1
|
La Y, Li Z, Ma X, Bao P, Chu M, Guo X, Liang C, Yan P. Age-dependent changes in the expression and localization of LYZL4, LYZL6 and PCNA during testicular development in the Ashidan yak. Anim Biotechnol 2024; 35:2344213. [PMID: 38669244 DOI: 10.1080/10495398.2024.2344213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Lysozyme like 4 (LYZL4), lysozyme like 6 (LYZL6) and proliferating cell nuclear antigen (PCNA) are implicated in the regulation of testicular function, but there was no research reported available on the expression patterns of LYZL4, LYZL6 and PCNA genes at different developmental stages of yak testes. In this study, we used the qRT-PCR, western blotting and immunohistochemistry estimated the LYZL4, LYZL6 and PCNA gene expression and protein lo-calization at different developmental stages of yak testes. The qPCR results showed that the mRNA expression of LYZL4, LYZL6 and PCNA genes significantly increased with age in the testes of yaks. Western blot results showed that the protein abundance of LYZL4, LYZL6 and PCNA in yak testes was significantly higher after puberty than before puberty. Furthermore, the results of immunohistochemistry indicated that LYZL4, LYZL6 and PCNA may be involved in the regulation of spermatogonia proliferation and Leydig cell function in immature testis. In adult yak testes, LYZL4, LYZL6 and PCNA may involve in the development of round spermatids and primary spermatocytes during testicular development. Our results indicated that LYZL4, LYZL6 and PCNA may be involved in the development of Sertoli cells, Leydig cells and gonocytes in yak testes.
Collapse
Affiliation(s)
- Yongfu La
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Zhongbang Li
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Xiaoming Ma
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Pengjia Bao
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Min Chu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Xian Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Chunnian Liang
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Ping Yan
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| |
Collapse
|
2
|
Rother F, Depping R, Popova E, Huegel S, Heiler A, Hartmann E, Bader M. Karyopherin α2 is a maternal effect gene required for early embryonic development and female fertility in mice. FASEB J 2024; 38:e23623. [PMID: 38656660 DOI: 10.1096/fj.202301572rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/26/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
The nuclear transport of proteins plays an important role in mediating the transition from egg to embryo and distinct karyopherins have been implicated in this process. Here, we studied the impact of KPNA2 deficiency on preimplantation embryo development in mice. Loss of KPNA2 results in complete arrest at the 2cell stage and embryos exhibit the inability to activate their embryonic genome as well as a severely disturbed nuclear translocation of Nucleoplasmin 2. Our findings define KPNA2 as a new maternal effect gene.
Collapse
Affiliation(s)
- Franziska Rother
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
| | | | - Elena Popova
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Stefanie Huegel
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
| | - Ariane Heiler
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Enno Hartmann
- Institute for Biology, University of Lübeck, Lübeck, Germany
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
3
|
Li Q, Mu L, Yang X, Wang G, Liang J, Wang S, Zhang H, Li Z. Discovery of Oogenesis Biomarkers from Mouse Oocytes Using a Single-Cell Proteomics Approach. J Proteome Res 2023. [PMID: 37154469 DOI: 10.1021/acs.jproteome.3c00157] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We established an efficient and simplified single-cell proteomics (ES-SCP) workflow to realize proteomics profiling at the single-oocyte level. With the ES-SCP workflow, we constructed a deep coverage proteome library during oocyte maturation, which contained more than 6000 protein groups, and identified and quantified more than 4000 protein groups from a pool of only 15 oocytes at germinal vesicle (GV), GV breakdown (GVBD), and metaphase II (MII) stages. More than 1500 protein groups can be identified from single oocytes. We found that marker proteins including maternal factors and mRNA regulators, such as ZAR1, TLE6, and BTG4, showed significant variations in abundance during oocyte maturation, and it was discovered that maternal mRNA degradation was indispensable during oocyte maturation. Proteomics analysis from single oocytes revealed that changes in antioxidant factors, maternal factors, mRNA stabilization, and energy metabolism were the factors that affect the oocyte quality during ovary aging. Our data laid the foundation for future innovations in assisted reproduction.
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lu Mu
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xuebing Yang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ge Wang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jing Liang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shaolin Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hua Zhang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhen Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Liman N, Kuzkale M. Heat shock proteins exhibit distinct spatiotemporal expression patterns in the domestic cat ( Felis catus) ovary during the oestrous cycle. Reprod Fertil Dev 2022; 34:498-515. [PMID: 35115081 DOI: 10.1071/rd21155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 12/12/2021] [Indexed: 11/23/2022] Open
Abstract
Heat shock proteins (HSP) are significant regulators of cell proliferation, differentiation and apoptosis. HSP participate in ovarian physiology through proliferative and apoptotic mechanisms and the modulation of sex steroid receptor functions. We investigated whether the expression and localisation patterns of HSP in the domestic cat ovary vary with the oestrous cycle stage. Immunohistochemical analysis revealed cell type-specific localisation patterns of HSPD1/HSP60, HSPA/HSP70, HSPC/HSP90 and HSPH/HSP105 in several ovarian cells of the domestic cat, including oocytes, follicular (granulosa and theca cells) and luteal cells, stromal and thecal interstitial cells, stromal cells, and vascular endothelial and smooth muscle cells during the anoestrous, follicular and luteal phases of the oestrous cycle. Western blot results showed that the expression of three HSP (HSPD1/HSP60, HSPA/HSP70 and HSPH/HSP105) varied with the oestrous cycle stage. While the maximal expression of HSPD1/HSP60 and HSPH/HSP105 occurred during the luteal phase, the expression of HSPA/HSP70 was minimal. The expressions of HSPA/HSP70 and HSPH/HSP105 were low during the follicular phase compared to the anoestrous phase. In conclusion, the alterations that occur in the expression of HSP in the domestic cat ovary during the different stages of the oestrous cycle imply that these proteins participate in the regulation of ovarian function under different physiological conditions.
Collapse
Affiliation(s)
- Narin Liman
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Erciyes, 38039, Kayseri, Turkey
| | - Murat Kuzkale
- Republic of Turkey Minister of Agriculture and Forestry, Afyonkarahisar Food Control Laboratory Directorate, 03100, Afyonkarahisar, Turkey
| |
Collapse
|
5
|
Jia B, Xiang D, Shao Q, Hong Q, Quan G, Wu G. Proteomic Exploration of Porcine Oocytes During Meiotic Maturation in vitro Using an Accurate TMT-Based Quantitative Approach. Front Vet Sci 2022; 8:792869. [PMID: 35198619 PMCID: PMC8859466 DOI: 10.3389/fvets.2021.792869] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/20/2021] [Indexed: 01/19/2023] Open
Abstract
The dynamic changes in protein expression are well known to be required for oocyte meiotic maturation. Although proteomic analysis has been performed in porcine oocytes during in vitro maturation, there is still no full data because of the technical limitations at that time. Here, a novel tandem mass tag (TMT)-based quantitative approach was used to compare the proteomic profiles of porcine immature and in vitro mature oocytes. The results of our study showed that there were 763 proteins considered with significant difference−450 over-expressed and 313 under-expressed proteins. The GO and KEGG analyses revealed multiple regulatory mechanisms of oocyte nuclear and cytoplasmic maturation such as spindle and chromosome configurations, cytoskeletal reconstruction, epigenetic modifications, energy metabolism, signal transduction and others. In addition, 12 proteins identified with high-confidence peptide and related to oocyte maturation were quantified by a parallel reaction monitoring technique to validate the reliability of TMT results. In conclusion, we provided a detailed proteomics dataset to enrich the understanding of molecular characteristics underlying porcine oocyte maturation in vitro.
Collapse
Affiliation(s)
- Baoyu Jia
- Key Laboratory of Animal Gene Editing and Animal Cloning in Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Decai Xiang
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Qingyong Shao
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Qionghua Hong
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Guobo Quan
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
- *Correspondence: Guobo Quan
| | - Guoquan Wu
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Yunnan Animal Science and Veterinary Institute, Kunming, China
- Guoquan Wu
| |
Collapse
|
6
|
Bartkova A, Morovic M, Strejcek F, Murin M, Benc M, Percinic FP, Laurincik J. Characterization of porcine oocytes stained with Lissamine Green B and their developmental potential in vitro. Anim Reprod 2020; 17:e20200533. [PMID: 33791031 PMCID: PMC7995255 DOI: 10.1590/1984-3143-ar2020-0533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Traditional methods for the evaluation of oocyte quality are based on morphological classification of the follicle, cumulus-oocyte complex, polar body and meiotic spindle. This study is focused on the differences between the morphological assessment of oocyte quality, the assessment based on Lissamine Green B (LB) staining and the analysis of oocytes using a proteomic approach. We evaluated the effectiveness of electrochemical and chemical parthenogenetic activation under our laboratory conditions and evaluated the applicability of Lissamine Green B staining of cumulus-oocyte complexes (COCs) as a non-invasive method for predicting the maturational and developmental competence of porcine oocytes cultured in vitro. We determined that chemical parthenogenetic activation using ionomycin and 6-dimethylaminopurine was slightly more effective than electrochemical activation. After oocyte selection according to LB staining, we found significant differences (P<0.05) between the LB- group and LB+ group and the control group in their maturation, cleavage rate and rate of blastocysts. Proteomic analyses identified a selection of proteins that were differentially expressed in each group of analysed oocytes. Oocytes of the LB- group exhibited an increased variability of proteins involved in transcription regulation, proteosynthesis and the protein folding crucial for oocyte maturation and further embryonic development. These results found a better competence of LB- oocytes in maturation, cleavage and ability to reach the blastocyst stage.
Collapse
Affiliation(s)
- Alexandra Bartkova
- Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, Slovak Republic.,Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czech Republic
| | - Martin Morovic
- Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, Slovak Republic
| | - Frantisek Strejcek
- Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, Slovak Republic
| | - Matej Murin
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czech Republic
| | - Michal Benc
- Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, Slovak Republic
| | - Florina Popovska Percinic
- Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, Skopje, Republic of North Macedonia
| | - Jozef Laurincik
- Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, Slovak Republic.,Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czech Republic
| |
Collapse
|
7
|
Pu L, Shahzad Q, Chen F, Yao S, Tang Y, Chen D, Yu K, Xie L, Xu H, Zhang M, Lu Y. Proteomic analysis demonstrates that parthenogenetically activated swamp buffalo embryos have dysregulated energy metabolism. Reprod Domest Anim 2020; 55:1764-1773. [PMID: 33031588 DOI: 10.1111/rda.13838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/02/2020] [Indexed: 01/06/2023]
Abstract
The comprehensive understanding of early embryo development is essential to optimize in vitro culture conditions. Protein expression landscape of parthenogenetically produced embryo remains unexplored. This study aimed to investigate the protein expression dynamics with a particular focus on energy metabolism throughout the early developmental stages of parthenogenetic buffalo embryos. For this purpose, we performed iTRAQ-based quantitative mass spectrometry and identified 280 proteins common in all stages. A total of 933 proteins were identified during the proteomics analysis. The data depicted that morula and blastocyst had distinct protein expression dynamics as compared to 2- to 16-cell-stage embryo. KEGG pathway analysis showed 23 proteins belonging to energy metabolism appeared in the data. Study of energy metabolism-related protein's expression pattern demonstrated that there was asynchrony in proteins related to glycolysis throughout the examined developmental stages. The expression pattern of pyruvate kinase mutase (PKM), an essential protein of glycolysis, indicated a slightly decreasing trend from 2-cell-stage embryo to blastocyst, and it was supported by expression of proteins involved in lactate production (LDHA and LDHB) suggesting the decreasing rate of aerobic glycolysis (Warburg Effect) at morula and blastocyst stage. The increased Warburg Effect is considered as the hallmark of proliferating cells or embryo at the blastocyst stage. Furthermore, the proteins involved in the citric acid cycle also showed down-regulation at the blastocyst stage, indicating a lesser role of oxidative phosphorylation at this stage. Therefore, it could be divulged from the study that there may be an irregular pattern of energy metabolism in early parthenogenetic embryos. Further studies are recommended to understand this phenomenon.
Collapse
Affiliation(s)
- Liping Pu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Qaisar Shahzad
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Fumen Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Shun Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Yuyan Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Dongrong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Kai Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Long Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Huiyan Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Ming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| |
Collapse
|
8
|
Cao S, Huang S, Guo Y, Zhou L, Lu Y, Lai S. Proteomic-based identification of oocyte maturation-related proteins in mouse germinal vesicle oocytes. Reprod Domest Anim 2020; 55:1607-1618. [PMID: 32920902 DOI: 10.1111/rda.13819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 09/02/2020] [Indexed: 12/25/2022]
Abstract
Oocyte proteins play an important role in oocyte maturation, fertilization and embryonic development. However, the protein composition of mouse germinal vesicle (GV) oocytes is still unclear. Using one-dimensional Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (1D SDS-PAGE) and Reverse-phase liquid chromatography tandem mass spectrometry (RP-LC-MS/MS), we constructed a protein profile of mouse GV oocytes. First, our proteomics profile identified 1,405 different proteins from 11,000 mouse GV oocytes lacking zona pellucida. Second, with detailed bioinformatics analysis, a group of proteins that play an essential role in oocyte maturation was screened. In addition, the expression and localization of suppressor of G2 allele of skp1(SUGT1, also called SGT1), heterogeneous nuclear ribonucleoprotein K (Hnrpk), Seruin, Cullin1(Clu1) and nuclear distribution protein C (Nudc) in mouse ovaries and early embryos were also captured and investigated in this study. Moreover, the protein profile was submitted to the Proteomics Identifications Database (PRIDE) and is available via ProteomeXchange with the identifier PXD014314. Our research provides valuable resources for the study of oocyte proteins and oocyte maturation and helps to clarify the mechanisms of oocyte maturation.
Collapse
Affiliation(s)
- Senyang Cao
- Center of Reproductive Medicine, Huai'an Maternity and Child Health Care Center, Huai'an, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Shaoping Huang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Histology and Embryology, Medical School, Southeast University, Nanjing, China
| | - Ying Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Lin Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Ying Lu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Shanshan Lai
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
9
|
Gegenfurtner K, Flenkenthaler F, Fröhlich T, Wolf E, Arnold GJ. The impact of transcription inhibition during in vitro maturation on the proteome of bovine oocytes†. Biol Reprod 2020; 103:1000-1011. [PMID: 32856698 DOI: 10.1093/biolre/ioaa149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/21/2020] [Accepted: 08/27/2020] [Indexed: 12/23/2022] Open
Abstract
Proper oocyte maturation is a prerequisite for successful reproduction and requires the resumption of meiosis to the metaphase II stage (MII). In bovine oocytes, nuclear maturation has been shown to occur in in vitro maturing cumulus-enclosed oocytes (COCs) in the absence of transcription, but their developmental capacity is reduced compared to transcriptionally competent COCs. To assess the impact of transcription during in vitro maturation of bovine COCs on the quantitative oocyte proteome, a holistic nano-LC-MS/MS analysis of germinal vesicle oocytes and MII oocytes matured with or without addition of the transcription inhibitor actinomycin D (ActD) was carried out. Analyzing eight biological replicates for each of the three groups, a total of 2018 proteins was identified. These could be clearly classified into proteins depending or not depending on transcription during oocyte maturation. Proteins whose abundance increased after maturation irrespective of transcription inhibition - and hence independent of transcription - were related to the cell cycle, reflecting the progression of meiosis, and to cellular component organization, which is crucial for cytoplasmic maturation. In contrast, transcription-dependent proteins were associated with cell-cell adhesion and translation. Since a high rate of protein synthesis in oocytes has been shown to correlate with their developmental competence, oocyte maturation in transcriptionally impaired COCs is apparently disturbed. Our experiments reveal that impaired transcription during in vitro maturation of COCs has a substantial effect on specific components of the oocyte proteome, and that transcription is required for specific classes of oocyte proteins predominantly involved in translation.
Collapse
Affiliation(s)
- Katrin Gegenfurtner
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Germany
| | - Florian Flenkenthaler
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Germany
| | - Eckhard Wolf
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Germany.,Department of Veterinary Sciences, Chair for Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Germany.,Center for Innovative Medical Models (CiMM), LMU Munich, Germany
| | - Georg J Arnold
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Germany
| |
Collapse
|
10
|
Shahzad Q, Pu L, Ahmed Wadood A, Waqas M, Xie L, Shekhar Pareek C, Xu H, Liang X, Lu Y. Proteomics Analysis Reveals that Warburg Effect along with Modification in Lipid Metabolism Improves In Vitro Embryo Development under Low Oxygen. Int J Mol Sci 2020; 21:E1996. [PMID: 32183390 PMCID: PMC7139666 DOI: 10.3390/ijms21061996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 01/13/2023] Open
Abstract
The molecular mechanism regulating embryo development under reduced oxygen tension remains elusive. This study aimed to identify the molecular mechanism impacting embryo development under low oxygen conditions. Buffalo embryos were cultured under 5% or 20% oxygen and were evaluated according to their morphological parameters related to embryo development. The protein profiles of these embryos were compared using iTRAQ-based quantitative proteomics. Physiological O2 (5%) significantly promoted blastocyst yield, hatching rate, embryo quality and cell count as compared to atmospheric O2 (20%). The embryos in the 5% O2 group had an improved hatching rate of cryopreserved blastocysts post-warming (p < 0.05). Comparative proteome profiles of hatched blastocysts cultured under 5% vs. 20% O2 levels identified 43 differentially expressed proteins (DEPs). Functional analysis indicated that DEPs were mainly associated with glycolysis, fatty acid degradation, inositol phosphate metabolism and terpenoid backbone synthesis. Our results suggest that embryos under physiological oxygen had greater developmental potential due to the pronounced Warburg Effect (aerobic glycolysis). Moreover, our proteomic data suggested that higher lipid degradation, an elevated cholesterol level and a higher unsaturated to saturated fatty acid ratio might be involved in the better cryo-survival ability reported in embryos cultured under low oxygen. These data provide new information on the early embryo protein repertoire and general molecular mechanisms of embryo development under varying oxygen levels.
Collapse
Affiliation(s)
- Qaisar Shahzad
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530000, China; (Q.S.); (L.P.); (A.A.W.); (M.W.); (L.X.)
| | - Liping Pu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530000, China; (Q.S.); (L.P.); (A.A.W.); (M.W.); (L.X.)
| | - Armughan Ahmed Wadood
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530000, China; (Q.S.); (L.P.); (A.A.W.); (M.W.); (L.X.)
| | - Muhammad Waqas
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530000, China; (Q.S.); (L.P.); (A.A.W.); (M.W.); (L.X.)
| | - Long Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530000, China; (Q.S.); (L.P.); (A.A.W.); (M.W.); (L.X.)
| | - Chandra Shekhar Pareek
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland;
- Division of Functional genomics in biological and biomedical research, Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Huiyan Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530000, China; (Q.S.); (L.P.); (A.A.W.); (M.W.); (L.X.)
| | - Xianwei Liang
- Guangxi Key Laboratory of Buffalo Genetics and Breeding, Buffalo Research Institute, Chinese 10 Academy of Agriculture Science, Nanning 530001, China;
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530000, China; (Q.S.); (L.P.); (A.A.W.); (M.W.); (L.X.)
| |
Collapse
|
11
|
Jiao Y, Gao B, Wang G, Li H, Ahmed JZ, Zhang D, Ye S, Liu S, Li M, Shi D, Huang B. The key long non-coding RNA screening and validation between germinal vesicle and metaphase II of porcine oocyte in vitro maturation. Reprod Domest Anim 2020; 55:351-363. [PMID: 31903647 DOI: 10.1111/rda.13620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/30/2019] [Indexed: 01/15/2023]
Abstract
Oocyte maturation plays a vitally important role in the reproduction of pigs. However, the roles of messenger RNAs (mRNAs) and long non-coding RNAs (lncRNAs) in the developmental process of porcine oocyte maturation are still largely unclear. In this study, a transcriptome analysis of germinal vesicle (GV) and metaphase II (MII) of oocytes from Chinese Duroc pigs was performed. A total of 1,753,030 and 2,486 differentially expressed (DE) mRNAs, 22,811 and 9,868 DE lncRNAs were identified between GV and MII stages, respectively. Furthermore, functional enrichment analysis showed that the common DE mRNAs and DE lncRNAs during the process of maturation were mainly involved in biological process and cellular components. Our study provides new insights of the expression changes of mRNAs and lncRNAs during GV and MII stages, which might contribute to the maturation of oocytes. These results greatly improve our understanding of the molecular mechanisms regulating the maturation of oocytes in pigs.
Collapse
Affiliation(s)
- Yafei Jiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,School of Animal Science and Technology, Guangxi University, Nanning, China
| | - Bangjun Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,School of Animal Science and Technology, Guangxi University, Nanning, China.,Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Guodong Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,School of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,School of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jam Z Ahmed
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,School of Animal Science and Technology, Guangxi University, Nanning, China
| | - Dandan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,School of Animal Science and Technology, Guangxi University, Nanning, China
| | - Sheng Ye
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,School of Animal Science and Technology, Guangxi University, Nanning, China
| | - Shulin Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,School of Animal Science and Technology, Guangxi University, Nanning, China
| | - Mengmei Li
- School of Animal Science and Technology, Guangxi University, Nanning, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,School of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ben Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China.,School of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
12
|
Lee PC, Wildt DE, Comizzoli P. Proteomic analysis of germinal vesicles in the domestic cat model reveals candidate nuclear proteins involved in oocyte competence acquisition. Mol Hum Reprod 2019; 24:14-26. [PMID: 29126204 DOI: 10.1093/molehr/gax059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/04/2017] [Indexed: 12/14/2022] Open
Abstract
STUDY QUESTION Do nuclear proteins in the germinal vesicle (GV) contribute to oocyte competence acquisition during folliculogenesis? SUMMARY ANSWER Proteomic analysis of GVs identified candidate proteins for oocyte competence acquisition, including a key RNA processing protein-heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2B1). WHAT IS KNOWN ALREADY The domestic cat GV, which is physiologically similar to the human GV, gains the intrinsic ability to resume meiosis and support early embryo development during the pre-antral-to-antral follicle transition. However, little is known about nuclear proteins that contribute to this developmental process. STUDY DESIGN SIZE, DURATION GVs were enriched from pre-antral (incompetent) and antral (competent) follicles from 802 cat ovaries. Protein lysates were subjected to quantitative proteomic analysis to identify differentially expressed proteins in GVs from the two follicular categories. PARTICIPANTS/MATERIALS, SETTING, METHODS Two biological replicates (from independent pools of ovaries) of pre-antral versus antral samples were labeled by tandem mass tags and then assessed by liquid chromatography-tandem mass spectrometry. Proteomic data were analyzed according to gene ontology and a protein-protein interaction network. Immunofluorescent staining and protein inhibition assays were used for validation. MAIN RESULTS AND THE ROLE OF CHANCE A total of 174 nuclear proteins was identified, with 54 being up-regulated and 22 down-regulated (≥1.5-fold) after antrum formation. Functional protein analysis through gene ontology over-representation tests revealed that changes in molecular network within the GVs during this transitional phase were related to chromatin reorganization, gene transcription, and maternal RNA processing and storage. Protein inhibition assays verified that hnRNPA2B1, a key nuclear protein identified, was required for oocyte meiotic maturation and subsequent blastocyst formation. LARGE SCALE DATA Data are available via ProteomeXchange with identifier PXD007211. LIMITATIONS REASONS FOR CAUTION Proteins identified by proteomic comparison may (i) be involved in processes other than competence acquisition during the pre-antral-to-antral transition or (ii) be co-expressed in other macrostructures besides the GV. Expressional and functional validations should be performed for candidate proteins before downstream application. WIDER IMPLICATIONS OF THE FINDINGS Collective results generated a blueprint to better understand the molecular mechanisms involved in GV competence acquisition and identified potential nuclear competence markers for human fertility preservation. STUDY FUNDING AND COMPETING INTEREST(S) Funded by the National Center for Research Resources (R01 RR026064), a component of the National Institutes of Health (NIH) and currently by the Office of Research Infrastructure Programs/Office of the Director (R01 OD010948). The authors declare that there is no conflict of interest.
Collapse
Affiliation(s)
- P-C Lee
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC 20008, USA
| | - D E Wildt
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC 20008, USA
| | - P Comizzoli
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC 20008, USA
| |
Collapse
|
13
|
Liu YH, Liu XM, Wang PC, Yu XX, Miao JK, Liu S, Wang YK, Du ZQ, Yang CX. Heat shock protein 90α couples with the MAPK-signaling pathway to determine meiotic maturation of porcine oocytes. J Anim Sci 2018; 96:3358-3369. [PMID: 29800308 DOI: 10.1093/jas/sky213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/24/2018] [Indexed: 12/20/2022] Open
Abstract
Heat shock protein 90 (Hsp90) functions as a molecular chaperone in its interaction with clients to influence multiple cellular and physiological processes. However, our current understanding on Hsp90's relationship with mammalian oocyte maturation is still very limited. Here, we aimed to investigate Hsp90's effect on pig oocyte meiotic maturation. Endogenous Hsp90α was constantly expressed at both mRNA and protein levels in porcine maturing oocytes. Addition of 2 µM 17-allylamino-17-demethoxygeldanamycin (17-AAG), the Hsp90 inhibitor, to in vitro mature cumulus-oocyte complexes (COC) significantly decreased Hsp90α protein level (P < 0.05), delayed germinal vesicle breakdown (GVBD) (P < 0.05), and impeded the first polar body (PB1) extrusion (P < 0.01) of porcine oocytes. 2 µM 17-AAG treatment during in vitro maturation also decreased the subsequent development competence as indicated by the lower cleavage (P < 0.001) and higher fragmentation (P < 0.001) rates of parthenotes, whereas no effects on the percentage and average cell number of blastocysts were found. Immunodepletion of Hsp90α by antibody microinjection into porcine oocytes at germinal vesicle and metaphase II stages induced similar defects of meiotic maturation and parthenote development, to that resulted from 2 µM inhibitor 17-AAG. For oocytes treated by 2 µM 17-AAG, the cytoplasm and membrane actin levels were weakened (P < 0.01), and the spindle assembly was disturbed (P < 0.05), due to decreased p-ERK1/2 level (P < 0.05). However, the mitochondrial function and early apoptosis were not affected, as demonstrated by rhodamine 123 staining and Annexin V assays. Our findings indicate that Hsp90α can couple with mitogen-activated protein kinase to regulate cytoskeletal structure and orchestrate meiotic maturation of porcine oocytes.
Collapse
Affiliation(s)
- Yun-Hua Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiao-Man Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Pei-Chao Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiao-Xia Yu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jia-Kun Miao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shuai Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yan-Kui Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhi-Qiang Du
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Cai-Xia Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
14
|
Chen F, Fu Q, Pu L, Zhang P, Huang Y, Hou Z, Xu Z, Chen D, Huang F, Deng T, Liang X, Lu Y, Zhang M. Integrated Analysis of Quantitative Proteome and Transcriptional Profiles Reveals the Dynamic Function of Maternally Expressed Proteins After Parthenogenetic Activation of Buffalo Oocyte. Mol Cell Proteomics 2018; 17:1875-1891. [PMID: 30002204 PMCID: PMC6166679 DOI: 10.1074/mcp.ra118.000556] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/16/2018] [Indexed: 01/09/2023] Open
Abstract
Maternal-effect genes are especially critical for early embryonic development after fertilization and until massive activation of the embryonic genome occurs. By applying a tandem mass tag (TMT)-labeled quantitative proteomics combined with RNA sequencing approach, the proteome of the buffalo was quantitatively analyzed during parthenogenesis of mature oocytes and the two-cell stage embryo. Of 1908 quantified proteins, 123 differed significantly. The transcriptome was analyzed eight stages (GV, MII, 2-cell, 4-cell, 8-cell, 16-cell, morula, blastocyst) of Buffalo using the RNA sequencing approach, and a total of 3567 unique genes were identified to be differently expressed between all consecutive stages of pre-implantation development. Validation of proteomics results (TUBB3, CTNNA1, CDH3, MAP2K1), which are involved in tight junction and gap junction, revealing that the maternal expression of the proteins possibly plays a role in the formation of cellular junctions firstly after parthenogenetic activation. Correlation and hierarchical analyses of transcriptional profiles and the expression of NPM2 and NLRP5 mRNA of buffalo in vitro developed oocytes and parthenogenetic embryos indicated that the "maternal-to-zygotic transition" (MZT) process might exist in the model of parthenogenesis, which is similar to a normally fertilized embryo, and may occur between the 8-cell to 16-cell stage. These data provide a rich resource for further studies on maternal proteins and genes and are conducive to improving nuclear transfer technology.
Collapse
Affiliation(s)
- Fumei Chen
- From the ‡State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China
| | - Qiang Fu
- From the ‡State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China
| | - Liping Pu
- From the ‡State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China
| | - Pengfei Zhang
- From the ‡State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China
| | - Yulin Huang
- From the ‡State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China
| | - Zhen Hou
- From the ‡State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China
| | - Zhuangzhuang Xu
- From the ‡State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China
| | - Dongrong Chen
- From the ‡State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China
| | - Fengling Huang
- From the ‡State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China
| | - Tingxian Deng
- §Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Buffalo Research Institute, Chinese Academy of Agricultural Science, Nanning, Guangxi 530001, China
| | - Xianwei Liang
- §Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Buffalo Research Institute, Chinese Academy of Agricultural Science, Nanning, Guangxi 530001, China
| | - Yangqing Lu
- From the ‡State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China;
| | - Ming Zhang
- From the ‡State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China;
| |
Collapse
|
15
|
Huang X, Huan P, Liu B. A comparative proteomic analysis reveals important proteins for the fertilization and early embryonic development of the oyster Crassostrea gigas. Proteomics 2017; 17. [PMID: 27880033 DOI: 10.1002/pmic.201600251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 11/13/2016] [Accepted: 11/15/2016] [Indexed: 11/06/2022]
Abstract
Molluscan development involves important features that are important to understanding not only molluscan ontogeny but also animal evolution. To gain insight into the gamete proteome and protein function in fertilization and early development, we analyzed the proteomes of unfertilized oocytes and early embryos (2/4-cell stage) of the Pacific oyster, Crassostrea gigas. An oocyte reference map containing 116 protein spots, of which 69 were identified, revealed a high abundance of vitellogenin-derived protein spots. The differentially regulated protein spots during fertilization were screened using comparative proteomic approaches. In total, 18 differentially regulated protein spots were screened, and 15 of these were identified and divided into three groups. The proteins belonging to the first group function in energy supply and antioxidation and are proposed to ensure successful fertilization by regulating the levels of adenosine triphosphate, resisting oxidative stress, and preventing polyspermy. The proteins of the second group are associated with protein synthesis and modification, reflecting active protein synthesis after fertilization. The three proteins belonging to the final group are hypothesized to function in the regulation of embryonic development through the establishment of cell polarity and modulation of methylation reactions in nuclei. These results will enhance our knowledge of molluscan fertilization and development.
Collapse
Affiliation(s)
- Xiaohong Huang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Pin Huan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P. R. China
| | - Baozhong Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P. R. China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, P. R. China
| |
Collapse
|
16
|
Labas V, Teixeira-Gomes AP, Bouguereau L, Gargaros A, Spina L, Marestaing A, Uzbekova S. Intact cell MALDI-TOF mass spectrometry on single bovine oocyte and follicular cells combined with top-down proteomics: A novel approach to characterise markers of oocyte maturation. J Proteomics 2017; 175:56-74. [PMID: 28385661 DOI: 10.1016/j.jprot.2017.03.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 02/23/2017] [Accepted: 03/31/2017] [Indexed: 12/18/2022]
Abstract
Intact cell MALDI-TOF mass spectrometry (ICM-MS) was adapted to bovine follicular cells from individual ovarian follicles to obtain the protein/peptide signatures (<17kDa) of single oocytes, cumulus cells (CC) and granulosa cells (GC), which shared a total of 439 peaks. By comparing the ICM-MS profiles of single oocytes and CC before and after in vitro maturation (IVM), 71 different peaks were characterised, and their relative abundance was found to vary depending on the stage of oocyte meiotic maturation. To identify these endogenous biomolecules, top-down workflow using high resolution MS/MS (TD HR-MS) was performed on the protein extracts from oocytes, CC and GC. The TD HR-MS proteomic approach allowed for: (1) identification of 386 peptide/proteoforms encoded by 194 genes; and (2) characterisation of proteolysis products likely resulting from the action of kallikreins and caspases. In total, 136 peaks observed by ICM-MS were annotated by TD HR-MS (ProteomeXchange PXD004892). Among these, 16 markers of maturation were identified, including IGF2 binding protein 3 and hemoglobin B in the oocyte, thymosins beta-4 and beta-10, histone H2B and ubiquitin in CC. The combination of ICM-MS and TD HR-MS proved to be a suitable strategy to identify non-invasive markers of oocyte quality using limited biological samples. BIOLOGICAL SIGNIFICANCE Intact cell MALDI-TOF mass spectrometry on single oocytes and their surrounding cumulus cells, coupled to an optimised top-down HR-MS proteomic approach on ovarian follicular cells, was used to identify specific markers of oocyte meiotic maturation represented by whole low molecular weight proteins or products of degradation by specific proteases.
Collapse
Affiliation(s)
- Valérie Labas
- UMR PRC, INRA 85, CNRS, Université de Tours, IFCE, 37380 Nouzilly, France; INRA, Plateforme d'Analyse Intégrative des Biomolécules, Laboratoire de Spectrométrie de Masse, 37380 Nouzilly, France
| | - Ana-Paula Teixeira-Gomes
- UMR ISP, INRA, Université de Tours, 37380 Nouzilly, France; INRA, Plateforme d'Analyse Intégrative des Biomolécules, Laboratoire de Spectrométrie de Masse, 37380 Nouzilly, France
| | - Laura Bouguereau
- UMR ISP, INRA, Université de Tours, 37380 Nouzilly, France; INRA, Plateforme d'Analyse Intégrative des Biomolécules, Laboratoire de Spectrométrie de Masse, 37380 Nouzilly, France
| | - Audrey Gargaros
- UMR PRC, INRA 85, CNRS, Université de Tours, IFCE, 37380 Nouzilly, France; INRA, Plateforme d'Analyse Intégrative des Biomolécules, Laboratoire de Spectrométrie de Masse, 37380 Nouzilly, France
| | - Lucie Spina
- INRA, Plateforme d'Analyse Intégrative des Biomolécules, Laboratoire de Spectrométrie de Masse, 37380 Nouzilly, France; INSA/CNRS 5504 - UMR INSA/INRA 792, Toulouse, France
| | - Aurélie Marestaing
- UMR PRC, INRA 85, CNRS, Université de Tours, IFCE, 37380 Nouzilly, France; INRA, Plateforme d'Analyse Intégrative des Biomolécules, Laboratoire de Spectrométrie de Masse, 37380 Nouzilly, France
| | - Svetlana Uzbekova
- UMR PRC, INRA 85, CNRS, Université de Tours, IFCE, 37380 Nouzilly, France; INRA, Plateforme d'Analyse Intégrative des Biomolécules, Laboratoire de Spectrométrie de Masse, 37380 Nouzilly, France.
| |
Collapse
|
17
|
Abstract
The translationally controlled tumor protein (TCTP) is a highly conserved protein that is regulated due to a high number of extracellular stimuli. TCTP has an important role for cell cycle and normal development. On the other side, tumor reversion and malignant transformation have been associated with TCTP. TCTP has been found among the 12 genes that are differentially expressed during mouse oocyte maturation, and an overexpression of this gene was reported in a wide variety of different cancer types. Its antiapoptotic effect is indicated by the interaction with several proapoptotic proteins of the Bcl-2 family and the p53 tumor suppressor protein. In this article, we draw attention to the role of TCTP in cancer, especially, focusing on cell differentiation and tumor reversion, a biological process by which highly tumorigenic cells lose their malignant phenotype. This protein has been shown to be the most strongly downregulated protein in revertant cells compared to the parental cancer cells. Decreased expression of TCTP results either in the reprogramming of cancer cells into reversion or apoptosis. As conventional chemotherapy is frequently associated with the development of drug resistance and high toxicity, the urge for the development of new or additional scientific approaches falls into place. Differentiation therapy aims at reinducing differentiation backward to the nonmalignant cellular state. Here, different approaches have been reported such as the induction of retinoid pathways and the use of histone deacetylase inhibitors. Also, PPARγ agonists and the activation of the vitamin D receptor have been reported as potential targets in differentiation therapy. As TCTP is known as the histamine-releasing factor, antihistaminic drugs have been shown to target this protein. Antihistaminic compounds, hydroxyzine and promethazine, inhibited cell growth of cancer cells and decreased TCTP expression of breast cancer and leukemia cells. Recently, we found that two antihistaminics, levomepromazine and buclizine, inhibited cancer cell growth by direct binding to TCTP and induction of cell differentiation. These data confirmed that TCTP is an exquisite target for anticancer differentiation therapy and antihistaminics have potential to be lead compounds for the direct interaction with TCTP as new inhibitors of human TCTP and tumor growth.
Collapse
Affiliation(s)
- Ean-Jeong Seo
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | - Nicolas Fischer
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany.
| |
Collapse
|
18
|
Svoboda P, Fulka H, Malik R. Clearance of Parental Products. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 953:489-535. [DOI: 10.1007/978-3-319-46095-6_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Chen L, Zhai L, Qu C, Zhang C, Li S, Wu F, Qi Y, Lu F, Xu P, Li X, Shi D. Comparative Proteomic Analysis of Buffalo Oocytes Matured in vitro Using iTRAQ Technique. Sci Rep 2016; 6:31795. [PMID: 27561356 PMCID: PMC4999887 DOI: 10.1038/srep31795] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/26/2016] [Indexed: 12/11/2022] Open
Abstract
To investigate the protein profiling of buffalo oocytes at the germinal vesicle (GV) stage and metaphase II (MII) stage, an iTRAQ-based strategy was applied. A total of 3,763 proteins were identified, which representing the largest buffalo oocytes proteome dataset to date. Among these proteins identified, 173 proteins were differentially expressed in GV oocytes and competent MII oocytes, and 146 proteins were differentially abundant in competent and incompetent matured oocytes. Functional and KEGG pathway analysis revealed that the up-regulated proteins in competent MII oocytes were related to chromosome segregation, microtubule-based process, protein transport, oxidation reduction, ribosome, and oxidative phosphorylation, etc., in comparison with GV and incompetent MII oocytes. This is the first proteomic report on buffalo oocytes from different maturation stages and developmental competent status. These data will provide valuable information for understanding the molecular mechanism underlying buffalo oocyte maturation, and these proteins may potentially act as markers to predict developmental competence of buffalo oocyte during in vitro maturation.
Collapse
Affiliation(s)
- Lingsheng Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Linhui Zhai
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China.,Chemical Proteomics Center &State Key Laboratory of Drug Research, Shanghai Institute of Materia Medical, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chunfeng Qu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China.,Department of reproductive medicine, Hechi People's hospital of Guangxi, Hechi 547000, China
| | - Chengpu Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Sheng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Feilin Wu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Yingzi Qi
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Fenghua Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Xiangping Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| |
Collapse
|
20
|
Zygote arrest 1, nucleoplasmin 2, and developmentally associated protein 3 mRNA profiles throughout porcine embryo development in vitro. Theriogenology 2016; 86:2254-2262. [PMID: 27566850 DOI: 10.1016/j.theriogenology.2016.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/15/2016] [Accepted: 07/15/2016] [Indexed: 11/23/2022]
Abstract
Maternal effect genes (MEGs) are expressed in oocytes and embryos and play an important role in activation of the embryonic genome. An abnormality in the expression of these genes may lead to arrest of embryonic cleavage or to altered transcription of factors responsible for further embryonic development. In vitro-produced porcine embryos have a lower developmental potential than embryos produced in vivo. We hypothesized that in vitro embryo culture conditions have an effect on the expression of MEGs at various developmental stages, which may affect their developmental potential. Here, using real-time polymerase chain reaction, we examined mRNA profiles of the MEGs, zygote arrest 1 (ZAR-1), nucleoplasmin 2 (NPM2), and developmentally associated pluripotency protein 3 (DPPA3), in porcine oocytes and embryos produced in vitro and in vivo. Further, we evaluated the effect of the combined addition of EGF, interleukin 1β, and leukemia inhibitory factor to the porcine in vitro embryo production system on mRNA profiles of selected MEGs. Finally, we studied localization of the MEG protein products in in vitro-obtained oocytes and embryos using confocal microscopy. We found that the ZAR-1 mRNA profile differed throughout in vitro and in vivo embryo development. In the embryos produced in vitro, the decrease in ZAR-1 mRNA levels was observed at the 2-cell stage, whereas in in vivo embryos, ZAR-1 mRNA levels declined significantly starting at the 4-cell stage (P < 0.05). In vitro culture conditions affected transiently also DPPA3 mRNA levels at the 4-cell stage (P < 0.05). There was no difference in the NPM2 mRNA profile during in vitro and in vivo embryo development. The ZAR-1 and DPPA3 proteins were localized in the cytoplasm of the oocytes and embryos, whereas the NPM2 protein was found both in the cytoplasm and in the nucleus. All proteins were expressed until blastocyst stage. The addition of EGF and cytokines to the culture medium decreased DPPA3 mRNA levels in 8-cell embryos (P < 0.05). This study indicated that IVC conditions affect ZAR-1 mRNA levels before the 4-cell stage, which may disturb the activation of the embryonic genome in pigs. The expression of the proteins after the 4-cell to 8-cell transition indicates that these factors play a role beyond activation of the embryonic genome. Supplementation of the culture media with EGF and cytokines affects DPPA3 mRNA levels after maternal to embryonic transition.
Collapse
|
21
|
Proteomics of reproductive systems: Towards a molecular understanding of postmating, prezygotic reproductive barriers. J Proteomics 2016; 135:26-37. [DOI: 10.1016/j.jprot.2015.10.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/28/2015] [Accepted: 10/11/2015] [Indexed: 11/20/2022]
|
22
|
Comparative Proteomic Analysis of Mature and Immature Oocytes of the Swamp Buffalo (Bubalus bubalis). Int J Mol Sci 2016; 17:ijms17010094. [PMID: 26784167 PMCID: PMC4730336 DOI: 10.3390/ijms17010094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/16/2015] [Accepted: 01/08/2016] [Indexed: 01/04/2023] Open
Abstract
Maternal protein components change markedly during mammalian oogenesis. Many of these proteins have yet to be characterized and verified. In this study, a proteomics approach was used to evaluate changes in proteins during oogenesis in the Swamp Buffalo (Bubalus bubalis). Proteins from 500 immature oocytes and 500 in vitro matured oocytes were subjected to two-dimensional electrophoresis, and more than 400 spots were detected. Image analysis indicated that 17 proteins were differentially expressed between the two groups. Eight proteins were identified by mass spectrometry. In mature oocytes, three proteins were down-regulated: major vault protein (MVP), N-acetyllactosaminide β-1,6-N-acetylglucosaminyl-transferase (GCNT-2), and gem-associated protein (GEMIN)8, whereas five other proteins, heat shock protein (HSP)60, Ras-responsive element-binding protein 1 (RREB-1), heat shock cognate 71 kDa protein (HSC71), hemoglobin subunit α (HBA), and BMP-2-inducible protein kinase (BMP-2K), were up-regulated. The expression profiles of HSP60 and GEMIN8 were further verified by Western blotting. The changes in HSP60 protein expression demonstrate the increasing need for mitochondrial protein importation to facilitate macromolecular assembly during oocyte maturation. The down-regulation of GEMIN8 production implies that RNA splicing is impaired in mature oocytes.
Collapse
|
23
|
Zhao Q, Guo Z, Piao S, Wang C, An T. Discovery of porcine maternal factors related to nuclear reprogramming and early embryo development by proteomic analysis. Proteome Sci 2015; 13:18. [PMID: 26155198 PMCID: PMC4493956 DOI: 10.1186/s12953-015-0074-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/18/2015] [Indexed: 02/06/2023] Open
Abstract
Background Differentiated cell nuclei can be reprogrammed to a pluripotent state in several ways, including incubation with oocyte extracts, transfer into enucleated oocytes, and induced pluripotent stem cell technology. Nuclear transfer-mediated reprogramming has been proven to be the most efficient method. Maternal factors stored in oocytes have critical roles on nuclear reprogramming and early embryo development, but remain elusive. Results In this study, we showed most of porcine oocytes became nuclear matured at 33 h of IVM and the rate had no significant difference with oocytes at 42 h of IVM (p > 0.05). Moreover, the cleavage and blastocyst rates of SCNT and PA embryos derived from 42O were significantly higher than that of 33O (p < 0.05). But 33O could sustain IVF embryo development with higher cleavage and blastocyst rates comparing to 42O (p < 0.05). To clarify the development potential difference between 33O and 42O, 18 differentially expressed proteins were identified by proteomic analysis, and randomly selected proteins were confirmed by Western blot. Bioinformatic analysis of these proteins revealed that 33O highly synthesized proteins related to fertilization, and 42O was rich in nuclear reprogramming factors. Conclusions These results present a unique insight into maternal factors related to nuclear reprogramming and early embryo development. Electronic supplementary material The online version of this article (doi:10.1186/s12953-015-0074-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qi Zhao
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Xiangfang Dist., Harbin, Helongjiang 150040 China
| | - Zheng Guo
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Xiangfang Dist., Harbin, Helongjiang 150040 China
| | - Shanhua Piao
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Xiangfang Dist., Harbin, Helongjiang 150040 China
| | - Chunsheng Wang
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Xiangfang Dist., Harbin, Helongjiang 150040 China
| | - Tiezhu An
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Xiangfang Dist., Harbin, Helongjiang 150040 China
| |
Collapse
|
24
|
Benkhalifa M, Madkour A, Louanjli N, Bouamoud N, Saadani B, Kaarouch I, Chahine H, Sefrioui O, Merviel P, Copin H. From global proteome profiling to single targeted molecules of follicular fluid and oocyte: contribution to embryo development and IVF outcome. Expert Rev Proteomics 2015; 12:407-23. [DOI: 10.1586/14789450.2015.1056782] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Mitra A, Boroujeni MB. Application of gel-based proteomic technique in female reproductive investigations. J Hum Reprod Sci 2015; 8:18-24. [PMID: 25838744 PMCID: PMC4381377 DOI: 10.4103/0974-1208.153121] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/15/2015] [Accepted: 02/27/2015] [Indexed: 01/06/2023] Open
Abstract
Recently, gel-based proteomics has been increasingly applied to investigate proteins involved in female reproductive tract in healthy and disease states. Gel-based proteomics coupled by mass spectrometry (MS) facilitate the identification of new proteins playing roles in cellular and molecular interactions underlying female reproductive biology and it is a useful method to identify novel biomarkers of diseases by studying thousands of proteins simultaneously involved in female reproductive tract in healthy state compared to disease state. This review will discuss the best studies areas contributed to female reproductive biology in which gel-based proteomics coupled by MS has been applied to generate proteome of female reproductive tract in a healthy state.
Collapse
Affiliation(s)
- Arianmanesh Mitra
- Department of Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mandana Beigi Boroujeni
- Department of Anatomical Sciences, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
26
|
Quantitative proteomics reveals the dynamics of protein changes during Drosophila oocyte maturation and the oocyte-to-embryo transition. Proc Natl Acad Sci U S A 2014; 111:16023-8. [PMID: 25349405 DOI: 10.1073/pnas.1418657111] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The onset of development is marked by two major, posttranscriptionally controlled, events: oocyte maturation (release of the prophase I primary arrest) and egg activation (release from the secondary meiotic arrest). Using quantitative mass spectrometry, we previously described proteome remodeling during Drosophila egg activation. Here, we describe our quantitative mass spectrometry-based analysis of the changes in protein levels during Drosophila oocyte maturation. This study presents the first quantitative survey, to our knowledge, of proteome changes accompanying oocyte maturation in any organism and provides a powerful resource for identifying both key regulators and biological processes driving this critical developmental window. We show that Muskelin, found to be up-regulated during oocyte maturation, is required for timely nurse cell nuclei clearing from mature egg chambers. Other proteins up-regulated at maturation are factors needed not only for late oogenesis but also completion of meiosis and early embryogenesis. Interestingly, the down-regulated proteins are predominantly involved in RNA processing, translation, and RNAi. Integrating datasets on the proteome changes at oocyte maturation and egg activation uncovers dynamics in proteome remodeling during the change from oocyte to embryo. Notably, 66 proteins likely act uniquely during late oogenesis, because they are up-regulated at maturation and down-regulated at activation. We find down-regulation of this class of proteins to be mediated partially by APC/C(CORT), a meiosis-specific form of the E3 ligase anaphase promoting complex/cyclosome (APC/C).
Collapse
|
27
|
Li J, Huan Y, Xie B, Wang J, Zhao Y, Jiao M, Huang T, Kong Q, Liu Z. Identification and characterization of an oocyte factor required for sperm decondensation in pig. Reproduction 2014; 148:367-75. [PMID: 25030891 DOI: 10.1530/rep-14-0264] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mammalian oocytes possess factors to support fertilization and embryonic development, but knowledge on these oocyte-specific factors is limited. In the current study, we demonstrated that porcine oocytes with the first polar body collected at 33 h of in vitro maturation sustain IVF with higher sperm decondensation and pronuclear formation rates and support in vitro development with higher cleavage and blastocyst rates, compared with those collected at 42 h (P<0.05). Proteomic analysis performed to clarify the mechanisms underlying the differences in developmental competence between oocytes collected at 33 and 42 h led to the identification of 18 differentially expressed proteins, among which protein disulfide isomerase associated 3 (PDIA3) was selected for further study. Inhibition of maternal PDIA3 via antibody injection disrupted sperm decondensation; conversely, overexpression of PDIA3 in oocytes improved sperm decondensation. In addition, sperm decondensation failure in PDIA3 antibody-injected oocytes was rescued by dithiothreitol, a commonly used disulfide bond reducer. Our results collectively report that maternal PDIA3 plays a crucial role in sperm decondensation by reducing protamine disulfide bonds in porcine oocytes, supporting its utility as a potential tool for oocyte selection in assisted reproduction techniques.
Collapse
Affiliation(s)
- Jingyu Li
- Laboratory of Embryo BiotechnologyCollege of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, ChinaShandong Academy of Agricultural SciencesDairy Cattle Research Center, Jinan, Shandong Province 250100, China
| | - Yanjun Huan
- Laboratory of Embryo BiotechnologyCollege of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, ChinaShandong Academy of Agricultural SciencesDairy Cattle Research Center, Jinan, Shandong Province 250100, China
| | - Bingteng Xie
- Laboratory of Embryo BiotechnologyCollege of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, ChinaShandong Academy of Agricultural SciencesDairy Cattle Research Center, Jinan, Shandong Province 250100, China
| | - Jiaqiang Wang
- Laboratory of Embryo BiotechnologyCollege of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, ChinaShandong Academy of Agricultural SciencesDairy Cattle Research Center, Jinan, Shandong Province 250100, China
| | - Yanhua Zhao
- Laboratory of Embryo BiotechnologyCollege of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, ChinaShandong Academy of Agricultural SciencesDairy Cattle Research Center, Jinan, Shandong Province 250100, China
| | - Mingxia Jiao
- Laboratory of Embryo BiotechnologyCollege of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, ChinaShandong Academy of Agricultural SciencesDairy Cattle Research Center, Jinan, Shandong Province 250100, China
| | - Tianqing Huang
- Laboratory of Embryo BiotechnologyCollege of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, ChinaShandong Academy of Agricultural SciencesDairy Cattle Research Center, Jinan, Shandong Province 250100, China
| | - Qingran Kong
- Laboratory of Embryo BiotechnologyCollege of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, ChinaShandong Academy of Agricultural SciencesDairy Cattle Research Center, Jinan, Shandong Province 250100, China
| | - Zhonghua Liu
- Laboratory of Embryo BiotechnologyCollege of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province 150030, ChinaShandong Academy of Agricultural SciencesDairy Cattle Research Center, Jinan, Shandong Province 250100, China
| |
Collapse
|
28
|
Bouleau A, Desvignes T, Traverso JM, Nguyen T, Chesnel F, Fauvel C, Bobe J. Maternally inherited npm2 mRNA is crucial for egg developmental competence in zebrafish. Biol Reprod 2014; 91:43. [PMID: 25009208 DOI: 10.1095/biolreprod.114.119925] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The molecular mechanisms underlying and determining egg developmental competence remain poorly understood in vertebrates. Nucleoplasmin (Npm2) is one of the few known maternal effect genes in mammals, but this maternal effect has never been demonstrated in nonmammalian species. A link between developmental competence and the abundance of npm2 maternal mRNA in the egg was previously established using a teleost fish model for egg quality. The importance of maternal npm2 mRNA for egg developmental competence remains unknown in any vertebrate species. In the present study, we aimed to characterize the contribution of npm2 maternal mRNA to early developmental success in zebrafish using a knockdown strategy. We report here the oocyte-specific expression of npm2 and maternal inheritance of npm2 mRNA in zebrafish eggs. The knockdown of the protein translated from this maternal mRNA results in developmental arrest before the onset of epiboly and subsequent embryonic death, a phenotype also observed in embryos lacking zygotic transcription. Npm2 knockdown also results in impaired transcription of the first-wave zygotic genes. Our results show that npm2 is also a maternal effect gene in a nonmammalian vertebrate species and that maternally inherited npm2 mRNA is crucial for egg developmental competence. We also show that de novo protein synthesis from npm2 maternal mRNA is critical for developmental success beyond the blastula stage and required for zygotic genome activation. Finally, our results suggest that npm2 maternal mRNA is an important molecular factor of egg quality in fish and possibly in all vertebrates.
Collapse
Affiliation(s)
- Aurélien Bouleau
- INRA, LPGP UR1037 Sex differentiation and oogenesis group, Campus de Beaulieu, Rennes, France IFREMER, LALR, Palavas-Les-Flots, France
| | - Thomas Desvignes
- INRA, LPGP UR1037 Sex differentiation and oogenesis group, Campus de Beaulieu, Rennes, France IFREMER, LALR, Palavas-Les-Flots, France
| | - Juan Martin Traverso
- INRA, LPGP UR1037 Sex differentiation and oogenesis group, Campus de Beaulieu, Rennes, France
| | - Thaovi Nguyen
- INRA, LPGP UR1037 Sex differentiation and oogenesis group, Campus de Beaulieu, Rennes, France
| | | | | | - Julien Bobe
- INRA, LPGP UR1037 Sex differentiation and oogenesis group, Campus de Beaulieu, Rennes, France
| |
Collapse
|
29
|
Schwarzer C, Siatkowski M, Pfeiffer MJ, Baeumer N, Drexler HCA, Wang B, Fuellen G, Boiani M. Maternal age effect on mouse oocytes: new biological insight from proteomic analysis. Reproduction 2014; 148:55-72. [DOI: 10.1530/rep-14-0126] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The long-standing view of ‘immortal germline vs mortal soma’ poses a fundamental question in biology concerning how oocytes age in molecular terms. A mainstream hypothesis is that maternal ageing of oocytes has its roots in gene transcription. Investigating the proteins resulting from mRNA translation would reveal how far the levels of functionally available proteins correlate with mRNAs and would offer novel insights into the changes oocytes undergo during maternal ageing. Gene ontology (GO) semantic analysis revealed a high similarity of the detected proteome (2324 proteins) to the transcriptome (22 334 mRNAs), although not all proteins had a cognate mRNA. Concerning their dynamics, fourfold changes of abundance were more frequent in the proteome (3%) than the transcriptome (0.05%), with no correlation. Whereas proteins associated with the nucleus (e.g. structural maintenance of chromosomes and spindle-assembly checkpoints) were largely represented among those that change in oocytes during maternal ageing; proteins associated with oxidative stress/damage (e.g. superoxide dismutase) were infrequent. These quantitative alterations are either impoverishing or enriching. Using GO analysis, these alterations do not relate in any simple way to the classic signature of ageing known from somatic tissues. Given the lack of correlation, we conclude that proteome analysis of mouse oocytes may not be surrogated with transcriptome analysis. Furthermore, we conclude that the classic features of ageing may not be transposed from somatic tissues to oocytes in a one-to-one fashion. Overall, there is more to the maternal ageing of oocytes than mere cellular deterioration exemplified by the notorious increase of meiotic aneuploidy.
Collapse
|
30
|
Gene expression analysis of bovine oocytes at optimal coasting time combined with GnRH antagonist during the no-FSH period. Theriogenology 2014; 81:1092-100. [DOI: 10.1016/j.theriogenology.2014.01.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 01/24/2014] [Accepted: 01/26/2014] [Indexed: 11/22/2022]
|
31
|
Proteomes of animal oocytes: what can we learn for human oocytes in the in vitro fertilization programme? BIOMED RESEARCH INTERNATIONAL 2014; 2014:856907. [PMID: 24804254 PMCID: PMC3996292 DOI: 10.1155/2014/856907] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 02/13/2014] [Indexed: 12/18/2022]
Abstract
Oocytes are crucial cells for mammalian reproduction, yet the molecular principles underlying oocyte development are only partially understood. Therefore, contemporary proteomic approaches have been used increasingly to provide new insights into oocyte quality and maturation in various species such as mouse, pig, and cow. Especially, animal studies have helped in elucidating the molecular status of oocytes during in vitro maturation and other procedures of assisted reproduction. The aim of this review is to summarize the literature on mammalian oocyte proteome and secretome research in the light of natural and assisted reproduction and on lessons to be learned for human oocytes, which have so far remained inaccessible for proteome analysis.
Collapse
|
32
|
Kong Q, Xie B, Li J, Huan Y, Huang T, Wei R, Lv J, Liu S, Liu Z. Identification and characterization of an oocyte factor required for porcine nuclear reprogramming. J Biol Chem 2014; 289:6960-6968. [PMID: 24474691 PMCID: PMC3945357 DOI: 10.1074/jbc.m113.543793] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 01/26/2014] [Indexed: 01/15/2023] Open
Abstract
Nuclear reprogramming of somatic cells can be induced by oocyte factors. Despite numerous attempts, the factors responsible for successful nuclear reprogramming remain elusive. In the present study, we found that porcine oocytes with the first polar body collected at 42 h of in vitro maturation had a stronger ability to support early development of cloned embryos than porcine oocytes with the first polar body collected at 33 h of in vitro maturation. To explore the key reprogramming factors responsible for the difference, we compared proteome signatures of the two groups of oocytes. 18 differentially expressed proteins between these two groups of oocytes were discovered by mass spectrometry (MS). Among these proteins, we especially focused on vimentin (VIM). A certain amount of VIM protein was stored in oocytes and accumulated during oocyte maturation, and maternal VIM was specifically incorporated into transferred somatic nuclei during nuclear reprogramming. When maternal VIM function was inhibited by anti-VIM antibody, the rate of cloned embryos developing to blastocysts was significantly lower than that of IgG antibody-injected embryos and non-injected embryos (12.24 versus 22.57 and 21.10%; p < 0.05), but the development of in vitro fertilization and parthenogenetic activation embryos was not affected. Furthermore, we found that DNA double strand breaks dramatically increased and that the p53 pathway was activated in cloned embryos when VIM function was inhibited. This study demonstrates that maternal VIM, as a genomic protector, is crucial for nuclear reprogramming in porcine cloned embryos.
Collapse
Affiliation(s)
- Qingran Kong
- Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Bingteng Xie
- Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jingyu Li
- Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yanjun Huan
- Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Tianqing Huang
- Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Renyue Wei
- Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jiawei Lv
- Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Shichao Liu
- Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhonghua Liu
- Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
33
|
Cui J, Wu LT, Chu KH. Comparative proteomic profiling during ovarian development of the shrimp Metapenaeus ensis. Mol Biol Rep 2013; 41:519-28. [PMID: 24311308 DOI: 10.1007/s11033-013-2887-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 11/23/2013] [Indexed: 01/20/2023]
Abstract
Two-dimensional electrophoresis and mass spectrometry were used to identify proteins that are differentially expressed during ovarian maturation in Metapenaeus ensis. 87 spots with consistently significant quantitative differences (≥ 1.5-fold for vol%) among stage I, III and V ovaries were chosen for MS/MS analysis. 45 spots were significantly matched to known proteins in the database (Mascot score >40). Half of them were down-regulated, in contrast to 9 out of 45 proteins that were up-regulated as ovarian maturation proceeded. Functionally, these identified proteins could be classified into five major groups, including cytoskeleton (11 %), metabolism (18 %), signal transduction (32 %), gene expression (14 %) and immune response (7 %). Among the differentially expressed reproduction-related proteins, the mRNA expression level of cellular retinoic acid/retinol binding protein in M. ensis (MeCRABP) during ovarian maturation was further characterized by quantitative real-time PCR. It was down-regulated during ovarian maturation. In situ hybridization further revealed that MeCRABP transcript was localized in ooplasm of previtellogenic oocytes but not in vitellogenic oocytes. These results demonstrate the application of proteomic analysis for identification of proteins involved in shrimp ovarian maturation and they provide new insights into ovarian development.
Collapse
Affiliation(s)
- Ju Cui
- The Key Laboratory of Geriatrics, Beijing Hospital and Beijing Institute of Geriatrics, Ministry of Health, Da Hua Road, Beijing, 100730, China,
| | | | | |
Collapse
|
34
|
Diz AP, Dudley E, Cogswell A, MacDonald BW, Kenchington ELR, Zouros E, Skibinski DOF. Proteomic analysis of eggs from Mytilus edulis females differing in mitochondrial DNA transmission mode. Mol Cell Proteomics 2013; 12:3068-80. [PMID: 23869045 DOI: 10.1074/mcp.m113.031401] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Many bivalves have an unusual mechanism of mitochondrial DNA (mtDNA) inheritance called doubly uniparental inheritance (DUI) in which distinctly different genomes are inherited through the female (F genome) and male (M genome) lineages. In fertilized eggs that will develop into male embryos, the sperm mitochondria remain in an aggregation, which is believed to be delivered to the primordial germ cells and passed to the next generation through the sperm. In fertilized eggs that will develop into female embryos, the sperm mitochondria are dispersed throughout the developing embryo and make little if any contribution to the next generation. The frequency of embryos with the aggregated or dispersed mitochondrial type varies among females. Previous models of DUI have predicted that maternal nuclear factors cause molecular differences among unfertilized eggs from females producing embryos with predominantly dispersed or aggregated mitochondria. We test this hypothesis using females of each of the two types from a natural population. We have found small, yet detectable, differences of the predicted type at the proteome level. We also provide evidence that eggs of females giving the dispersed pattern have consistently lower expression for different proteasome subunits than eggs of females giving the aggregated pattern. These results, combined with those of an earlier study in which we used hatchery lines of Mytilus, and with a transcriptomic study in a clam that has the DUI system of mtDNA transmission, reinforce the hypothesis that the ubiquitin-proteasome system plays a key role in the mechanism of DUI and sex determination in bivalves. We also report that eggs of females giving the dispersed pattern have higher expression for arginine kinase and enolase, enzymes involved in energy production, whereas ferritin, which is involved in iron homeostasis, has lower expression. We discuss these results in the context of genetic models for DUI and suggest experimental methods for further understanding the role of these proteins in DUI.
Collapse
Affiliation(s)
- Angel P Diz
- Institute of Life Science, College of Medicine, Swansea University, Swansea SA28PP, Wales UK
| | | | | | | | | | | | | |
Collapse
|
35
|
Nath A, Sharma V, Dubey PK, Pratheesh MD, Gade NE, Saikumar G, Sharma GT. Impact of gonadotropin supplementation on the expression of germ cell marker genes (MATER, ZAR1, GDF9, and BMP15) during in vitro maturation of buffalo (Bubalus bubalis) oocyte. In Vitro Cell Dev Biol Anim 2012; 49:34-41. [PMID: 23263936 DOI: 10.1007/s11626-012-9561-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 09/27/2012] [Indexed: 11/26/2022]
Abstract
The present study was designed to investigate whether gonadotropins [follicle-stimulating hormone (FSH) and luteinizing hormone (LH)] and buffalo follicular fluid (bFF) supplementation in maturation medium influences the transcript abundance of germ cell marker genes [maternal antigen that embryos require (MATER), Zygote arrest 1 (ZAR1), growth differentiation factor 9 (GDF9), and bone morphogenetic protein 15 (BMP15)] mRNA in buffalo (Bubalus bubalis) oocytes. Buffalo ovaries were collected from local abattoir, oocytes were aspirated from antral follicles (5-8 mm) and matured in vitro using two different maturation regimens, viz, group A: gonadotropin (FSH and LH) and group B: non-gonadotropin-supplemented maturation medium containing 20% buffalo follicular fluid (bFF). mRNA was isolated from immature (330) and in vitro matured oocytes from both the groups (A, 320; B, 340), and reverse transcribed using Moloney murine leukemia virus reverse transcriptase. Expression levels of MATER, ZAR1, GDF9, and BMP15 mRNA transcripts were analyzed in oocytes of both maturation groups as well as immature oocytes using real-time PCR. QPCR results showed that GDF9 and BMP15 transcripts were significantly (p<0.05) influenced with gonadotropins and bFF supplementation during in vitro maturation of buffalo oocyte; however, MATER and ZAR1 transcripts were not influenced with gonadotropins and bFF supplementation in vitro. These results indicated that the expression levels of MATER, ZAR1, GDF9, and BMP15 mRNA were varied differentially during in vitro maturation of buffalo oocyte and were found to be gonadotropins (FSH and LH) or bFF dependent for GDF9 and BMP15.
Collapse
Affiliation(s)
- Amar Nath
- Division of Physiology and Climatology, Indian Veterinary Research Institute, Izatnagar, 243122, India
| | | | | | | | | | | | | |
Collapse
|
36
|
Cao S, Guo X, Zhou Z, Sha J. Comparative proteomic analysis of proteins involved in oocyte meiotic maturation in mice. Mol Reprod Dev 2012; 79:413-22. [PMID: 22508577 DOI: 10.1002/mrd.22044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Accepted: 04/05/2012] [Indexed: 12/16/2022]
Abstract
After birth, oocytes stay at the diplotene stage in prophase of meiosis I. Meiosis resumes about 1 day before ovulation, and arrests in metaphase II (MII) after ovulation. The mature, MII oocytes are then ready for fertilization and to provide materials for early embryonic development. Proteomic characterization of oocytes can help identify proteins that are important for female meiotic maturation and early embryonic development. In this study, we compared the proteomic profiles between the germinal vesicle and MII mouse oocytes by two-dimensional electrophoresis; 95 differentially expressed protein spots corresponding to 63 proteins were identified. Many of these proteins are known to be essential for oocyte meiosis and early embryonic development, such as adenylosuccinate synthetase, nucleoplasmin-2, and protein-arginine deiminase type-6. Of the 12 proteins that were identified and are highly expressed in oocytes, a novel protein, E330034G19Rik, was found to be oocyte-specific. According to analysis by bioinformatics, it may regulate chromosome segregation during meiosis or cleavage. An in-depth study of these proteins will help us better understand the mechanisms of oocyte meiotic maturation, fertilization, and early embryogenesis. It will also help us understand the mechanisms of diseases that stem from abnormal oocyte maturation, such as polycystic ovary syndrome and premature ovary failure.
Collapse
Affiliation(s)
- Senyang Cao
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, PR China
| | | | | | | |
Collapse
|
37
|
Okuwaki M, Sumi A, Hisaoka M, Saotome-Nakamura A, Akashi S, Nishimura Y, Nagata K. Function of homo- and hetero-oligomers of human nucleoplasmin/nucleophosmin family proteins NPM1, NPM2 and NPM3 during sperm chromatin remodeling. Nucleic Acids Res 2012; 40:4861-78. [PMID: 22362753 PMCID: PMC3367197 DOI: 10.1093/nar/gks162] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Sperm chromatin remodeling after oocyte entry is the essential step that initiates embryogenesis. This reaction involves the removal of sperm-specific basic proteins and chromatin assembly with histones. In mammals, three nucleoplasmin/nucleophosmin (NPM) family proteins-NPM1, NPM2 and NPM3-expressed in oocytes are presumed to cooperatively regulate sperm chromatin remodeling. We characterized the sperm chromatin decondensation and nucleosome assembly activities of three human NPM proteins. NPM1 and NPM2 mediated nucleosome assembly independently of other NPM proteins, whereas the function of NPM3 was largely dependent on formation of a complex with NPM1. Maximal sperm chromatin remodeling activity of NPM2 required the inhibition of its non-specific nucleic acid-binding activity by phosphorylation. Furthermore, the oligomer formation with NPM1 elicited NPM3 nucleosome assembly and sperm chromatin decondensation activity. NPM3 also suppressed the RNA-binding activity of NPM1, which enhanced the nucleoplasm-nucleolus shuttling of NPM1 in somatic cell nuclei. Our results proposed a novel mechanism whereby three NPM proteins cooperatively regulate chromatin disassembly and assembly in the early embryo and in somatic cells.
Collapse
Affiliation(s)
- Mitsuru Okuwaki
- Faculty of Medicine and Graduate School of Comprehensive Human Sciences, Initiative for Promotion of Young Scientists' Independent Research, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan.
| | | | | | | | | | | | | |
Collapse
|
38
|
Miyamoto Y, Boag PR, Hime GR, Loveland KL. Regulated nucleocytoplasmic transport during gametogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:616-30. [PMID: 22326858 DOI: 10.1016/j.bbagrm.2012.01.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/23/2012] [Accepted: 01/24/2012] [Indexed: 12/13/2022]
Abstract
Gametogenesis is the process by which sperm or ova are produced in the gonads. It is governed by a tightly controlled series of gene expression events, with some common and others distinct for males and females. Nucleocytoplasmic transport is of central importance to the fidelity of gene regulation that is required to achieve the precisely regulated germ cell differentiation essential for fertility. In this review we discuss the physiological importance for gamete formation of the molecules involved in classical nucleocytoplasmic protein transport, including importins/karyopherins, Ran and nucleoporins. To address what functions/factors are conserved or specialized for these developmental processes between species, we compare knowledge from mice, flies and worms. The present analysis provides evidence of the necessity for and specificity of each nuclear transport factor and for nucleoporins during germ cell differentiation. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing.
Collapse
Affiliation(s)
- Yoichi Miyamoto
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia.
| | | | | | | |
Collapse
|
39
|
Wang J, Xu M, Zhu K, Li L, Liu X. The N-terminus of FILIA forms an atypical KH domain with a unique extension involved in interaction with RNA. PLoS One 2012; 7:e30209. [PMID: 22276159 PMCID: PMC3261892 DOI: 10.1371/journal.pone.0030209] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 12/12/2011] [Indexed: 01/07/2023] Open
Abstract
FILIA is a member of the recently identified oocyte/embryo expressed gene family in eutherian mammals, which is characterized by containing an N-terminal atypical KH domain. Here we report the structure of the N-terminal fragment of FILIA (FILIA-N), which represents the first reported three-dimensional structure of a KH domain in the oocyte/embryo expressed gene family of proteins. The structure of FILIA-N revealed a unique N-terminal extension beyond the canonical KH region, which plays important roles in interaction with RNA. By co-incubation with the lysates of mice ovaries, FILIA and FILIA-N could sequester specific RNA components, supporting the critical roles of FILIA in regulation of RNA transcripts during mouse oogenesis and early embryogenesis.
Collapse
Affiliation(s)
- Juke Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Mengyuan Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Kai Zhu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lei Li
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (LL); (XL)
| | - Xinqi Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
- * E-mail: (LL); (XL)
| |
Collapse
|
40
|
Inoue A, Ogushi S, Saitou M, Suzuki MG, Aoki F. Involvement of Mouse Nucleoplasmin 2 in the Decondensation of Sperm Chromatin after Fertilization1. Biol Reprod 2011; 85:70-7. [DOI: 10.1095/biolreprod.110.089342] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
41
|
Comizzoli P, Pukazhenthi BS, Wildt DE. The competence of germinal vesicle oocytes is unrelated to nuclear chromatin configuration and strictly depends on cytoplasmic quantity and quality in the cat model. Hum Reprod 2011; 26:2165-77. [PMID: 21665874 DOI: 10.1093/humrep/der176] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Chromatin configuration of the germinal vesicle (GV) and quality of the cytoplasm are critical factors in achieving oocyte meiotic and developmental capacity during folliculogenesis. Besides gaining new insights into the timing and cellular mechanisms associated with the acquisition and regulation of GV oocyte competence, the domestic cat model was used to examine (i) the relation between GV chromatin configuration and oocyte functionality during folliculogenesis and (ii) the role of the cytoplasmic environment on the GV competence and stability. METHODS Structural and functional properties of GV oocytes were characterized after isolation from different follicle stages of non-stimulated cat ovaries. GV transfers, artificial chromatin compaction and oocyte vitrification were used to demonstrate the respective roles of GV and cytoplasm on the oocyte functionality. RESULTS GVs acquired the intrinsic capability to resume meiosis during the pre-antral follicle stage, whereas the capacity to support embryo development occurred while the antrum started to form. Chromatin configuration of the GV did not undergo extensive modification during the acquisition of competence or during the arrest of transcriptional activity at the large antral follicle stage. However, the quality and quantity of the cytoplasm regulated and enhanced GV functionality. This finding also held for GVs transferred from incompetent or subpar oocytes into the cytoplasm of good quality oocytes or when chromatin was artificially modified or vitrified. CONCLUSIONS The cat model provides a new insight into GV oocyte structure and function during folliculogenesis while challenging current concepts about oocyte quality criteria based on the GV morphology. This suggests alternative evaluative approaches for oocytes from other species too, including humans. Cat GVs also appear competent at an early follicle stage and are resilient to perturbations which designate this organelle as an attractive target for developing novel fertility preservation tactics.
Collapse
Affiliation(s)
- P Comizzoli
- Center for Species Survival, Smithsonian Conservation Biology Institute, Washington, DC 20008, USA.
| | | | | |
Collapse
|
42
|
Chen J, Melton C, Suh N, Oh JS, Horner K, Xie F, Sette C, Blelloch R, Conti M. Genome-wide analysis of translation reveals a critical role for deleted in azoospermia-like (Dazl) at the oocyte-to-zygote transition. Genes Dev 2011; 25:755-66. [PMID: 21460039 DOI: 10.1101/gad.2028911] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oocyte maturation, fertilization, and early embryonic development occur in the absence of gene transcription. Therefore, it is critical to understand at a global level the post-transcriptional events that are driving these transitions. Here we used a systems approach by combining polysome mRNA profiling and bioinformatics to identify RNA-binding motifs in mRNAs that either enter or exit the polysome pool during mouse oocyte maturation. Association of mRNA with the polysomes correlates with active translation. Using this strategy, we identified highly specific patterns of mRNA recruitment to the polysomes that are synchronized with the cell cycle. A large number of the mRNAs recovered with translating ribosomes contain motifs for the RNA-binding proteins DAZL (deleted in azoospermia-like) and CPEB (cytoplasmic polyadenylation element-binding protein). Although a Dazl role in early germ cell development is well established, no function has been described during oocyte-to-embryo transition. We demonstrate that CPEB1 regulates Dazl post-transcriptionally, and that DAZL is essential for meiotic maturation and embryonic cleavage. In the absence of DAZL synthesis, the meiotic spindle fails to form due to disorganization of meiotic microtubules. Therefore, Cpeb1 and Dazl function in a progressive, self-reinforcing pathway to promote oocyte maturation and early embryonic development.
Collapse
Affiliation(s)
- Jing Chen
- Center for Reproductive Sciences, University of California at San Francisco, San Francisco, California 94143, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lingenfelter BM, Tripurani SK, Tejomurtula J, Smith GW, Yao J. Molecular cloning and expression of bovine nucleoplasmin 2 (NPM2): a maternal effect gene regulated by miR-181a. Reprod Biol Endocrinol 2011; 9:40. [PMID: 21447182 PMCID: PMC3072940 DOI: 10.1186/1477-7827-9-40] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 03/29/2011] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Nucleoplasmin 2 (NPM2) is an oocyte-specific nuclear protein essential for nuclear and nucleolar organization and early embryonic development. The aims of this study were to clone the bovine NPM2 gene, determine its temporal expression during oocyte development and early embryogenesis, and evaluate the potential role of miRNA-181a in regulation of its expression. METHODS A 329 bp cDNA fragment was amplified from bovine fetal ovary using primers designed based on the conserved regions of the human and mouse NPM2 cDNA sequences. RACE experiments were performed to obtain the 5' and 3' ends of the bovine NPM2 cDNA. Real time PCR and Western blot analysis were used to examine the expression of bovine NPM2 in oocytes and early embryos. Co-expression of bovine NPM2 and miRNA-181a in Hela cells was performed to determine if expression of bovine NPM2 is regulated by miRNA-181a. RESULTS The bovine NPM2 cDNA is 851 bp in length encoding a protein of 200 amino acids. The protein contains the conserved bipartite nuclear localization sequence and shows 53% and 62% identity with mouse and human NPM2, respectively. Expression of bovine NPM2 mRNA is restricted to ovaries. NPM2 mRNA is abundant in GV and MII stage oocytes, decreases in early cleavage stage embryos, and barely detectable in morula and blastocyst stage embryos. Similarly, expression of NPM2 protein is high in oocytes and early embryos but extremely low in blastocysts. The abundance of NPM2 mRNA is significantly lower in oocytes isolated from persistent versus growing dominant follicles (P < 0.05). A miR-181a binding site in the 3'UTR of the NPM2 transcript was identified. Transfection experiments showed that bovine NPM2 protein expression is reduced in Hela cells expressing miR-181a compared to control cells without miR-181a, indicating that translation of NPM2 is repressed by miR-181a. CONCLUSIONS Our data suggest that expression of bovine NPM2 is temporally regulated during early embryogenesis and miR-181a may play a role in its regulation.
Collapse
Affiliation(s)
- Brandon M Lingenfelter
- Laboratory of Animal Biotechnology and Genomics, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA
- West Virginia School of Osteopathic Medicine, Lewisburg, WV 24901, USA
| | - Swamy K Tripurani
- Laboratory of Animal Biotechnology and Genomics, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Jyothsna Tejomurtula
- Laboratory of Animal Biotechnology and Genomics, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - George W Smith
- Laboratory of Mammalian Reproductive Biology and Genomics, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Animal Science, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Jianbo Yao
- Laboratory of Animal Biotechnology and Genomics, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
44
|
Abstract
The mammalian oocyte possesses powerful reprogramming factors, which can reprogram terminally differentiated germ cells (sperm) or somatic cells within a few cell cycles. Although it has been suggested that use of oocyte-derived transcripts may enhance the generation of induced pluripotent stem cells, the reprogramming factors in oocytes are undetermined, and even the identified proteins composition of oocytes is very limited. In the present study, 7,000 mouse oocytes at different developmental stages, including the germinal vesicle stage, the metaphase II (MII) stage, and the fertilized oocytes (zygotes), were collected. We successfully identified 2,781 proteins present in germinal vesicle oocytes, 2,973 proteins in MII oocytes, and 2,082 proteins in zygotes through semiquantitative MS analysis. Furthermore, the results of the bioinformatics analysis indicated that different protein compositions are correlated with oocyte characteristics at different developmental stages. For example, specific transcription factors and chromatin remodeling factors are more abundant in MII oocytes, which may be crucial for the epigenetic reprogramming of sperm or somatic nuclei. These results provided important knowledge to better understand the molecular mechanisms in early development and may improve the generation of induced pluripotent stem cells.
Collapse
|
45
|
Yurttas P, Morency E, Coonrod SA. Use of proteomics to identify highly abundant maternal factors that drive the egg-to-embryo transition. Reproduction 2010; 139:809-23. [DOI: 10.1530/rep-09-0538] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
As IVF becomes an increasingly popular method for human reproduction, it is more critical than ever to understand the unique molecular composition of the mammalian oocyte. DNA microarray studies have successfully provided valuable information regarding the identity and dynamics of factors at the transcriptional level. However, the oocyte transcribes and stores a large amount of material that plays no obvious role in oogenesis, but instead is required to regulate embryogenesis. Therefore, an accurate picture of the functional state of the oocyte requires both transcriptional profiling and proteomics. Here, we summarize our previous studies of the oocyte proteome, and present new panels of oocyte proteins that we recently identified in screens of metaphase II-arrested mouse oocytes. Importantly, our studies indicate that several abundant oocyte proteins are not, as one might predict, ubiquitous housekeeping proteins, but instead are unique to the oocyte. Furthermore, mouse studies indicate that a number of these factors arise from maternal effect genes (MEGs). One of the identified MEG proteins, peptidylarginine deiminase 6, localizes to and is required for the formation of a poorly characterized, highly abundant cytoplasmic structure: the oocyte cytoplasmic lattices. Additionally, a number of other MEG-derived abundant proteins identified in our proteomic screens have been found by others to localize to another unique oocyte feature: the subcortical maternal complex. Based on these observations, we put forth the hypothesis that the mammalian oocyte contains several unique storage structures, which we have named maternal effect structures, that facilitate the oocyte-to-embryo transition.
Collapse
|
46
|
D'Inca R, Marteil G, Bazile F, Pascal A, Guitton N, Lavigne R, Richard-Parpaillon L, Kubiak JZ. Proteomic screen for potential regulators of M-phase entry and quality of meiotic resumption in Xenopus laevis oocytes. J Proteomics 2010; 73:1542-50. [PMID: 20394845 DOI: 10.1016/j.jprot.2010.03.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 03/16/2010] [Accepted: 03/25/2010] [Indexed: 11/30/2022]
Abstract
The quality of oocytes depends largely on the capacity to resume meiotic maturation. In Xenopus laevis, only fully grown oocytes react to progesterone stimulation by resumption of meiotic maturation associated with the entry into the meiotic M-phase. Proteins involved in this process are poorly known. To identify novel proteins regulating M-phase entry, we performed a differential proteomic screen. We compared proteomes of fully grown stage VI oocytes characterized as poorly or highly responsive to progesterone treatment. The comparison of 2-D gels allowed us to identify several spots including two specifically present in highly responsive oocytes and two specifically present in poorly responsive ones. By mass spectrometry we identified the two proteins specifically present in highly responsive oocytes as inosine 5'monophosphate cyclohydrolase and YjgF homologues, and the two specifically present in poorly responsive oocytes as elongation factor 2 (EF2) and S-adenosyl-L-homocysteine hydrolase (SAHH). The proteins specifically expressed in highly responsive oocytes may participate in the stimulation of meiotic maturation and M-phase entry, while the proteins specifically present in poorly maturing oocytes may participate in the inhibition of meiotic resumption.
Collapse
Affiliation(s)
- Romain D'Inca
- CNRS UMR 6061/University of Rennes 1, Institute of Genetics and Development of Rennes, Faculty of Medicine, Rennes, France
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The hiatus between oocyte and embryonic gene transcription dictates a role for stored maternal factors in early mammalian development. Encoded by maternal-effect genes, these factors accumulate during oogenesis and enable the activation of the embryonic genome, the subsequent cleavage stages of embryogenesis and the initial establishment of embryonic cell lineages. Recent studies in mice have yielded new findings on the role of maternally provided proteins and multi-component complexes in preimplantation development. Nevertheless, significant gaps remain in our mechanistic understanding of the networks that regulate early mammalian embryogenesis, which provide an impetus and opportunities for future investigations.
Collapse
Affiliation(s)
- Lei Li
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
48
|
Abstract
Oocytes play a pivotal role in the cycle of human life. As we discuss here, after emerging from germline stem cells in the fetus, they grow in a follicular niche in which development is harmonized for timely ovulation and hormone secretion after puberty. Most human oocytes have poor developmental competence and are peculiarly vulnerable to chromosomal malsegregation, especially as women pass the optimal years of fertility and may begin to turn to assisted reproductive technologies (ARTs) and egg donation. Research needs to focus on the molecular factors involved and the environmental niche required for optimal development of oocytes, with the aim of increasing their numbers and quality for ARTs, since these are the factors that so often limit human fertility.
Collapse
Affiliation(s)
- Roger Gosden
- Ronald O. Perelman & Claudia Cohen Center for Reproductive Medicine & Infertility, Weill Medical College of Cornell University, 1305 York Avenue, New York, NY 10021, USA.
| | | |
Collapse
|
49
|
CONG B, ZHANG P, WANG JX, ZENG Q, CHEN L, YUE W, PEI XT. Ser84 is The Key Point of Spindlin1 Nuclear Localization and Function*. PROG BIOCHEM BIOPHYS 2009. [DOI: 10.3724/sp.j.1206.2008.00365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Evsikov AV, Marín de Evsikova C. Gene expression during the oocyte-to-embryo transition in mammals. Mol Reprod Dev 2009; 76:805-18. [PMID: 19363788 DOI: 10.1002/mrd.21038] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The seminal question in modern developmental biology is the origins of new life arising from the unification of sperm and egg. The roots of this question begin from 19th to 20th century embryologists studying fertilization and embryogenesis. Although the revolution of molecular biology has yielded significant insight into the complexity of this process, the overall orchestration of genes, molecules, and cells is still not fully formed. Early mammalian development, specifically the oocyte-to-embryo transition, is essentially under "maternal command" from factors deposited in the cytoplasm during oocyte growth, independent of de novo transcription from the nascent embryo. Many of the advances in understanding this developmental period occurred in tandem with application of new methods and techniques from molecular biology, from protein electrophoresis to sequencing and assemblies of whole genomes. From this bed of knowledge, it appears that precise control of mRNA translation is a key regulator coordinating the molecular and cellular events occurring during oocyte-to-embryo transition. Notably, oocyte transcriptomes share, yet retain some uniqueness, common genetic motifs among all chordates. The common genetic motifs typically define fundamental processes critical for cellular maintenance, whereas the unique genetic features may be a source of variation and a substrate for sexual selection, genetic drift, or gene flow. One purpose for this complex interplay among genes, proteins, and cells may allow for evolution to transform and act upon the underlying processes, at molecular, structural and organismal levels, to increase diversity, which is the ultimate goal of sexual reproduction.
Collapse
|