R, Clish C, Ruiz-Canela M, Martínez-González MÁ, Hu F, Salas-Salvadó J, Guasch-Ferré M. Olive oil consumption, plasma metabolites, and risk of type 2 diabetes and cardiovascular disease. Cardiovasc Diabetol 2023; 22:340. [PMID: 38093289 PMCID: PMC10720204 DOI: 10.1186/s12933-023-02066-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Olive oil consumption has been inversely associated with the risk of type 2 diabetes (T2D) and cardiovascular disease (CVD). However, the impact of olive oil consumption on plasma metabolites remains poorly understood. This study aims to identify plasma metabolites related to total and specific types of olive oil consumption, and to assess the prospective associations of the identified multi-metabolite profiles with the risk of T2D and CVD. METHODS The discovery population included 1837 participants at high cardiovascular risk from the PREvención con DIeta MEDiterránea (PREDIMED) trial with available metabolomics data at baseline. Olive oil consumption was determined through food-frequency questionnaires (FFQ) and adjusted for total energy. A total of 1522 participants also had available metabolomics data at year 1 and were used as the internal validation sample. Plasma metabolomics analyses were performed using LC-MS. Cross-sectional associations between 385 known candidate metabolites and olive oil consumption were assessed using elastic net regression analysis. A 10-cross-validation (CV) procedure was used, and Pearson correlation coefficients were assessed between metabolite-weighted models and FFQ-derived olive oil consumption in each pair of training-validation data sets within the discovery sample. We further estimated the prospective associations of the identified plasma multi-metabolite profile with incident T2D and CVD using multivariable Cox regression models. RESULTS We identified a metabolomic signature for the consumption of total olive oil (with 74 metabolites), VOO (with 78 metabolites), and COO (with 17 metabolites), including several lipids, acylcarnitines, and amino acids. 10-CV Pearson correlation coefficients between total olive oil consumption derived from FFQs and the multi-metabolite profile were 0.40 (95% CI 0.37, 0.44) and 0.27 (95% CI 0.22, 0.31) for the discovery and validation sample, respectively. We identified several overlapping and distinct metabolites according to the type of olive oil consumed. The baseline metabolite profiles of total and extra virgin olive oil were inversely associated with CVD incidence (HR per 1SD: 0.79; 95% CI 0.67, 0.92 for total olive oil and 0.70; 0.59, 0.83 for extra virgin olive oil) after adjustment for confounders. However, no significant associations were observed between these metabolite profiles and T2D incidence. CONCLUSIONS This study reveals a panel of plasma metabolites linked to the consumption of total and specific types of olive oil. The metabolite profiles of total olive oil consumption and extra virgin olive oil were associated with a decreased risk of incident CVD in a high cardiovascular-risk Mediterranean population, though no associations were observed with T2D incidence. TRIAL REGISTRATION The PREDIMED trial was registered at ISRCTN ( http://www.isrctn.com/ , ISRCTN35739639).
Collapse
Affiliation(s)
- Jesús F García-Gavilán
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentaciò, Nutrició Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain.
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain.
| | - Nancy Babio
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentaciò, Nutrició Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Estefanía Toledo
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Navarra, IdiSNA, Pamplona, Spain
| | - Zhila Semnani-Azad
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Cristina Razquin
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Navarra, IdiSNA, Pamplona, Spain
| | | | - Amy Deik
- The Broad Institute of Harvard and MIT, Boston, MA, USA
| | - Dolores Corella
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Ramón Estruch
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Internal Medicine, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
- Institut de Nutrició I Seguretat Alimentària (INSA-UB), Universitat de Barcelona, Barcelona, Spain
| | - Emilio Ros
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Lipid Clinic, IDIBAPS, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Montserrat Fitó
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Cardiovascular and Nutrition Research Group, Institut de Recerca Hospital del Mar, Barcelona, Spain
| | - Fernando Arós
- Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba University Hospital, University of the Basque Country UPV/EHU, 01009, Vitoria-Gasteiz, Spain
| | - Miquel Fiol
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Plataforma de Ensayos Clínicos, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, 07120, Palma, Spain
| | - José Lapetra
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Family Medicine, Research Unit, Distrito Sanitario Atención Primaria Sevilla, Seville, Spain
| | - Rosa Lamuela-Raventos
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Institut de Nutrició I Seguretat Alimentària (INSA-UB), Universitat de Barcelona, Barcelona, Spain
- Polyphenol Research Group, Departament de Nutrició, Ciències de L'Alimentació I Gastronomia, Universitat de Barcelon (UB), Av. de Joan XXII, 27-31, 08028, Barcelona, Spain
| | - Clary Clish
- The Broad Institute of Harvard and MIT, Boston, MA, USA
| | - Miguel Ruiz-Canela
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Navarra, IdiSNA, Pamplona, Spain
| | - Miguel Ángel Martínez-González
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Navarra, IdiSNA, Pamplona, Spain
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Frank Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jordi Salas-Salvadó
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentaciò, Nutrició Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Guasch-Ferré
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Public Health, Section of Epidemiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Øster Farimagsgade 5, 1014, Copenhagen, Denmark.
| |
Collapse
|
3
|
Lekka P, Fragopoulou E, Terpou A, Dasenaki M. Exploring Human Metabolome after Wine Intake-A Review. Molecules 2023; 28:7616. [PMID: 38005338 PMCID: PMC10673339 DOI: 10.3390/molecules28227616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Wine has a rich history dating back to 2200 BC, originally recognized for its medicinal properties. Today, with the aid of advanced technologies like metabolomics and sophisticated analytical techniques, we have gained remarkable insights into the molecular-level changes induced by wine consumption in the human organism. This review embarks on a comprehensive exploration of the alterations in human metabolome associated with wine consumption. A great number of 51 studies from the last 25 years were reviewed; these studies systematically investigated shifts in metabolic profiles within blood, urine, and feces samples, encompassing both short-term and long-term studies of the consumption of wine and wine derivatives. Significant metabolic alterations were observed in a wide variety of metabolites belonging to different compound classes, such as phenolic compounds, lipids, organic acids, and amino acids, among others. Within these classes, both endogenous metabolites as well as diet-related metabolites that exhibited up-regulation or down-regulation following wine consumption were included. The up-regulation of short-chain fatty acids and the down-regulation of sphingomyelins after wine intake, as well as the up-regulation of gut microbial fermentation metabolites like vanillic and syringic acid are some of the most important findings reported in the reviewed literature. Our results confirm the intact passage of certain wine compounds, such as tartaric acid and other wine acids, to the human organism. In an era where the health effects of wine consumption are of growing interest, this review offers a holistic perspective on the metabolic underpinnings of this centuries-old tradition.
Collapse
Affiliation(s)
- Pelagia Lekka
- Food Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece;
| | - Elizabeth Fragopoulou
- School of Health Science and Education, Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece;
| | - Antonia Terpou
- Department of Agricultural Development, Agrofood and Management of Natural Resources, School of Agricultural Development, Nutrition & Sustainability, National and Kapodistrian University of Athens, 34400 Psachna, Greece;
| | - Marilena Dasenaki
- Food Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece;
| |
Collapse
|
4
|
Rios S, García-Gavilán JF, Babio N, Paz-Graniel I, Ruiz-Canela M, Liang L, Clish CB, Toledo E, Corella D, Estruch R, Ros E, Fitó M, Arós F, Fiol M, Guasch-Ferré M, Santos-Lozano JM, Li J, Razquin C, Martínez-González MÁ, Hu FB, Salas-Salvadó J. Plasma metabolite profiles associated with the World Cancer Research Fund/American Institute for Cancer Research lifestyle score and future risk of cardiovascular disease and type 2 diabetes. Cardiovasc Diabetol 2023; 22:252. [PMID: 37716984 PMCID: PMC10505328 DOI: 10.1186/s12933-023-01912-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/01/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND A healthy lifestyle (HL) has been inversely related to type 2 diabetes (T2D) and cardiovascular disease (CVD). However, few studies have identified a metabolite profile associated with HL. The present study aims to identify a metabolite profile of a HL score and assess its association with the incidence of T2D and CVD in individuals at high cardiovascular risk. METHODS In a subset of 1833 participants (age 55-80y) of the PREDIMED study, we estimated adherence to a HL using a composite score based on the 2018 Word Cancer Research Fund/American Institute for Cancer Research recommendations. Plasma metabolites were analyzed using LC-MS/MS methods at baseline (discovery sample) and 1-year of follow-up (validation sample). Cross-sectional associations between 385 known metabolites and the HL score were assessed using elastic net regression. A 10-cross-validation procedure was used, and correlation coefficients or AUC were assessed between the identified metabolite profiles and the self-reported HL score. We estimated the associations between the identified metabolite profiles and T2D and CVD using multivariable Cox regression models. RESULTS The metabolite profiles that identified HL as a dichotomous or continuous variable included 24 and 58 metabolites, respectively. These are amino acids or derivatives, lipids, and energy intermediates or xenobiotic compounds. After adjustment for potential confounders, baseline metabolite profiles were associated with a lower risk of T2D (hazard ratio [HR] and 95% confidence interval (CI): 0.54, 0.38-0.77 for dichotomous HL, and 0.22, 0.11-0.43 for continuous HL). Similar results were observed with CVD (HR, 95% CI: 0.59, 0.42-0.83 for dichotomous HF and HR, 95%CI: 0.58, 0.31-1.07 for continuous HL). The reduction in the risk of T2D and CVD was maintained or attenuated, respectively, for the 1-year metabolomic profile. CONCLUSIONS In an elderly population at high risk of CVD, a set of metabolites was selected as potential metabolites associated with the HL pattern predicting the risk of T2D and, to a lesser extent, CVD. These results support previous findings that some of these metabolites are inversely associated with the risk of T2D and CVD. TRIAL REGISTRATION The PREDIMED trial was registered at ISRCTN ( http://www.isrctn.com/ , ISRCTN35739639).
Collapse
Affiliation(s)
- Santiago Rios
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentaciò, Nutrició Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Jesús F García-Gavilán
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentaciò, Nutrició Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain.
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain.
| | - Nancy Babio
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentaciò, Nutrició Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Indira Paz-Graniel
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentaciò, Nutrició Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Miguel Ruiz-Canela
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Navarra, IdiSNA, Pamplona, Spain
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Estefania Toledo
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Navarra, IdiSNA, Pamplona, Spain
| | - Dolores Corella
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Ramón Estruch
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Internal Medicine, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
| | - Emilio Ros
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Lipid Clinic, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
| | - Montserrat Fitó
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas Municipal d'Investigació Médica (IMIM), Barcelona, Spain
| | - Fernando Arós
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Cardiology, Hospital Universitario de Álava, Vitoria, Spain
| | - Miquel Fiol
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Hospital Son Espases, Palma de Mallorca, Spain
| | - Marta Guasch-Ferré
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Public Health and Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - José M Santos-Lozano
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Research Unit, Department of Family Medicine, Distrito Sanitario Atención Primaria Sevilla, Sevilla, Spain
| | - Jun Li
- Department of Preventive Medicine and Public Health, University of Navarra, IdiSNA, Pamplona, Spain
- Health Research Institute of the Balearic Islands (IdISBa), Hospital Son Espases, Palma de Mallorca, Spain
| | - Cristina Razquin
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Navarra, IdiSNA, Pamplona, Spain
| | - Miguel Ángel Martínez-González
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Navarra, IdiSNA, Pamplona, Spain
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Frank B Hu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jordi Salas-Salvadó
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Alimentaciò, Nutrició Desenvolupament i Salut Mental ANUT-DSM, Reus, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain.
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain.
| |
Collapse
|
5
|
García‐Gavilán J, Nishi SK, Paz‐Graniel I, Guasch‐Ferré M, Razquin C, Clish CB, Toledo E, Ruiz‐Canela M, Corella D, Deik A, Drouin‐Chartier J, Wittenbecher C, Babio N, Estruch R, Ros E, Fitó M, Arós F, Fiol M, Serra‐Majem L, Liang L, Martínez‐González MA, Hu FB, Salas‐Salvadó J. Plasma Metabolite Profiles Associated with the Amount and Source of Meat and Fish Consumption and the Risk of Type 2 Diabetes. Mol Nutr Food Res 2022; 66:e2200145. [PMID: 36214069 PMCID: PMC9722604 DOI: 10.1002/mnfr.202200145] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/12/2022] [Indexed: 01/18/2023]
Abstract
SCOPE Consumption of meat has been associated with a higher risk of type 2 diabetes (T2D), but if plasma metabolite profiles associated with these foods reflect this relationship is unknown. The objective is to identify a metabolite signature of consumption of total meat (TM), red meat (RM), processed red meat (PRM), and fish and examine if they are associated with T2D risk. METHODS AND RESULTS The discovery population includes 1833 participants from the PREDIMED trial. The internal validation sample includes 1522 participants with available 1-year follow-up metabolomic data. Associations between metabolites and TM, RM, PRM, and fish are evaluated with elastic net regression. Associations between the profiles and incident T2D are estimated using Cox regressions. The profiles included 72 metabolites for TM, 69 for RM, 74 for PRM, and 66 for fish. After adjusting for T2D risk factors, only profiles of TM (Hazard Ratio (HR): 1.25, 95% CI: 1.06-1.49), RM (HR: 1.27, 95% CI: 1.07-1.52), and PRM (HR: 1.27, 95% CI: 1.07-1.51) are associated with T2D. CONCLUSIONS The consumption of TM, its subtypes, and fish is associated with different metabolites, some of which have been previously associated with T2D. Scores based on the identified metabolites for TM, RM, and PRM show a significant association with T2D risk.
Collapse
Affiliation(s)
- Jesús García‐Gavilán
- Departament de Bioquímica i BiotecnologiaUnitat de Nutrició Humana, Hospital Universitari San Joan de ReusUniversitat Rovira i VirgiliReus43202Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV)Reus43204Spain
- Consorcio CIBER, Fisiopatología de la Obesidad y Nutrición (CIBERObn)Instituto de Salud Carlos III (ISCIII)Madrid28029Spain
| | - Stephanie K. Nishi
- Departament de Bioquímica i BiotecnologiaUnitat de Nutrició Humana, Hospital Universitari San Joan de ReusUniversitat Rovira i VirgiliReus43202Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV)Reus43204Spain
- Consorcio CIBER, Fisiopatología de la Obesidad y Nutrición (CIBERObn)Instituto de Salud Carlos III (ISCIII)Madrid28029Spain
- Toronto 3D (Diet, Digestive Tract and Disease) Knowledge Synthesis and Clinical Trials UnitTorontoONM5C 2T2Canada
- Clinical Nutrition and Risk Factor Modification CentreSt. Michael's Hospital, Unity Health TorontoTorontoONM5C 2T2Canada
| | - Indira Paz‐Graniel
- Departament de Bioquímica i BiotecnologiaUnitat de Nutrició Humana, Hospital Universitari San Joan de ReusUniversitat Rovira i VirgiliReus43202Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV)Reus43204Spain
- Consorcio CIBER, Fisiopatología de la Obesidad y Nutrición (CIBERObn)Instituto de Salud Carlos III (ISCIII)Madrid28029Spain
| | - Marta Guasch‐Ferré
- Department of NutritionHarvard TH Chan School of Public HealthBostonMA02115USA
- Channing Division for Network Medicine, Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Cristina Razquin
- Consorcio CIBER, Fisiopatología de la Obesidad y Nutrición (CIBERObn)Instituto de Salud Carlos III (ISCIII)Madrid28029Spain
- Department of Preventive Medicine and Public Health, Navarra Health Research Institute (IDISNA)University of NavarraPamplona31008Spain
| | | | - Estefanía Toledo
- Consorcio CIBER, Fisiopatología de la Obesidad y Nutrición (CIBERObn)Instituto de Salud Carlos III (ISCIII)Madrid28029Spain
- Department of Preventive Medicine and Public Health, Navarra Health Research Institute (IDISNA)University of NavarraPamplona31008Spain
| | - Miguel Ruiz‐Canela
- Consorcio CIBER, Fisiopatología de la Obesidad y Nutrición (CIBERObn)Instituto de Salud Carlos III (ISCIII)Madrid28029Spain
- Department of Preventive Medicine and Public Health, Navarra Health Research Institute (IDISNA)University of NavarraPamplona31008Spain
| | - Dolores Corella
- Consorcio CIBER, Fisiopatología de la Obesidad y Nutrición (CIBERObn)Instituto de Salud Carlos III (ISCIII)Madrid28029Spain
- Department of Preventive MedicineUniversity of ValenciaValencia46020Spain
| | - Amy Deik
- The Broad Institute of Harvard and MITBostonMA02142USA
| | - Jean‐Philippe Drouin‐Chartier
- Centre Nutrition, Santé et Société, Institut sur la Nutrition et les Aliments FonctionnelsFaculté de Pharmacie, Université LavalQuébecG1V 0A6Canada
| | - Clemens Wittenbecher
- Department of NutritionHarvard TH Chan School of Public HealthBostonMA02115USA
- Department of Molecular EpidemiologyGerman Institute of Human Nutrition Potsdam‐Rehbruecke14558NuthetalGermany
- German Center for Diabetes Research85764NeuherbergGermany
| | - Nancy Babio
- Departament de Bioquímica i BiotecnologiaUnitat de Nutrició Humana, Hospital Universitari San Joan de ReusUniversitat Rovira i VirgiliReus43202Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV)Reus43204Spain
- Consorcio CIBER, Fisiopatología de la Obesidad y Nutrición (CIBERObn)Instituto de Salud Carlos III (ISCIII)Madrid28029Spain
| | - Ramon Estruch
- Consorcio CIBER, Fisiopatología de la Obesidad y Nutrición (CIBERObn)Instituto de Salud Carlos III (ISCIII)Madrid28029Spain
- Department of Internal Medicine, Institut d'Investigacions Biomèdiques August Pi SunyerHospital ClinicUniversity of BarcelonaBarcelona08036Spain
| | - Emilio Ros
- Consorcio CIBER, Fisiopatología de la Obesidad y Nutrición (CIBERObn)Instituto de Salud Carlos III (ISCIII)Madrid28029Spain
- Lipid Clinic, Department of Endocrinology and Nutrition, Agust Pi i Sunyer Biomedical Research Institute (IDIBAPS)Hospital Clinic, University of BarcelonaBarcelona08036Spain
| | - Montserrat Fitó
- Consorcio CIBER, Fisiopatología de la Obesidad y Nutrición (CIBERObn)Instituto de Salud Carlos III (ISCIII)Madrid28029Spain
- Cardiovascular and Nutrition Research GroupInstitut de Recerca Hospital del MarBarcelona08003Spain
| | - Fernando Arós
- Consorcio CIBER, Fisiopatología de la Obesidad y Nutrición (CIBERObn)Instituto de Salud Carlos III (ISCIII)Madrid28029Spain
- Department of CardiologyUniversity Hospital of AlavaVitoria01009Spain
| | - Miquel Fiol
- Consorcio CIBER, Fisiopatología de la Obesidad y Nutrición (CIBERObn)Instituto de Salud Carlos III (ISCIII)Madrid28029Spain
- Health Research Institute of the Balearic Islands (Idisba)University of Balearic Islands and Hospital Son EspasesPalma de Mallorca07122Spain
| | - Lluís Serra‐Majem
- Consorcio CIBER, Fisiopatología de la Obesidad y Nutrición (CIBERObn)Instituto de Salud Carlos III (ISCIII)Madrid28029Spain
- Research Institute of Biomedical and Health Sciences IUIBSUniversity of Las Palmas de Gran CanariaLas Palmas35001Spain
| | - Liming Liang
- Department of EpidemiologyHarvard T. H. Chan School of Public HealthBostonMA02115USA
- Department of StatisticsHarvard T. H. Chan School of Public HealthBostonMA02115USA
| | - Miguel A. Martínez‐González
- Consorcio CIBER, Fisiopatología de la Obesidad y Nutrición (CIBERObn)Instituto de Salud Carlos III (ISCIII)Madrid28029Spain
- Department of NutritionHarvard TH Chan School of Public HealthBostonMA02115USA
- Department of Preventive Medicine and Public Health, Navarra Health Research Institute (IDISNA)University of NavarraPamplona31008Spain
| | - Frank B. Hu
- Department of NutritionHarvard TH Chan School of Public HealthBostonMA02115USA
- Channing Division for Network Medicine, Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
- Department of EpidemiologyHarvard T. H. Chan School of Public HealthBostonMA02115USA
| | - Jordi Salas‐Salvadó
- Departament de Bioquímica i BiotecnologiaUnitat de Nutrició Humana, Hospital Universitari San Joan de ReusUniversitat Rovira i VirgiliReus43202Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV)Reus43204Spain
- Consorcio CIBER, Fisiopatología de la Obesidad y Nutrición (CIBERObn)Instituto de Salud Carlos III (ISCIII)Madrid28029Spain
| |
Collapse
|
6
|
Yun H, Sun L, Wu Q, Luo Y, Qi Q, Li H, Gu W, Wang J, Ning G, Zeng R, Zong G, Lin X. Lipidomic Signatures of Dairy Consumption and Associated Changes in Blood Pressure and Other Cardiovascular Risk Factors Among Chinese Adults. Hypertension 2022; 79:1617-1628. [PMID: 35469422 DOI: 10.1161/hypertensionaha.122.18981] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Omics data may provide a unique opportunity to discover dairy-related biomarkers and their linked cardiovascular health. METHODS Dairy-related lipidomic signatures were discovered in baseline data from a Chinese cohort study (n=2140) and replicated in another Chinese study (n=212). Dairy intake was estimated by a validated food-frequency questionnaire. Lipidomics was profiled by high-coverage liquid chromatography-tandem mass spectrometry. Associations of dairy-related lipids with 6-year changes in cardiovascular risk factors were examined in the discovery cohort, and their causalities were analyzed by 2-sample Mendelian randomization using available genome-wide summary data. RESULTS Of 350 lipid metabolites, 4 sphingomyelins, namely sphingomyelin (OH) C32:2, sphingomyelin C32:1, sphingomyelin (2OH) C30:2, and sphingomyelin (OH) C38:2, were identified and replicated to be positively associated with total dairy consumption (β=0.130 to 0.148; P<1.43×10-4), but not or weakly with nondairy food items. The score of 4 sphingomyelins showed inverse associations with 6-year changes in systolic (-2.68 [95% CI, -4.92 to -0.43]; P=0.019), diastolic blood pressures (-1.86 [95% CI, -3.12 to -0.61]; P=0.004), and fasting glucose (-0.25 [95% CI, -0.41 to -0.08]; P=0.003). Mendelian randomization analyses further revealed that genetically inferred sphingomyelin (OH) C32:2 was inversely associated with systolic (-0.57 [95% CI, -0.85 to -0.28]; P=9.16×10-5) and diastolic blood pressures (-0.39 [95% CI, -0.59 to -0.20]; P=7.09×10-5). CONCLUSIONS The beneficial effects of dairy products on cardiovascular health might be mediated through specific sphingomyelins among Chinese with overall low dairy consumption.
Collapse
Affiliation(s)
- Huan Yun
- Shanghai Institute of Nutrition and Health (H.Y., L.S., Y.L., H.L., G.Z., X.L.), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Liang Sun
- Shanghai Institute of Nutrition and Health (H.Y., L.S., Y.L., H.L., G.Z., X.L.), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qingqing Wu
- CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, China (Q.W., R.Z.)
| | - Yaogan Luo
- Shanghai Institute of Nutrition and Health (H.Y., L.S., Y.L., H.L., G.Z., X.L.), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY (Q.Q.)
| | - Huaixing Li
- Shanghai Institute of Nutrition and Health (H.Y., L.S., Y.L., H.L., G.Z., X.L.), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Weiqiong Gu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (W.G., J.W., G.N.).,Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (W.G., J.W., G.N.)
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (W.G., J.W., G.N.).,Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (W.G., J.W., G.N.)
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (W.G., J.W., G.N.).,Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (W.G., J.W., G.N.)
| | - Rong Zeng
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study (R.Z., X.L.), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study (R.Z., X.L.), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, China (Q.W., R.Z.)
| | - Geng Zong
- Shanghai Institute of Nutrition and Health (H.Y., L.S., Y.L., H.L., G.Z., X.L.), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xu Lin
- Shanghai Institute of Nutrition and Health (H.Y., L.S., Y.L., H.L., G.Z., X.L.), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study (R.Z., X.L.), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study (R.Z., X.L.), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
7
|
BaSalamah M, AlMghamsi R, AlTowairqi A, Fouda K, Mahrous A, Mujahid M, Sindi H, Aldairi A. The Effect of Coffee Consumption on Blood Glucose Levels. JOURNAL OF BIOCHEMICAL TECHNOLOGY 2022. [DOI: 10.51847/volnukyp3c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
Amino Acids and Lipids Associated with Long-Term and Short-Term Red Meat Consumption in the Chinese Population: An Untargeted Metabolomics Study. Nutrients 2021; 13:nu13124567. [PMID: 34960119 PMCID: PMC8709332 DOI: 10.3390/nu13124567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/12/2021] [Accepted: 12/16/2021] [Indexed: 12/30/2022] Open
Abstract
Red meat (RM) consumption is correlated with multiple health outcomes. This study aims to identify potential biomarkers of RM consumption in the Chinese population and evaluate their predictive ability. We selected 500 adults who participated in the 2015 China Health and Nutrition Survey and examined their overall metabolome differences by RM consumption by using elastic-net regression, then evaluate the predictivity of a combination of filtered metabolites; 1108 metabolites were detected. In the long-term RM consumption analysis 12,13-DiHOME, androstenediol (3α, 17α) monosulfate 2, and gamma-Glutamyl-2-aminobutyrate were positively associated, 2-naphthol sulfate and S-methylcysteine were negatively associated with long-term high RM consumption, the combination of metabolites prediction model evaluated by area under the receiver operating characteristic curve (AUC) was 70.4% (95% CI: 59.9–80.9%). In the short-term RM consumption analysis, asparagine, 4-hydroxyproline, and 3-hydroxyisobutyrate were positively associated, behenoyl sphingomyelin (d18:1/22:0) was negatively associated with short-term high RM consumption. Combination prediction model AUC was 75.6% (95% CI: 65.5–85.6%). We identified 10 and 11 serum metabolites that differed according to LT and ST RM consumption which mainly involved branch-chained amino acids, arginine and proline, urea cycle and polyunsaturated fatty acid metabolism. These metabolites may become a mediator of some chronic diseases among high RM consumers and provide new evidence for RM biomarkers.
Collapse
|
9
|
Zeleznik OA, Balasubramanian R, Zhao Y, Frueh L, Jeanfavre S, Avila-Pacheco J, Clish CB, Tworoger SS, Eliassen AH. Circulating amino acids and amino acid-related metabolites and risk of breast cancer among predominantly premenopausal women. NPJ Breast Cancer 2021; 7:54. [PMID: 34006878 PMCID: PMC8131633 DOI: 10.1038/s41523-021-00262-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 04/15/2021] [Indexed: 02/03/2023] Open
Abstract
Known modifiable risk factors account for a small fraction of premenopausal breast cancers. We investigated associations between pre-diagnostic circulating amino acid and amino acid-related metabolites (N = 207) and risk of breast cancer among predominantly premenopausal women of the Nurses' Health Study II using conditional logistic regression (1057 cases, 1057 controls) and multivariable analyses evaluating all metabolites jointly. Eleven metabolites were associated with breast cancer risk (q-value < 0.2). Seven metabolites remained associated after adjustment for established risk factors (p-value < 0.05) and were selected by at least one multivariable modeling approach: higher levels of 2-aminohippuric acid, kynurenic acid, piperine (all three with q-value < 0.2), DMGV and phenylacetylglutamine were associated with lower breast cancer risk (e.g., piperine: ORadjusted (95%CI) = 0.84 (0.77-0.92)) while higher levels of creatine and C40:7 phosphatidylethanolamine (PE) plasmalogen were associated with increased breast cancer risk (e.g., C40:7 PE plasmalogen: ORadjusted (95%CI) = 1.11 (1.01-1.22)). Five amino acids and amino acid-related metabolites (2-aminohippuric acid, DMGV, kynurenic acid, phenylacetylglutamine, and piperine) were inversely associated, while one amino acid and a phospholipid (creatine and C40:7 PE plasmalogen) were positively associated with breast cancer risk among predominately premenopausal women, independent of established breast cancer risk factors.
Collapse
Affiliation(s)
- Oana A Zeleznik
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Raji Balasubramanian
- Department of Biostatistics & Epidemiology, University of Massachusetts - Amherst, Amherst, MA, USA
| | - Yibai Zhao
- Department of Biostatistics & Epidemiology, University of Massachusetts - Amherst, Amherst, MA, USA
| | - Lisa Frueh
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sarah Jeanfavre
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Julian Avila-Pacheco
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Clary B Clish
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Shelley S Tworoger
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - A Heather Eliassen
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
10
|
Drouin-Chartier JP, Hernández-Alonso P, Guasch-Ferré M, Ruiz-Canela M, Li J, Wittenbecher C, Razquin C, Toledo E, Dennis C, Corella D, Estruch R, Fitó M, Eliassen AH, Tobias DK, Ascherio A, Mucci LA, Rexrode KM, Karlson EW, Costenbader KH, Fuchs CS, Liang L, Clish CB, Martínez-González MA, Salas-Salvadó J, Hu FB. Dairy consumption, plasma metabolites, and risk of type 2 diabetes. Am J Clin Nutr 2021; 114:163-174. [PMID: 33742198 PMCID: PMC8246603 DOI: 10.1093/ajcn/nqab047] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Epidemiologic studies have reported a modest inverse association between dairy consumption and the risk of type 2 diabetes (T2D). Whether plasma metabolite profiles associated with dairy consumption reflect this relationship remains unknown. OBJECTIVES We aimed to identify the plasma metabolites associated with total and specific dairy consumption, and to evaluate the association between the identified multi-metabolite profiles and T2D. METHODS The discovery population included 1833 participants from the Prevención con Dieta Mediterránea (PREDIMED) trial. The confirmatory cohorts included 1522 PREDIMED participants at year 1 of the trial and 4932 participants from the Nurses' Health Studies (NHS), Nurses' Health Study II (NHSII), and Health Professionals Follow-Up Study US-based cohorts. Dairy consumption was assessed using validated FFQs. Plasma metabolites (n = 385) were profiled using LC-MS. We identified the dairy-related metabolite profiles using elastic net regularized regressions with a 10-fold cross-validation procedure. We evaluated the associations between the metabolite profiles and incident T2D in the discovery and the confirmatory cohorts. RESULTS Total dairy intake was associated with 38 metabolites. C14:0 sphingomyelin (positive coefficient), C34:0 phosphatidylethanolamine (positive coefficient), and γ-butyrobetaine (negative coefficient) were associated in a directionally similar fashion with total and specific (milk, yogurt, cheese) dairy consumption. The Pearson correlation coefficients between self-reported total dairy intake and predicted total dairy intake based on the corresponding multi-metabolite profile were 0.37 (95% CI, 0.33-0.40) in the discovery cohort and 0.16 (95% CI, 0.13-0.19) in the US confirmatory cohort. After adjusting for T2D risk factors, a higher total dairy intake-related metabolite profile score was associated with a lower T2D risk [HR per 1 SD; discovery cohort: 0.76 (95% CI, 0.63-0.90); US confirmatory cohort: 0.88 (95% CI, 0.78-0.99)]. CONCLUSIONS Total dairy intake was associated with 38 metabolites, including 3 consistently associated with dairy subtypes (C14:0 sphingomyelin, C34:0 phosphatidylethanolamine, γ-butyrobetaine). A score based on the 38 identified metabolites showed an inverse association with T2D risk in Spanish and US populations.
Collapse
Affiliation(s)
| | - Pablo Hernández-Alonso
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana, Hospital Universitari San Joan de Reus, Reus, Spain,Institut d'Investigació Pere Virgili (IISPV), Reus, Spain,Consorcio Centro de Investigación Biomedica en Red Fisiopatologia de la Obesidad y Nutricion, Instituto de Salud Carlos III (ISCIII), Madrid, Spain,Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Marta Guasch-Ferré
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Miguel Ruiz-Canela
- Consorcio Centro de Investigación Biomedica en Red Fisiopatologia de la Obesidad y Nutricion, Instituto de Salud Carlos III (ISCIII), Madrid, Spain,University of Navarra, Department of Preventive Medicine and Public Health, Pamplona, Spain
| | - Jun Li
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Clemens Wittenbecher
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Cristina Razquin
- Consorcio Centro de Investigación Biomedica en Red Fisiopatologia de la Obesidad y Nutricion, Instituto de Salud Carlos III (ISCIII), Madrid, Spain,University of Navarra, Department of Preventive Medicine and Public Health, Pamplona, Spain
| | - Estefanía Toledo
- Consorcio Centro de Investigación Biomedica en Red Fisiopatologia de la Obesidad y Nutricion, Instituto de Salud Carlos III (ISCIII), Madrid, Spain,University of Navarra, Department of Preventive Medicine and Public Health, Pamplona, Spain
| | - Courtney Dennis
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Dolores Corella
- Consorcio Centro de Investigación Biomedica en Red Fisiopatologia de la Obesidad y Nutricion, Instituto de Salud Carlos III (ISCIII), Madrid, Spain,Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Ramon Estruch
- Consorcio Centro de Investigación Biomedica en Red Fisiopatologia de la Obesidad y Nutricion, Instituto de Salud Carlos III (ISCIII), Madrid, Spain,Department of Internal Medicine, Department of Endocrinology and Nutrition Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Montserrat Fitó
- Consorcio Centro de Investigación Biomedica en Red Fisiopatologia de la Obesidad y Nutricion, Instituto de Salud Carlos III (ISCIII), Madrid, Spain,Cardiovascular and Nutrition Research Group, Institut de Recerca Hospital del Mar, Barcelona, Spain
| | - A Heather Eliassen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Deirdre K Tobias
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA,Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alberto Ascherio
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Lorelei A Mucci
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kathryn M Rexrode
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA,Division of Women`s Health, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Elizabeth W Karlson
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Karen H Costenbader
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Charles S Fuchs
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Clary B Clish
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Miguel A Martínez-González
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA,Consorcio Centro de Investigación Biomedica en Red Fisiopatologia de la Obesidad y Nutricion, Instituto de Salud Carlos III (ISCIII), Madrid, Spain,University of Navarra, Department of Preventive Medicine and Public Health, Pamplona, Spain
| | - Jordi Salas-Salvadó
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana, Hospital Universitari San Joan de Reus, Reus, Spain,Institut d'Investigació Pere Virgili (IISPV), Reus, Spain,Consorcio Centro de Investigación Biomedica en Red Fisiopatologia de la Obesidad y Nutricion, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
11
|
Kim H, Lichtenstein AH, Wong KE, Appel LJ, Coresh J, Rebholz CM. Urine Metabolites Associated with the Dietary Approaches to Stop Hypertension (DASH) Diet: Results from the DASH-Sodium Trial. Mol Nutr Food Res 2021; 65:e2000695. [PMID: 33300290 PMCID: PMC7967699 DOI: 10.1002/mnfr.202000695] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/11/2020] [Indexed: 12/25/2022]
Abstract
SCOPE Serum metabolomic markers of the Dietary Approaches to Stop Hypertension (DASH) diet are previously reported. In an independent study, the similarity of urine metabolomic markers are investigated. METHODS AND RESULTS In the DASH-Sodium trial, participants are randomly assigned to the DASH diet or control diet, and received three sodium interventions (high, intermediate, low) within each randomized diet group in random order for 30 days each. Urine samples are collected at the end of each intervention period and analyzed for 938 metabolites. Two comparisons are conducted: 1) DASH-high sodium (n = 199) versus control-high sodium (n = 193), and 2) DASH-low sodium (n = 196) versus control-high sodium. Significant metabolites identified using multivariable linear regression are compared and the top 10 influential metabolites identified using partial least-squares discriminant analysis to the results from the DASH trial. Nine out of 10 predictive metabolites of the DASH-high sodium and DASH-low sodium diets are identical. Most candidate biomarkers from the DASH trial replicated. N-methylproline, chiro-inositol, stachydrine, and theobromine replicated as influential metabolites of DASH diets. CONCLUSIONS Candidate biomarkers of the DASH diet identified in serum replicated in urine. Replicated influential metabolites are likely to be objective biomarkers of the DASH diet.
Collapse
Affiliation(s)
- Hyunju Kim
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland, USA
| | - Alice H. Lichtenstein
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| | - Kari E. Wong
- Metabolon, Research Triangle Park, Morrisville, North Carolina, USA
| | - Lawrence J. Appel
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland, USA
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland, USA
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Casey M. Rebholz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW The aim of this study was to briefly summarize the contribution of the PREDIMED (PREvención con DIeta MEDiterránea) trial on cardiovascular evidence and examine in depth its groundbreaking trajectory.PREDIMED was conducted during 2003-2010 and represented the largest primary prevention trial ever testing the effects of changes in a complete food pattern (namely, the Mediterranean diet) on cardiovascular disease (CVD). Major contributions relied on the relevant changes in the food pattern attained by the behavioural intervention and their robust effect in reducing hard clinical end-points. Given some potential concerns, which were appropriately addressed with supporting analyses, this review is timely and relevant. RECENT FINDINGS PREDIMED has continued contributing to the existing literature with extensive, robust and abundant new evidence on the benefits of the Mediterranean diet, particularly on cardiovascular health, including recent studies using high-throughput metabolomic techniques. After robustly addressing some controversies, the conclusions of the original trial remained unaltered. SUMMARY The Mediterranean diet represents an effective and robust nutritional strategy against CVD in high cardiovascular risk populations. Recent findings from the PREDIMED have identified a metabolic signature of the Mediterranean diet that can objectively determine dietary adherence and predict CVD risk. This metabolomic signature opens up a new era for nutritional epidemiology and personalized nutrition.
Collapse
Affiliation(s)
- César I Fernández-Lázaro
- Department of Preventive Medicine and Public Health, School of Medicine, University of Navarra
- IdiSNA, Navarra Institute for Health Research, Pamplona
- Centro de Investigación Biomédica en Red Área de Fisiología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | - Miguel Ruiz-Canela
- Department of Preventive Medicine and Public Health, School of Medicine, University of Navarra
- IdiSNA, Navarra Institute for Health Research, Pamplona
- Centro de Investigación Biomédica en Red Área de Fisiología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | - Miguel Ángel Martínez-González
- Department of Preventive Medicine and Public Health, School of Medicine, University of Navarra
- IdiSNA, Navarra Institute for Health Research, Pamplona
- Centro de Investigación Biomédica en Red Área de Fisiología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Guasch-Ferré M, Hernández-Alonso P, Drouin-Chartier JP, Ruiz-Canela M, Razquin C, Toledo E, Li J, Dennis C, Wittenbecher C, Corella D, Estruch R, Fitó M, Ros E, Babio N, Bhupathiraju SN, Clish CB, Liang L, Martínez-González MA, Hu FB, Salas-Salvadó J. Walnut Consumption, Plasma Metabolomics, and Risk of Type 2 Diabetes and Cardiovascular Disease. J Nutr 2020; 151:303-311. [PMID: 33382410 PMCID: PMC7850062 DOI: 10.1093/jn/nxaa374] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/07/2020] [Accepted: 10/29/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Walnut consumption is associated with lower risk of type 2 diabetes (T2D) and cardiovascular disease (CVD). However, it is unknown whether plasma metabolites related to walnut consumption are also associated with lower risk of cardiometabolic diseases. OBJECTIVES The study aimed to identify plasma metabolites associated with walnut consumption and evaluate the prospective associations between the identified profile and risk of T2D and CVD. METHODS The discovery population included 1833 participants at high cardiovascular risk from the PREvención con DIeta MEDiterránea (PREDIMED) study with available metabolomics data at baseline. The study population included 57% women (baseline mean BMI (in kg/m2): 29.9; mean age: 67 y). A total of 1522 participants also had available metabolomics data at year 1 and were used as the internal validation population. Plasma metabolomics analyses were performed using LC-MS. Cross-sectional associations between 385 known metabolites and walnut consumption were assessed using elastic net continuous regression analysis. A 10-cross-validation (CV) procedure was used, and Pearson correlation coefficients were assessed between metabolite weighted models and self-reported walnut consumption in each pair of training-validation data sets within the discovery population. We further estimated the prospective associations between the identified metabolite profile and incident T2D and CVD using multivariable Cox regression models. RESULTS A total of 19 metabolites were significantly associated with walnut consumption, including lipids, purines, acylcarnitines, and amino acids. Ten-CV Pearson correlation coefficients between self-reported walnut consumption and the plasma metabolite profile were 0.16 (95% CI: 0.11, 0.20) in the discovery population and 0.15 (95% CI: 0.10, 0.20) in the validation population. The metabolite profile was inversely associated with T2D incidence (HR per 1 SD: 0.83; 95% CI: 0.71, 0.97; P = 0.02). For CVD incidence, the HR per 1-SD was 0.71 (95% CI: 0.60, 0.85; P < 0.001). CONCLUSIONS A metabolite profile including 19 metabolites was associated with walnut consumption and with a lower risk of incident T2D and CVD in a Mediterranean population at high cardiovascular risk.
Collapse
Affiliation(s)
| | | | - Jean-Philippe Drouin-Chartier
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA,Centre Nutrition, Santé et Société, Institut sur la Nutrition et les Aliments Fonctionnels, Faculté de Pharmacie, Université Laval, Québec, Canada
| | - Miguel Ruiz-Canela
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain,Department of Preventive Medicine and Public Health, Navarra Health Research Institute (IDISNA), University of Navarra, Pamplona, Spain
| | - Cristina Razquin
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain,Department of Preventive Medicine and Public Health, Navarra Health Research Institute (IDISNA), University of Navarra, Pamplona, Spain
| | - Estefanía Toledo
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain,Department of Preventive Medicine and Public Health, Navarra Health Research Institute (IDISNA), University of Navarra, Pamplona, Spain
| | - Jun Li
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Clemens Wittenbecher
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA,Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany,German Center for Diabetes Research, Neuherberg, Germany
| | - Dolores Corella
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain,Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Ramon Estruch
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain,Department of Internal Medicine, Institut d'Investigacions Biomèdiques August Pi Sunyer, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Montserrat Fitó
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain,Cardiovascular and Nutrition Research Group, Institut de Recerca Hospital del Mar, Barcelona, Spain
| | - Emilio Ros
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain,Lipid Clinic, Department of Endocrinology and Nutrition, Agust Pi i Sunyer Biomedical Research Institute (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Nancy Babio
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana, Hospital Universitari San Joan de Reus, Reus, Spain,Institut d'Investigació Pere Virgili, Reus, Spain,Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Shilpa N Bhupathiraju
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA,Channing Division for Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Clary B Clish
- The Broad Institute of Harvard and MIT, Boston, MA, USA
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Miguel A Martínez-González
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA,Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain,Department of Preventive Medicine and Public Health, Navarra Health Research Institute (IDISNA), University of Navarra, Pamplona, Spain
| | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA,Channing Division for Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jordi Salas-Salvadó
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana, Hospital Universitari San Joan de Reus, Reus, Spain,Institut d'Investigació Pere Virgili, Reus, Spain,Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
14
|
Promoting Human Nutrition and Health through Plant Metabolomics: Current Status and Challenges. BIOLOGY 2020; 10:biology10010020. [PMID: 33396370 PMCID: PMC7823625 DOI: 10.3390/biology10010020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022]
Abstract
Simple Summary This review summarizes the status, applications, and challenges of plant metabolomics in the context of crop breeding, food quality and safety, and human nutrition and health. It also highlights the importance of plant metabolomics in elucidating biochemical and genetic bases of traits associated with nutritive and healthy beneficial foods and other plant products to secure food supply, to ensure food quality, to protect humans from malnutrition and other diseases. Meanwhile, this review calls for comprehensive collaborations to accelerate relevant researches and applications in the context of human nutrition and health. Abstract Plant metabolomics plays important roles in both basic and applied studies regarding all aspects of plant development and stress responses. With the improvement of living standards, people need high quality and safe food supplies. Thus, understanding the pathways involved in the biosynthesis of nutritionally and healthily associated metabolites in plants and the responses to plant-derived biohazards in humans is of equal importance to meet people’s needs. For each, metabolomics has a vital role to play, which is discussed in detail in this review. In addition, the core elements of plant metabolomics are highlighted, researches on metabolomics-based crop improvement for nutrition and safety are summarized, metabolomics studies on plant natural products including traditional Chinese medicine (TCM) for health promotion are briefly presented. Challenges are discussed and future perspectives of metabolomics as one of the most important tools to promote human nutrition and health are proposed.
Collapse
|
15
|
Kim H, Hu EA, E Wong K, Yu B, Steffen LM, Seidelmann SB, Boerwinkle E, Coresh J, Rebholz CM. Serum Metabolites Associated with Healthy Diets in African Americans and European Americans. J Nutr 2020; 151:40-49. [PMID: 33244610 PMCID: PMC7779213 DOI: 10.1093/jn/nxaa338] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND High diet quality is associated with a lower risk of chronic diseases. Metabolomics can be used to identify objective biomarkers of diet quality. OBJECTIVES We used metabolomics to identify serum metabolites associated with 4 diet indices and the components within these indices in 2 samples from African Americans and European Americans. METHODS We studied cross-sectional associations between known metabolites and Healthy Eating Index (HEI)-2015, Alternative Healthy Eating Index (AHEI)-2010, the Dietary Approaches to Stop Hypertension Trial (DASH) diet, alternate Mediterranean diet (aMED), and their components using untargeted metabolomics in 2 samples (n1 = 1,806, n2 = 2,056) of the Atherosclerosis Risk in Communities study (aged 45-64 y at baseline). Dietary intakes were assessed using an FFQ. We used multivariable linear regression models to examine associations between diet indices and serum metabolites in each sample, adjusting for participant characteristics. Metabolites significantly associated with diet indices were meta-analyzed across 2 samples. C-statistics were calculated to examine if these candidate biomarkers improved prediction of individuals in the highest compared with lowest quintile of diet scores beyond participant characteristics. RESULTS Seventeen unique metabolites (HEI: n = 6; AHEI: n = 5; DASH: n = 14; aMED: n = 2) were significantly associated with higher diet scores after Bonferroni correction in sample 1 and sample 2. Six of 17 significant metabolites [glycerate, N-methylproline, stachydrine, threonate, pyridoxate, 3-(4-hydroxyphenyl)lactate)] were associated with ≥1 dietary pattern. Candidate biomarkers of HEI, AHEI, and DASH distinguished individuals with highest compared with lowest quintile of diet scores beyond participant characteristics in samples 1 and 2 (P value for difference in C-statistics <0.02 for all 3 diet indices). Candidate biomarkers of aMED did not improve C-statistics beyond participant characteristics (P value = 0.930). CONCLUSIONS A considerable overlap of metabolites associated with HEI, AHEI, DASH, and aMED reflects the similar food components and similar metabolic pathways involved in the metabolism of healthy diets in African Americans and European Americans.
Collapse
Affiliation(s)
- Hyunju Kim
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA,Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, USA
| | - Emily A Hu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA,Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, USA
| | - Kari E Wong
- Metabolon, Research Triangle Park, Morrisville, NC, USA
| | - Bing Yu
- Department of Epidemiology, Human Genetics & Environmental Sciences, University of Texas Health Sciences Center at Houston School of Public Health, Houston, TX, USA
| | - Lyn M Steffen
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | | | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics & Environmental Sciences, University of Texas Health Sciences Center at Houston School of Public Health, Houston, TX, USA
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA,Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
16
|
Sotos-Prieto M, Ruiz-Canela M, Song Y, Christophi C, Mofatt S, Rodriguez-Artalejo F, Kales SN. The Effects of a Mediterranean Diet Intervention on Targeted Plasma Metabolic Biomarkers among US Firefighters: A Pilot Cluster-Randomized Trial. Nutrients 2020; 12:E3610. [PMID: 33255353 PMCID: PMC7761450 DOI: 10.3390/nu12123610] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
Metabolomics is improving the understanding of the mechanisms of the health effects of diet. Previous research has identified several metabolites associated with the Mediterranean Diet (MedDiet), but knowledge about longitudinal changes in metabolic biomarkers after a MedDiet intervention is scarce. A subsample of 48 firefighters from a cluster-randomized trial at Indianapolis fire stations was randomly selected for the metabolomics study at 12 months of follow up (time point 1), where Group 1 (n = 24) continued for another 6 months in a self-sustained MedDiet intervention, and Group 2 (n = 24), the control group at that time, started with an active MedDiet intervention for 6 months (time point 2). A total of 225 metabolites were assessed at the two time points by using a targeted NMR platform. The MedDiet score improved slightly but changes were non-significant (intervention: 24.2 vs. 26.0 points and control group: 26.1 vs. 26.5 points). The MedDiet intervention led to favorable changes in biomarkers related to lipid metabolism, including lower LDL-C, ApoB/ApoA1 ratio, remnant cholesterol, M-VLDL-CE; and higher HDL-C, and better lipoprotein composition. This MedDiet intervention induces only modest changes in adherence to the MedDiet and consequently in metabolic biomarkers. Further research should confirm these results based on larger study samples in workplace interventions with powerful study designs.
Collapse
Affiliation(s)
- Mercedes Sotos-Prieto
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, IdiPaz (Instituto de Investigación Sanitaria Hospital Universitario La Paz), Calle del Arzobispo Morcillo 4, 28029 Madrid, Spain;
- Biomedical Research Network Centre of Epidemiology and Public Health (CIBERESP), Carlos III Health Institute, 28029 Madrid, Spain
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (C.C.); (S.N.K.)
| | - Miguel Ruiz-Canela
- Department of Preventive Medicine and Public Health, IdiSNA, University of Navarra, 31009 Pamplona, Spain;
- Biomedical Research Network Centre for Pathophysiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, 28029 Madrid, Spain
| | - Yiqing Song
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN 46202, USA;
| | - Costas Christophi
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (C.C.); (S.N.K.)
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036 Lemesos, Cyprus
| | - Steven Mofatt
- National Institute for Public Safety Health, Indianapolis, IN 46204, USA;
| | - Fernando Rodriguez-Artalejo
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, IdiPaz (Instituto de Investigación Sanitaria Hospital Universitario La Paz), Calle del Arzobispo Morcillo 4, 28029 Madrid, Spain;
- Biomedical Research Network Centre of Epidemiology and Public Health (CIBERESP), Carlos III Health Institute, 28029 Madrid, Spain
- IMDEA-Food Institute, CEI UAM+CSIC, 28049 Madrid, Spain
| | - Stefanos N. Kales
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (C.C.); (S.N.K.)
- Department of Occupational Medicine, Cambridge Health Alliance, Harvard Medical School, Cambridge, MA 02145, USA
| |
Collapse
|
17
|
van de Velde B, Guillarme D, Kohler I. Supercritical fluid chromatography - Mass spectrometry in metabolomics: Past, present, and future perspectives. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1161:122444. [PMID: 33246285 DOI: 10.1016/j.jchromb.2020.122444] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/25/2022]
Abstract
Metabolomics, which consists of the comprehensive analysis of metabolites within a biological system, has been playing a growing role in the implementation of personalized medicine in modern healthcare. A wide range of analytical approaches are used in metabolomics, notably mass spectrometry (MS) combined to liquid chromatography (LC), gas chromatography (GC), or capillary electrophoresis (CE). However, none of these methods enable a comprehensive analysis of the metabolome, due to its extreme complexity and the large differences in physico-chemical properties between metabolite classes. In this context, supercritical fluid chromatography (SFC) represents a promising alternative approach to improve the metabolome coverage, while further increasing the analysis throughput. SFC, which uses supercritical CO2 as mobile phase, leads to numerous advantages such as improved kinetic performance and lower environmental impact. This chromatographic technique has gained a significant interest since the introduction of advanced instrumentation, together with the introduction of dedicated interfaces for hyphenating SFC to MS. Moreover, new developments in SFC column chemistry (including sub-2 µm particles), as well as the use of large amounts of organic modifiers and additives in the CO2-based mobile phase, significantly extended the application range of SFC, enabling the simultaneous analysis of a large diversity of metabolites. Over the last years, several applications have been reported in metabolomics using SFC-MS - from lipophilic compounds, such as steroids and other lipids, to highly polar compounds, such as carbohydrates, amino acids, or nucleosides. With all these advantages, SFC-MS is promised to a bright future in the field of metabolomics.
Collapse
Affiliation(s)
- Bas van de Velde
- VU Amsterdam, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Division of BioAnalytical Chemistry, Amsterdam, the Netherlands; Center for Analytical Sciences Amsterdam, Amsterdam, the Netherlands
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Switzerland
| | - Isabelle Kohler
- VU Amsterdam, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Division of BioAnalytical Chemistry, Amsterdam, the Netherlands; Center for Analytical Sciences Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
18
|
Hernández‐Alonso P, Becerra‐Tomás N, Papandreou C, Bulló M, Guasch‐Ferré M, Toledo E, Ruiz‐Canela M, Clish CB, Corella D, Dennis C, Deik A, Wang DD, Razquin C, Drouin‐Chartier J, Estruch R, Ros E, Fitó M, Arós F, Fiol M, Serra‐Majem L, Liang L, Martínez‐González MA, Hu FB, Salas‐Salvadó J. Plasma Metabolomics Profiles are Associated with the Amount and Source of Protein Intake: A Metabolomics Approach within the PREDIMED Study. Mol Nutr Food Res 2020; 64:e2000178. [PMID: 32378786 DOI: 10.1002/mnfr.202000178] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/15/2020] [Indexed: 01/24/2023]
Affiliation(s)
- Pablo Hernández‐Alonso
- Universitat Rovira i VirgiliDepartament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana Hospital Universitari San Joan de Reus Reus 43201 Spain
- Institut d'Investigació Pere Virgili (IISPV) Reus 43003 Spain
- Consorcio CIBER, M. P. Fisiopatología de la Obesidad y Nutrición (CIBERObn)Instituto de Salud Carlos III (ISCIII) Madrid 28029 Spain
- Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la VictoriaInstituto de Investigación Biomédica de Málaga (IBIMA) Málaga 29010 Spain
| | - Nerea Becerra‐Tomás
- Universitat Rovira i VirgiliDepartament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana Hospital Universitari San Joan de Reus Reus 43201 Spain
- Institut d'Investigació Pere Virgili (IISPV) Reus 43003 Spain
- Consorcio CIBER, M. P. Fisiopatología de la Obesidad y Nutrición (CIBERObn)Instituto de Salud Carlos III (ISCIII) Madrid 28029 Spain
| | - Christopher Papandreou
- Universitat Rovira i VirgiliDepartament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana Hospital Universitari San Joan de Reus Reus 43201 Spain
- Institut d'Investigació Pere Virgili (IISPV) Reus 43003 Spain
- Consorcio CIBER, M. P. Fisiopatología de la Obesidad y Nutrición (CIBERObn)Instituto de Salud Carlos III (ISCIII) Madrid 28029 Spain
| | - Mònica Bulló
- Universitat Rovira i VirgiliDepartament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana Hospital Universitari San Joan de Reus Reus 43201 Spain
- Institut d'Investigació Pere Virgili (IISPV) Reus 43003 Spain
- Consorcio CIBER, M. P. Fisiopatología de la Obesidad y Nutrición (CIBERObn)Instituto de Salud Carlos III (ISCIII) Madrid 28029 Spain
| | - Marta Guasch‐Ferré
- Universitat Rovira i VirgiliDepartament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana Hospital Universitari San Joan de Reus Reus 43201 Spain
- Consorcio CIBER, M. P. Fisiopatología de la Obesidad y Nutrición (CIBERObn)Instituto de Salud Carlos III (ISCIII) Madrid 28029 Spain
- Department of NutritionHarvard T. H. Chan School of Public Health Boston MA 02115 USA
| | - Estefanía Toledo
- Consorcio CIBER, M. P. Fisiopatología de la Obesidad y Nutrición (CIBERObn)Instituto de Salud Carlos III (ISCIII) Madrid 28029 Spain
- University of NavarraDepartment of Preventive Medicine and Public Health Pamplona 31008 Spain
- Navarra Institute for Health Research (IdisNA) Pamplona Navarra 31008 Spain
| | - Miguel Ruiz‐Canela
- Consorcio CIBER, M. P. Fisiopatología de la Obesidad y Nutrición (CIBERObn)Instituto de Salud Carlos III (ISCIII) Madrid 28029 Spain
- University of NavarraDepartment of Preventive Medicine and Public Health Pamplona 31008 Spain
- Navarra Institute for Health Research (IdisNA) Pamplona Navarra 31008 Spain
| | - Clary B. Clish
- Broad Institute of MIT and Harvard University Cambridge MA 02142 USA
| | - Dolores Corella
- Consorcio CIBER, M. P. Fisiopatología de la Obesidad y Nutrición (CIBERObn)Instituto de Salud Carlos III (ISCIII) Madrid 28029 Spain
- Department of Preventive MedicineUniversity of Valencia Valencia 46020 Spain
| | - Courtney Dennis
- Broad Institute of MIT and Harvard University Cambridge MA 02142 USA
| | - Amy Deik
- Broad Institute of MIT and Harvard University Cambridge MA 02142 USA
| | - Dong D. Wang
- Department of NutritionHarvard T. H. Chan School of Public Health Boston MA 02115 USA
| | - Cristina Razquin
- Consorcio CIBER, M. P. Fisiopatología de la Obesidad y Nutrición (CIBERObn)Instituto de Salud Carlos III (ISCIII) Madrid 28029 Spain
- University of NavarraDepartment of Preventive Medicine and Public Health Pamplona 31008 Spain
- Navarra Institute for Health Research (IdisNA) Pamplona Navarra 31008 Spain
| | - Jean‐Philippe Drouin‐Chartier
- Department of NutritionHarvard T. H. Chan School of Public Health Boston MA 02115 USA
- Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF)Université Laval Québec G1V 0A6 Canada
- Faculté de PharmacieUniversité Laval Québec G1V 0A6 Canada
| | - Ramon Estruch
- Consorcio CIBER, M. P. Fisiopatología de la Obesidad y Nutrición (CIBERObn)Instituto de Salud Carlos III (ISCIII) Madrid 28029 Spain
- Department of Internal MedicineDepartment of Endocrinology and Nutrition Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital ClinicUniversity of Barcelona Barcelona 08036 Spain
| | - Emilio Ros
- Consorcio CIBER, M. P. Fisiopatología de la Obesidad y Nutrición (CIBERObn)Instituto de Salud Carlos III (ISCIII) Madrid 28029 Spain
- Lipid Clinic, Department of Endocrinology and Nutrition Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital ClinicUniversity of Barcelona Barcelona 08036 Spain
| | - Montserrat Fitó
- Consorcio CIBER, M. P. Fisiopatología de la Obesidad y Nutrición (CIBERObn)Instituto de Salud Carlos III (ISCIII) Madrid 28029 Spain
- Cardiovascular and Nutrition Research GroupInstitut de Recerca Hospital del Mar Barcelona 08003 Spain
| | - Fernando Arós
- Consorcio CIBER, M. P. Fisiopatología de la Obesidad y Nutrición (CIBERObn)Instituto de Salud Carlos III (ISCIII) Madrid 28029 Spain
- Department of CardiologyUniversity Hospital of Alava Vitoria 01009 Spain
| | - Miquel Fiol
- Consorcio CIBER, M. P. Fisiopatología de la Obesidad y Nutrición (CIBERObn)Instituto de Salud Carlos III (ISCIII) Madrid 28029 Spain
- Institute of Health Sciences IUNICSUniversity of Balearic Islands and Hospital Son Espases Palma de Mallorca 07122 Spain
| | - Lluís Serra‐Majem
- Consorcio CIBER, M. P. Fisiopatología de la Obesidad y Nutrición (CIBERObn)Instituto de Salud Carlos III (ISCIII) Madrid 28029 Spain
- Research Institute of Biomedical and Health Sciences IUIBSUniversity of Las Palmas de Gran Canaria Las Palmas 35001 Spain
| | - Liming Liang
- Departments of Epidemiology and StatisticsHarvard T. H. Chan School of Public Health Boston MA 02115 USA
| | - Miguel A Martínez‐González
- Consorcio CIBER, M. P. Fisiopatología de la Obesidad y Nutrición (CIBERObn)Instituto de Salud Carlos III (ISCIII) Madrid 28029 Spain
- University of NavarraDepartment of Preventive Medicine and Public Health Pamplona 31008 Spain
- Navarra Institute for Health Research (IdisNA) Pamplona Navarra 31008 Spain
- Department of NutritionHarvard T. H. Chan School of Public Health Boston MA 02115 USA
| | - Frank B Hu
- Broad Institute of MIT and Harvard University Cambridge MA 02142 USA
- Departments of Epidemiology and StatisticsHarvard T. H. Chan School of Public Health Boston MA 02115 USA
- Channing Division for Network Medicine, Department of MedicineBrigham and Women's Hospital and Harvard Medical School Boston MA 02115 USA
| | - Jordi Salas‐Salvadó
- Universitat Rovira i VirgiliDepartament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana Hospital Universitari San Joan de Reus Reus 43201 Spain
- Institut d'Investigació Pere Virgili (IISPV) Reus 43003 Spain
- Consorcio CIBER, M. P. Fisiopatología de la Obesidad y Nutrición (CIBERObn)Instituto de Salud Carlos III (ISCIII) Madrid 28029 Spain
| |
Collapse
|