1
|
Díaz M, Quesada-López T, Villarroya F, Casano P, López-Bermejo A, de Zegher F, Ibáñez L. The Proteome of Exosomes at Birth Predicts Insulin Resistance, Adrenarche and Liver Fat in Childhood. Int J Mol Sci 2025; 26:1721. [PMID: 40004184 PMCID: PMC11854951 DOI: 10.3390/ijms26041721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/13/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025] Open
Abstract
It is unknown whether there are differentially expressed proteins (DEPs) in the circulating exosomes of appropriate- vs. small-for-gestational-age (AGA vs. SGA) infants, and if so, whether such DEPs relate to measures of endocrine-metabolic health and body composition in childhood. Proteomic analysis in cord-blood-derived exosomes was performed by label-free quantitative mass spectrometry in AGA (n = 20) and SGA infants (n = 20) and 91 DEPs were identified. Enrichment analysis revealed that they were related to complement and coagulation cascades, lipid metabolism, neural development, PI3K/Akt and RAS/RAF/MAPK signaling pathways, phagocytosis and focal adhesion. Protein-protein interaction (PPI) analysis identified 39 DEPs involved in the pathways enriched by the KEGG and Reactome. Those DEPs were associated with measures of adiposity and insulin resistance and with liver fat at age 7 (all p < 0.01). Multivariate linear regression analysis uncovered that two DEPs (up-regulated in SGA), namely PCYOX1 (related to adipogenesis) and HSP90AA1 (related to lipid metabolism and metabolic-dysfunction-associated steatotic liver disease progression), were independent predictors of the hepatic fat fraction at age 7 (β = 0.634; p = 0.002; R2 = 52% and β = 0.436; p = 0.009; R2 = 24%, respectively). These data suggest that DEPs at birth may predict insulin resistance, adrenarche and/or ectopic adiposity in SGA children at age 7, when an early insulin-sensitizing intervention could be considered.
Collapse
Affiliation(s)
- Marta Díaz
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, University of Barcelona, 08950 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Tania Quesada-López
- Department of Biomedicine, Institut de Recerca Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
- Network Biomedical Research Center of Physiopathology of Obesity and Nutrition (CIBEROBN), Health Institute Carlos III, 28029 Madrid, Spain;
| | - Francesc Villarroya
- Network Biomedical Research Center of Physiopathology of Obesity and Nutrition (CIBEROBN), Health Institute Carlos III, 28029 Madrid, Spain;
- Biochemistry and Molecular Biomedicine Department, Institute of Biomedicine, University of Barcelona, 08007 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues, 08950 Barcelona, Spain
| | - Paula Casano
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, University of Barcelona, 08950 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Abel López-Bermejo
- Pediatric Endocrinology Research Group, Girona Institute for Biomedical Research (IDIBGI), Faculty of Medicine, University of Girona and Dr. Josep Trueta Hospital, 17007 Girona, Spain;
| | - Francis de Zegher
- Leuven Research & Development, University of Leuven, 3000 Leuven, Belgium;
| | - Lourdes Ibáñez
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, University of Barcelona, 08950 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
2
|
Vygonskaya M, Wu Y, Price TJ, Chen Z, Smith MT, Klyne DM, Han FY. The role and treatment potential of the complement pathway in chronic pain. THE JOURNAL OF PAIN 2025; 27:104689. [PMID: 39362355 DOI: 10.1016/j.jpain.2024.104689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024]
Abstract
The role of the complement system in pain syndromes has garnered attention on the back of preclinical and clinical evidence supporting its potential as a target for new analgesic pharmacotherapies. Of the components that make up the complement system, component 5a (C5a) and component 3a (C3a) are most strongly and consistently associated with pain. Receptors for C5a are widely found in immune resident cells (microglia, astrocytes, sensory neuron-associated macrophages (sNAMs)) in the central nervous system (CNS) as well as hematogenous immune cells (mast cells, macrophages, T-lymphocytes, etc.). When active, as is often observed in chronic pain conditions, these cells produce various inflammatory mediators including pro-inflammatory cytokines. These events can trigger nervous tissue inflammation (neuroinflammation) which coexists with and potentially maintains peripheral and central sensitization. C5a has a likely critical role in initiating this process highlighting its potential as a promising non-opioid target for treating pain. This review summarizes the most up-to-date research on the role of the complement system in pain with emphasis on the C5 pathway in peripheral tissue, dorsal root ganglia (DRG) and the CNS, and explores advances in complement-targeted drug development and sex differences. A perspective on the optimal application of different C5a inhibitors for different types (e.g., neuropathic, post-surgical and chemotherapy-induced pain, osteoarthritis pain) and stages (e.g., acute, subacute, chronic) of pain is also provided to help guide future clinical trials. PERSPECTIVE: This review highlights the role and mechanisms of complement components and their receptors in physiological and pathological pain. The potential of complement-targeted therapeutics for the treatment of chronic pain is also explored with a focus on C5a inhibitors to help guide future clinical trials.
Collapse
Affiliation(s)
- Marina Vygonskaya
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Youzhi Wu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Theodore J Price
- Center for Advanced Pain Studies, Department of Neuroscience, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Zhuo Chen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Maree T Smith
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David M Klyne
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Felicity Y Han
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
3
|
Davalieva K, Kocarev D, Plaseska-Karanfilska D. Decoding recurrent pregnancy loss: insights from comparative proteomics studies. Biol Reprod 2025; 112:1-17. [PMID: 39288094 DOI: 10.1093/biolre/ioae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/28/2024] [Accepted: 09/16/2024] [Indexed: 09/19/2024] Open
Abstract
Recurrent pregnancy loss represents a common disorder that affects up to 2% of the women aiming at childbirth with long-term consequences on family and society. Factors contributing to it in more than half of the cases are still unknown. Comparative proteomic analysis can provide new insights into the biological pathways underlining the pathogenesis of recurrent pregnancy loss. Until now, chorionic villi, decidua, placenta, endometrium, and maternal blood from women with recurrent pregnancy loss have been analyzed by comparative proteomics studies. In this review, we aimed to provide a critical evaluation of the published comparative studies of recurrent pregnancy loss on human samples, gathered by systematic literature search using PubMed and Google Scholar databases. We provide a detailed overview of the analyzed materials, proteomics platforms, proposed candidate biomarkers and altered pathways and processes linked with recurrent pregnancy loss. The top, most identified and validated biomarker candidates from all studies are discussed, followed by bioinformatics analysis of the available high-throughput data and presentation of common altered processes and pathways in recurrent pregnancy loss. Finally, future directions aimed at developing new and efficient therapeutic strategies are discussed as well.
Collapse
Affiliation(s)
- Katarina Davalieva
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, Krste Misirkov 2, 1000 Skopje, North Macedonia
| | - Damjan Kocarev
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, Krste Misirkov 2, 1000 Skopje, North Macedonia
| | - Dijana Plaseska-Karanfilska
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, Krste Misirkov 2, 1000 Skopje, North Macedonia
| |
Collapse
|
4
|
Lee S, Yoo I, Cheon Y, Ka H. Complement system molecules: Expression and regulation at the maternal-conceptus interface during pregnancy in pigs. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 159:105229. [PMID: 39004297 DOI: 10.1016/j.dci.2024.105229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
The complement system, composed of complement components and complement control proteins, plays an essential role in innate immunity. Complement system molecules are expressed at the maternal-conceptus interface, and inappropriate activation of the complement system is associated with various adverse pregnancy outcomes in humans and rodents. However, the expression, regulation, and function of the complement system at the maternal-conceptus interface in pigs have not been studied. In this study, we investigated the expression, localization, and regulation of complement system molecules at the maternal-conceptus interface in pigs. Complement components and complement control proteins were expressed in the endometrium, early-stage conceptus, and chorioallantoic tissues during pregnancy. The expression of complement components acting on the early stage of complement activation increased in the endometrium on Day 15 of pregnancy, with greater levels on that day compared with the estrous cycle. Localization of several complement components and complement control proteins was cell-type specific in the endometrium. The expression of C1QC, C2, C3, C4A, CFI, ITGB2, MASP1, and SERPING1 was increased by IFNG in endometrial explant tissues. Furthermore, cleaved C3 fragments were detected in endometrial tissues and uterine flushings on Day 15 of the estrous cycle and Day 15 of pregnancy, with greater levels on Day 15 of pregnancy. These results suggest that complement system molecules in pigs expressed at the maternal-conceptus interface play important roles in the establishment and maintenance of pregnancy by regulating innate immunity and modulating the maternal immune environment during pregnancy.
Collapse
Affiliation(s)
- Soohyung Lee
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea.
| | - Inkyu Yoo
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Yugyeong Cheon
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Hakhyun Ka
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea.
| |
Collapse
|
5
|
Golubska M, Paukszto Ł, Kurzyńska A, Mierzejewski K, Gerwel Z, Bogacka I. PPAR beta/delta regulates the immune response mechanisms in the porcine endometrium during LPS-induced inflammation - An in vitro study. Theriogenology 2024; 226:130-140. [PMID: 38878465 DOI: 10.1016/j.theriogenology.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 07/24/2024]
Abstract
Inflammation in the reproductive tract has become a serious threat to animal fertility. Recently, the role of peroxisome proliferator-activated receptor gamma (PPARγ) in the context of reproduction and the inflammatory response has been highlighted, but the role of PPARβ/δ has not been fully elucidated. The aim of the present study was to investigate the in vitro effect of PPARβ/δ ligands (agonist: L-165,041 and antagonist: GSK 3787) on the transcriptome profile of porcine endometrium during LPS-induced inflammation in the mid-luteal and follicular phases of the oestrous cycle (days 10-12 and 18-20, respectively) using the RNA-Seq method. During the mid-luteal phase of the oestrous cycle, the current study identified 145 and 143 differentially expressed genes (DEGs) after treatment with an agonist or antagonist, respectively. During the follicular phase of the oestrous cycle, 55 and 207 DEGs were detected after treatment with an agonist or antagonist, respectively. The detected DEGs are engaged in the regulation of various processes, such as the complement and coagulation cascade, NF-κB signalling pathway, or the pathway of 15-eicosatetraenoic acid derivatives synthesis. The results of the current study indicate that PPARβ/δ ligands are involved in the control of the endometrial inflammatory response.
Collapse
Affiliation(s)
- Monika Golubska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Łukasz Paukszto
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Aleksandra Kurzyńska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Karol Mierzejewski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Zuzanna Gerwel
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Iwona Bogacka
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.
| |
Collapse
|
6
|
Wei J, Zhang L, Xu H, Luo Q. Preterm birth, a consequence of immune deviation mediated hyperinflammation. Heliyon 2024; 10:e28483. [PMID: 38689990 PMCID: PMC11059518 DOI: 10.1016/j.heliyon.2024.e28483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 05/02/2024] Open
Abstract
Preterm birth represents a multifaceted syndrome with intricacies still present in our comprehension of its etiology. In the context of a semi-allograft, the prosperity from implantation to pregnancy to delivery hinges on the establishment of a favorable maternal-fetal immune microenvironment and a successful trilogy of immune activation, immune tolerance and then immune activation transitions. The occurrence of spontaneous preterm birth could be related to abnormalities within the immune trilogy, stemming from deviation in maternal and fetal immunity. These immune deviations, characterized by insufficient immune tolerance and early immune activation, ultimately culminated in an unsustainable pregnancy. In this review, we accentuated the role of both innate and adaptive immune reason in promoting spontaneous preterm birth, reviewed the risk of preterm birth from vaginal microbiome mediated by immune changes and the potential of vaginal microbiomes and metabolites as a new predictive marker, and discuss the changes in the role of progesterone and its interaction with immune cells in a preterm birth population. Our objective was to contribute to the growing body of knowledge in the field, shedding light on the immunologic reason of spontaneous preterm birth and effective biomarkers for early prediction, providing a roadmap for forthcoming investigations.
Collapse
Affiliation(s)
- Juan Wei
- Department of Obstetrics, Women's Hospital, of Zhejiang University School of Medicine, Hangzhou, 310006, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, China
| | - LiYuan Zhang
- Department of Obstetrics, Women's Hospital, of Zhejiang University School of Medicine, Hangzhou, 310006, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, China
| | - Heng Xu
- Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Qiong Luo
- Department of Obstetrics, Women's Hospital, of Zhejiang University School of Medicine, Hangzhou, 310006, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, China
| |
Collapse
|
7
|
Jena SR, Nayak J, Kumar S, Kar S, Samanta L. Comparative proteome profiling of seminal components reveal impaired immune cell signalling as paternal contributors in recurrent pregnancy loss patients. Am J Reprod Immunol 2023; 89:e13613. [PMID: 35998016 DOI: 10.1111/aji.13613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/06/2022] [Accepted: 08/15/2022] [Indexed: 02/01/2023] Open
Abstract
PROBLEM Recurrent pregnancy loss (RPL) is usually evaluated from a women's perspective, however, recent evidence implies involvement of male factors as paternally expressed genes predominate placenta. During fertilization, prior to implantation the immune system purposefully produces early pregnancy factors with potent immunomodulatory properties for adaptation to antigenically dissimilar embryo. Therefore, it is hypothesized that paternal immunological factors play a role in RPL. METHOD OF STUDY Comparative proteome profiling (label free liquid chromatography mass spectroscopy: LC-MS/MS) of the seminal extracellular vesicles (SEVs), extracellular vesicle free seminal plasma (EVF-SP) and spermatozoa was carried out in semen of RPL patients (n = 21) and fertile donors (n = 21). This was followed by pathway and protein-protein interaction analysis, and validation of key proteins' expression (western blot). RESULTS A total of 68, 28 and 49 differentially expressed proteins in SEVs, EVF-SP and spermatozoa of RPL patients, respectively, were found to be involved in inflammatory response, immune cell signalling and apoptosis. In SEVs, underexpressed GDF-15 and overexpressed C3 imply distorted maternal immune response to paternal antigens leading to impaired decidualization. Dysregulated TGFβ signalling in EVF-SP surmises defective modulation of inflammatory response and induction of immune tolerance to seminal antigens in the female reproductive tract through generation of regulatory T cells. Retained histone variants in spermatozoa construe defective expression of early paternal genes, while underexpressed PTN may inflict defective angiogenesis resulting in expulsion of decidua. CONCLUSIONS Impaired modulation of immune response and improper placental development due to altered cytokine levels in seminal components may be the contributing paternal factors in RPL.
Collapse
Affiliation(s)
- Soumya Ranjan Jena
- Redox Biology & Proteomics Laboratory, Department of Zoology, School of Life Sciences, Ravenshaw University, College Square, Cuttack, Odisha, India.,Centre of Excellence in Environment and Public Health, Ravenshaw University, College Square, Cuttack, Odisha, India
| | - Jasmine Nayak
- Redox Biology & Proteomics Laboratory, Department of Zoology, School of Life Sciences, Ravenshaw University, College Square, Cuttack, Odisha, India.,Centre of Excellence in Environment and Public Health, Ravenshaw University, College Square, Cuttack, Odisha, India
| | - Sugandh Kumar
- School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Sujata Kar
- Department of Obstetrics & Gynaecology, Kar Clinic and Hospital Pvt. Ltd., Bhubaneswar, India
| | - Luna Samanta
- Redox Biology & Proteomics Laboratory, Department of Zoology, School of Life Sciences, Ravenshaw University, College Square, Cuttack, Odisha, India.,Centre of Excellence in Environment and Public Health, Ravenshaw University, College Square, Cuttack, Odisha, India
| |
Collapse
|
8
|
Smith-Jackson K, Harrison RA. Alternative pathway activation in pregnancy, a measured amount "complements" a successful pregnancy, too much results in adverse events. Immunol Rev 2023; 313:298-319. [PMID: 36377667 PMCID: PMC10100418 DOI: 10.1111/imr.13169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
During pregnancy, the maternal host must adapt in order to enable growth of the fetus. These changes affect all organ systems and are designed both to protect the fetus and to minimize risk to the mother. One of the most prominent adaptations involves the immune system. The semi-allogenic fetoplacental unit has non-self components and must be protected against attack from the host. This requires both attenuation of adaptive immunity and protection from innate immune defense mechanisms. One of the key innate immune players is complement, and it is important that the fetoplacental unit is not identified as non-self and subjected to complement attack. Adaptation of the complement response must, however, be managed in such a way that maternal protection against infection is not compromised. As the complement system also plays a significant facilitating role in many of the stages of a normal pregnancy, it is also important that any necessary adaptation to accommodate the semi-allogenic aspects of the fetoplacental unit does not compromise this. In this review, both the physiological role of the alternative pathway of complement in facilitating a normal pregnancy, and its detrimental participation in pregnancy-specific disorders, are discussed.
Collapse
Affiliation(s)
- Kate Smith-Jackson
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Faculty of Medical Science, Newcastle University, Newcastle-upon-Tyne, UK.,The National Renal Complement Therapeutics Centre (NRCTC), Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | | |
Collapse
|
9
|
Lokki AI, Heikkinen-Eloranta J. Pregnancy induced TMA in severe preeclampsia results from complement-mediated thromboinflammation. Hum Immunol 2021; 82:371-378. [PMID: 33820656 DOI: 10.1016/j.humimm.2021.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 11/24/2022]
Abstract
Preeclampsia is a multifactorial vascular disease unique to human pregnancy. While genetic and antiangiogenic factors are important contributors to preeclampsia susceptibility, recent studies have shown that dysregulation and/or over-activation of the complement system has an integral role in disease etiology. Furthermore, the role of the coagulation cascade may be underappreciated in the development of the disease. Traditionally, for research purposes, the pool of preeclampsia cases has been divided into non-severe and severe disease depending on the onset and severity of the symptoms. However, of particular interest are a small but important minority of cases that present with symptoms likening to those of hemolysis, elevated liver enzymes and low platelets syndrome, atypical hemolytic uremic syndrome, or thrombotic thrombocytopenic purpura, all thrombotic microangiopathy (TMA) diseases, with the hallmark mechanisms of endothelial dysfunction and aberrant activation of complement and coagulation cascades. We therefore propose a third class, severe TMA-like preeclampsia to be included in the categorization of preeclampsia patients. Identifying these patients would target research, diagnostic differentiation, and novel treatment options to the subclass of patients with life-threatening disease that are most likely to benefit from next-generation drug development.
Collapse
Affiliation(s)
- A Inkeri Lokki
- Bacteriology and Immunology, University of Helsinki and Helsinki University Hospital, Translational Immunology Research Program, Research Programs' Unit, University of Helsinki, Helsinki, Finland; Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | - Jenni Heikkinen-Eloranta
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
10
|
Li J, Liu H, Ma Q, Song X, Pang Y, Su P, Sun F, Gou M, Lu J, Shan Y, Guan H, Liu X, Li Q, Han Y. VLRs expression were significantly affected by complement C3 knockdown morphants in Lampetra morii. FISH & SHELLFISH IMMUNOLOGY 2020; 106:307-317. [PMID: 32681885 DOI: 10.1016/j.fsi.2020.07.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
The complement component 3 of the lamprey, a jawless vertebrate, functions as an opsonin during the phagocytosis of rabbit red cells. Furthermore, lamprey C3 may be activated and cleaved into C3b, which is attached to the surface of target cells in the cytolytic process. However, the mechanism mediating the biological function of C3 in the lamprey is unknown. To our knowledge, this study is the first to show that variable lymphocyte receptors (VLRs) expression were significantly affected by complement C3 knockdown morphants in Lampetra morii. We identified the C3 gene in the lamprey genome based on its orthologs, conserved synteny, functional domains, phylogenetic tree, and conserved motifs. Additionally, we determined the optimal infection concentration of Aeromonas hydrophila to perform immune stimulation experiments in the lamprey larvae. The quantitative real-time polymerase chain reaction and immunofluorescence analyses revealed that the expression of Lampetra morii C3 (lmC3) was significantly upregulated in the larvae infected with 107 CFU/mL of A. hydrophila. The lmC3 morphants (lmC3 MO) of lamprey larvae were generated by morpholino-mediated knockdown. The lmC3 MO larvae were highly susceptible to A. hydrophila infection, which indicated that lmC3 is critical in lamprey immune response. The expression of a selected panel of orthologous genes was comparatively analyzed in the infected wild type, infected lmC3 MO, infected control MO, uninfected wild type and uninfected lmC3 MO one-month-old ammocoete larvae. The knockdown of lmC3 strongly affected the expression of VLRA+/VLRB+/VLRC+-associated genes, which was also confirmed by immunohistochemical analysis. Thus, VLR expression were significantly affected by complement C3 knockdown morphants in Lampetra morii.
Collapse
Affiliation(s)
- Jun Li
- College of Life Science, Liaoning Normal University, Dalian, 116029, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116029, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Huaixiu Liu
- College of Life Science, Liaoning Normal University, Dalian, 116029, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116029, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Qinghua Ma
- College of Life Science, Liaoning Normal University, Dalian, 116029, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116029, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Xiaoping Song
- College of Life Science, Liaoning Normal University, Dalian, 116029, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116029, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China; Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Yue Pang
- College of Life Science, Liaoning Normal University, Dalian, 116029, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116029, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Peng Su
- College of Life Science, Liaoning Normal University, Dalian, 116029, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116029, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Feng Sun
- College of Life Science, Liaoning Normal University, Dalian, 116029, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116029, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Meng Gou
- College of Life Science, Liaoning Normal University, Dalian, 116029, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116029, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Jingjing Lu
- College of Life Science, Liaoning Normal University, Dalian, 116029, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116029, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Yue Shan
- College of Life Science, Liaoning Normal University, Dalian, 116029, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116029, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Haoran Guan
- College of Life Science, Liaoning Normal University, Dalian, 116029, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116029, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Xin Liu
- College of Life Science, Liaoning Normal University, Dalian, 116029, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116029, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian, 116029, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116029, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| | - Yinglun Han
- College of Life Science, Liaoning Normal University, Dalian, 116029, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116029, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
11
|
Olson KN, Reijnders D, Gomes VCL, Hebert RC, Liu CC, Stephens JM, Redman LM, Douglas NC, Sones JL. Complement in Reproductive White Adipose Tissue Characterizes the Obese Preeclamptic-Like BPH/5 Mouse Prior to and During Pregnancy. BIOLOGY 2020; 9:E304. [PMID: 32971873 PMCID: PMC7564206 DOI: 10.3390/biology9090304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 12/23/2022]
Abstract
Preeclampsia (PE) is a serious hypertensive disorder of pregnancy characterized by abnormal placental development with an unknown etiology. To better understand which women will develop PE, a number of maternal risk factors have been identified, including obesity. Visceral white adipose tissue (WAT) contains inflammatory mediators that may contribute to PE. To explore this, we utilized the blood pressure high (BPH)/5 mouse model of superimposed PE that spontaneously recapitulates the maternal PE syndrome. We hypothesized that BPH/5 visceral WAT adjacent to the female reproductive tract (reproductive WAT) is a source of complement factors that contribute to the inflammatory milieu and angiogenic imbalance at the maternal-fetal interface in this model and in preeclamptic women. To test our hypothesis, we calorie-restricted BPH/5 females for two weeks prior to pregnancy and the first seven days of pregnancy, which attenuated complement component 3 (C3) but not complement factor B, nor complement factor D, (adipsin) in the reproductive WAT or the implantation site in BPH/5. Furthermore, calorie restriction during pregnancy restored vascular endothelial and placental growth factor mRNA levels in the BPH/5 implantation site. These data show maternal reproductive WAT may be a source of increased C3 during pregnancy, which is increased at the maternal-fetal interface in preeclamptic BPH/5 mice. It also suggests that calorie restriction could regulate inflammatory mediators thought to contribute to placental dysfunction in PE. Future studies are necessary to examine the effect of calorie restriction on C3 throughout pregnancy and the role of maternal obesity in PE.
Collapse
Affiliation(s)
- Kelsey N. Olson
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (K.N.O.); (D.R.); (V.C.L.G.); (C.-C.L.)
- Reproductive Endocrinology Laboratory, Louisiana State University-Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; (R.C.H.); (L.M.R.)
| | - Dorien Reijnders
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (K.N.O.); (D.R.); (V.C.L.G.); (C.-C.L.)
- Reproductive Endocrinology Laboratory, Louisiana State University-Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; (R.C.H.); (L.M.R.)
| | - Viviane C. L. Gomes
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (K.N.O.); (D.R.); (V.C.L.G.); (C.-C.L.)
| | - R. Caitlin Hebert
- Reproductive Endocrinology Laboratory, Louisiana State University-Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; (R.C.H.); (L.M.R.)
| | - Chin-Chi Liu
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (K.N.O.); (D.R.); (V.C.L.G.); (C.-C.L.)
| | - Jacqueline M. Stephens
- Adipocyte Biology Laboratory, Louisiana State University-Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA;
| | - Leanne M. Redman
- Reproductive Endocrinology Laboratory, Louisiana State University-Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; (R.C.H.); (L.M.R.)
| | - Nataki C. Douglas
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Women’s Health, Rutgers Biomedical and Health Sciences, Newark, NJ 07103, USA;
| | - Jennifer L. Sones
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (K.N.O.); (D.R.); (V.C.L.G.); (C.-C.L.)
- Reproductive Endocrinology Laboratory, Louisiana State University-Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; (R.C.H.); (L.M.R.)
| |
Collapse
|
12
|
Girardi G, Lingo JJ, Fleming SD, Regal JF. Essential Role of Complement in Pregnancy: From Implantation to Parturition and Beyond. Front Immunol 2020; 11:1681. [PMID: 32849586 PMCID: PMC7411130 DOI: 10.3389/fimmu.2020.01681] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
The complement cascade was identified over 100 years ago, yet investigation of its role in pregnancy remains an area of intense research. Complement inhibitors at the maternal-fetal interface prevent inappropriate complement activation to protect the fetus. However, this versatile proteolytic cascade also favorably influences numerous stages of pregnancy, including implantation, fetal development, and labor. Inappropriate complement activation in pregnancy can have adverse lifelong sequelae for both mother and child. This review summarizes the current understanding of complement activation during all stages of pregnancy. In addition, consequences of complement dysregulation during adverse pregnancy outcomes from miscarriage, preeclampsia, and pre-term birth are examined. Finally, future research directions into complement activation during pregnancy are considered.
Collapse
Affiliation(s)
- Guillermina Girardi
- Department of Basic Medical Sciences, College of Medicine, Member of QU Health, Qatar University, Doha, Qatar
| | - Joshua J Lingo
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Sherry D Fleming
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Jean F Regal
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
| |
Collapse
|
13
|
Association of Complement Factor D and H Polymorphisms with Recurrent Pregnancy Loss. Int J Mol Sci 2019; 21:ijms21010017. [PMID: 31861421 PMCID: PMC6981708 DOI: 10.3390/ijms21010017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 01/27/2023] Open
Abstract
Recurrent pregnancy loss (RPL) is defined as two or more consecutive pregnancy losses prior to 20 weeks of gestation, and the incidence of RPL is estimated at 1% of all pregnancies. While the etiologies of RPL are diverse, immune function is considered to be an important cause of RPL. In particular, the complement system is essential for stable development of the placenta and fetus. Moreover, complement factor D (CFD) and complement factor H (CFH) are important regulators of the complement system and are associated with diseases, such as age-related macular degeneration. Therefore, we investigated whether polymorphisms of CFD and CFH are associated with RPL in 412 women with RPL and 384 control women. Genotyping of three polymorphisms (CFD rs2230216, CFH rs1065489, and CFH rs1061170) was performed by TaqMan probe real-time PCR and PCR-restriction fragment length polymorphism. Association of three polymorphisms with RPL was evaluated by statistical analysis. The GT/TC genotype combination of CFH rs1065489 G>T/CFH rs1061170 T>C was associated with a decreased risk of RPL occurrence compared with reference genotypes (adjusted odds ratio [AOR] = 0.439; 95% confidence interval [CI] = 0.238–0.810; p = 0.008), and this association remained significant after adjustment for multiple comparisons using false discovery rate (FDR) correction (p = 0.040). In addition, the CFH rs1065489G>T polymorphism is associated with homocysteine and prolactin level and CFH rs1061170 TC genotype is related to uric acid and triglycerides level in RPL patients. Therefore, those factors could be possible clinical risk factors in RPL patients.
Collapse
|
14
|
Lee AS, Rusch J, Lima AC, Usmani A, Huang N, Lepamets M, Vigh-Conrad KA, Worthington RE, Mägi R, Wu X, Aston KI, Atkinson JP, Carrell DT, Hess RA, O'Bryan MK, Conrad DF. Rare mutations in the complement regulatory gene CSMD1 are associated with male and female infertility. Nat Commun 2019; 10:4626. [PMID: 31604923 PMCID: PMC6789153 DOI: 10.1038/s41467-019-12522-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 09/11/2019] [Indexed: 12/27/2022] Open
Abstract
Infertility in men and women is a complex genetic trait with shared biological bases between the sexes. Here, we perform a series of rare variant analyses across 73,185 women and men to identify genes that contribute to primary gonadal dysfunction. We report CSMD1, a complement regulatory protein on chromosome 8p23, as a strong candidate locus in both sexes. We show that CSMD1 is enriched at the germ-cell/somatic-cell interface in both male and female gonads. Csmd1-knockout males show increased rates of infertility with significantly increased complement C3 protein deposition in the testes, accompanied by severe histological degeneration. Knockout females show significant reduction in ovarian quality and breeding success, as well as mammary branching impairment. Double knockout of Csmd1 and C3 causes non-additive reduction in breeding success, suggesting that CSMD1 and the complement pathway play an important role in the normal postnatal development of the gonads in both sexes.
Collapse
Affiliation(s)
- Arthur S Lee
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jannette Rusch
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ana C Lima
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Abul Usmani
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ni Huang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Maarja Lepamets
- Estonian Genome Center, University of Tartu, 51010, Tartu, Estonia
| | - Katinka A Vigh-Conrad
- Oregon National Primate Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
| | - Ronald E Worthington
- Department of Pharmaceutical Sciences, Southern Illinois University, Edwardsville, IL, 62025, USA
| | - Reedik Mägi
- Estonian Genome Center, University of Tartu, 51010, Tartu, Estonia
| | - Xiaobo Wu
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kenneth I Aston
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
| | - John P Atkinson
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Douglas T Carrell
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
| | - Rex A Hess
- College of Veterinary Medicine, University of Illinois, Urbana-Champaign, IL, 61802, USA
| | - Moira K O'Bryan
- The School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - Donald F Conrad
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Oregon National Primate Center, Oregon Health and Science University, Beaverton, OR, 97006, USA.
- Department of Molecular and Medical Genetics, Oregon Health and Sciences University, Portland, OR, 97239, USA.
| |
Collapse
|
15
|
Quintero-Ronderos P, Jiménez KM, Esteban-Pérez C, Ojeda DA, Bello S, Fonseca DJ, Coronel MA, Moreno-Ortiz H, Sierra-Díaz DC, Lucena E, Barbaux S, Vaiman D, Laissue P. FOXD1 mutations are related to repeated implantation failure, intra-uterine growth restriction and preeclampsia. Mol Med 2019; 25:37. [PMID: 31395028 PMCID: PMC6688323 DOI: 10.1186/s10020-019-0104-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022] Open
Abstract
Background Human reproductive disorders consist of frequently occurring dysfunctions including a broad range of phenotypes affecting fertility and women’s health during pregnancy. Several female-related diseases have been associated with hypofertility/infertility phenotypes, such as recurrent pregnancy loss (RPL). Other occurring diseases may be life-threatening for the mother and foetus, such as preeclampsia (PE) and intra-uterine growth restriction (IUGR). FOXD1 was defined as a major molecule involved in embryo implantation in mice and humans by regulating endometrial/placental genes. FOXD1 mutations in human species have been functionally linked to RPL’s origin. Methods FOXD1 gene mutation screening, in 158 patients affected by PE, IUGR, RPL and repeated implantation failure (RIF), by direct sequencing and bioinformatics analysis. Plasmid constructs including FOXD1 mutations were used to perform in vitro gene reporter assays. Results Nine non-synonymous sequence variants were identified. Functional experiments revealed that p.His267Tyr and p.Arg57del led to disturbances of promoter transcriptional activity (C3 and PlGF genes). The FOXD1 p.Ala356Gly and p.Ile364Met deleterious mutations (previously found in RPL patients) have been identified in the present work in women suffering PE and IUGR. Conclusions Our results argue in favour of FOXD1 mutations’ central role in RPL, RIF, IUGR and PE pathogenesis via C3 and PlGF regulation and they describe, for the first time, a functional link between FOXD1 and implantation/placental diseases. FOXD1 could therefore be used in clinical environments as a molecular biomarker for these diseases in the near future. Keywords Recurrent pregnancy loss, Preeclampsia, Intra-uterine growth restriction, FOXD1 Electronic supplementary material The online version of this article (10.1186/s10020-019-0104-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paula Quintero-Ronderos
- Center For Research in Genetics and Genomics-CIGGUR. GENIUROS Research Group. School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Karen Marcela Jiménez
- Center For Research in Genetics and Genomics-CIGGUR. GENIUROS Research Group. School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Clara Esteban-Pérez
- Fertility and Sterility Colombian Center, Department of Reproductive Genetics, Bogotá, Colombia
| | - Diego A Ojeda
- Center For Research in Genetics and Genomics-CIGGUR. GENIUROS Research Group. School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia.,Clinical Neurosciences and Psychiatry, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK., Southampton, United Kingdom
| | - Sandra Bello
- Center For Research in Genetics and Genomics-CIGGUR. GENIUROS Research Group. School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Dora Janeth Fonseca
- Center For Research in Genetics and Genomics-CIGGUR. GENIUROS Research Group. School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - María Alejandra Coronel
- Center For Research in Genetics and Genomics-CIGGUR. GENIUROS Research Group. School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Harold Moreno-Ortiz
- Fertility and Sterility Colombian Center, Department of Reproductive Genetics, Bogotá, Colombia
| | - Diana Carolina Sierra-Díaz
- Center For Research in Genetics and Genomics-CIGGUR. GENIUROS Research Group. School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Elkin Lucena
- Fertility and Sterility Colombian Center, Department of Reproductive Genetics, Bogotá, Colombia
| | - Sandrine Barbaux
- Inserm U1016, CNRS UMR8104, Institut Cochin, équipe FGTB, 24, rue du faubourg Saint-Jacques, 75014, Paris, France
| | - Daniel Vaiman
- Inserm U1016, CNRS UMR8104, Institut Cochin, équipe FGTB, 24, rue du faubourg Saint-Jacques, 75014, Paris, France
| | - Paul Laissue
- Center For Research in Genetics and Genomics-CIGGUR. GENIUROS Research Group. School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
16
|
Subclinical endometritis in dairy cattle is associated with distinct mRNA expression patterns in blood and endometrium. PLoS One 2019; 14:e0220244. [PMID: 31374089 PMCID: PMC6677313 DOI: 10.1371/journal.pone.0220244] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/11/2019] [Indexed: 02/06/2023] Open
Abstract
Cattle with subclinical endometritis (SCE) are sub-fertile and diagnosing subclinical uterine disease remains a challenge. The hypothesis for this study was that endometrial inflammation is reflected in mRNA expression patterns of peripheral blood leucocytes. Transcriptome profiles were evaluated in healthy cows and in cows with SCE using circulating white blood cells (WBC) and endometrial biopsy samples collected from the same animals at 45–55 days postpartum. Bioinformatic analyses of microarray-based transcriptional data identified gene profiles associated with distinct biological functions in circulating WBC and endometrium. In circulating WBC, SCE promotes a pro-inflammatory environment, whereas functions related to tissue remodeling are also affected in the endometrium. Nineteen differentially expressed genes associated with SCE were common to both circulating WBC and the endometrium. Among these genes, transcript abundance of immune factors C3, C2, LTF, PF4 and TRAPPC13 were up-regulated in SCE cows at 45–55 days postpartum. Moreover, mRNA expression of C3, CXCL8, LTF, TLR2 and TRAPPC13 was temporally regulated during the postpartum period in circulating WBC of healthy cows compared with SCE cows. This observation might indicate an advantageous modulation of the immune system in healthy animals. The transcript abundance of these genes represents a potential source of indicators for postpartum uterine health.
Collapse
|
17
|
Pillay Y, Moodley J, Naicker T. The role of the complement system in HIV infection and preeclampsia. Inflamm Res 2019; 68:459-469. [PMID: 31028431 DOI: 10.1007/s00011-019-01240-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/18/2019] [Accepted: 04/22/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The complement system is a key component of the innate immune system that plays a vital role in host defense, maintains homeostasis and acts as a mediator of the adaptive immune response. The complement system could possibly play a role in the pathogenesis of HIV infection and preeclampsia (PE), both of which represent major causes of maternal death in South Africa. RECENT FINDINGS The relationship between PE and HIV infection is unclear as PE represents an exaggerated immune response, while HIV infection is associated with a decline in immune activity. Although the complement system works to clear and neutralize HIV, it could also enhance the infectivity of HIV by various other mechanisms. It has been suggested that the dysregulation of the complement system is associated with the development of PE. CONCLUSION There is currently a paucity of information on the combined effect of the complement system in HIV-associated PE. This review highlights the role of the complement system in the duality of HIV infection and PE and provides new insights into this relationship whilst also elucidating potential therapeutic targets.
Collapse
Affiliation(s)
- Yazira Pillay
- Optics and Imaging Centre, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa.
| | - Jagidesa Moodley
- Women's Health and HIV Research Group, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| | - Thajasvarie Naicker
- Optics and Imaging Centre, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| |
Collapse
|
18
|
Banach P, Dereziński P, Matuszewska E, Matysiak J, Bochyński H, Kokot ZJ, Nowak-Markwitz E. MALDI-TOF-MS Analysis in the Identification of Urine Proteomic Patterns of Gestational Trophoblastic Disease. Metabolites 2019; 9:metabo9020030. [PMID: 30744112 PMCID: PMC6409522 DOI: 10.3390/metabo9020030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/02/2019] [Accepted: 02/03/2019] [Indexed: 12/20/2022] Open
Abstract
Gestational trophoblastic disease (GTD) is a group of highly aggressive, rare tumors. Human chorionic gonadotropin is a common biomarker used in the diagnosis and monitoring of GTD. To improve our knowledge of the pathology of GTD, we performed protein-peptide profiling on the urine of patients affected with gestational trophoblastic neoplasm (GTN). We analyzed urine samples from patients diagnosed with GTN (n = 26) and from healthy pregnant and non-pregnant controls (n = 17) using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Ions were examined in a linear mode over a m/z range of 1000–10,000. All GTN urine samples were analyzed before and after treatment and compared with those of the controls. The statistical analyses included multivariate classification algorithms as well as ROC curves. Urine sample analyses revealed there were significant differences in the composition of the ions between the evaluated groups. Comparing the pre-treatment and group with the pregnant controls, we identified two discriminatory proteins: hemoglobin subunit α (m/z = 1951.81) and complement C4A (m/z = 1895.43). Then, comparing urine samples from the post-treatment cases with those from the non-pregnant controls, we identified the peptides uromodulin fragments (m/z = 1682.34 and 1913.54) and complement C4A (m/z = 1895.43).
Collapse
Affiliation(s)
- Paulina Banach
- Gynecologic Oncology Department, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan, Poland.
| | - Paweł Dereziński
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland.
| | - Eliza Matuszewska
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland.
| | - Jan Matysiak
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland.
| | - Hubert Bochyński
- Gynecologic Oncology Department, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan, Poland.
| | - Zenon J Kokot
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland.
| | - Ewa Nowak-Markwitz
- Gynecologic Oncology Department, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan, Poland.
| |
Collapse
|
19
|
Mohlin FC, Gros P, Mercier E, Gris JCR, Blom AM. Analysis of C3 Gene Variants in Patients With Idiopathic Recurrent Spontaneous Pregnancy Loss. Front Immunol 2018; 9:1813. [PMID: 30131807 PMCID: PMC6090058 DOI: 10.3389/fimmu.2018.01813] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/23/2018] [Indexed: 12/18/2022] Open
Abstract
Miscarriage is the most common complication of pregnancy. Approximately 1% of couples trying to conceive will experience recurrent miscarriages, defined as three or more consecutive pregnancy losses and many of these cases remain idiopathic. Complement is implicated both in the physiology and pathology of pregnancy. Therefore, we hypothesized that alterations in the C3 gene could potentially predispose to this disorder. We performed full Sanger sequencing of all exons of C3, in 192 childless women, with at least two miscarriages and without any known risk factors. All exons carrying non-synonymous alterations found in the patients were then sequenced in a control group of 192 women. None of the identified alterations were significantly associated with the disorder. Thirteen identified non-synonymous alterations (R102G, K155Q, L302P, P314L, Y325H, V326A, S327P, V330I, K633R, R735W, R1591G, G1606D, and S1619R) were expressed recombinantly, upon which C3 expression and secretion were determined. The L302P and S327P were not secreted from the cells, likely due to misfolding and intracellular degradation. Y325H, V326A, V3301I, R1591G, and G1606D yielded approximately half C3 concentration in the cell media compared with wild type (WT). We analyzed the hemolytic activity of the secreted C3 variants by reconstituting C3-depleted serum. In this assay, R1591G had impaired hemolytic activity while majority of remaining mutants instead had increased activity. R1591G also yielded more factor B activation in solution compared with WT. R1591G and G1606D showed impaired degradation by factor I, irrespectively if factor H, CD46, or C4b-binding protein were used as cofactors. These two C3 mutants showed impaired binding of the cofactors and/or factor I. Taken together, several alterations in C3 were identified and some of these affected the secretion and/or the function of the protein, which might contribute to the disorder but the degree of association must be evaluated in larger cohorts.
Collapse
Affiliation(s)
- Frida C. Mohlin
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Piet Gros
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Utrecht, Netherlands
| | - Eric Mercier
- Laboratory of Hematology, University Hospital, Nimes, France
| | | | - Anna M. Blom
- Department of Translational Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
20
|
Abstract
From its discovery in the late nineteenth century, as a 'complement' to the cellular immune response, the complement system has been widely affirmed as a powerful controller of innate and adaptive immune responses. In recent decades however, new roles for complement have been discovered, with multiple complement proteins now known to function in a broad array of non-immune systems. This includes during development, where complement exerts control over stem cell populations from fertilization and implantation throughout embryogenesis and beyond post-natal development. It is involved in processes as diverse as cell localisation, tissue morphogenesis, and the growth and refinement of the brain. Such physiological actions of complement have also been described in adult stem cell populations, with roles in proliferation, differentiation, survival, and regeneration. With such a broad range of complement functions now described, it is likely that current research only describes a fraction of the full reach of complement proteins. Here, we review how complement control of physiological cell processes has been harnessed in stem cell populations throughout both development and in adult physiology.
Collapse
Affiliation(s)
- Owen A Hawksworth
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
| | - Liam G Coulthard
- School of Clinical Medicine, Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia; Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Susanna Mantovani
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia; Wesley Medical Research, Auchenflower, Brisbane, Queensland, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia; Wesley Medical Research, Auchenflower, Brisbane, Queensland, Australia.
| |
Collapse
|
21
|
Laissue P, Lakhal B, Vatin M, Batista F, Burgio G, Mercier E, Santos ED, Buffat C, Sierra-Diaz DC, Renault G, Montagutelli X, Salmon J, Monget P, Veitia RA, Méhats C, Fellous M, Gris JC, Cocquet J, Vaiman D. Association of FOXD1 variants with adverse pregnancy outcomes in mice and humans. Open Biol 2017; 6:rsob.160109. [PMID: 27805902 PMCID: PMC5090055 DOI: 10.1098/rsob.160109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 09/25/2016] [Indexed: 01/29/2023] Open
Abstract
Recurrent spontaneous abortion (RSA) is a common cause of infertility, but previous attempts at identifying RSA causative genes have been relatively unsuccessful. Such failure to describe RSA aetiological genes might be explained by the fact that reproductive phenotypes should be considered as quantitative traits resulting from the intricate interaction of numerous genetic, epigenetic and environmental factors. Here, we studied an interspecific recombinant congenic strain (IRCS) of Mus musculus from the C57BL6/J strain of mice harbouring an approximate 5 Mb DNA fragment from chromosome 13 from Mus spretus mice (66H-MMU13 strain), with a high rate of embryonic resorption (ER). Transcriptome analyses of endometrial and placental tissues from these mice showed a deregulation of many genes associated with the coagulation and inflammatory response pathways. Bioinformatics approaches led us to select Foxd1 as a candidate gene potentially related to ER and RSA. Sequencing analysis of Foxd1 in the 66H-MMU13 strain, and in 556 women affected by RSA and 271 controls revealed non-synonymous sequence variants. In vitro assays revealed that some led to perturbations in FOXD1 transactivation properties on promoters of genes having key roles during implantation/placentation, suggesting a role of this gene in mammalian implantation processes.
Collapse
Affiliation(s)
- Paul Laissue
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France.,Inserm, U1016 Paris, France.,Centro de Investigación en Genética y Genómica-CIGGUR, Grupo GENIUROS, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Besma Lakhal
- Department of Cytogenetics and Reproductive Biology, Farhat Hached University Teaching Hospital, Sousse, Tunisia
| | - Magalie Vatin
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France.,Inserm, U1016 Paris, France
| | - Frank Batista
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Gaëtan Burgio
- Institut Pasteur, Unité de Génétique des Mammifères, Paris, France.,Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, the Australian National University, 131 Garran Road, Canberra 2601, Australian Capital Territory, Australia
| | - Eric Mercier
- Department of Haematology, University Hospital, Nîmes. Faculty of Pharmacy and Research Team EA 2992, University of Montpellier, Montpellier, France
| | - Esther Dos Santos
- GIG-EA 7404, Université de Versailles-Saint Quentin en Yvelines, Unité de Formation et de Recherche des Sciences de la Santé Simone Veil, 78180 Montigny-le-Bretonneux, France.,Service de Biologie Médicale, Centre Hospitalier de Poissy-Saint-Germain, 78300 Poissy, France
| | - Christophe Buffat
- Centre National de la Recherche Scientifique UMR 7278, IRD198, INSERM U1095, Aix-Marseille Université, Marseille, France
| | - Diana Carolina Sierra-Diaz
- Centro de Investigación en Genética y Genómica-CIGGUR, Grupo GENIUROS, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Gilles Renault
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France.,Inserm, U1016 Paris, France
| | | | - Jane Salmon
- Department of Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Philippe Monget
- INRA-CNRS, Université de Tours-Haras Nationaux, IFR 135, 37380 Nouzilly, France
| | - Reiner A Veitia
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France.,Inserm, U1016 Paris, France
| | - Céline Méhats
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France.,Inserm, U1016 Paris, France
| | - Marc Fellous
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France.,Inserm, U1016 Paris, France
| | - Jean-Christophe Gris
- Department of Haematology, University Hospital, Nîmes. Faculty of Pharmacy and Research Team EA 2992, University of Montpellier, Montpellier, France
| | - Julie Cocquet
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France.,Inserm, U1016 Paris, France
| | - Daniel Vaiman
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France .,Inserm, U1016 Paris, France
| |
Collapse
|
22
|
van Dam AD, van Beek L, Pronk ACM, van den Berg SM, Van den Bossche J, de Winther MPJ, Koning F, van Kooten C, Rensen PCN, Boon MR, Verbeek JS, van Dijk KW, van Harmelen V. IgG is elevated in obese white adipose tissue but does not induce glucose intolerance via Fcγ-receptor or complement. Int J Obes (Lond) 2017; 42:260-269. [PMID: 28852207 DOI: 10.1038/ijo.2017.209] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 07/19/2017] [Accepted: 08/02/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND/OBJECTIVES In obesity, B cells accumulate in white adipose tissue (WAT) and produce IgG, which may contribute to the development of glucose intolerance. IgG signals by binding to Fcγ receptors (FcγR) and by activating the complement system. The aim of our study was to investigate whether activation of FcγR and/or complement C3 mediates the development of high-fat diet-induced glucose intolerance. METHODS We studied mice lacking all four FcγRs (FcγRI/II/III/IV-/-), only the inhibitory FcγRIIb (FcγRIIb-/-), only the central component of the complement system C3 (C3-/-), and mice lacking both FcγRs and C3 (FcγRI/II/III/IV/C3-/-). All mouse models and wild-type controls were fed a high-fat diet (HFD) for 15 weeks to induce obesity. Glucose metabolism was assessed and adipose tissue was characterized for inflammation and adipocyte functionality. RESULTS In obese WAT of wild-type mice, B cells (+142%, P<0.01) and IgG (+128% P<0.01) were increased compared to lean WAT. Macrophages of FcγRI/II/III/IV-/-mice released lower levels of cytokines compared to wild-type mice upon IgG stimulation. Only C3-/- mice showed reduced HFD-induced weight gain as compared to controls (-18%, P<0.01). Surprisingly, FcγRI/II/III/IV-/- mice had deteriorated glucose tolerance (AUC +125%, P<0.001) despite reduced leukocyte number (-30%, P<0.05) in gonadal WAT (gWAT), whereas glucose tolerance and leukocytes within gWAT in the other models were unaffected compared to controls. Although IgG in gWAT was increased (+44 to +174%, P<0.05) in all mouse models lacking FcγRIIb, only FcγRI/II/III/IV/C3-/- mice exhibited appreciable alterations in immune cells in gWAT, for example, increased macrophages (+36%, P<0.001). CONCLUSIONS Lack of FcγRs reduces the activity of macrophages upon IgG stimulation, but neither FcγR nor C3 deficiency protects against HFD-induced glucose intolerance or reduces adipose tissue inflammation. This indicates that if obesity-induced IgG contributes to the development of glucose intolerance, this is not mediated by FcγR or complement activation.
Collapse
Affiliation(s)
- A D van Dam
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden, The Netherlands
| | - L van Beek
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - A C M Pronk
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - S M van den Berg
- Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - J Van den Bossche
- Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - M P J de Winther
- Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - F Koning
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - C van Kooten
- Department of Medicine, Division of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - P C N Rensen
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden, The Netherlands
| | - M R Boon
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden, The Netherlands
| | - J S Verbeek
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - K Willems van Dijk
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - V van Harmelen
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
23
|
Huang J, Qin H, Yang Y, Chen X, Zhang J, Laird S, Wang CC, Chan TF, Li TC. A comparison of transcriptomic profiles in endometrium during window of implantation between women with unexplained recurrent implantation failure and recurrent miscarriage. Reproduction 2017; 153:749-758. [PMID: 28283674 DOI: 10.1530/rep-16-0574] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/02/2017] [Accepted: 03/09/2017] [Indexed: 01/09/2023]
Abstract
The endometrium becomes receptive to the embryo only in the mid-luteal phase, but not in the other stages of the menstrual cycle. Endometrial factors play an important role in implantation. Women with recurrent miscarriage and recurrent implantation failure have both been reported to have altered expression of receptivity markers during the window of implantation. We aimed to compare the gene expression profiles of the endometrium in the window of implantation among women with unexplained recurrent implantation failures (RIF) and unexplained recurrent miscarriages (RM) by RNA sequencing (RNA-Seq). In total 20 patients (9 RIF and 11 RM) were recruited. In addition 4 fertile subjects were included as reference. Endometrium samples were precisely timed on the 7th day after luteal hormone surge (LH + 7). All the 24 endometrium samples were extracted for total RNA. The transcriptome was determined by RNA-Seq in the first 14 RNA samples (5 RIF, 6 RM and 3 fertile). Differentially expressed genes between RM and RIF were validated by quantitative real-time PCR (qPCR) in all 24 RNA samples (9 RIF, 11 RM and 4 fertile). Transcriptomic profiles of RM and RIF, but not control samples, were separated from each other by principle component analysis (PCA) and support vector machine (SVM). Complementary and coagulation cascades pathway was significantly up-regulated in RIF while down-regulated in RM. Differentially expressed genes C3, C4, C4BP, DAF, DF and SERPING1 in complement and coagulation cascade pathway between RM and RIF were further validated by qPCR. This study compared endometrial transcriptome among patients with RIF and RM in the window of implantation; it identified differential molecular pathways in endometrium between RIF and RM, which potentially affect the implantation process.
Collapse
Affiliation(s)
- Jin Huang
- Department of Obstetrics and Gynaecology
| | - Hao Qin
- School of Life SciencesThe Chinese University of Hong KongHong Kong SAR, China
| | - Yihua Yang
- Department of Obstetrics and Gynaecology
- Reproductive Medicine Centre of the Affiliated HospitalGuilin Medical University, Guilin, Guangxi, China
| | | | - Jiamiao Zhang
- Department of Obstetrics and Gynaecology
- Reproductive Medicine Centre of the Affiliated HospitalGuilin Medical University, Guilin, Guangxi, China
| | - Susan Laird
- Biomolecular Sciences Research CentreSheffield Hallam University, Sheffield, UK
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology
- Li Ka Shing Institute of Health Sciences
- School of Biomedical SciencesThe Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ting Fung Chan
- School of Life SciencesThe Chinese University of Hong KongHong Kong SAR, China
| | | |
Collapse
|
24
|
Lokki AI, Kaartokallio T, Holmberg V, Onkamo P, Koskinen LLE, Saavalainen P, Heinonen S, Kajantie E, Kere J, Kivinen K, Pouta A, Villa PM, Hiltunen L, Laivuori H, Meri S. Analysis of Complement C3 Gene Reveals Susceptibility to Severe Preeclampsia. Front Immunol 2017; 8:589. [PMID: 28611769 PMCID: PMC5446983 DOI: 10.3389/fimmu.2017.00589] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/03/2017] [Indexed: 11/29/2022] Open
Abstract
Preeclampsia (PE) is a common vascular disease of pregnancy with genetic predisposition. Dysregulation of the complement system has been implicated, but molecular mechanisms are incompletely understood. In this study, we determined the potential linkage of severe PE to the most central complement gene, C3. Three cohorts of Finnish patients and controls were recruited for a genetic case-control study. Participants were genotyped using Sequenom genotyping and Sanger sequencing. Initially, we studied 259 Finnish patients with severe PE and 426 controls from the Southern Finland PE and the Finnish population-based PE cohorts. We used a custom-made single nucleotide polymorphism (SNP) genotyping assay consisting of 98 SNPs in 18 genes that encode components of the complement system. Following the primary screening, C3 was selected as the candidate gene and consequently Sanger sequenced. Fourteen SNPs from C3 were also genotyped by a Sequenom panel in 960 patients with severe PE and 705 controls, including already sequenced individuals. Three of the 43 SNPs observed within C3 were associated with severe PE: rs2287845 (p = 0.038, OR = 1.158), rs366510 (p = 0.039, OR = 1.158), and rs2287848 (p = 0.041, OR = 1.155). We also discovered 16 SNP haplotypes with extreme linkage disequilibrium in the middle of the gene with a protective (p = 0.044, OR = 0.628) or a predisposing (p = 0.011, OR = 2.110) effect to severe PE depending on the allele combination. Genetic variants associated with PE are located in key domains of C3 and could thereby influence the function of C3. This is, as far as we are aware, the first candidate gene in the complement system with an association to a clinically relevant PE subphenotype, severe PE. The result highlights a potential role for the complement system in the pathogenesis of PE and may help in defining prognostic and therapeutic subgroups of preeclamptic women.
Collapse
Affiliation(s)
- A Inkeri Lokki
- Immunobiology, Research Programs Unit, University of Helsinki, Helsinki, Finland.,Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Tea Kaartokallio
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ville Holmberg
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Clinic of Infectious Diseases, HYKS Inflammation Center, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Päivi Onkamo
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Lotta L E Koskinen
- Immunobiology, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Päivi Saavalainen
- Immunobiology, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Seppo Heinonen
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Eero Kajantie
- Chronic Disease Prevention Unit, Department of Health, National Institute for Health and Welfare, Helsinki, Finland.,Children's Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland.,PEDEGO Research Unit, MRC Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Folkhälsan Institute of Genetics, Helsinki, Finland.,Molecular Neurology, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Katja Kivinen
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Anneli Pouta
- PEDEGO Research Unit, MRC Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland.,Department of Government Services, National Institute for Health and Welfare, Helsinki, Finland
| | - Pia M Villa
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | | | - Hannele Laivuori
- Medical and Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland.,Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Seppo Meri
- Immunobiology, Research Programs Unit, University of Helsinki, Helsinki, Finland.,Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
25
|
Nakamura K, Kusama K, Bai R, Ishikawa S, Fukushima S, Suda Y, Imakawa K. Increase in complement iC3b is associated with anti-inflammatory cytokine expression during late pregnancy in mice. PLoS One 2017; 12:e0178442. [PMID: 28542608 PMCID: PMC5444827 DOI: 10.1371/journal.pone.0178442] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/13/2017] [Indexed: 02/07/2023] Open
Abstract
Immunological tolerance between fetal allograft and mother is crucial for pregnancy establishment and maintenance; however, these mechanisms particularly those during the latter part of pregnancy have not been definitively elucidated. The aim of this study was to examine the presence and potential function of innate immunity characteristic to the middle to late pregnancy. We first characterized up-regulated proteins in decidua from day 11 pregnant (P11) mice using 2D-PAGE, followed by MALDI-TOF/MS analysis. These analyses identified increased complement component 3 (C3) and its derivatives in P11 decidua. We then found that in the decidual tissues, C3 mRNA increased on P15 and remained high on P19. C3 is converted to C3b and then iC3b by complement component factor I (Cfi) and complement receptor 1-like protein (Crry), both of which were present in P19 placentas. In addition, iC3b proteins and its receptor CR3 (Cd11b/Cd18) in decidual and placental tissues increased toward the latter phase of pregnancy. Moreover, CR3 subunit CD11b protein was predominantly localized to spongiotrophoblast layer in the P19 placenta. Because iC3b is known to induce anti-inflammatory cytokine production, the analysis was extended to examine changes in pro- and anti-inflammatory cytokines, Il12, Il10, and Tgfb1. Il12 expression decreased in P15 and P19 placenta, while high mRNA expression of Il10 and Tgfb1 was found in P19 placental tissues. Furthermore, placental Il10 and Tgfb1 mRNAs were down-regulated when pregnant mice were treated with an anti-C3 antibody, detecting C3, C3b and iC3b. These results indicated that C3 derivatives, in particular, iC3b and its receptor CR3 were up-regulated at the fetal-maternal interface, and suggest that iC3b may regulate the placental expression of anti-inflammatory cytokines, IL10 and TGFB1, during the latter phase of pregnancy.
Collapse
Affiliation(s)
- Keigo Nakamura
- Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Kasama, Ibaraki, Japan
| | - Kazuya Kusama
- Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Kasama, Ibaraki, Japan
| | - Rulan Bai
- Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Kasama, Ibaraki, Japan
| | - Sadamasa Ishikawa
- Department of Food, Agriculture and Environment, Miyagi University, Taihaku, Sendai, Miyagi, Japan
| | - Sayuri Fukushima
- Department of Food, Agriculture and Environment, Miyagi University, Taihaku, Sendai, Miyagi, Japan
| | - Yoshihito Suda
- Department of Food, Agriculture and Environment, Miyagi University, Taihaku, Sendai, Miyagi, Japan
- * E-mail: (YS); (KI)
| | - Kazuhiko Imakawa
- Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Kasama, Ibaraki, Japan
- * E-mail: (YS); (KI)
| |
Collapse
|
26
|
Zhang Q, Huang Y, Zhang K, Huang Y, Yan Y, Wang F, Wu J, Wang X, Xu Z, Chen Y, Cheng X, Li Y, Jiao J, Ye D. Cadmium-induced immune abnormality is a key pathogenic event in human and rat models of preeclampsia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 218:770-782. [PMID: 27511439 DOI: 10.1016/j.envpol.2016.07.073] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/08/2016] [Accepted: 07/31/2016] [Indexed: 06/06/2023]
Abstract
With increased industrial development, cadmium is an increasingly important environmental pollutant. Studies have identified various adverse effects of cadmium on human beings. However, the relationships between cadmium pollution and the pathogenesis of preeclampsia remain elusive. The objective of this study is to explore the effects of cadmium on immune system among preeclamptic patients and rats. The results showed that the cadmium levels in the peripheral blood of preeclamptic patients were significantly higher than those observed in normal pregnancy. Based on it, a novel rat model of preeclampsia was established by the intraperitoneal administration of cadmium chloride (CdCl2) (0.125 mg of Cd/kg body weight) on gestational days 9-14. Key features of preeclampsia, including hypertension, proteinuria, placental abnormalities and small foetal size, appeared in pregnant rats after the administration of low-dose of CdCl2. Cadmium increased immunoglobulin production, mainly angiotensin II type 1-receptor-agonistic autoantibodies (AT1-AA), by increasing the expression of activation-induced cytosine deaminase (AID) in B cells. AID is critical for the maturation of antibody and autoantibody responses. In addition, angiotensin II type 1-receptor-agonistic autoantibody, which emerged recently as a potential pathogenic contributor to PE, was responsible for the deposition of complement component 5 (C5) in kidneys of pregnant rats via angiotensin II type 1 receptor (AT1R) activation. C5a is a fragment of C5 that is released during C5 activation. Selectively interfering with C5a signalling by a complement C5a receptor-specific antagonist significantly attenuated hypertension and proteinuria in Cd-injected pregnant rats. Our results suggest that cadmium induces immune abnormalities that may be a key pathogenic contributor to preeclampsia and provide new insights into treatment strategies of preeclampsia.
Collapse
Affiliation(s)
- Qiong Zhang
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Yinping Huang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Keke Zhang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Yanjun Huang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Yan Yan
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Fan Wang
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Jie Wu
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Xiao Wang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Zhangye Xu
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Yongtao Chen
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Xue Cheng
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Yong Li
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Jinyu Jiao
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Duyun Ye
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
27
|
Strug MR, Su R, Young JE, Dodds WG, Shavell VI, Díaz-Gimeno P, Ruíz-Alonso M, Simón C, Lessey BA, Leach RE, Fazleabas AT. Intrauterine human chorionic gonadotropin infusion in oocyte donors promotes endometrial synchrony and induction of early decidual markers for stromal survival: a randomized clinical trial. Hum Reprod 2016; 31:1552-61. [PMID: 27122490 PMCID: PMC4901879 DOI: 10.1093/humrep/dew080] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 03/08/2016] [Accepted: 03/17/2016] [Indexed: 11/14/2022] Open
Abstract
STUDY QUESTION Does a single intrauterine infusion of human chorionic gonadotropin (hCG) at the time corresponding to a Day 3 embryo transfer in oocyte donors induce favorable molecular changes in the endometrium for embryo implantation? SUMMARY ANSWER Intrauterine hCG was associated with endometrial synchronization between endometrial glands and stroma following ovarian stimulation and the induction of early decidual markers associated with stromal cell survival. WHAT IS KNOWN ALREADY The clinical potential for increasing IVF success rates using an intrauterine hCG infusion prior to embryo transfer remains unclear based on previously reported positive and non-significant findings. However, infusion of CG in the non-human primate increases the expression of pro-survival early decidual markers important for endometrial receptivity, including α-smooth muscle actin (α-SMA) and NOTCH1. STUDY DESIGN, SIZE, DURATION Oocyte donors (n=15) were randomly assigned to receive an intrauterine infusion of 500 IU hCG (n=7) or embryo culture media vehicle (n=8) 3 days following oocyte retrieval during their donor stimulation cycle. Endometrial biopsies were performed 2 days later, followed by either RNA isolation or tissue fixation in formalin and paraffin embedding. PARTICIPANTS/MATERIALS, SETTING, METHODS Reverse transcription of total RNA from endometrial biopsies generated cDNA, which was used for analysis in the endometrial receptivity array (ERA; n = 5/group) or quantitative RT-PCR to determine relative expression of ESR1, PGR, C3 and NOTCH1. Tissue sections were stained with hematoxylin and eosin followed by blinded staging analysis for dating of endometrial glands and stroma. Immunostaining for ESR1, PGR, α-SMA, C3 and NOTCH1 was performed to determine their tissue localization. MAIN RESULTS AND THE ROLE OF CHANCE Intrauterine hCG infusion was associated with endometrial synchrony and reprograming of stromal development following ovarian stimulation. ESR1 and PGR were significantly elevated in the endometrium of hCG-treated patients, consistent with earlier staging. The ERA did not predict an overall positive impact of intrauterine hCG on endometrial receptivity. However, ACTA2, encoding α-SMA was significantly increased in response to intrauterine hCG. Similar to the hCG-treated non-human primate, sub-epithelial and peri-vascular α-SMA expression was induced in women following hCG infusion. Other known targets of hCG in the baboon were also found to be increased, including C3 and NOTCH1, which have known roles in endometrial receptivity. LIMITATIONS, REASONS FOR CAUTION This study differs from our previous work in the hCG-treated non-human primate along with clinical studies in infertile patients. Specifically, we performed a single intrauterine infusion in oocyte donors instead of either continuous hCG via an osmotic mini-pump in the baboon or infusion followed by blastocyst-derived hCG in infertile women undergoing embryo transfer. Therefore, the full impact of intrauterine hCG in promoting endometrial receptivity may not have been evident. WIDER IMPLICATIONS OF THE FINDINGS Our findings suggest a potential clinical benefit for intrauterine hCG prior to embryo transfer on Day 3 in counteracting endometrial dyssynchrony from ovarian stimulation and promoting expression of markers important for stromal survival. Finally, there were no obvious negative effects of intrauterine hCG treatment. STUDY FUNDING/COMPETING INTERESTS Funding for this work was provided by NICHD R01 HD042280 (A.T.F.) and NICHD F30 HD082951 (M.R.S.). C.S. and P.D.-G are co-inventors of the patented ERA, which is owned by IGENOMIX SL and was used in this study, and C.S. is a shareholder in IGENOMIX SL. M.R.-A. is employed by IGENOMIX SL. No other authors have any conflicts of interest to report. TRIAL REGISTRATION NUMBER This study was registered with ClinicalTrials.gov (NCT01786252). TRIAL REGISTRATION DATE 5 February 2013. DATE OF FIRST PATIENT'S ENROLLMENT 10 May 2013.
Collapse
Affiliation(s)
- Michael R Strug
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - Renwei Su
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | | | | | | | - Patricia Díaz-Gimeno
- Fundación Instituto Valenciano de Infertilidad (FIVI), Department of Obstetrics and Gynecology, School of Medicine, Valencia University and Instituto Universitario IVI/INCLIVA, Valencia, Spain
| | - Maria Ruíz-Alonso
- Fundación Instituto Valenciano de Infertilidad (FIVI), Department of Obstetrics and Gynecology, School of Medicine, Valencia University and Instituto Universitario IVI/INCLIVA, Valencia, Spain
| | - Carlos Simón
- Fundación Instituto Valenciano de Infertilidad (FIVI), Department of Obstetrics and Gynecology, School of Medicine, Valencia University and Instituto Universitario IVI/INCLIVA, Valencia, Spain
| | - Bruce A Lessey
- Department of Obstetrics and Gynecology, Greenville Health System, Greenville, SC, USA
| | - Richard E Leach
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, MI, USA The Fertility Center, Grand Rapids, MI, USA
| | - Asgerally T Fazleabas
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| |
Collapse
|
28
|
Zhu H, Lin S, Huang L, He Z, Huang X, Zhou Y, Fang Q, Luo Y. Application of chromosomal microarray analysis in prenatal diagnosis of fetal growth restriction. Prenat Diagn 2016; 36:686-92. [PMID: 27221052 DOI: 10.1002/pd.4844] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Hui Zhu
- Fetal Medicine Center, Department of Obstetrics and Gynecology; The First Affiliated Hospital of Sun Yat-sen University; Guangzhou China
| | - Shaobin Lin
- Fetal Medicine Center, Department of Obstetrics and Gynecology; The First Affiliated Hospital of Sun Yat-sen University; Guangzhou China
| | - Linhuan Huang
- Fetal Medicine Center, Department of Obstetrics and Gynecology; The First Affiliated Hospital of Sun Yat-sen University; Guangzhou China
| | - Zhiming He
- Fetal Medicine Center, Department of Obstetrics and Gynecology; The First Affiliated Hospital of Sun Yat-sen University; Guangzhou China
| | - Xuan Huang
- Fetal Medicine Center, Department of Obstetrics and Gynecology; The First Affiliated Hospital of Sun Yat-sen University; Guangzhou China
| | - Yi Zhou
- Fetal Medicine Center, Department of Obstetrics and Gynecology; The First Affiliated Hospital of Sun Yat-sen University; Guangzhou China
| | - Qun Fang
- Fetal Medicine Center, Department of Obstetrics and Gynecology; The First Affiliated Hospital of Sun Yat-sen University; Guangzhou China
| | - Yanmin Luo
- Fetal Medicine Center, Department of Obstetrics and Gynecology; The First Affiliated Hospital of Sun Yat-sen University; Guangzhou China
| |
Collapse
|
29
|
Regal JF, Gilbert JS, Burwick RM. The complement system and adverse pregnancy outcomes. Mol Immunol 2015; 67:56-70. [PMID: 25802092 DOI: 10.1016/j.molimm.2015.02.030] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/20/2015] [Accepted: 02/24/2015] [Indexed: 02/08/2023]
Abstract
Adverse pregnancy outcomes significantly contribute to morbidity and mortality for mother and child, with lifelong health consequences for both. The innate and adaptive immune system must be regulated to insure survival of the fetal allograft, and the complement system is no exception. An intact complement system optimizes placental development and function and is essential to maintain host defense and fetal survival. Complement regulation is apparent at the placental interface from early pregnancy with some degree of complement activation occurring normally throughout gestation. However, a number of pregnancy complications including early pregnancy loss, fetal growth restriction, hypertensive disorders of pregnancy and preterm birth are associated with excessive or misdirected complement activation, and are more frequent in women with inherited or acquired complement system disorders or complement gene mutations. Clinical studies employing complement biomarkers in plasma and urine implicate dysregulated complement activation in components of each of the adverse pregnancy outcomes. In addition, mechanistic studies in rat and mouse models of adverse pregnancy outcomes address the complement pathways or activation products of importance and allow critical analysis of the pathophysiology. Targeted complement therapeutics are already in use to control adverse pregnancy outcomes in select situations. A clearer understanding of the role of the complement system in both normal pregnancy and complicated or failed pregnancy will allow a rational approach to future therapeutic strategies for manipulating complement with the goal of mitigating adverse pregnancy outcomes, preserving host defense, and improving long term outcomes for both mother and child.
Collapse
Affiliation(s)
- Jean F Regal
- Department of Biomedical Sciences, University of Minnesota Medical School, 1035 University Drive, Duluth, MN 55812, USA.
| | - Jeffrey S Gilbert
- Department of Biomedical Sciences, University of Minnesota Medical School, 1035 University Drive, Duluth, MN 55812, USA.
| | - Richard M Burwick
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Oregon Health & Science University, Mail Code: L-458, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
30
|
Rhim MS, Meddeb S, Kaabia O, Jalloul M, Sakouhi M, Jrzad BBH, Felah R. C3F gene mutation is involved in the susceptibility to pre-eclampsia. Arch Gynecol Obstet 2014; 291:1023-7. [PMID: 25322978 DOI: 10.1007/s00404-014-3515-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 10/07/2014] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of this study was to analyze the functional polymorphism of exon 3 of the gene of complement component C3 (rs 2230199) to identify the potential involvement of the mutated gene C3F in the genesis of pre-eclampsia. MATERIEL AND METHODS It is a comparative case-control study conducted in the university center of maternity and neonatology of Monastir with collaboration of high institute of biotechnology (Tunisia) on a period of 2 years. Two hundred and fifty patients and 96 newborns divided into pre-eclampsia group (150 parturients with pre-eclampsia and 48 newborns) and control group (100 parturients with normal pregnancy and their 48 infants) are taken. Each patient and control were sampled for the phenotypic study and the molecular analysis. The ARMS-PCR (amplification refractory mutation system) was the standard procedure in our study. A simple observation let to distinguish three cases of genotypes: SS, FF and SF. RESULTS In the control group, 56% of parturients had the genotype SS, 38%, the genotype SF and 6%, FF genotype. In the pre-eclamptic population, SS, SF, and FF genotypes were determined, respectively, 40, 45.30 and 14.60% of the patients. There is a sharp increase in the frequency of the FF genotype in pre-eclamptic patients compared to controls (14.60 vs. 6%). The difference was statistically significant (p = 0.01). The frequencies of C3S and alleles C3F determined in controls (respectively, 74 and 26%) were different from those identified in pre-eclamptic patients (respectively, 62.60 and 37.30%). This difference was statistically significant (p = 0.005). The C3S and C3F allele frequencies determined in control newborns (respectively, 83.33 and 16.66%) were slightly different from those identified in newborn issued from pre-eclamptic patients (respectively, 80.2 and 19.79%), but the difference was not statistically significant (p = 0.67). CONCLUSION The gene polymorphism of complement component C3 was significantly associated with the onset of pre-eclampsia. These results should be confirmed by other studies looking at larger scale to consider this gene as a new biomarker with predictive potential therapeutic consequences.
Collapse
Affiliation(s)
- Mohamed Salah Rhim
- Department of Gynecology and Obstetrics, University Hospital Fattouma Bourguiba, Monastir, Tunisia
| | | | | | | | | | | | | |
Collapse
|
31
|
Lokki AI, Heikkinen-Eloranta J, Jarva H, Saisto T, Lokki ML, Laivuori H, Meri S. Complement activation and regulation in preeclamptic placenta. Front Immunol 2014; 5:312. [PMID: 25071773 PMCID: PMC4088925 DOI: 10.3389/fimmu.2014.00312] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/20/2014] [Indexed: 12/02/2022] Open
Abstract
Preeclampsia (PE) is a common disorder of pregnancy originating in the placenta. We examined whether excessive activation or poor regulation of the complement system at the maternal–fetal interface could contribute to the development of PE. Location and occurrence of complement components and regulators in placentae were analyzed. Cryostat sections of placentae were processed from 7 early-onset PE (diagnosis <34 weeks of gestation), 5 late-onset PE, 10 control pregnancies, and immunostained for 6 complement activators and 6 inhibitors. Fluorescence was quantified and compared between PE and control placentae. Gene copy numbers of complement components C4A and C4B were assessed by a quantitative PCR method. Maternal C4 deficiencies (≥1 missing or non-functional C4) were most common in the early-onset PE group (71%), and more frequent in late-onset PE compared to healthy controls (60 vs. 38%). Complement C1q deposition differed significantly between control and patient groups: controls and early-onset PE patients had more C1q than late-onset PE patients (mean p = 0.01 and p = 0.005, respectively). C3 activation was analyzed by staining for C3b/iC3b and C3d. C3d was mostly specific to the basal syncytium and C3b/iC3b diffuse in other structures, but there were no clear differences between the study groups. Activated C4 and membrane-bound regulators CD55, CD46, and CD59 were observed abundantly in the syncytiotrophoblast. Syncytial knots, structures enriched in PE, stained specifically for the classical pathway inhibitor C4bp, whereas the key regulator alternative pathway, factor H (FH) showed a wider distribution in the placenta. Differences in C1q deposition between late- and early-onset PE groups may be indicative of the different etiology of PE symptoms in these patients. Irregular distribution of the complement regulators C4bp and FH in the PE placenta and a higher frequency of C4A deficiencies suggest a disturbed balance between complement activation and regulation in PE.
Collapse
Affiliation(s)
- Anna Inkeri Lokki
- Department of Medical Genetics, Haartman Institute, University of Helsinki , Helsinki , Finland ; Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki , Helsinki , Finland ; Immunobiology Research Program, Research Programs Unit, University of Helsinki , Helsinki , Finland
| | - Jenni Heikkinen-Eloranta
- Department of Medical Genetics, Haartman Institute, University of Helsinki , Helsinki , Finland ; Department of Obstetrics and Gynaecology, Helsinki University Central Hospital , Helsinki , Finland
| | - Hanna Jarva
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki , Helsinki , Finland ; Immunobiology Research Program, Research Programs Unit, University of Helsinki , Helsinki , Finland ; Division of Clinical Microbiology, Helsinki University Central Hospital Laboratory (HUSLAB) , Helsinki , Finland
| | - Terhi Saisto
- Department of Obstetrics and Gynaecology, Helsinki University Central Hospital , Helsinki , Finland
| | - Marja-Liisa Lokki
- Transplantation Laboratory, Haartman Institute, University of Helsinki , Helsinki , Finland
| | - Hannele Laivuori
- Department of Medical Genetics, Haartman Institute, University of Helsinki , Helsinki , Finland ; Department of Obstetrics and Gynaecology, Helsinki University Central Hospital , Helsinki , Finland
| | - Seppo Meri
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki , Helsinki , Finland ; Immunobiology Research Program, Research Programs Unit, University of Helsinki , Helsinki , Finland ; Division of Clinical Microbiology, Helsinki University Central Hospital Laboratory (HUSLAB) , Helsinki , Finland
| |
Collapse
|
32
|
Genetic and pharmacologic inhibition of complement impairs endothelial cell function and ablates ovarian cancer neovascularization. Neoplasia 2013; 14:994-1004. [PMID: 23226093 DOI: 10.1593/neo.121262] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 09/21/2012] [Accepted: 09/27/2012] [Indexed: 12/16/2022] Open
Abstract
Complement activation plays a critical role in controlling inflammatory responses. To assess the role of complement during ovarian cancer progression, we crossed two strains of mice with genetic complement deficiencies with transgenic mice that develop epithelial ovarian cancer (TgMISIIR-TAg). TgMISIIR-TAg mice fully or partially deficient for complement factor 3 (C3) (Tg(+)C3(KO) and Tg(+)C3(HET), respectively) or fully deficient for complement factor C5a receptor (C5aR) (Tg(+)C5aR(KO)) develop either no ovarian tumors or tumors that were small and poorly vascularized compared to wild-type littermates (Tg(+)C3(WT), Tg(+)C5aR(WT)). The percentage of tumor infiltrating immune cells in Tg(+)C3(HET) tumors compared to Tg(+)C3(WT) controls was either similar (macrophages, B cells, myeloid-derived suppressor cells), elevated (effector T cells), or decreased (regulatory T cells). Regardless of these ratios, cytokine production by immune cells taken from Tg(+)C3(HET) tumors was reduced on stimulation compared to Tg(+)C3(WT) controls. Interestingly, CD31(+) endothelial cell (EC) function in angiogenesis was significantly impaired in both C3(KO) and C5aR(KO) mice. Further, using the C5aR antagonist PMX53, tube formation of ECs was shown to be C5a-dependent, possibly through interactions with the VEGF(165) but not VEGF(121) isoform. Finally, the mouse VEGF(164) transcript was underexpressed in C3(KO) livers compare to C3(WT) livers. Thus, we conclude that complement inhibition blocks tumor outgrowth by altering EC function and VEGF(165) expression.
Collapse
|
33
|
Nie F, Wang J, Su D, Shi Y, Chen J, Wang H, Qin W, Shi L. Abnormal activation of complement C3 in the spinal dorsal horn is closely associated with progression of neuropathic pain. Int J Mol Med 2013; 31:1333-42. [PMID: 23588254 DOI: 10.3892/ijmm.2013.1344] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 03/20/2013] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to investigate the role of complement activation in the pathogenesis of neuropathic pain (NPP) induced by peripheral nerve injury. We modified a classical chronic constriction injury (CCI) model (mCCI), and verified its reliability in rats. Furthermore, reverse transcription-PCR and immunohistochemistry were conducted to investigate complement activation in the spinal dorsal horn and the effect of a complement inhibitor, cobra venom factor (CVF), on the behavior of the mCCI model rats. We found that rats in the mCCI group presented a better general condition, without signs of autophagy of the toes. Moreover, mCCI induced a significant increase (+40%) in the expression of component 3 (C3) mRNA in the spinal dorsal horn, which was associated with hyperalgesia. Correlation analysis showed a negative correlation between the mechanical pain threshold and the expression of C3 in the spinal cord. Administration of CVF reduced the occurrence of hyperalgesia in mCCI rats and nearly reversed the hyperalgesia. In addition, the mCCI rats exhibited significantly less spinal superoxide dismutase activity and significantly greater levels of maleic dialdehyde compared to the sham-operated rats. Transmission electron micrographs revealed mitochondrial swelling, cell membrane damage, and cristae fragmentation in the neurons of the spinal dorsal horn 14 days after mCCI. Mitochondrial swelling was attenuated in mCCI rats receiving CVF. The findings demonstrated that abnormal complement activation occurred in the dorsal horn of the spinal cord in rats with NPP, and C3 in the spinal dorsal horn could play an important role in the cascade reaction of complements that are involved in the development of hyperalgesia.
Collapse
Affiliation(s)
- Fachuan Nie
- Department of Pain Care and Nonvascular Intervention, Third Military Medical University, Chongqing, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Yoo SW, Bolbot T, Koulova A, Sneeringer R, Humm K, Dagon Y, Usheva A. Complement factors are secreted in human follicular fluid by granulosa cells and are possible oocyte maturation factors. J Obstet Gynaecol Res 2012; 39:522-7. [PMID: 22925265 DOI: 10.1111/j.1447-0756.2012.01985.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS In this study, we identify components of the complement system present in human follicular fluid that affect oocyte development and maturation. MATERIAL AND METHODS Using bottom-up liquid chromatography/mass spectrometry/mass spectrometry, we identified complement factors as consistently present in human follicular fluid from 15 different subjects. RESULTS According to our gene-chip data, these complement factors are actively produced by granulosa cells. CONCLUSIONS By applying the computational Ingenuity Pathway Analysis software and database we have identified complement pathways that play a role in oocyte maturation and follicular development.
Collapse
Affiliation(s)
- Sang Wook Yoo
- Departments of Medicine, Endocrinology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Qu XW, Jilling T, Neerhof MG, Luo K, Hirsch E, Thaete LG. Unilateral uterine ischemia/reperfusion-induced bilateral fetal loss and fetal growth restriction in a murine model require intact complement component 5. J Reprod Immunol 2012; 95:27-35. [PMID: 22688254 DOI: 10.1016/j.jri.2012.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 04/24/2012] [Accepted: 04/27/2012] [Indexed: 10/28/2022]
Abstract
The role of complement in ischemia/reperfusion-induced fetal growth restriction and fetal loss is unknown. C5-deficient or wild type timed-pregnant mice were subjected to unilateral uterine ischemia/reperfusion on gestation day 13, either by (1) partial flow restriction by right ovarian artery clamping for 30 min, or (2) total flow restriction by clamping both ovarian and uterine arteries for 5 min. Ischemia/reperfusion-challenged pregnancy outcomes were compared to sham-operated controls 5 days later. Ischemia/reperfusion-treated wild type mice exhibited significantly increased bilateral fetal loss, which was greater in total flow restriction than in partial flow restriction, and decreased fetal weights, which were the same in total flow restriction and partial flow restriction for the surviving fetuses. Placental weights were unchanged by treatments. Ischemia/reperfusion increased uterine, but not placental, myeloperoxidase activity, which correlated with fetal loss. In contrast, C5-deficient mice were protected from both fetal growth restriction and fetal loss, and exhibited no increase in myeloperoxidase activity. These results demonstrate that unilateral uterine ischemia/reperfusion results in bilateral fetal loss and fetal growth restriction, mediated by a systemic mechanism. In the current model, this pathological process is completely dependent on intact complement component 5.
Collapse
Affiliation(s)
- Xiao-Wu Qu
- Department of Obstetrics & Gynecology, NorthShore University HealthSystem Research Institute, Evanston, IL 60201, USA
| | | | | | | | | | | |
Collapse
|
36
|
Tincani A, Cavazzana I, Ziglioli T, Lojacono A, De Angelis V, Meroni P. Complement activation and pregnancy failure. Clin Rev Allergy Immunol 2011; 39:153-9. [PMID: 19936969 DOI: 10.1007/s12016-009-8183-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pregnancy represents a physiologic condition where maternal immune system tolerates the semi-allogenic fetus. The fetal tissues are directly exposed to the maternal blood with potential attacks from maternal immune system, including the activation of complement cascade. Small amounts, of both early and late components, of complement are physiologically found in the placenta, maybe in relation to the vascular remodeling process. A significant increase of complement activation was associated with different pathologic pregnancy outcomes, namely pre-eclampsia, recurrent spontaneous abortions, intra-uterine growth retardation, and anti-phospholipid syndrome (APS). In some, but not in all, mice models of APS, complement activation plays a major role in pregnancy loss, with a massive accumulation of C3 in the placenta, while C3 deficient mice didn't show fetal resorption. Basing on these findings, anti-phospholipid antibodies and complement activation (via C3a, C5a, and MAC) may cooperate in triggering a local inflammatory process, eventually leading to placental thrombosis, hypoxia, and neutrophil infiltration. However, histological analysis of human placenta tissues from APS women shows small rather than widespread inflammation. In a similar manner, complement activation can be detected in human APS placentas but without any relationship with pregnancy outcome and therapy. Further studies are necessary to investigate whether complement activation and inflammatory processes found in animal models are really taking place in APS.
Collapse
Affiliation(s)
- Angela Tincani
- UO Reumatologia, Spedali Civili di Brescia, Piazzale Spedali Civili 1, 25100 Brescia, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Sherwin JRA, Hastings JM, Jackson KS, Mavrogianis PA, Sharkey AM, Fazleabas AT. The endometrial response to chorionic gonadotropin is blunted in a baboon model of endometriosis. Endocrinology 2010; 151:4982-93. [PMID: 20668030 PMCID: PMC2946138 DOI: 10.1210/en.2010-0275] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Endometriosis-associated infertility has a multifactorial etiology. We tested the hypothesis that the endometrial response to the early embryonic signal, human chorionic gonadotropin (hCG), alters over time in a nonhuman primate model of endometriosis. Animals with experimental or spontaneous endometriosis were treated with hCG (30 IU/d), from d 6 after ovulation for 5 d, via an oviductal cannula. Microarray analysis of endometrial transcripts from baboons treated with hCG at 3 and 6 months of disease (n=6) identified 22 and 165 genes, respectively, whose levels differed more than 2-fold compared with disease-free (DF) animals treated with hCG (P<0.01). Quantitative RT-PCR confirmed abnormal responses of known hCG-regulated genes. APOA1, SFRP4, and PAPPA, which are normally down-regulated by hCG were up-regulated by hCG in animals with endometriosis. In contrast, the ability of hCG to induce SERPINA3 was lost. Immunohistochemistry demonstrated dysregulation of C3 and superoxide dismutase 2 proteins. We demonstrate that this abnormal response to hCG persists for up to 15 months after disease induction and that the nature of the abnormal response changes as the disease progresses. Immunohistochemistry showed that this aberrant gene expression was not a consequence of altered LH/choriogonadotropin receptor distribution in the endometrium of animals with endometriosis. We have shown that endometriosis induces complex changes in the response of eutopic endometrium to hCG, which may prevent the acquisition of the full endometrial molecular repertoire necessary for decidualization and tolerance of the fetal allograft. This may in part explain endometriosis-associated implantation failure.
Collapse
Affiliation(s)
- J R A Sherwin
- Department of Obstetrics and Gynaecology, The Whittington Hospital National Health ServiceTrust, London N19 5NF, United Kingdom
| | | | | | | | | | | |
Collapse
|