1
|
Tian M, Wang Z, Zhang Q, Wu X, Guo L, Zheng G. Intramolecular Charge Transfer Inhibition Strategy toward a Desired Solvatochromic Fluorescent Platform: Visualization of Duple Organelles and Detection of Carbon Dioxide. Anal Chem 2024; 96:17290-17299. [PMID: 39424295 DOI: 10.1021/acs.analchem.4c03559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Solvatochromic fluorescent probes are crucial molecular tools to investigate and aggregate proteins' fold, visualize fine structures in biomembranes, and label different organelles in dual emission colors. However, solvatochromic fluorogens often displayed a weak emission at high polarity, hindering their bioimaging applications. To resolve this problem, herein, we propose an intramolecular charge transfer (ICT) inhibition strategy. The probe was designed with a single electronic donor and two acceptors in order to split and inhibit the ICT procedure. As a result, the probe displayed an intense emission at both low and high polarities and showed a large emission shift (84 nm) upon polarity change. Using the probe, we successfully imaged lipid droplets and the endoplasmic reticulum in different fluorescence colors. Moreover, the different degrees of lipid accumulation by oleic acid, stearic acid, and cholesterol (oleic acid > stearic acid > cholesterol) have been revealed. The lipid accumulation induced by the three lipids could be rapidly consumed under lipid-less conditions, and the lipids with stearic acid were the most difficult to be consumed. The biological results could facilitate the understanding and treatment of lipid accumulation and obesity. Furthermore, utilizing the polarity increase of diethylamine after the reaction with CO2, the ratiometric detection of CO2 has been achieved for the first time with the probe.
Collapse
Affiliation(s)
- Minggang Tian
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, People's Republic of China
| | - Zhiyuan Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, People's Republic of China
| | - Qilong Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, People's Republic of China
| | - Xiaofen Wu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, People's Republic of China
| | - Lifang Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Gengxiu Zheng
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, People's Republic of China
| |
Collapse
|
2
|
Oliveira CS, Feuchard VLDS, Quintão CRC, Oliveira LZ, Saraiva NZ. Impact of lipid content on oxygen reactive species and viability predictors in vitrified bovine embryos. Cryobiology 2024; 117:104981. [PMID: 39419252 DOI: 10.1016/j.cryobiol.2024.104981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/03/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Given the significant variation in lipid levels among bovine embryos, our study was designed to associate lipid content to oxidative stress in individual embryos undergoing vitrification, and to assess how this and other morphological parameters impacts cryosurvival. Linear and logistic regression were performed to understand the influence of the variables in the cryosurvival. T-test or Kruskal Wallis were employed to compare means. Vitrified embryos revealed a positive correlation between lipid content and oxidative stress post-warming both 2 h (p = 0.025, n = 64) and 48 h (p < 0.001, n = 122) after warming. Lipid levels explained (p < 0.001) up to 51 % (multiple R-squared) of oxidative stress variability. Compared to fresh embryos, a negative influence (p = 0.01) of vitrification-warming procedures was detected in lipid levels. Vitrified embryos exhibited lower (p < 0.001, n = 90) mean lipid content compared to fresh counterparts 48 h post-warming, and similar (p = 0.24) oxidative stress levels. No impact of lipid content or oxidative stress levels was detected on hatchability or embryo quality 48 h post-warming (n = 99). Expansion just after (0 h) and 2 h after warming resulted in a higher chance of hatching (p = 0.015 and p = 0.008, OR 1.30 and 1.58), and a positive association was observed between expansion at 0 h (p = 0.002) and embryo area (p = 0.047) with cell number. In conclusion, a decrease in lipid levels was found following vitrification-warming procedure and an individual association between lipids and oxidative stress is present in vitrified embryos. Lipids or oxidative stress levels was not linked to survivability of vitrified embryos 48 h following warming. Expansion at 0 h indicates a better chance for hatching and higher cell numbers in vitrified embryos.
Collapse
Affiliation(s)
- Clara Slade Oliveira
- Embrapa Dairy Cattle, Eugênio do Nascimento Ave. 610, 36038-330, Juiz de Fora, MG, Brazil.
| | - Viviane Luzia da Silva Feuchard
- Embrapa Dairy Cattle, Eugênio do Nascimento Ave. 610, 36038-330, Juiz de Fora, MG, Brazil; Universidade Federal de Minas Gerais, Department of Veterinary Clinics and Surgery, Veterinary School, Presidente Antônio Carlos Ave., 31270-901, Belo Horizonte, MG, Brazil.
| | | | - Leticia Zoccolaro Oliveira
- Universidade Federal de Minas Gerais, Department of Veterinary Clinics and Surgery, Veterinary School, Presidente Antônio Carlos Ave., 31270-901, Belo Horizonte, MG, Brazil.
| | - Naiara Zoccal Saraiva
- Embrapa Dairy Cattle, Eugênio do Nascimento Ave. 610, 36038-330, Juiz de Fora, MG, Brazil.
| |
Collapse
|
3
|
Manabe N, Hoshino Y, Himaki T, Sakaguchi K, Matsumoto S, Yamamoto T, Murase T. Lysate of bovine adipose-derived stem cells accelerates in-vitro development and increases cryotolerance through reduced content of lipid in the in vitro fertilized embryos. Biochem Biophys Res Commun 2024; 735:150834. [PMID: 39427378 DOI: 10.1016/j.bbrc.2024.150834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/19/2024] [Accepted: 10/12/2024] [Indexed: 10/22/2024]
Abstract
Mesenchymal stem cells such as adipose-derived stem cells (ADSCs) are known to secrete factors that stimulate cell division and promote regeneration in neighboring cells. While conditioned medium from stem cells has been used in blastocyst production, no studies have examined the use of cell lysates. In this study we investigated the effects of adding ADSC lysate to in vitro culture (IVC) medium. ADSCs and fibroblasts were isolated from bovine adipose tissue and auricular tissue, respectively, and their lysates were prepared by freeze-thaw disruption. ADSC lysate was added to synthetic oviductal fluid medium. The effects on cleavage, blastocyst development rates, cell numbers, cryotolerance, gene expression (POU5F1, BAX, IGF1R, IGF2R, SOD2), lipid content, and membrane integrity were evaluated according to the experimental design. In Expt. 1, the comparison involved adding ADSC or fibroblast lysate alongside the control group. The total blastocyst rate increased when ADSC lysate was introduced (ADSCs: 40.1 %, fibroblasts: 33.1 %, control: 27.3 %). However, there were no significant differences in the number of trophoblast cells or in the inner cell mass. Experiment 2 confirmed that this increase in blastocyst development was not due to the solvent, PBS(-). In Expt. 3, addition of 10 % fetal calf serum (FCS) or ADSC lysate increased the total blastocyst rate compared to the control (control, 26.2 %; 10 % FCS, 43.4 %; 1 % ADSC lysate, 34.2 %; 10 % ADSC lysate, 48.1 %). After freezing and thawing, the survival and hatching rates of embryos with FCS were significantly lower than those of the control as well as those with added ADSC lysate. In Expt. 4, the addition of ADSC lysate or FCS had no significant effect on gene expression in blastocysts compared to control. However, the addition of FCS significantly increased the gray intensity, indicating higher lipid content compared to the control, with a significant increase in the number of dead cells in the blastocyst. These results indicate that the addition of ADSC lysate to the IVC medium accelerates bovine blastocyst development and that its 10 % addition, corresponding to 1 × 105 cells/mL, is as effective as 10 % FCS without a decrease in cryotolerance due to the increased lipid content.
Collapse
Affiliation(s)
- Noriyoshi Manabe
- Laboratory of Veterinary Theriogenology, Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, 501-1193, Japan; Department of Dairy Research Center, Gifu Prefectural Livestock Research Institute, Ena, Gifu, 509-7601, Japan
| | - Yoichiro Hoshino
- Kyoto University Livestock Farm, Graduate School of Agriculture, Kyoto University, Funai, Kyoto, 622-0203, Japan
| | - Takehiro Himaki
- Laboratory of Animal Developmental Engineering, Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan
| | - Kenichiro Sakaguchi
- Laboratory of Veterinary Theriogenology, Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, 501-1193, Japan; Laboratory of Veterinary Theriogenology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, 501-1193, Japan
| | - Seiji Matsumoto
- Headquarters for Research Promotion, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan; Clinical Research Support Center, Asahikawa Medical University Hospital, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Tokunori Yamamoto
- Clinical Research Support Center, Asahikawa Medical University Hospital, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan; Department of Urology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, 466-8550, Japan
| | - Tetsuma Murase
- Laboratory of Veterinary Theriogenology, Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, 501-1193, Japan; Laboratory of Veterinary Theriogenology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan.
| |
Collapse
|
4
|
Anazawa M, Ashibe S, Nagao Y. Gene expression levels in cumulus cells are correlated with developmental competence of bovine oocytes. Theriogenology 2024; 231:11-20. [PMID: 39389001 DOI: 10.1016/j.theriogenology.2024.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
The generation of mammalian embryos by in vitro culture is hampered by the failure of many of the embryos to develop to the blastocyst stage. This problem occurs even when cumulus-oocyte complexes (COCs) with good morphology are visually selected and used for culture. Because cumulus cells are important for oocyte maturation and subsequent embryo development, here we compared gene expression patterns in cumulus cells of COCs that developed in vitro to the blastocyst stage with those of COCs that failed to develop. Cumulus cells were aspirated from bovine COCs selected for in vitro culture. Oocyte developmental competence was evaluated by screening for cleavage and development to the blastocyst stage. The collected cumulus cells were used to quantify mRNA levels of FSH receptor (FSHR), insulin-like growth factor-1 receptor (IGF-1R), anti-Müllerian hormone (AMH), AMH receptor II (AMHRII), epidermal growth factor receptor (EGFR), estrogen receptor β (ERβ), B cell lymphoma/leukemia-2 associated X (Bax), and cysteine-aspartic acid protease-3 (Caspase-3). We found that the expression levels of FSHR, IGF-1R, AMH, and EGFR were higher in cumulus cells from COCs that developed to blastocysts as compared with those that failed to develop, whereas expression levels of Bax and Caspase-3 were lower in cumulus cells of COCs that matured to the blastocyst stage. Positive correlations were found between FSHR and IGF-1R expression (r = 0.59) and between ERβ and EGFR expression (r = 0.43) in cumulus cells from COCs that developed to the blastocyst stage. Our findings indicate that gene expression levels in cumulus cells are correlated with the developmental competence of bovine oocytes. Measurement of gene expression in cumulus cells therefore offers a non-invasive means of predicting oocyte developmental competence.
Collapse
Affiliation(s)
- Mayuko Anazawa
- University Farm, Faculty of Agriculture, Utsunomiya University, Tochigi, 321-4415, Japan; Department of Animal Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Shiori Ashibe
- University Farm, Faculty of Agriculture, Utsunomiya University, Tochigi, 321-4415, Japan
| | - Yoshikazu Nagao
- University Farm, Faculty of Agriculture, Utsunomiya University, Tochigi, 321-4415, Japan; Department of Animal Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan.
| |
Collapse
|
5
|
Lawson EF, Pickford R, Aitken RJ, Gibb Z, Grupen CG, Swegen A. Mapping the lipidomic secretome of the early equine embryo. Front Vet Sci 2024; 11:1439550. [PMID: 39430383 PMCID: PMC11486720 DOI: 10.3389/fvets.2024.1439550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/10/2024] [Indexed: 10/22/2024] Open
Abstract
The lipidomic secretions of embryos provide a unique opportunity to examine the cellular processes of the early conceptus. In this study we profiled lipids released by the early equine conceptus, using high-resolution mass spectrometry to detect individual lipid species. This study examined the lipidomic profile in embryo-conditioned media from in vivo-produced, 8-9 day-old equine embryos (n = 3) cultured in vitro for 36 h, analyzed over 3 timepoints. A total of 1,077 lipid IDs were recorded across all samples, containing predominantly glycerolipids. Seventy-nine of these were significantly altered in embryo conditioned-media versus media only control (p < 0.05, fold-change >2 or < 0.5). Fifty-five lipids were found to be released into the embryo-conditioned media, of which 54.5% were triacylglycerols and 23.6% were ceramides. The sterol lipid, cholesterol, was also identified and secreted in significant amounts as embryos developed. Further, 24 lipids were found to be depleted from the media during culture, of which 70.8% were diacylglycerols, 16.7% were triacylglycerols and 12.5% were ceramides. As lipid-free media contained consistently detectable lipid peaks, a further profile analysis of the various components of non-embryo-conditioned media consistently showed the presence of 137 lipids. Lipid peaks in non-embryo-conditioned media increased in response to incubation under mineral oil, and contained ceramides, diacylglycerols and triacylglycerols. These results emphasize the importance of a defined embryo culture medium and a need to identify the lipid requirements of the embryo precisely. This study sheds light on early embryo lipid metabolism and the transfer of lipids during in vitro culture.
Collapse
Affiliation(s)
- Edwina F. Lawson
- School of Environmental and Life Sciences, College of Engineering, Science and the Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, Australia
| | - Robert John Aitken
- School of Environmental and Life Sciences, College of Engineering, Science and the Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Zamira Gibb
- School of Environmental and Life Sciences, College of Engineering, Science and the Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Christopher G. Grupen
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| | - Aleona Swegen
- School of Environmental and Life Sciences, College of Engineering, Science and the Environment, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
6
|
Andressa Minozzo O, Thamiris Vieira M, Mateus José S. Transverse and vertical incisions affect the viability of in vitro-produced embryos submitted to a simplified microsurgery approach. Theriogenology 2024; 226:294-301. [PMID: 38959839 DOI: 10.1016/j.theriogenology.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/04/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Integrating in vitro embryo production with embryonic microsurgery facilitates the generation of monozygotic twins. However, despite their potential benefits, these methods have not been widely adopted in commercial settings because of their substantial costs. Hence, there is a need to streamline the bisection procedure while ensuring efficient production of viable demi-embryos. In this study, we investigated the impact of different orientations of microsurgical incisions in relation to inner cell mass on embryonic development, morphology, viability, and expression of cell fate protein markers using a simplified microsurgery approach. Ovaries were transported from the slaughterhouse to the laboratory and aspirated to obtain oocytes that were selected and subjected to in vitro embryo production. The selected expanded blastocysts (n = 204) underwent microsurgery. The blastocysts were immobilized to facilitate incision using an adapted microblade, yielding demi-embryos (vertical incision) and viable embryonic fragments (transverse incision). The structures were then re-cultured for 12 h. Viability was assessed by measuring the re-expansion rate after re-culture, followed by immunofluorescence analysis of proteins (CDX2 and NANOG) and apoptosis analysis using terminal deoxynucleotyl transferase dUTP nick end-labeling (TUNEL). Microsurgically derived embryos exhibited remarkable plasticity, as evidenced by a slight reduction (P < 0.05) in the re-expansion rate (transverse 64.2 % and vertical 57.2 %) compared to that of the control group (blastocysts without microsurgery) (86.7 %). They also demonstrated the ability of morphological reconstitution after culturing. Despite the anticipated decrease (P < 0.05) in the total number of cells and embryo volume, microsurgery did not result in a significant increase (P > 0.05) in the number of apoptotic cells. Furthermore, microsurgery led to higher (P < 0.05) expression of markers associated with pluripotency, indicating its efficiency in preserving regenerative capacity. Moreover, microsurgery, whether followed by immunosurgery or not, made the isolation of embryonic cells easier. In conclusion, both transverse and vertical microsurgery incisions enabled the production of identical demi-embryos and served as tools for isolating embryonic cells without compromising the resumption of development and the apoptotic index.
Collapse
Affiliation(s)
| | | | - Sudano Mateus José
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil; Center for Natural and Human Sciences, Federal University of ABC, Santo André, SP, Brazil.
| |
Collapse
|
7
|
Zhou D, Liu H, Zheng L, Liu A, Zhuan Q, Luo Y, Zhou G, Meng L, Hou Y, Wu G, Li J, Fu X. Metformin alleviates cryoinjuries in porcine oocytes by reducing membrane fluidity through the suppression of mitochondrial activity. Commun Biol 2024; 7:925. [PMID: 39090373 PMCID: PMC11294456 DOI: 10.1038/s42003-024-06631-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
Plasma membrane damage in vitrified oocytes is closely linked to mitochondrial dysfunction. However, the mechanism underlying mitochondria-regulated membrane stability is not elucidated. A growing body of evidence indicates that mitochondrial activity plays a pivotal role in cell adaptation. Since mitochondria work at a higher temperature than the constant external temperature of the cell, we hypothesize that suppressing mitochondrial activity would protect oocytes from extreme stimuli during vitrification. Here we show that metformin suppresses mitochondrial activity by reducing mitochondrial temperature. In addition, metformin affects the developmental potential of oocytes and improves the survival rate after vitrification. Transmission electron microscopy results show that mitochondrial abnormalities are markedly reduced in vitrified oocytes pretreated with metformin. Moreover, we find that metformin transiently inhibits mitochondrial activity. Interestingly, metformin pretreatment decreases cell membrane fluidity after vitrification. Furthermore, transcriptome results demonstrate that metformin pretreatment modulates the expression levels of genes involved in fatty acid elongation process, which is further verified by the increased long-chain saturated fatty acid contents in metformin-pretreated vitrified oocytes by lipidomic profile analysis. In summary, our study indicates that metformin alleviates cryoinjuries by reducing membrane fluidity via mitochondrial activity regulation.
Collapse
Affiliation(s)
- Dan Zhou
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hongyu Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lv Zheng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Aiju Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qingrui Zhuan
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuwen Luo
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guizhen Zhou
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lin Meng
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yunpeng Hou
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guoquan Wu
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Jun Li
- Department of Reproductive Medicine, Reproductive Medical Center, The First Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Xiangwei Fu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China.
| |
Collapse
|
8
|
Vasconcelos EM, Braga RF, Leal GR, Carvalho RPR, Machado-Neves M, Sudano MJ, Souza-Fabjan JMG. Impact of reducing lipid content during in vitro embryo production: A systematic review and meta-analysis. Theriogenology 2024; 222:31-44. [PMID: 38615434 DOI: 10.1016/j.theriogenology.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/16/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
There is still no consensus regarding the role of lipid modulators during in vitro embryo production. Thus, we investigated how lipid reducers during the in vitro maturation of oocytes (IVM) or in vitro culture (IVC) of embryos impact their cryotolerance. A literature search was performed using three databases, recovering 43 articles for the systematic review, comprising 75 experiments (13 performed in IVM, 62 in IVC) and testing 13 substances. In 39 % of the experiments, an increase in oocyte and/or embryo survival after cryopreservation was reported, in contrast to 48 % exhibiting no effect, 5 % causing negative effects, and 8 % influencing in a dose-dependent manner. Of the 75 experiments extracted during IVM and IVC, 41 quantified the lipid content. Of those that reduced lipid content (n = 26), 50 % increased cryotolerance, 34 % had no effect, 8 % harmed oocyte/embryo survival, and 8 % had different results depending on the concentration used. Moreover, 28 out of the 43 studies were analyzed under a meta-analytical approach at the IVC stage in cattle. There was an improvement in the cryotolerance of bovine embryos when the lipid content was reduced. Forskolin, l-carnitine, and phenazine ethosulfate positively affected cryotolerance, while conjugated linoleic acid had no effect and impaired embryonic development. Moreover, fetal bovine serum has a positive impact on cryotolerance. SOF and CR1aa IVC media improved cryotolerance, while mSOF showed no effect. In conclusion, lipid modulators did not unanimously improve cryotolerance, especially when used in IVM, but presented positive effects on cryotolerance during IVC when reaching lipid reduction.
Collapse
Affiliation(s)
- Erlandia M Vasconcelos
- Faculdade de Veterinária, Universidade Federal Fluminense, Av. Vital Brasil Filho, 64, CEP, 24230-340, Niterói, RJ, Brazil.
| | - Rachel F Braga
- Faculdade de Veterinária, Universidade Federal Fluminense, Av. Vital Brasil Filho, 64, CEP, 24230-340, Niterói, RJ, Brazil
| | - Gabriela R Leal
- Faculdade de Veterinária, Universidade Federal Fluminense, Av. Vital Brasil Filho, 64, CEP, 24230-340, Niterói, RJ, Brazil
| | - Renner P R Carvalho
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | - Mateus J Sudano
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Joanna M G Souza-Fabjan
- Faculdade de Veterinária, Universidade Federal Fluminense, Av. Vital Brasil Filho, 64, CEP, 24230-340, Niterói, RJ, Brazil.
| |
Collapse
|
9
|
Teng M, Zhao M, Mu B, Lei A. Allogenic Follicular Fosterage Technology: Problems, Progress and Potential. Vet Sci 2024; 11:276. [PMID: 38922023 PMCID: PMC11209517 DOI: 10.3390/vetsci11060276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
The allogeneic follicular fosterage (AFF) technique transfers cumulus-oocyte complexes (COCs) from pubertal female animals to the dominant follicles of adult female animals for further development, allowing the COCs to further develop in a completely in vivo environment. This article reviews the history of AFF and JIVET and their effects on oocyte and embryo development as well as freezing resistance. Improving the efficiency and reproducibility of AFF technology is crucial to its clinical application. This article discusses factors that affect the success rate of AFF, including differences in specific technical procedures and differences between pubertal and adult follicles. Designing standardized procedures and details to improve the synchronization of donor COCs and recipient follicle maturity and reducing the damage to COCs caused by follicular aspiration may be the direction for improving the success rate of AFF in the future.
Collapse
Affiliation(s)
- Mingming Teng
- Guizhou Academy of Testing and Analysis, Guiyang 550013, China
| | - Mengqi Zhao
- Shaanxi Stem Cell Engineering and Technology Research Center, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Bo Mu
- Guizhou Academy of Testing and Analysis, Guiyang 550013, China
| | - Anmin Lei
- Shaanxi Stem Cell Engineering and Technology Research Center, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
10
|
López Angulo D, Lourenço RV, Bridi A, Chaves MA, da Silveira JC, Sobral PJDA. Enhancing Bovine Embryo Development In Vitro Using Oil-in-Water Nanoemulsions as Specific Carriers for Essential Lipids. BIOTECH 2024; 13:19. [PMID: 38921051 PMCID: PMC11201380 DOI: 10.3390/biotech13020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024] Open
Abstract
Worldwide meat consumption and production have nearly quintupled in the last 60 years. In this context, research and the application of new technologies related to animal reproduction have evolved in an accelerated way. The objective of the present study was to apply nanoemulsions (NEs) as carriers of lipids to feed bovine embryos in culture media and verify their impact on the development of embryos produced in vitro. The NEs were characterized by particle size, polydispersity, size distribution, physical stability, morphology using atomic force microscopy (AFM), surface tension, density, pH, and rheological behavior. The NEs were prepared by the emulsification/evaporation technique. A central composite rotatable design (CCRD) was used to optimize the NE fabrication parameters. The three optimized formulations used in the embryo application showed an emulsion stability index (ESI) between 0.046 and 0.086, which reflects high stability. The mean droplet diameter analyzed by laser diffraction was approximately 70-80 nm, suggesting a possible transit across the embryonic zona pellucida with pores of an average 90 nm in diameter. AFM images clearly confirm the morphology of spherical droplets with a mean droplet diameter of less than 100 nm. The optimized formulations added during the higher embryonic genome activation phase in bovine embryos enhanced early embryonic development.
Collapse
Affiliation(s)
- Daniel López Angulo
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil
| | - Rodrigo Vinicius Lourenço
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil
| | - Alessandra Bridi
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (A.B.)
| | - Matheus Andrade Chaves
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (A.B.)
| | - Juliano Coelho da Silveira
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (A.B.)
| | - Paulo José do Amaral Sobral
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil
- Food Research Center (FoRC), University of São Paulo, São Paulo 05508-000, SP, Brazil
| |
Collapse
|
11
|
Gualtieri R, De Gregorio V, Candela A, Travaglione A, Genovese V, Barbato V, Talevi R. In Vitro Culture of Mammalian Embryos: Is There Room for Improvement? Cells 2024; 13:996. [PMID: 38920627 PMCID: PMC11202082 DOI: 10.3390/cells13120996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Preimplantation embryo culture, pivotal in assisted reproductive technology (ART), has lagged in innovation compared to embryo selection advancements. This review examines the persisting gap between in vivo and in vitro embryo development, emphasizing the need for improved culture conditions. While in humans this gap is hardly estimated, animal models, particularly bovines, reveal clear disparities in developmental competence, cryotolerance, pregnancy and live birth rates between in vitro-produced (IVP) and in vivo-derived (IVD) embryos. Molecular analyses unveil distinct differences in morphology, metabolism, and genomic stability, underscoring the need for refining culture conditions for better ART outcomes. To this end, a deeper comprehension of oviduct physiology and embryo transport is crucial for grasping embryo-maternal interactions' mechanisms. Research on autocrine and paracrine factors, and extracellular vesicles in embryo-maternal tract interactions, elucidates vital communication networks for successful implantation and pregnancy. In vitro, confinement, and embryo density are key factors to boost embryo development. Advanced dynamic culture systems mimicking fluid mechanical stimulation in the oviduct, through vibration, tilting, and microfluidic methods, and the use of innovative softer substrates, hold promise for optimizing in vitro embryo development.
Collapse
Affiliation(s)
- Roberto Gualtieri
- Department of Biology, University of Naples ‘’Federico II’’, Complesso Universitario Di Monte S. Angelo, Via Cinthia, 80126 Naples, Italy; (V.D.G.); (A.C.); (A.T.); (V.G.); (V.B.); (R.T.)
| | | | | | | | | | | | | |
Collapse
|
12
|
Travaglione A, Candela A, De Gregorio V, Genovese V, Cimmino M, Barbato V, Talevi R, Gualtieri R. Individually Cultured Bovine Zygotes Successfully Develop to the Blastocyst Stage in an Extremely Confined Environment. Cells 2024; 13:868. [PMID: 38786090 PMCID: PMC11119105 DOI: 10.3390/cells13100868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
The possibility of detecting the developmental competence of individually cultured embryos through analysis of spent media is a major current trend in an ART setting. However, individual embryo culture is detrimental compared with high-density group culture due to the reduced concentration of putative embryotropins. The main aim of this study was to identify an individual culture system that is not detrimental over high-density group culture in the bovine model. Blastocyst rates and competence were investigated in a conventional (GC) group, semi-confined group (MG), and individual culture (MS) in a commercial microwell device. Main findings showed that: (1) individual embryos can be continuously cultured for 7 days in ~70 nL microwells (MS) without detrimental effects compared with the GC and MG; (2) MS and MG blastocysts had a reduced number of TUNEL-positive cells compared to GC blastocysts; (3) though blastocyst mean cell numbers, mitochondrial activity, and lipid content were not different among the three culture conditions, MS blastocysts had a higher frequency of small-sized lipid droplets and a reduced mean droplet diameter compared with GC and MG blastocysts. Overall, findings open the way to optimize the development and competence of single embryos in an ART setting.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Roberto Gualtieri
- Department of Biology, University of Naples “Federico II”, Complesso Universitario Di Monte S. Angelo, Via Cinthia, 80126 Naples, Italy; (A.T.); (A.C.); (V.D.G.); (V.G.); (M.C.); (V.B.); (R.T.)
| |
Collapse
|
13
|
Pawlak P, Lipinska P, Sell-Kubiak E, Kajdasz A, Derebecka N, Warzych E. Energy metabolism disorders during in vitro maturation of bovine cumulus-oocyte complexes interfere with blastocyst quality and metabolism. Dev Biol 2024; 509:51-58. [PMID: 38342400 DOI: 10.1016/j.ydbio.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 02/13/2024]
Abstract
Glucose and fatty acids (FA) metabolism disturbances during oocyte in vitro maturation (IVM) affect their metabolism and surrounding cumulus cells, but only inhibition of glucose metabolism decreases embryo culture efficiency. Therefore, the present experiment aimed to reveal if glucose or FA metabolism inhibition leads to the disruption of embryo developmental potential, and to characterize the metabolic landscape of embryos reaching the blastocyst stage. Inhibitors of glucose (IO + DHEA) or FA (ETOMOXIR) metabolism were applied during IVM, and the control group was matured under standard conditions. Blastocysts obtained from experimental and control groups were analyzed with regard to lipidome and metabolome (mass spectrometry), transcriptome (RNA-Seq) and fluorescence lipid droplets staining (BODIPY). We showed that inhibition of glucose and fatty acid metabolism leads to cellular stress response compromising the quality of preimplantation embryos. The inhibition of energy metabolism affects membrane fluidity as well as downregulates fatty acids biosynthesis and gene expression of trophectoderm cell line markers. Therefore, we conclude that oocyte maturation environment exerts a substantial effect on preimplantation development programming at cellular and molecular levels.
Collapse
Affiliation(s)
- Piotr Pawlak
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland
| | - Paulina Lipinska
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland
| | - Ewa Sell-Kubiak
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland
| | - Arkadiusz Kajdasz
- Laboratory of Bioinformatics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Natalia Derebecka
- Laboratory of High Throughput Technologies, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Ewelina Warzych
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland.
| |
Collapse
|
14
|
Masuda Y, Hasebe R, Kuromi Y, Matsuo M, Hishinuma M, Ohbayashi T, Nishimura R. Three-dimensional morphology of bovine blastocysts hatched against lipopolysaccharide exposure in vitro. Reprod Biol 2024; 24:100843. [PMID: 38160585 DOI: 10.1016/j.repbio.2023.100843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/01/2023] [Accepted: 12/09/2023] [Indexed: 01/03/2024]
Abstract
Embryo transfer in cattle is globally becoming more ubiquitous, but the pregnancy rate is lower than that of artificial insemination. The uterus contains its own bacteria, and concentrations of lipopolysaccharides (LPS) from gram-negative bacteria are higher in uteri affected by endometritis than in healthy uteri and they suppress embryogenesis. The purpose of this study was to investigate the morphological characteristics of bovine embryos with a higher viability and implantability, by analyzing the morphology of bovine blastocysts that successfully hatched under challenge of LPS, using an optical coherence tomography (OCT) system. Developing embryos produced by in vitro fertilization that had reached the blastocyst stage on Day 7 were three-dimensionally scanned using an OCT system, then were continued to culture with or without LPS until Day 9, when the presence or absence of hatching was determined. The OCT-captured three-dimensional images were used to quantify 20 different metrics, including inner cell mass (ICM), trophectoderm, blastocoel, and total embryo volume; each of the parameters was compared between the hatched and unhatched embryos. Under the LPS challenge, hatched embryos had higher ICM thickness and volume, and lower trophectoderm thickness than unhatched embryos. Furthermore, hatched embryos under LPS challenge had higher ICM thickness and ICM volume than hatched embryos without LPS challenge. The present results suggest the possibility that ICM thickness and ICM volume calculated by OCT system could be indices for good quality bovine embryos.
Collapse
Affiliation(s)
- Yasumitsu Masuda
- Department of Animal Science, Tottori Livestock Research Center, Tottori, Japan
| | | | | | - Minami Matsuo
- Department of Animal Science, Tottori Livestock Research Center, Tottori, Japan
| | - Mitsugu Hishinuma
- Laboratory of Theriogenology, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Tetsuya Ohbayashi
- Organization for Research Initiative and Promotion, Tottori University, Tottori, Japan
| | - Ryo Nishimura
- Laboratory of Theriogenology, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan,.
| |
Collapse
|
15
|
Zhao B, Li H, Zhang H, Ren S, Li Y, Wang X, Lan X, Qiao H, Ma H, Zhang Y, Wang Y. The effect of L-carnitine supplementation during in vitro maturation on oocyte maturation and somatic cloned embryo development. Reprod Biol 2024; 24:100853. [PMID: 38367331 DOI: 10.1016/j.repbio.2023.100853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/30/2023] [Accepted: 12/30/2023] [Indexed: 02/19/2024]
Abstract
The quality of the recipient cytoplasm was reported as a crucial factor in maintaining the vitality of SCNT embryos and SCNT efficiency for dairy cows. Compared with oocytes matured in vivo, oocytes matured in vitro showed abnormal accumulation and metabolism of cytoplasmic lipids. L-carnitine treatment was found to control fatty acid transport into the mitochondrial β-oxidation pathway, which improved the process of lipid metabolism. The results of this study show that 0.5 mg/ml L-carnitine significantly reduced the cytoplasmic lipid content relative to control. No significant difference was observed in the rate of oocyte nuclear maturation, but the in vitro developmental competence of SCNT embryos was improved in terms of increased blastocyst production and lower apoptotic index in the L-carnitine treatment group. In addition, the pregnancy rate with SCNT embryos in the treatment group was significantly higher than in the control group. In conclusion, the present study demonstrated that adding L-carnitine to the maturation culture medium could improve the developmental competence of SCNT embryos both in vitro and in vivo by reducing the lipid content of the recipient cytoplasm.
Collapse
Affiliation(s)
- Baobao Zhao
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Heqiang Li
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Han Zhang
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Subi Ren
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuelin Li
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoyan Wang
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinrui Lan
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hailian Qiao
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huiming Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Department of Histology and Embryology, Ningxia Medical University, Yinchuan 750004, China
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yongsheng Wang
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
16
|
Mendes AF, Puelker RZ, Souza LFAD, Jacintho ARC, Dos Santos PH, Giometti IC, Firetti SM, Castilho ACDS, Zundt M, Membrive CMB, Castilho C. In vitro maturation in synthetic oviductal fluid increases gene expression associated with quality and lipid metabolism in bovine oocytes. ZYGOTE 2023; 31:582-587. [PMID: 37955189 DOI: 10.1017/s0967199423000473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Traditionally, in vitro oocyte and embryo culture progresses through a series of varying culture medium. To investigate simplifying the in vitro production of bovine cumulus-oocyte complexes (COCs), this study used synthetic oviductal fluid (SOF) supplemented with conjugated linoleic acid (CLA). Special interest was placed on gene expression linked to lipid metabolism and oocyte maturation. COCs were matured in different media: Medium 199 (M199 group), M199 with 100 μM CLA (M199 + CLA group), SOF (SOF group), and SOF with 100 μM CLA (SOF + CLA group). COCs matured with SOF showed a higher relative abundance of mRNA of quality indicators gremlin 1 (GREM1) and prostaglandin-endoperoxide synthase 2 (PTGS2) in oocytes, and GREM1 in cumulus cells compared with in the M199 group. SOF medium COCs had a higher relative abundance of fatty acid desaturase 2 (FADS2) compared with the M199 group, which is essential for lipid metabolism in oocytes. Furthermore, the abundance of stearoyl-coenzyme A desaturase 1 (SCD1) in oocytes matured with SOF was not influenced by the addition of CLA, whereas the relative abundance of SCD1 was reduced in M199 medium with CLA. We concluded that maturation in SOF medium results in a greater abundance of genes linked to quality and lipidic metabolism in oocytes, regardless of the addition of CLA.
Collapse
Affiliation(s)
| | | | - Lilian Francisco Arantes de Souza
- University of Western São Paulo (UNOESTE), Presidente Prudente, São Paulo, Brazil
- Federal Rural University of Pernambuco (UFRPE), Recife, Pernambuco, Brazil
| | | | | | | | - Sheila Merlo Firetti
- University of Western São Paulo (UNOESTE), Presidente Prudente, São Paulo, Brazil
| | - Anthony César de Souza Castilho
- University of Western São Paulo (UNOESTE), Presidente Prudente, São Paulo, Brazil
- São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Marilice Zundt
- University of Western São Paulo (UNOESTE), Presidente Prudente, São Paulo, Brazil
| | | | - Caliê Castilho
- University of Western São Paulo (UNOESTE), Presidente Prudente, São Paulo, Brazil
| |
Collapse
|
17
|
Masuda Y, Hasebe R, Kuromi Y, Hishinuma M, Ohbayashi T, Nishimura R. Hatchability evaluation of bovine IVF embryos using OCT-based 3D image analysis. J Reprod Dev 2023; 69:239-245. [PMID: 37574267 PMCID: PMC10602767 DOI: 10.1262/jrd.2023-009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Although embryo transfer is widely applied in cattle, many of the transferred embryos do not result in pregnancy. To determine a new parameter for bovine embryo evaluation, we investigated the relationships between in vitro hatchability and embryo morphological parameters using optical coherence tomography (OCT) that we established recently. Bovine embryos were obtained from Japanese Black cattle by in vitro fertilization (IVF). The quality of the blastocysts was examined under an inverted microscope and confirmed as Codes 1-3 according to the IETS standards for embryo evaluation. The OCT images of the embryos were captured on Day 7 after IVF, and the embryos were cultured until Day 9 to determine their hatchability. During OCT, the embryos were irradiated with near-infrared light for a few minutes to obtain three-dimensional images. In total, 22 parameters were assessed for each of the 42 embryos, of which 25 hatched (H embryos) and 17 did not (NH embryos). The thickness of the trophectoderm (TE) and TE+zona pellucida (ZP) was lesser, and the volumes of the TE, ZP, blastocoel, and whole embryo and blastocoel diameter were greater in the H embryos than in the NH embryos. PCA identified that the increase in the blastocoel-related value along with the decrease in the thickness-related value of the TE and/or ZP could be indicators for evaluating the hatchability of bovine IVF embryos. These results support the idea that OCT-captured structural data of blastocyst-stage embryos can be used as a potential model to predict the quality of bovine embryos.
Collapse
Affiliation(s)
- Yasumitsu Masuda
- Department of Animal Science, Tottori Livestock Research Center, Tottori 680-8553, Japan
| | - Ryo Hasebe
- SCREEN Holdings Co., Ltd., Kyoto 612-8486, Japan
| | | | - Mitsugu Hishinuma
- Laboratory of Theriogenology, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Tetsuya Ohbayashi
- Organization for Research Initiative and Promotion, Tottori University, Tottori 680-8553, Japan
| | - Ryo Nishimura
- Laboratory of Theriogenology, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| |
Collapse
|
18
|
Rakhmanova T, Mokrousova V, Okotrub S, Kizilova E, Brusentsev E, Amstislavsky S. Effects of forskolin on cryopreservation and embryo development in the domestic cat. Theriogenology 2023; 210:192-198. [PMID: 37523940 DOI: 10.1016/j.theriogenology.2023.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
One of the approaches to improve cryotolerance in lipid-rich embryos is to modify their lipidome in vitro. This work is aimed to study the effects of forskolin exposure on the in vitro embryo development of the domestic cat and to evaluate how the change in lipid content affects the cryopreservation results. In vitro-derived embryos were cultured with 10 μM forskolin from the 2-cell stage for 24 h or 96/168 h to the morula/blastocyst stage. Some of the embryos treated with forskolin for 24 h were cryopreserved with slow freezing, the other ones were used to characterize their developmental rates and the amount of intracellular lipids. The in vitro exposure to forskolin had a positive effect on the embryo development, as more embryos developed to the morula stage in the forskolin-treated group (92.9%) compared to the controls (64.7%) after 120 h of in vitro culture (IVC). Nile Red staining revealed a reduced amount of intracellular lipids in the forskolin-treated embryos. The percentage of embryos developed to the morula stage was lower in the frozen-thawed embryos not treated with forskolin (54.5%), but not in the frozen-thawed forskolin-treated group (63.6%) as compared to non-frozen controls (80.8%). Thus, the exposure of embryos to forskolin in vitro reduced the level of intracellular lipids and affected embryo development before and after cryopreservation.
Collapse
Affiliation(s)
- Tamara Rakhmanova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Prosp. Lavrentyeva 10, 630090, Novosibirsk, Russia; Novosibirsk State University, 630090, Pirogova 2, Novosibirsk, Russia
| | - Valentina Mokrousova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Prosp. Lavrentyeva 10, 630090, Novosibirsk, Russia
| | - Svetlana Okotrub
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Prosp. Lavrentyeva 10, 630090, Novosibirsk, Russia
| | - Elena Kizilova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Prosp. Lavrentyeva 10, 630090, Novosibirsk, Russia
| | - Eugeny Brusentsev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Prosp. Lavrentyeva 10, 630090, Novosibirsk, Russia.
| | - Sergei Amstislavsky
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Prosp. Lavrentyeva 10, 630090, Novosibirsk, Russia
| |
Collapse
|
19
|
Song X, Jiang H, Lv P, Cui K, Liu Q, Yin S, Liu H, Li Z. Transcriptome analyses reveal transcriptional profiles of horse oocytes before and after in vitro maturation. Reprod Domest Anim 2023; 58:1468-1479. [PMID: 37650336 DOI: 10.1111/rda.14462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023]
Abstract
Oocyte in vitro maturation is necessary for the study and application of animal-assisted reproduction technology in animal reproduction and breeding. The comprehensive transcriptional profile of equine oocyte maturated in vitro has not been fully mined yet, which makes many key transcriptional events still unidentified. Here, Smart-seq2 was performed to analyse the gene expression pattern and the underlying regulatory mechanism of horse germinal vesicle (GV) and in vitro metaphase II (MII) oocytes. The results showed that 6402 genes (2640 up-regulated and 3762 down-regulated in MII samples compared to GV) and 4021 lncRNA transcripts (1210 up-regulated and 2811 down-regulated in MII samples compared to GV) were differentially expressed in GV and MII oocytes. Further, GO and KEGG analysis found that differentially expressed mRNAs and lncRNAs were mainly enriched in the pathways related to energy and lipid metabolism. In addition, LGALS3 was found a key gene in mediating the regulation of oocyte meiosis recovery and fertilization ability. This study provides novel knowledge about gene expression and energy metabolism during equine oocyte maturation and a reference for the further study and application of assisted reproductive technology in horse reproduction and breeding.
Collapse
Affiliation(s)
- Xinhui Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hancai Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Peiru Lv
- Henan Chuangyuan Biotechnology Co. Ltd, Zhengzhou, China
| | - Kuiqing Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Shan Yin
- Henan Chuangyuan Biotechnology Co. Ltd, Zhengzhou, China
| | - Hongbo Liu
- Henan Chuangyuan Biotechnology Co. Ltd, Zhengzhou, China
| | - Zhipeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
20
|
Pioltine EM, Costa CB, Franchi FF, dos Santos PH, Nogueira MFG. Tauroursodeoxycholic Acid Supplementation in In Vitro Culture of Indicine Bovine Embryos: Molecular and Cellular Effects on the In Vitro Cryotolerance. Int J Mol Sci 2023; 24:14060. [PMID: 37762363 PMCID: PMC10531190 DOI: 10.3390/ijms241814060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
During embryo development, the endoplasmic reticulum (ER) acts as an important site for protein biosynthesis; however, in vitro culture (IVC) can negatively affect ER homeostasis. Therefore, the aim of our study was to evaluate the effects of the supplementation of tauroursodeoxycholic acid (TUDCA), an ER stress inhibitor, in the IVC of bovine embryos. Two experiments were carried out: Exp. 1: an evaluation of blastocyst rate, hatching kinetics, and gene expression of hatched embryos after being treated with different concentrations of TUDCA (50, 200, or 1000 μM) in the IVC; Exp. 2: an evaluation of the re-expansion, hatching, and gene expression of hatched embryos previously treated with 200 µM of TUDCA at IVC and submitted to vitrification. There was no increase in the blastocyst and hatched blastocyst rates treated with TUDCA in the IVC. However, embryos submitted to vitrification after treatment with 200 µM of TUDCA underwent an increased hatching rate post-warming together with a down-regulation in the expression of ER stress-related genes and the accumulation of lipids. In conclusion, this work showed that the addition of TUDCA during in vitro culture can improve the cryotolerance of the bovine blastocyst through the putative modulation of ER and oxidative stress.
Collapse
Affiliation(s)
- Elisa Mariano Pioltine
- Multi-User Laboratory of Phytomedicines Pharmacology, and Biotechnology (PhitoPharmaTec), Department of Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-000, Brazil
| | - Camila Bortoliero Costa
- Multi-User Laboratory of Phytomedicines Pharmacology, and Biotechnology (PhitoPharmaTec), Department of Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-000, Brazil
- Laboratory of Embryonic Micromanipulation, Department of Biological Sciences, School of Sciences and Languages, São Paulo State University (UNESP), Assis 19806-900, Brazil
| | - Fernanda Fagali Franchi
- Multi-User Laboratory of Phytomedicines Pharmacology, and Biotechnology (PhitoPharmaTec), Department of Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-000, Brazil
| | - Priscila Helena dos Santos
- Multi-User Laboratory of Phytomedicines Pharmacology, and Biotechnology (PhitoPharmaTec), Department of Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-000, Brazil
| | - Marcelo Fábio Gouveia Nogueira
- Multi-User Laboratory of Phytomedicines Pharmacology, and Biotechnology (PhitoPharmaTec), Department of Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-000, Brazil
- Laboratory of Embryonic Micromanipulation, Department of Biological Sciences, School of Sciences and Languages, São Paulo State University (UNESP), Assis 19806-900, Brazil
| |
Collapse
|
21
|
Dellaqua TT, Franchi FF, Dos Santos PH, Giroto AB, Nunes SG, de Lima VAV, Guilherme VB, Fontes PK, Sudano MJ, de Souza Castilho AC. Molecular phenotypes of bovine blastocyst derived from in vitro-matured oocyte supplemented with PAPP-A. Vet Res Commun 2023; 47:1263-1272. [PMID: 36653723 DOI: 10.1007/s11259-023-10072-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023]
Abstract
Insulin-like growth factor-1 (IGF-1) regulates cellular lipid content, whereas pregnancy-associated plasma protein-A (PAPP-A) increases IGF-1 bioavailability. Using in vitro-matured cumulus-oocyte complexes, we aimed to evaluate the impact of PAPP-A on the blastocyst lipid content, embryo cryotolerance and embryonic transcriptional profile. We determined that PAPP-A did not affect the lipid content of oocytes, blastocysts, or blastocyst yield (P > 0.05). However, PAPP-A modulated the embryo transcriptional profiles by downregulating PPARGC1A and AKR1B1, which are related to lipid metabolism; CASP9, a pro-apoptotic gene; and IFN-τ, a marker of embryo quality (P < 0.05). Furthermore, the use of PAPP-A improved blastocyst re-expansion in the first 3 h of culture after vitrification (P < 0.05). Although PAPP-A did not affect the blastocyst lipid content or embryo production, we suggest that embryonic transcriptional modulation could contribute to maintain the balance in embryo lipid metabolism. Furthermore, PAPP-A's approach seems to control key intracellular pathways that improve post-cryopreservation development of blastocysts.
Collapse
Affiliation(s)
- Thaisy Tino Dellaqua
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil
| | - Fernanda Fagali Franchi
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Science, University of Milan, Milan, Italy
| | - Priscila Helena Dos Santos
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil
| | | | - Sarah Gomes Nunes
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil
| | | | | | - Patrícia Kubo Fontes
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil
| | - Mateus José Sudano
- Center of Natural and Human Sciences, Federal University of ABC, Santo André, SP, Brazil
- Center of Biological and Health Sciences, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Anthony César de Souza Castilho
- University of Western São Paulo, Presidente Prudente, SP, Brazil.
- University of Western São Paulo (UNOESTE) - Campus II, Rodovia Raposo Tavares, km 572, Presidente Prudente, SP, Brasil.
| |
Collapse
|
22
|
Moorkens K, Leroy JLMR, Quanico J, Baggerman G, Marei WFA. How the Oviduct Lipidomic Profile Changes over Time after the Start of an Obesogenic Diet in an Outbred Mouse Model. BIOLOGY 2023; 12:1016. [PMID: 37508445 PMCID: PMC10376370 DOI: 10.3390/biology12071016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/03/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
We investigated whether a high-fat/high-sugar (HF/HS) diet alters the lipidomic profile of the oviductal epithelium (OE) and studied the patterns of these changes over time. Female outbred Swiss mice were fed either a control (10% fat) or HF/HS (60% fat, 20% fructose) diet. Mice (n = 3 per treatment per time point) were sacrificed and oviducts were collected at 3 days and 1, 4, 8, 12 and 16 weeks on the diet. Lipids in the OE were imaged using matrix-assisted laser desorption ionisation mass spectrometry imaging. Discriminative m/z values and differentially regulated lipids were determined in the HF/HS versus control OEs at each time point. Feeding the obesogenic diet resulted in acute changes in the lipid profile in the OE already after 3 days, and thus even before the development of an obese phenotype. The changes in the lipid profile of the OE progressively increased and became more persistent after long-term HF/HS diet feeding. Functional annotation revealed a differential abundance of phospholipids, sphingomyelins and lysophospholipids in particular. These alterations appear to be not only caused by the direct accumulation of the excess circulating dietary fat but also a reduction in the de novo synthesis of several lipid classes, due to oxidative stress and endoplasmic reticulum dysfunction. The described diet-induced lipidomic changes suggest alterations in the OE functions and the oviductal microenvironment which may impact crucial reproductive events that take place in the oviduct, such as fertilization and early embryo development.
Collapse
Affiliation(s)
- Kerlijne Moorkens
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Jo L M R Leroy
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Jusal Quanico
- Centre for Proteomics, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Geert Baggerman
- Centre for Proteomics, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- Health Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Waleed F A Marei
- Gamete Research Centre, Laboratory for Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| |
Collapse
|
23
|
Dwapanyin GO, Chow DJX, Tan TCY, Dubost NS, Morizet JM, Dunning KR, Dholakia K. Investigation of refractive index dynamics during in vitro embryo development using off-axis digital holographic microscopy. BIOMEDICAL OPTICS EXPRESS 2023; 14:3327-3342. [PMID: 37497510 PMCID: PMC10368053 DOI: 10.1364/boe.492292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 07/28/2023]
Abstract
Embryo quality is a crucial factor affecting live birth outcomes. However, an accurate diagnostic for embryo quality remains elusive in the in vitro fertilization clinic. Determining physical parameters of the embryo may offer key information for this purpose. Here, we demonstrate that digital holographic microscopy (DHM) can rapidly and non-invasively assess the refractive index of mouse embryos. Murine embryos were cultured in either low- or high-lipid containing media and digital holograms recorded at various stages of development. The phase of the recorded hologram was numerically retrieved, from which the refractive index of the embryo was calculated. We showed that DHM can detect spatio-temporal changes in refractive index during embryo development that are reflective of its lipid content. As accumulation of intracellular lipid is known to compromise embryo health, DHM may prove beneficial in developing an accurate, non-invasive, multimodal diagnostic.
Collapse
Affiliation(s)
- George O. Dwapanyin
- SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, United Kingdom
| | - Darren J. X. Chow
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, Australia
- Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
| | - Tiffany C. Y. Tan
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, Australia
- Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
| | - Nicolas S. Dubost
- SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, United Kingdom
| | - Josephine M. Morizet
- SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, United Kingdom
| | - Kylie R. Dunning
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, Australia
- Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
| | - Kishan Dholakia
- SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, United Kingdom
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
- Centre of Light for Life, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
24
|
Rabel RAC, Marchioretto PV, Bangert EA, Wilson K, Milner DJ, Wheeler MB. Pre-Implantation Bovine Embryo Evaluation-From Optics to Omics and Beyond. Animals (Basel) 2023; 13:2102. [PMID: 37443900 DOI: 10.3390/ani13132102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023] Open
Abstract
Approximately 80% of the ~1.5 million bovine embryos transferred in 2021 were in vitro produced. However, only ~27% of the transferred IVP embryos will result in live births. The ~73% pregnancy failures are partly due to transferring poor-quality embryos, a result of erroneous stereomicroscopy-based morphological evaluation, the current method of choice for pre-transfer embryo evaluation. Numerous microscopic (e.g., differential interference contrast, electron, fluorescent, time-lapse, and artificial-intelligence-based microscopy) and non-microscopic (e.g., genomics, transcriptomics, epigenomics, proteomics, metabolomics, and nuclear magnetic resonance) methodologies have been tested to find an embryo evaluation technique that is superior to morphologic evaluation. Many of these research tools can accurately determine embryo quality/viability; however, most are invasive, expensive, laborious, technically sophisticated, and/or time-consuming, making them futile in the context of in-field embryo evaluation. However accurate they may be, using complex methods, such as RNA sequencing, SNP chips, mass spectrometry, and multiphoton microscopy, at thousands of embryo production/collection facilities is impractical. Therefore, future research is warranted to innovate field-friendly, simple benchtop tests using findings already available, particularly from omics-based research methodologies. Time-lapse monitoring and artificial-intelligence-based automated image analysis also have the potential for accurate embryo evaluation; however, further research is warranted to innovate economically feasible options for in-field applications.
Collapse
Affiliation(s)
- R A Chanaka Rabel
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Paula V Marchioretto
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Elizabeth A Bangert
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kenneth Wilson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Derek J Milner
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Matthew B Wheeler
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
25
|
Berteli TS, Vireque AA, Borges ED, Da Luz CM, Navarro PA. Membrane lipid changes in mouse blastocysts induced by ovarian stimulation, IVF and oocyte vitrification. Reprod Biomed Online 2023; 46:887-902. [PMID: 37095039 DOI: 10.1016/j.rbmo.2023.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/27/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
RESEARCH QUESTION Is the membrane lipid profile of mice blastocysts affected by ovarian stimulation, IVF and oocyte vitrification? Could supplementation of vitrification media with L-carnitine and fatty acids prevent membrane phospholipid changes in blastocysts from vitrified oocytes? DESIGN Experimental study comparing the lipid profile of murine blastocysts produced from natural mating, superovulated cycles or after IVF submitted or not to vitrification. For in-vitro experiments, 562 oocytes from superovulated females were randomly divided into four groups: fresh oocytes fertilized in vitro and vitrified groups: Irvine Scientific (IRV); Tvitri-4 (T4) or T4 supplemented with L-carnitine and fatty acids (T4-LC/FA). Fresh or vitrified-warmed oocytes were inseminated and cultured for 96 h or 120 h. The lipid profile of nine of the best quality blastocysts from each experimental group was assessed by multiple reaction monitoring profiling method. Significantly different lipids or transitions between groups were found using univariate statistics (P < 0.05; fold change = 1.5) and multivariate statistical methods. RESULTS A total of 125 lipids in blastocysts were profiled. Statistical analysis revealed several classes of phospholipids affected in the blastocysts by ovarian stimulation, IVF, oocyte vitrification, or all. L-carnitine and fatty acid supplements prevented, to a certain extent, changes in phospholipid and sphingolipid contents in the blastocysts. CONCLUSION Ovarian stimulation alone, or in association with IVF, promoted changes in phospholipid profile and abundance of blastocysts. A short exposure time to the lipid-based solutions during oocyte vitrification was sufficient to induce changes in the lipid profile that were sustained until the blastocyst stage.
Collapse
Affiliation(s)
- Thalita S Berteli
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.; National Institute of Hormones and Women's Health, CNPq, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil..
| | - Alessandra A Vireque
- Invitra - Assisted Reproductive Technologies Ltd - Supera Innovation and Technology Park, Ribeirão Preto, São Paulo, Brazil
| | - Eduardo D Borges
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.; National Institute of Hormones and Women's Health, CNPq, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Caroline M Da Luz
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.; National Institute of Hormones and Women's Health, CNPq, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Paula A Navarro
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.; National Institute of Hormones and Women's Health, CNPq, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| |
Collapse
|
26
|
Costa CB, Fair T, Seneda MM. Review: Environment of the ovulatory follicle: modifications and use of biotechnologies to enhance oocyte competence and increase fertility in cattle. Animal 2023; 17 Suppl 1:100866. [PMID: 37567670 DOI: 10.1016/j.animal.2023.100866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 08/13/2023] Open
Abstract
The oocyte is the basis of life, supporting development from a fertilized cell to an independent multicellular organism. The oocyte's competence to drive the first cell cycles postfertilization are critical to embryonic survival and subsequent successful pregnancy. Coupled with the complex processes of follicle assembly, activation, differentiation, growth, and terminal maturation, oocyte developmental competence is gradually acquired during oocyte growth and meiotic maturation. Most reproduction management technologies and interventions are centered around these highly coordinated processes, targeting the ovarian follicle and the oocyte within. Thus, our objective was to highlight key aspects of oocyte and follicle development in cattle, and to discuss recent advances in oocyte and follicle-centered reproductive biotechnologies.
Collapse
Affiliation(s)
- Camila Bortoliero Costa
- Department of Biological Sciences, School of Sciences and Languages, São Paulo State University (UNESP), Campus Assis, São Paulo, Brazil; Graduate Program in Pharmacology and Biotechnology, Institute of Biosciences, UNESP, Botucatu, São Paulo, Brazil
| | - Trudee Fair
- School of Agriculture and Food Science, University College Dublin, Ireland
| | - Marcelo M Seneda
- State University of Londrina (UEL), Laboratory of Animal Reproduction, Londrina, PR, Brazil.
| |
Collapse
|
27
|
Ferré LB, Alvarez-Gallardo H, Romo S, Fresno C, Stroud T, Stroud B, Lindsey B, Kjelland ME. Transvaginal ultrasound-guided oocyte retrieval in cattle: State-of-the-art and its impact on the in vitro fertilization embryo production outcome. Reprod Domest Anim 2023; 58:363-378. [PMID: 36510745 DOI: 10.1111/rda.14303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/02/2022] [Accepted: 11/16/2022] [Indexed: 12/14/2022]
Abstract
Transvaginal ultrasound-guided oocyte retrieval (commonly called OPU) and in vitro embryo production (IVP) in cattle has shown significant progress in recent years, in part, as a result of a better understanding of the full potential of these tools by end users. The combination of OPU and IVP (OPU-IVP) has been successfully and widely commercially used worldwide. The main advantages are a greater number of embryos and pregnancies per unit of time, faster genetic progress due to donor quick turn around and more elite sires mating combinations, larger spectrum of female age (calves, prepuberal, heifer, cow) and condition (open, pregnant) from which to retrieve oocytes, a reduced number of sperm (even sexed) required to fertilize the oocytes, among other benefits. OPU-IVP requires significant less donor preparation in comparison to conventional embryo transfer (<50% of usual FSH injections needed) to the extent of no stimulating hormones (FSH) are necessary. Donor synchronization, stimulation, OPU technique, oocyte competence, embryo performance, and its impact on cryopreservation and pregnancy are discussed.
Collapse
Affiliation(s)
- Luis B Ferré
- National Institute of Agricultural Technology (INTA), Chacra Experimental Integrada Barrow (MDA-INTA), Tres Arroyos, Argentina
| | - Horacio Alvarez-Gallardo
- Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán de Morelos, Jalisco, Mexico
| | - Salvador Romo
- Laboratorio de Reproducción, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán, Estado de Mexico, Mexico
| | - Cristóbal Fresno
- Health Sciences Research Center (CICSA), Anáhuac University of México, Huixquilucan, Mexico
| | | | - Brad Stroud
- Stroud Veterinary Embryo Services, Inc, Weatherford, Texas, USA
| | | | - Michael E Kjelland
- Conservation, Genetics and Biotech, LLC, Valley City, North Dakota, USA.,Mayville State University, Mayville, North Dakota, USA
| |
Collapse
|
28
|
Annes K, de Lima CB, Ispada J, dos Santos ÉC, Fontes PK, Nichi M, Nogueira MFG, Sudano MJ, Milazzotto MP. Insulin-like growth factor-1 (IGF-1) selectively modulates the metabolic and lipid profile of bovine embryos according to their kinetics of development. Theriogenology 2023; 204:1-7. [PMID: 37030172 DOI: 10.1016/j.theriogenology.2023.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/12/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
Supplementation of culture media with IGF-1 during in vitro culture of embryos has had controversial results over the years. In the present study, we show that differences previously observed in response to IGF addition might be related to intrinsic heterogeneity of the embryos. In other words, the effects exerted by IGF-1 are dependent on the characteristics of the embryos and their ability to modulate metabolism and overcome stressful conditions, such as the ones found in a non-optimized in vitro culture system. To test this hypothesis, in vitro produced bovine embryos with distinct morphokinetics (fast- and slow-cleavage) were submitted to treatment with IGF-1 and then evaluated for embryo production rates, total cell number, gene expression and lipid profile. Our results show that remarkable differences were found when fast and slow embryos treated with IGF-1 were compared. Fast embryos respond by upregulating genes related to mitochondrial function, stress response, and lipid metabolism, whereas slow embryos presented lower mitochondrial efficiency and lipid accumulation. We conclude that indeed the treatment with IGF-1 selectively affects embryonic metabolism according to early morphokinetics phenotypes, and this information is relevant for decision-making in the design of more appropriate in vitro culture systems.
Collapse
|
29
|
Banliat C, Mahé C, Lavigne R, Com E, Pineau C, Labas V, Guyonnet B, Mermillod P, Saint-Dizier M. The proteomic analysis of bovine embryos developed in vivo or in vitro reveals the contribution of the maternal environment to early embryo. BMC Genomics 2022; 23:839. [PMID: 36536309 PMCID: PMC9764490 DOI: 10.1186/s12864-022-09076-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Despite many improvements with in vitro culture systems, the quality and developmental ability of mammalian embryos produced in vitro are still lower than their in vivo counterparts. Though previous studies have evidenced differences in gene expression between in vivo- and in vitro-derived bovine embryos, there is no comparison at the protein expression level. RESULTS A total of 38 pools of grade-1 quality bovine embryos at the 4-6 cell, 8-12 cell, morula, compact morula, and blastocyst stages developed either in vivo or in vitro were analyzed by nano-liquid chromatography coupled with label-free quantitative mass spectrometry, allowing for the identification of 3,028 proteins. Multivariate analysis of quantified proteins showed a clear separation of embryo pools according to their in vivo or in vitro origin at all stages. Three clusters of differentially abundant proteins (DAPs) were evidenced according to embryo origin, including 463 proteins more abundant in vivo than in vitro across development and 314 and 222 proteins more abundant in vitro than in vivo before and after the morula stage, respectively. The functional analysis of proteins found more abundant in vivo showed an enrichment in carbohydrate metabolism and cytoplasmic cellular components. Proteins found more abundant in vitro before the morula stage were mostly localized in mitochondrial matrix and involved in ATP-dependent activity, while those overabundant after the morula stage were mostly localized in the ribonucleoprotein complex and involved in protein synthesis. Oviductin and other oviductal proteins, previously shown to interact with early embryos, were among the most overabundant proteins after in vivo development. CONCLUSIONS The maternal environment led to higher degradation of mitochondrial proteins at early developmental stages, lower abundance of proteins involved in protein synthesis at the time of embryonic genome activation, and a global upregulation of carbohydrate metabolic pathways compared to in vitro production. Furthermore, embryos developed in vivo internalized large amounts of oviductin and other proteins probably originated in the oviduct as soon as the 4-6 cell stage. These data provide new insight into the molecular contribution of the mother to the developmental ability of early embryos and will help design better in vitro culture systems.
Collapse
Affiliation(s)
- Charles Banliat
- grid.12366.300000 0001 2182 6141INRAE, CNRS, Tours University, IFCE, UMR PRC, Nouzilly, France ,Union Evolution, Rue Eric Tabarly, Noyal-Sur-Vilaine, France
| | - Coline Mahé
- grid.12366.300000 0001 2182 6141INRAE, CNRS, Tours University, IFCE, UMR PRC, Nouzilly, France
| | - Régis Lavigne
- grid.410368.80000 0001 2191 9284Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, Rennes, France ,grid.410368.80000 0001 2191 9284Univ Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim Core Facility, Rennes, France
| | - Emmanuelle Com
- grid.410368.80000 0001 2191 9284Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, Rennes, France ,grid.410368.80000 0001 2191 9284Univ Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim Core Facility, Rennes, France
| | - Charles Pineau
- grid.410368.80000 0001 2191 9284Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, Rennes, France ,grid.410368.80000 0001 2191 9284Univ Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim Core Facility, Rennes, France
| | - Valérie Labas
- grid.12366.300000 0001 2182 6141INRAE, CNRS, Tours University, IFCE, UMR PRC, Nouzilly, France ,Pixanim, INRAE, Tours University, CHU of Tours, Nouzilly, France
| | - Benoit Guyonnet
- Union Evolution, Rue Eric Tabarly, Noyal-Sur-Vilaine, France
| | - Pascal Mermillod
- grid.12366.300000 0001 2182 6141INRAE, CNRS, Tours University, IFCE, UMR PRC, Nouzilly, France
| | - Marie Saint-Dizier
- grid.12366.300000 0001 2182 6141INRAE, CNRS, Tours University, IFCE, UMR PRC, Nouzilly, France
| |
Collapse
|
30
|
De Rossi H, Bortoliero Costa C, Rodrigues-Rossi LT, Barros Nunes G, Spinosa Chéles D, Maran Pereira I, Rocha DFO, Feitosa E, Colnaghi Simionato AV, Zoccal Mingoti G, Benites Aoki PH, Gouveia Nogueira MF. Modulating the lipid profile of blastocyst cell membrane with DPPC multilamellar vesicles. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2022; 50:158-167. [PMID: 35713365 DOI: 10.1080/21691401.2022.2088545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/20/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
The aim of this study was to evaluate the effect of multilamellar vesicles (MLVs) of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) in co-culture with in vitro-produced bovine embryos (IVPEs). The stability of five concentrations of MLVs (1.0, 1.25, 1.5, 1.75, and 2.0 mM) produced using ultrapure water or embryonic culture medium with 24 or 48 h of incubation at 38.5 °C with 5% CO2 was assessed. In addition, the toxicity of MLVs and their modulation of the lipid profile of the plasma membrane of IVPEs were evaluated after 48 h of co-culture. Both media allowed the production of MLVs. Incubation (24 and 48 h) did not impair the MLV structure but affected the average diameter. The rate of blastocyst production was not reduced, demonstrating the nontoxicity of the MLVs even at 2.0 mmol/L. The lipid profile of the embryos was different depending on the MLV concentration. In comparison with control embryos, embryos cultured with MLVs at 2.0 mmol/L had a higher relative abundance of six lipid ions (m/z 720.6, 754.9, 759.0, 779.1, 781.2, and 797.3). This study sheds light on a new culture system in which the MLV concentration could change the lipid profile of the embryonic cell membrane in a dose-dependent manner.
Collapse
Affiliation(s)
- Hugo De Rossi
- Department of Biological Sciences, School of Sciences and Languages, São Paulo State University (UNESP), Campus Assis, São Paulo, Brazil
| | - Camila Bortoliero Costa
- Department of Biological Sciences, School of Sciences and Languages, São Paulo State University (UNESP), Campus Assis, São Paulo, Brazil
- Graduate Program in Pharmacology and Biotechnology, Institute of Biosciences, UNESP, Botucatu, São Paulo, Brazil
| | | | - Giovana Barros Nunes
- School of Veterinary Medicine, Laboratory of Reproductive Physiology, UNESP, Campus Araçatuba, São Paulo, Brazil
| | - Dóris Spinosa Chéles
- Department of Biological Sciences, School of Sciences and Languages, São Paulo State University (UNESP), Campus Assis, São Paulo, Brazil
- Graduate Program in Pharmacology and Biotechnology, Institute of Biosciences, UNESP, Botucatu, São Paulo, Brazil
| | - Isabella Maran Pereira
- Department of Biological Sciences, School of Sciences and Languages, São Paulo State University (UNESP), Campus Assis, São Paulo, Brazil
| | - Daniele F O Rocha
- Chemistry Institute, University of Campinas and Pontifical Catholic University of Campinas, Campinas, São Paulo, Brazil
| | - Eloi Feitosa
- Academic Department of Chemistry and Biology, Federal Technological University of Paraná (UTFPR), Curitiba, Paraná, Brazil
| | - Ana Valéria Colnaghi Simionato
- Laboratory of Analysis of Biomolecules Tiselius, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- National Institute of Science and Technology in Bioanalytics (INCTBio), Campinas, São Paulo, Brazil
| | - Gisele Zoccal Mingoti
- School of Veterinary Medicine, Laboratory of Reproductive Physiology, UNESP, Campus Araçatuba, São Paulo, Brazil
| | - Pedro Henrique Benites Aoki
- Graduate Program in Pharmacology and Biotechnology, Institute of Biosciences, UNESP, Botucatu, São Paulo, Brazil
- Department of Biotechnology, School of Sciences and Languages, UNESP, Campus Assis, São Paulo, Brazil
| | - Marcelo Fábio Gouveia Nogueira
- Department of Biological Sciences, School of Sciences and Languages, São Paulo State University (UNESP), Campus Assis, São Paulo, Brazil
- Graduate Program in Pharmacology and Biotechnology, Institute of Biosciences, UNESP, Botucatu, São Paulo, Brazil
| |
Collapse
|
31
|
Leal CLV, Cañón-Beltrán K, Cajas YN, Hamdi M, Yaryes A, Millán de la Blanca MG, Beltrán-Breña P, Mazzarella R, da Silveira JC, Gutiérrez-Adán A, González EM, Rizos D. Extracellular vesicles from oviductal and uterine fluids supplementation in sequential in vitro culture improves bovine embryo quality. J Anim Sci Biotechnol 2022; 13:116. [PMID: 36280872 PMCID: PMC9594899 DOI: 10.1186/s40104-022-00763-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/31/2022] [Indexed: 11/28/2022] Open
Abstract
Background In vitro production of bovine embryos is a well-established technology, but the in vitro culture (IVC) system still warrants improvements, especially regarding embryo quality. This study aimed to evaluate the effect of extracellular vesicles (EVs) isolated from oviductal (OF) and uterine fluid (UF) in sequential IVC on the development and quality of bovine embryos. Zygotes were cultured in SOF supplemented with either BSA or EVs-depleted fetal calf serum (dFCS) in the presence (BSA-EV and dFCS-EV) or absence of EVs from OF (D1 to D4) and UF (D5 to D8), mimicking in vivo conditions. EVs from oviducts (early luteal phase) and uterine horns (mid-luteal phase) from slaughtered heifers were isolated by size exclusion chromatography. Blastocyst rate was recorded on days 7–8 and their quality was assessed based on lipid contents, mitochondrial activity and total cell numbers, as well as survival rate after vitrification. Relative mRNA abundance for lipid metabolism-related transcripts and levels of phosphorylated hormone-sensitive lipase (pHSL) proteins were also determined. Additionally, the expression levels of 383 miRNA in OF- and UF-EVs were assessed by qRT-PCR. Results Blastocyst yield was lower (P < 0.05) in BSA treatments compared with dFCS treatments. Survival rates after vitrification/warming were improved in dFCS-EVs (P < 0.05). EVs increased (P < 0.05) blastocysts total cell number in dFCS-EV and BSA-EV compared with respective controls (dFCS and BSA), while lipid content was decreased in dFCS-EV (P < 0.05) and mitochondrial activity did not change (P > 0.05). Lipid metabolism transcripts were affected by EVs and showed interaction with type of protein source in medium (PPARGC1B, LDLR, CD36, FASN and PNPLA2, P < 0.05). Levels of pHSL were lower in dFCS (P < 0.05). Twenty miRNA were differentially expressed between OF- and UF-EVs and only bta-miR-148b was increased in OF-EVs (P < 0.05). Conclusions Mimicking physiological conditions using EVs from OF and UF in sequential IVC does not affect embryo development but improves blastocyst quality regarding survival rate after vitrification/warming, total cell number, lipid content, and relative changes in expression of lipid metabolism transcripts and lipase activation. Finally, EVs miRNA contents may contribute to the observed effects. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00763-7.
Collapse
Affiliation(s)
- Cláudia Lima Verde Leal
- grid.4711.30000 0001 2183 4846Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), 28040 Madrid, Spain ,grid.11899.380000 0004 1937 0722Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo (FZEA-USP), Pirassununga, Brazil
| | - Karina Cañón-Beltrán
- grid.4711.30000 0001 2183 4846Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), 28040 Madrid, Spain ,grid.442066.20000 0004 0466 9211Facultad de Ciencias Agrarias y Ambientales, Programa de Medicina Veterinaria, Fundación Universitaria Juan de Castellanos, Tunja, Colombia
| | - Yulia N. Cajas
- grid.4711.30000 0001 2183 4846Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), 28040 Madrid, Spain ,grid.442123.20000 0001 1940 3465Laboratorio de Biotecnología de la Reproducción Animal, Facultad de Ciencias Agropecuarias, Universidad de Cuenca (UC), EC010205 Cuenca, Ecuador
| | - Meriem Hamdi
- grid.4711.30000 0001 2183 4846Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), 28040 Madrid, Spain
| | - Aracelli Yaryes
- grid.4711.30000 0001 2183 4846Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), 28040 Madrid, Spain
| | - María Gemma Millán de la Blanca
- grid.4711.30000 0001 2183 4846Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), 28040 Madrid, Spain
| | - Paula Beltrán-Breña
- grid.4711.30000 0001 2183 4846Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), 28040 Madrid, Spain
| | - Rosane Mazzarella
- grid.11899.380000 0004 1937 0722Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo (FZEA-USP), Pirassununga, Brazil
| | - Juliano Coelho da Silveira
- grid.11899.380000 0004 1937 0722Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo (FZEA-USP), Pirassununga, Brazil
| | - Alfonso Gutiérrez-Adán
- grid.4711.30000 0001 2183 4846Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), 28040 Madrid, Spain
| | - Encina M González
- grid.4711.30000 0001 2183 4846Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), 28040 Madrid, Spain ,grid.4795.f0000 0001 2157 7667Department of Anatomy and Embryology, Veterinary Faculty-Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Dimitrios Rizos
- grid.4711.30000 0001 2183 4846Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), 28040 Madrid, Spain
| |
Collapse
|
32
|
Abstract
The objective of this study was to investigate the effects of adding β-mercaptoethanol (βME) to culture medium of bovine in vitro-produced (IVP) embryos prior to or after vitrification on embryo development and cryotolerance. In Experiment I, Day-7 IVP blastocysts were vitrified and, after warming, cultured in medium containing 0, 50 or 100 μM βME for 72 h. Embryos cultured in 100 μM βME attained higher hatching rates (66.7%) than those culture in 0 (47.7%) and 50 (52.4%) μM βME. In Experiment II, IVP embryos were in vitro-cultured (IVC) to the blastocyst stage in 0 (control) or 100 μM βME, followed by vitrification. After warming, embryos were cultured for 72 h (post-warming culture, PWC) in 0 (control) or 100 μM βME, in a 2 × 2 factorial design: (i) CTRL-CTRL, control IVC and control PWC; (ii) CTRL-βME, control IVC and βME-supplemented PWC; (iii) βME-CTRL, βME-supplemented IVC and control PWC; or (iv) βME-βME, βME-supplemented IVC and βME-supplemented PWC. βME during IVC reduced embryo development (28.0% vs. 43.8%) but, following vitrification, higher re-expansion rates were seen in βME-CTRL (84.0%) and βME-βME (87.5%) than in CTRL-CTRL (71.0%) and CTRL-βME (73.1%). Hatching rates were higher in CTRL-βME (58.1%) and βME-βME (63.8%) than in CTRL-CTRL (36.6%) and βME-CTRL (42.0%). Total cell number in hatched blastocysts was higher in βME-βME (181.2 ± 7.4 cells) than CTRL-CTRL (139.0 ± 9.9 cells). Adding βME to the IVC medium reduced development but increased cryotolerance, whereas adding βME to the PWC medium improved embryo survival, hatching rates, and total cell numbers.
Collapse
|
33
|
Ghanem N, Fakruzzaman M, Batawi AH, Kong IK. Post-thaw viability, developmental and molecular deviations in in vitro produced bovine embryos cultured with l-carnitine at different levels of fetal calf serum. Theriogenology 2022; 191:54-66. [DOI: 10.1016/j.theriogenology.2022.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/12/2022] [Accepted: 07/25/2022] [Indexed: 10/16/2022]
|
34
|
Gimeno I, García-Manrique P, Carrocera S, López-Hidalgo C, Muñoz M, Valledor L, Martín-González D, Gómez E. Non-Invasive Identification of Sex in Cultured Bovine Embryos by UHPLC-MS/MS Metabolomics. Metabolomics 2022; 18:53. [PMID: 35842860 DOI: 10.1007/s11306-022-01910-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Different gene expression between male and female bovine embryos leads to metabolic differences. OBJECTIVE We used UHPLC-MS/MS to identify sex metabolite biomarkers in embryo culture medium (CM). METHODS Embryos were produced in vitro under highly variable conditions, i.e., fertilized with 7 bulls, two breeds, and cultured with BSA or BSA + serum until Day-6. On Day-6, embryos were cultured individually for 24 h. CM of Day-7 embryos (86 female and 81 male) was collected, and Day-6 and Day-7 embryonic stages recorded. RESULTS A study by sample subsets with fixed factors (culture, bull breed, and Day-6 and Day-7 stages) tentatively identified 31 differentially accumulated metabolites through 182 subsets. Day-6 and Day-7 stage together affected 13 and 11 metabolites respectively, while 19 metabolites were affected by one or another stage and/or day. Culture supplements and individual bull changed 19 and 15 metabolites, respectively. Single bull exerted the highest influence (20 metabolites with the significantly highest p values). Lipid (93 subsets; 11 metabolites) and amino acid (55 subsets; 13 metabolites) were the most relevant classes for sex identification. CONCLUSIONS Single biomarker led to inefficient sex diagnosis, while metabolite combinations accurately identified sex. Our study is a first in non-invasive sex identification in cattle by overcoming factors that induce metabolic variation.
Collapse
Affiliation(s)
- Isabel Gimeno
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Centro de Biotecnología Animal, Camino de Rioseco 1225, 33394, Gijón, Spain
| | - Pablo García-Manrique
- Molecular Mass Spectrometry Unit, Scientific and Technical Services, University of Oviedo, Catedrático Rodrigo Uria s/n, 33006, Oviedo, Spain
| | - Susana Carrocera
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Centro de Biotecnología Animal, Camino de Rioseco 1225, 33394, Gijón, Spain
| | - Cristina López-Hidalgo
- Department of Organisms and Systems Biology, University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Catedrático Rodrigo Uria s/n, 33006, Oviedo, Spain
| | - Marta Muñoz
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Centro de Biotecnología Animal, Camino de Rioseco 1225, 33394, Gijón, Spain
| | - Luis Valledor
- Department of Organisms and Systems Biology, University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Catedrático Rodrigo Uria s/n, 33006, Oviedo, Spain
| | - David Martín-González
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Centro de Biotecnología Animal, Camino de Rioseco 1225, 33394, Gijón, Spain
| | - Enrique Gómez
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Centro de Biotecnología Animal, Camino de Rioseco 1225, 33394, Gijón, Spain.
| |
Collapse
|
35
|
Gilbert I, Gervais R, Robert C. Corn or wheat-based diet to manipulate lipid content in early embryos of Jersey cows. Theriogenology 2022; 187:42-50. [DOI: 10.1016/j.theriogenology.2022.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 10/18/2022]
|
36
|
de Camargo J, Rodrigues R, Valente RS, Muller DB, Vireque AA, Belaz KRA, Bohrer RC, Basso AC, Eberlin MN, Fontes PK, Nogueira MFG, Sudano MJ. Evaluation of a serum-free culture medium for the enhanced vitrification cryosurvival of bovine in vitro-derived embryos. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Aardema H, Bertijn I, van Tol HTA, Rijneveld A, Vernooij JCM, Gadella BM, Vos PLAM. Fatty Acid Supplementation During in vitro Embryo Production Determines Cryosurvival Characteristics of Bovine Blastocysts. Front Cell Dev Biol 2022; 10:837405. [PMID: 35356284 PMCID: PMC8959877 DOI: 10.3389/fcell.2022.837405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
In vitro production (IVP) embryos have a reduced quality and poor cryotolerance in comparison to in vivo embryos. This study investigated whether free fatty acid (FFA) conditions, fatty acid free (FAF)- synthetic oviduct fluid (SOF) without or with 25 μM of saturated stearic (C18:0) or unsaturated oleic (C18:1) acid during the first 5 IVP days, relate to quality and cryosurvival of day 8 blastocysts. Apart from the blastocyst scores, both 1) number and size of lipid droplets of fresh blastocysts and 2) total number and apoptotic and necrotic cells, before and after freezing-thawing, were scored by confocal microscopy. Blastocyst rates were significantly lower in the FAF SOF condition in comparison to other groups. Interestingly, blastocysts originating from the C18:1 group, with a significantly higher lipid content, and blastocysts from the FAF SOF group demonstrated a high cryosurvival rate (70.1 and 67.4%, respectively) comparable with in vivo blastocysts (68%), in contrast to the poor cryosurvival of C18:0 exposed embryos (17.6%). In all freeze-thawed embryos the average amount of apoptotic and necrotic cells increased albeit that the C18:0 condition rates were higher (43.2%) when compared to C18:1 (26.0%) and FAF SOF conditions (26.5%). The current data show that FFA administered during early embryonic development significantly affect the cryotolerance of blastocysts.
Collapse
Affiliation(s)
- H. Aardema
- *Correspondence: H. Aardema, ; B. M. Gadella,
| | | | | | | | | | | | | |
Collapse
|
38
|
Valente RS, Marsico TV, Sudano MJ. Basic and applied features in the cryopreservation progress of bovine embryos. Anim Reprod Sci 2022; 239:106970. [DOI: 10.1016/j.anireprosci.2022.106970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/10/2022] [Accepted: 03/19/2022] [Indexed: 11/30/2022]
|
39
|
Owen CM, Johnson MA, Rhodes-Long KA, Gumber DJ, Barceló-Fimbres M, Altermatt JL, Campos-Chillon LF. Novel Synthetic oviductal fluid for Conventional Freezing 1 (SCF1) culture medium improves development and cryotolerance of in vitro produced Holstein embryos. J Anim Sci 2022; 100:6527267. [PMID: 35148394 PMCID: PMC8919821 DOI: 10.1093/jas/skac043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/09/2022] [Indexed: 11/15/2022] Open
Abstract
In vitro produced (IVP) embryos hold great promise in the cattle industry; however, suboptimal in vitro culture conditions induce metabolic dysfunction, resulting in poor development and low cryotolerance of IVP embryos. This limits the use of IVP embryos in the cattle industry for embryo transfer and commercial scale-up. Previous studies have reported the use of individual metabolic regulators in culture media to improve blastocyst development rates and cryopreservation. In this study, we hypothesized that using a combination of select regulators, chosen for their unique synergistic potential, would alleviate metabolic dysfunction and improve the development of in vitro produced embryos to make them more closely resemble in vivo derived embryos. To test this, we first compared lipid content between Holstein and Jersey embryos produced in vivo and in vitro, and then systematically determined the combination of metabolic regulators that led to the greatest improvements in embryonic development, lipid content, mitochondrial polarity, and cryotolerance. We also tested different slow freezing techniques to further improve cryotolerance and finally validated our results via a clinical trial. Overall, we found that the use of multiple metabolic regulators in one culture media, which we refer to as Synthetic oviductal fluid for Conventional Freezing 1 (SCF1), and an optimized slow freezing technique resulted in improved pregnancy rates for frozen IVP embryos compared to embryos cultured in a synthetic oviductal fluid media. Additionally, there was no difference in pregnancy rate between frozen and fresh IVP embryos cultured in SCF1. This suggests that optimizing culture conditions and slow freezing technique can produce cryotolerance IVP and should allow further dissemination of this assisted reproductive technology.
Collapse
Affiliation(s)
- Corie M Owen
- Department of Animal Sciences, California Polytechnic State University, San Luis Obispo, CA 93405, USA,Corresponding authors: ; Current Address: Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Melissa A Johnson
- Department of Animal Sciences, California Polytechnic State University, San Luis Obispo, CA 93405, USA,Current Address: Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Katherine A Rhodes-Long
- Department of Animal Sciences, California Polytechnic State University, San Luis Obispo, CA 93405, USA,Current Address: Shady Grove Fertility, Fairfax, VA 22031, USA
| | - Diana J Gumber
- Department of Animal Sciences, California Polytechnic State University, San Luis Obispo, CA 93405, USA,Current Address: Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | - Joy L Altermatt
- Department of Animal Sciences, California Polytechnic State University, San Luis Obispo, CA 93405, USA,Current Address: Veterinary Reproduction Innovations APC, San Luis Obispo, CA 93405, USA
| | | |
Collapse
|
40
|
Soto-Moreno EJ, Balboula A, Spinka C, Rivera RM. Serum supplementation during bovine embryo culture affects their development and proliferation through macroautophagy and endoplasmic reticulum stress regulation. PLoS One 2021; 16:e0260123. [PMID: 34882691 PMCID: PMC8659681 DOI: 10.1371/journal.pone.0260123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/02/2021] [Indexed: 11/18/2022] Open
Abstract
Serum supplementation during bovine embryo culture has been demonstrated to promote cell proliferation and preimplantation embryo development. However, these desirable outcomes, have been associated with gene expression alterations of pathways involved in macroautophagy, growth, and development at the blastocyst stage, as well as with developmental anomalies such as fetal overgrowth and placental malformations. In order to start dissecting the molecular pathways by which serum supplementation of the culture medium during the preimplantation stage promotes developmental abnormalities, we examined blastocyst morphometry, inner cell mass and trophectoderm cell allocations, macroautophagy, and endoplasmic reticulum stress. On day 5 post-insemination, > 16 cells embryos were selected and cultured in medium containing 10% serum or left as controls. Embryo diameter, inner cell mass and trophectoderm cell number, and macroautophagy were measured on day 8 blastocysts (BL) and expanded blastocysts (XBL). On day 5 and day 8, we assessed transcript level of the ER stress markers HSPA5, ATF4, MTHFD2, and SHMT2 as well as XBP1 splicing (a marker of the unfolded protein response). Serum increased diameter and proliferation of embryos when compared to the no-serum group. In addition, serum increased macroautophagy of BL when compared to controls, while the opposite was true for XBL. None of the genes analyzed was differentially expressed at any stage, except that serum decreased HSPA5 in day 5 > 16 cells stage embryos. XBP1 splicing was decreased in BL when compared to XBL, but only in the serum group. Our data suggest that serum rescues delayed embryos by alleviating endoplasmic reticulum stress and promotes development of advanced embryos by decreasing macroautophagy.
Collapse
Affiliation(s)
- Edgar Joel Soto-Moreno
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States of America
| | - Ahmed Balboula
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States of America
| | - Christine Spinka
- College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, United States of America
| | - Rocío Melissa Rivera
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States of America
- * E-mail:
| |
Collapse
|
41
|
Cuello C, Martinez CA, Cambra JM, González-Plaza A, Parrilla I, Rodriguez-Martinez H, Gil MA, Martinez EA. Vitrification Effects on the Transcriptome of in vivo-Derived Porcine Morulae. Front Vet Sci 2021; 8:771996. [PMID: 34869745 PMCID: PMC8633305 DOI: 10.3389/fvets.2021.771996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/13/2021] [Indexed: 12/17/2022] Open
Abstract
Despite the reported promising farrowing rates after non-surgical and surgical transfers of vitrified porcine morulae and blastocysts produced in vivo (range: 70–75%), the pregnancy loss is 5–15 fold higher with vitrified than with fresh embryos. The present study aimed to investigate whether vitrification affects the transcriptome of porcine morulae, using microarrays and RT-qPCR validation. Morulae were obtained surgically from weaned sows (n = 13) on day 6 (day 0 = estrus onset). A total of 60 morulae were vitrified (treatment group). After 1 week of storage, the vitrified morulae were warmed. Vitrified-warmed and non-vitrified fresh morulae (control; n = 40) were cultured for 24 h to assess embryo survival by stereomicroscopy after. A total of 30 vitrified/warmed embryos that were deemed viable and 30 fresh control embryos (three pools of 10 for each experimental group) were selected for microarray analysis. Gene expression was assessed with a GeneChip® Porcine Genome Array (Affymetrix). An ANOVA analysis p-unadjusted <0.05 and a fold change cut-off of ±1.5 were set to identify differentially expressed genes (DEGs). Data analysis and biological interpretation were performed using the Partek Genomic Suite 7.0 software. The survival rate of morulae after vitrification and warming (92.0 ± 8.3%) was similar to that of the control (100%). A total of 233 DEGs were identified in vitrified morulae (38 upregulated and 195 downregulated), compared to the control group. Nine pathways were significantly modified. Go-enrichment analysis revealed that DEGs were mainly related to the Biological Process functional group. Up-regulated DEGs were involved in glycosaminoglycan degradation, metabolic pathways and tryptophan metabolism KEGG pathways. The pathways related to the down-regulated DEGs were glycolysis/gluconeogenesis, protein export and fatty acid elongation. The disruption of metabolic pathways in morulae could be related to impaired embryo quality and developmental potential, despite the relatively high survival rates after warming observed in vitro. In conclusion, vitrification altered the gene expression pattern of porcine morulae produced in vivo, generating alterations in the transcriptome that may interfere with subsequent embryo development and pregnancy after embryo transfer.
Collapse
Affiliation(s)
- Cristina Cuello
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum," Institute for Biomedical Research of Murcia (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| | - Cristina A Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Josep M Cambra
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum," Institute for Biomedical Research of Murcia (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| | - Alejandro González-Plaza
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum," Institute for Biomedical Research of Murcia (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| | - Inmaculada Parrilla
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum," Institute for Biomedical Research of Murcia (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Maria A Gil
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum," Institute for Biomedical Research of Murcia (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| | - Emilio A Martinez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum," Institute for Biomedical Research of Murcia (IMIB-Arrixaca), University of Murcia, Murcia, Spain
| |
Collapse
|
42
|
Hallberg I, Persson S, Olovsson M, Sirard MA, Damdimopoulou P, Rüegg J, Sjunnesson YCB. Perfluorooctane sulfonate (PFOS) exposure of bovine oocytes affects early embryonic development at human-relevant levels in an in vitro model. Toxicology 2021; 464:153028. [PMID: 34762985 DOI: 10.1016/j.tox.2021.153028] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/20/2021] [Accepted: 11/04/2021] [Indexed: 02/02/2023]
Abstract
Perfluorooctane sulfonate (PFOS) has been added to Stockholm Convention for global phase out, but will continue to contribute to the chemical burden in humans for a long time to come due to extreme persistence in the environment. In the body, PFOS is transferred into to the ovarian follicular fluid that surrounds the maturing oocyte. In the present study, bovine cumulus oocyte complexes were exposed to PFOS during 22 h in vitro maturation. Concentrations of 2 ng g-1 (PFOS-02) representing average human exposure and 53 ng g-1 (PFOS-53) relevant to highly exposed groups were used. After exposure, developmental competence was recorded until day 8 after fertilisation. Blastocysts were fixed and either stained to evaluate blastomere number and lipid distribution using confocal microscopy or frozen and pooled for microarray-based gene expression and DNA methylation analyses. PFOS-53 delayed the first cleavage to two-cell stage and beyond at 44 h after fertilisation (p < .01). No reduction of proportion blastocysts were seen at day 8 in either of the groups, but PFOS-53 exposure resulted in delayed development into more advanced stages of blastocysts seen as both reduced developmental stage (p = .001) and reduced number of blastomeres (p = .04). Blastocysts showed an altered lipid distribution that was more pronounced after exposure to PFOS-53 (increased total lipid volume, p=.0003, lipid volume/cell p < .0001) than PFOS-02, where only decreased average lipid droplet size (p=.02) was observed. Gene expression analyses revealed pathways differently regulated in the PFOS-treated groups compared to the controls, which were related to cell death and survival through e.g., P38 mitogen-activated protein kinases and signal transducer and activator of transcription 3, which in turn activates tumour protein 53 (TP53). Transcriptomic changes were also associated with metabolic stress response, differentiation and proliferation, which could help to explain the phenotypic changes seen in the blastocysts. The gene expression changes were more pronounced after exposure to PFOS-53 compared to PFOS-02. DNA-methylation changes were associated with similar biological functions as the transcriptomic data, with the most significantly associated pathway being TP53. Collectively, these results reveal that brief PFOS exposure during oocyte maturation alters the early embryo development at concentrations relevant to humans. This study adds to the evidence that PFOS has the potential to affect female fertility.
Collapse
Affiliation(s)
- Ida Hallberg
- Department of Clinical Sciences, Division of Reproduction, The Centre for Reproductive Biology in Uppsala, Swedish University of Agricultural Sciences, SE-750 07, Uppsala, Sweden.
| | - Sara Persson
- Department of Clinical Sciences, Division of Reproduction, The Centre for Reproductive Biology in Uppsala, Swedish University of Agricultural Sciences, SE-750 07, Uppsala, Sweden
| | - Matts Olovsson
- Department of Women's and Children's Health, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Marc-André Sirard
- Department of Animal Sciences, Laval University, QC G1V 0A6, Quebec, Canada
| | - Pauliina Damdimopoulou
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, SE-141 86, Stockholm, Sweden
| | - Joëlle Rüegg
- Department of Organismal Biology, Program of Environmental Toxicology, Uppsala University, SE-752 36, Uppsala, Sweden
| | - Ylva C B Sjunnesson
- Department of Clinical Sciences, Division of Reproduction, The Centre for Reproductive Biology in Uppsala, Swedish University of Agricultural Sciences, SE-750 07, Uppsala, Sweden
| |
Collapse
|
43
|
Li J, Liu L, Weng J, Yin TL, Yang J, Feng HL. Biological roles of l-carnitine in oocyte and early embryo development. Mol Reprod Dev 2021; 88:673-685. [PMID: 34618389 DOI: 10.1002/mrd.23542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 08/23/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022]
Abstract
Poor oocyte quality is responsible for female infertility. Multiple studies have been carried out to find supplements to enhance oocyte quality and mitigate infertility problems. l-carnitine and its derivatives have diverse roles in developing oocytes and early embryos. This review focuses on the in vitro and in vivo studies that using l-carnitine alone or in combination with other supplements for oocyte quality enhancement. The key roles of l-carnitine in oocyte quality and embryo growth were summarized, and the underlying mechanism was also elucidated. l-carnitine helps in the lipid metabolism process by controlling the transfer of fatty acids to mitochondria for β-oxidation. l-carnitine modulates glucose metabolism and enhances respiratory chain enzyme activity. Furthermore, it acts as an antioxidant to prevent oxidative damage and inhibit apoptosis, a signal in response to oxidative stress. Results show the potential of l-carnitine as a potential agent in assisted reproductive technology to improve oocyte quality and the subsequent embryonic development.
Collapse
Affiliation(s)
- Jiajian Li
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, College of Pharmaceutical Sciences, Capital Medical University, Beijing, China.,Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lingyan Liu
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, College of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Jing Weng
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Tai-Lang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jing Yang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Huai L Feng
- The New York Fertility Center, New York-Presbyterian Queens Affiliate with Weill Medical College of Cornell University, New York, New York, USA
| |
Collapse
|
44
|
Bastos NM, Rossi GF, da Silva Leão BC, Negrão F, Ferreira CR, Vrisman DP, Rodrigues NN, Zorzetto MF, de Paula Freitas-Dell'Aqua C, Vantini R, Monteiro FM, Mercadante MEZ, Eberlin MN, de Lima VFMH, Mingoti GZ. Effects of paternal diet and antioxidant addition to the semen extender on bovine semen characteristics and on the phenotype of the resulting embryo. Theriogenology 2021; 175:23-33. [PMID: 34481227 DOI: 10.1016/j.theriogenology.2021.08.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 07/23/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
The aim of this study was to examine the effects of long-term dietary supplementation of young Nellore bulls with rumen-protected polyunsaturated fatty acids (PUFAs) and of the inclusion of catalase in the semen extender on semen quality, in vitro sperm fertilizing ability, and intracytoplasmic lipid content in the resulting embryos. Twelve Nellore bulls were supplemented with rumen-protected PUFAs or with a basal diet from 14 to 24 months of age. The semen was collected at the end of supplementation. For cryopreservation, the ejaculate was divided into two equal volumes and catalase was added to the extender in one of the fractions. Thus, the experimental design consisted of a 2 × 2 factorial scheme with two diets (control and PUFA) and two extenders (Cat+ and Cat-). Total motility and the percentage of rapid cells in fresh semen were negatively affected by dietary supplementation with PUFAs (P < 0.05), but these effects did not persist after freezing. The frozen/thawed semen of animals fed PUFAs exhibited an increase in the percentages of damaged plasma and acrosomal membranes, as well as an increase in the proportion of lipids ions at m/z 578 and m/z 757 detected by MALDI-MS. Nevertheless, there was no effect of the treatments on in vitro embryo development. However, embryos derived from bulls supplemented with PUFAs exhibited higher lipid accumulation compared to control (P < 0.05). In conclusion, PUFA supplementation promoted worsening of semen quality without affecting the in vitro sperm fertilizing ability; however, the paternal diet affected the intracytoplasmic lipid content in the resulting embryos.
Collapse
Affiliation(s)
- Natália Marins Bastos
- São Paulo State University (UNESP), Department of Animal Reproduction, Graduate Program in Genetics and Animal Breeding, School of Agrarian and Veterinary Sciences, Campus Jaboticabal, São Paulo, Brazil.
| | - Guilherme Fazan Rossi
- São Paulo State University (UNESP), Department of Animal Reproduction, Graduate Program in Veterinary Medicine, School of Agrarian and Veterinary Sciences, Campus Jaboticabal, São Paulo, Brazil
| | - Beatriz Caetano da Silva Leão
- São Paulo State University (UNESP), Department of Animal Reproduction, Graduate Program in Veterinary Medicine, School of Agrarian and Veterinary Sciences, Campus Jaboticabal, São Paulo, Brazil
| | - Fernanda Negrão
- Proteomics Center of Excellence, Northwestern University, 2170 Campus Dr, Evanston, IL, USA; ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas, Cidade Universitaária Zeferino Vaz, Campinas, São Paulo, Brazil
| | - Christina Ramires Ferreira
- ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas, Cidade Universitaária Zeferino Vaz, Campinas, São Paulo, Brazil; Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Dayane Priscila Vrisman
- São Paulo State University (UNESP), Department of Animal Reproduction, Graduate Program in Veterinary Medicine, School of Agrarian and Veterinary Sciences, Campus Jaboticabal, São Paulo, Brazil
| | - Naiara Nantes Rodrigues
- São Paulo State University (UNESP), Department of Animal Reproduction, Graduate Program in Veterinary Medicine, School of Agrarian and Veterinary Sciences, Campus Jaboticabal, São Paulo, Brazil
| | | | | | - Roberta Vantini
- São Paulo State University (UNESP), Department of Animal Reproduction, Graduate Program in Veterinary Medicine, School of Agrarian and Veterinary Sciences, Campus Jaboticabal, São Paulo, Brazil
| | - Fabio Morato Monteiro
- São Paulo State University (UNESP), Department of Animal Reproduction, Graduate Program in Veterinary Medicine, School of Agrarian and Veterinary Sciences, Campus Jaboticabal, São Paulo, Brazil; Instituto de Zootecnia (IZ/APTA), Sertãozinho, São Paulo, Brazil
| | | | - Marcos Nogueira Eberlin
- ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas, Cidade Universitaária Zeferino Vaz, Campinas, São Paulo, Brazil
| | - Vera Fernanda Martins Hossepian de Lima
- São Paulo State University (UNESP), Department of Animal Reproduction, Graduate Program in Genetics and Animal Breeding, School of Agrarian and Veterinary Sciences, Campus Jaboticabal, São Paulo, Brazil
| | - Gisele Zoccal Mingoti
- São Paulo State University (UNESP), Department of Animal Reproduction, Graduate Program in Veterinary Medicine, School of Agrarian and Veterinary Sciences, Campus Jaboticabal, São Paulo, Brazil; São Paulo State University (UNESP), School of Veterinary Medicine, Laboratory of Reproductive Physiology, Campus Araçatuba, São Paulo, Brazil.
| |
Collapse
|
45
|
Modulation of lipid metabolism through multiple pathways during oocyte maturation and embryo culture in bovine. ZYGOTE 2021; 30:258-266. [PMID: 34405786 DOI: 10.1017/s0967199421000629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Lipid accumulation occurs in cultured embryos and is associated with reduced cryotolerance. Here we report the use of a multiple pathway lipid modulator cocktail (l-carnitine, linoleic acid and forskolin) to improve cryosurvival. First, we stained oocytes and embryos with Oil Red to examine the time course of lipid accumulation during in vitro fertilization (IVF) and embryo culture. Then we evaluated the effects of the lipid modulators cocktail on lipid content, developmental rates and survival after vitrification. In our conditions, lipid accumulation was detected (P < 0.05) at the end of in vitro maturation (IVM) and after 4 days of embryo culture (D4-D5). In experiment 1, we used lipid modulator cocktail during IVM. Reduced (P < 0.05) lipid accumulation was detected in oocytes (Control: 49.9 ± 1.6, Lip. Mod. IVM: 45.0 ± 1.8) but no changes were present at blastocyst stage (Control: 62.4 ± 2.6, Lip. Mod. IVM: 66.8 ± 2.7). Treated oocytes presented decreased (P < 0.05) blastocyst rates and lower (P < 0.05) re-expansion after vitrification. In experiment 2, lipid modulators cocktail was used during embryo culture (from D4-D7 or D6-D7). Treatment had an effect on lipid metabolism, as lipid content was increased (P < 0.05) in D7 blastocysts in treated groups (Control: 52.7 ± 3.1a, D4: 65.9 ± 2.6b, D6: 78.1 ± 2.7b). However, no effect was present for cleavage, blastocyst and cryosurvival rates. No difference was detected in mean cell number comparing the three groups (Control: 78.9 ± 9.6, D4: 82.6 ± 16.5, D6: 68.3 ± 7.8), but apoptosis rate was increased (P < 0.05) in vitrified-warmed blastocysts from treated groups (Control: 14.77*, D4: 22.28, D6: 22.22). We concluded that the combined use of lipid modulators was efficient to promote changes in lipid content of oocytes and embryos in bovine, but those changes did not reflect positively on embryo development or cryosurvival.
Collapse
|
46
|
Rosa CO, Costa CB, de Lima CB, da Silva CB, Zangirolamo AF, Ferreira CR, Seneda MM. Lipid profile of in vitro embryos produced from Bos indicus cows with low and high antral follicle counts. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
47
|
Vining LM, Zak LJ, Harvey SC, Harvey KE. The role of apoptosis in cryopreserved animal oocytes and embryos. Theriogenology 2021; 173:93-101. [PMID: 34365139 DOI: 10.1016/j.theriogenology.2021.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/24/2021] [Accepted: 07/25/2021] [Indexed: 01/11/2023]
Abstract
Cryopreservation of both gametes and embryos, both for storage and for the preservation of their developmental capacity is a critical aspect of assisted reproductive technology. The survival of reproductive material following cryopreservation protocols is not only vital to clinical applications in the human in vitro fertilisation clinic, but is also important in the in vitro production of livestock embryos. The ability to routinely cryopreserve oocytes and embryos of livestock species has the potential to improve animal welfare, reduce environmental impact, and reduce the associated costs for breeding companies through the reduction of live animal transportation. Unfortunately, frozen oocytes and embryos are regularly documented to contain a higher proportion of apoptotic cells compared to their non-frozen counterparts, with freezing procedures thought to trigger apoptotic pathways of cell death. Comparisons between frozen and non-frozen samples also show changes in the gene expression of apoptotic factors such as Bcl-2 and Bax in response to cryopreservation. Apoptotic inhibition has the potential to improve cryosurvival, and how to achieve this is subject to debate. Here, we review how exposure to low temperatures during cryopreservation may be responsible for the abnormal activation of apoptotic pathways in mammalian oocytes and embryos, and discuss the ways in which they can be influenced to improve cryopreservation protocols, particularly in agriculturally important species.
Collapse
Affiliation(s)
- Lucy May Vining
- School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK
| | | | - Simon Crawford Harvey
- School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK
| | - Katie Evelyn Harvey
- School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, UK.
| |
Collapse
|
48
|
Charpigny G, Marquant-Le Guienne B, Richard C, Adenot P, Dubois O, Gélin V, Peynot N, Daniel N, Brochard V, Nuttinck F. PGE2 Supplementation of Oocyte Culture Media Improves the Developmental and Cryotolerance Performance of Bovine Blastocysts Derived From a Serum-Free in vitro Production System, Mirroring the Inner Cell Mass Transcriptome. Front Cell Dev Biol 2021; 9:672948. [PMID: 34164396 PMCID: PMC8215579 DOI: 10.3389/fcell.2021.672948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/05/2021] [Indexed: 11/13/2022] Open
Abstract
The culture media used throughout the in vitro production (IVP) of bovine embryos remain complex. The serum added to culture media in order to improve embryo development negatively impacts the cryotolerance of blastocysts. Periconceptional prostaglandin E2 (PGE2) signaling is known to exert prosurvival effects on in vitro-generated blastocysts. The purpose of the present study was to evaluate the effects on developmental and cryotolerance performance of a serum-free (SF) IVP system that included defined oocyte culture media supplemented or not with PGE2, versus serum-containing (SC) IVP. RNA-sequencing analysis was used to examine the gene expression of ICM derived under the different IVP conditions. We assessed the degree of cryotolerance of grade-I blastocysts during a three-day post-thaw culture by measuring survival and hatching rates, counting trophectoderm and inner cell mass (ICM) blastomere numbers. We also determined the proportion of ICM cells expressing octamer-binding transcription factor 4 protein (OCT4/POU5F1). We showed that grade-I blastocyst development rates under SF + PGE2 conditions were similar to those obtained under SC conditions, although the cleavage rate remained significantly lower. SC IVP conditions induced changes to ICM gene expression relative to several metabolic processes, catabolic activities, cell death and apoptosis. These alterations were associated with significantly higher levels of ICM cell death at day 7 post-fertilization, and lower survival and hatching rates after thawing. SF IVP conditions supplemented or not with PGE2 induced changes to ICM gene expression related to DNA replication, metabolism and double-strand break repair processes, and were associated with significantly larger ICM cell populations after thawing. SF + PGE2 IVP induced changes to ICM gene expression related to epigenetic regulation and were associated with a significantly higher proportion of ICM cells expressing OCT4. For the first time, our study thus offers a comprehensive analysis of the ICM transcriptome regulated by IVP culture conditions in terms of the cellular changes revealed during culture for three days after thawing.
Collapse
Affiliation(s)
- Gilles Charpigny
- UVSQ, INRAE, BREED, Université Paris-Saclay, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | | | - Christophe Richard
- UVSQ, INRAE, BREED, Université Paris-Saclay, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Pierre Adenot
- UVSQ, INRAE, BREED, Université Paris-Saclay, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France.,INRAE, MIMA2, Université Paris-Saclay, Jouy-en-Josas, France
| | - Olivier Dubois
- UVSQ, INRAE, BREED, Université Paris-Saclay, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Valérie Gélin
- UVSQ, INRAE, BREED, Université Paris-Saclay, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Nathalie Peynot
- UVSQ, INRAE, BREED, Université Paris-Saclay, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Nathalie Daniel
- UVSQ, INRAE, BREED, Université Paris-Saclay, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Vincent Brochard
- UVSQ, INRAE, BREED, Université Paris-Saclay, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Fabienne Nuttinck
- UVSQ, INRAE, BREED, Université Paris-Saclay, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| |
Collapse
|
49
|
Lipid profile of bovine grade-1 blastocysts produced either in vivo or in vitro before and after slow freezing process. Sci Rep 2021; 11:11618. [PMID: 34078963 PMCID: PMC8172931 DOI: 10.1038/s41598-021-90870-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/17/2021] [Indexed: 11/26/2022] Open
Abstract
Currently, in vitro embryo production (IVP) is successfully commercially applied in cattle. However, the high sensitivity of embryos to cryopreservation in comparison to in vivo (IVD) embryos slows the dissemination of this biotechnology. Reduced cryotolerance is frequently associated with lipid accumulation in the cytoplasm mainly due to in vitro culture conditions. The objective of this study was to evaluate the lipid composition of biopsied and sexed embryos, produced either in vivo or in vitro from the same Holstein heifers before and after a slow freezing protocol. Lipid extracts were analysed by liquid chromatography-high resolution mass spectrometry, which enabled the detection of 496 features. Our results highlighted a lipid enrichment of IVP embryos in triglycerides and oxidised glycerophospholipids and a reduced abundance in glycerophospholipids. The slow freezing process affected the lipid profiles of IVP and IVD embryos similarly. Lysophosphatidylcholine content was reduced when embryos were frozen/thawed. In conclusion, the embryonic lipid profile is impacted by IVP and slow freezing protocols but not by sex. Lysophosphatidylcholine seemed highly sensitive to cryopreservation and might contribute to explain the lower quality of frozen embryos. Further studies are required to improve embryo freezability by modulating the lipidome.
Collapse
|
50
|
Yuan X, Hu S, Li L, Han C, Liu H, He H, Xia L, Hu J, Hu B, Ran M, Liu Y, Wang J. Lipidomics profiling of goose granulosa cell model of stearoyl-CoA desaturase function identifies a pattern of lipid droplets associated with follicle development. Cell Biosci 2021; 11:95. [PMID: 34022953 PMCID: PMC8141238 DOI: 10.1186/s13578-021-00604-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/04/2021] [Indexed: 11/23/2022] Open
Abstract
Background Despite their important functions and nearly ubiquitous presence in cells, an understanding of the biology of intracellular lipid droplets (LDs) in goose follicle development remains limited. An integrated study of lipidomic and transcriptomic analyses was performed in a cellular model of stearoyl-CoA desaturase (SCD) function, to determine the effects of intracellular LDs on follicle development in geese. Results Numerous internalized LDs, which were generally spherical in shape, were dispersed throughout the cytoplasm of granulosa cells (GCs), as determined using confocal microscopy analysis, with altered SCD expression affecting LD content. GC lipidomic profiling showed that the majority of the differentially abundant lipid classes were glycerophospholipids, including PA, PC, PE, PG, PI, and PS, and glycerolipids, including DG and TG, which enriched glycerophospholipid, sphingolipid, and glycerolipid metabolisms. Furthermore, transcriptomics identified differentially expressed genes (DEGs), some of which were assigned to lipid-related Gene Ontology slim terms. More DEGs were assigned in the SCD-knockdown group than in the SCD-overexpression group. Integration of the significant differentially expressed genes and lipids based on pathway enrichment analysis identified potentially targetable pathways related to glycerolipid/glycerophospholipid metabolism. Conclusions This study demonstrated the importance of lipids in understanding follicle development, thus providing a potential foundation to decipher the underlying mechanisms of lipid-mediated follicle development. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00604-6.
Collapse
Affiliation(s)
- Xin Yuan
- Country Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Shenqiang Hu
- Country Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Liang Li
- Country Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Chunchun Han
- Country Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Hehe Liu
- Country Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Hua He
- Country Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Lu Xia
- Country Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Jiwei Hu
- Country Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Bo Hu
- Country Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Mingxia Ran
- Country Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Yali Liu
- Country Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Jiwen Wang
- Country Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.
| |
Collapse
|