1
|
De A, Jee JP, Park YJ. Why Perfluorocarbon nanoparticles encounter bottlenecks in clinical translation despite promising oxygen carriers? Eur J Pharm Biopharm 2024; 199:114292. [PMID: 38636883 DOI: 10.1016/j.ejpb.2024.114292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/23/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Artificial Oxygen Carriers (AOCs) have emerged as ground-breaking biomedical solutions, showcasing tremendous potential for enhancing human health and saving lives. Perfluorocarbon (PFC)-based AOCs, in particular, have garnered significant interest among researchers, leading to numerous clinical trials since the 1980 s. However, despite decades of exploration, the success rate has remained notably limited. This comprehensive review article delves into the landscape of clinical trials involving PFC compounds, shedding light on the challenges and factors contributing to the lack of clinical success with PFC nanoparticles till date. By scrutinizing the existing trials, the article aims to uncover the underlying issues like pharmacological side effects of the PFC and the nanomaterials used for the designing, complex formulation strategy and poor clinical trial designs of the formulation. More over each generation of the PFC formulation were discussed with details for their failure in the clinical trials limitations that block the path of PFC-based AOCs' full potential. Furthermore, the review emphasizes a forward-looking approach by outlining the future pathways and strategies essential for achieving success in clinical trials. AOCs require advanced yet biocompatible single-componentformulations. The new trend might be a novel drug delivery technique, like gel emulsion or reverse PFC emulsion with fluoro surfactants. Most importantly, well-planned clinical trials may end in a success story.
Collapse
Affiliation(s)
- Anindita De
- College of Pharmacy, Ajou University, 206 Worldcup-ro , Yeongtong-gu, Suwon-si 16499, Republic of Korea.
| | - Jun-Pil Jee
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Young-Joon Park
- College of Pharmacy, Ajou University, 206 Worldcup-ro , Yeongtong-gu, Suwon-si 16499, Republic of Korea; Research Center, IMDpharm Inc., 17 Daehak 4-ro, Yeongtong-gu, Suwon-si 16226, Korea.
| |
Collapse
|
2
|
van Heeswijk RB, Bauer WR, Bönner F, Janjic JM, Mulder WJM, Schreiber LM, Schwitter J, Flögel U. Cardiovascular Molecular Imaging With Fluorine-19 MRI: The Road to the Clinic. Circ Cardiovasc Imaging 2023; 16:e014742. [PMID: 37725674 DOI: 10.1161/circimaging.123.014742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Fluorine-19 (19F) magnetic resonance imaging is a unique quantitative molecular imaging modality that makes use of an injectable fluorine-containing tracer that generates the only visible 19F signal in the body. This hot spot imaging technique has recently been used to characterize a wide array of cardiovascular diseases and seen a broad range of technical improvements. Concurrently, its potential to be translated to the clinical setting is being explored. This review provides an overview of this emerging field and demonstrates its diagnostic potential, which shows promise for clinical translation. We will describe 19F magnetic resonance imaging hardware, pulse sequences, and tracers, followed by an overview of cardiovascular applications. Finally, the challenges on the road to clinical translation are discussed.
Collapse
Affiliation(s)
- Ruud B van Heeswijk
- Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Switzerland (R.B.v.H.)
| | - Wolfgang R Bauer
- Department of Internal Medicine I, Universitätsklinikum Würzburg, Germany (W.R.B.)
| | - Florian Bönner
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty of Heinrich Heine University, University Hospital Düsseldorf, Germany (F.B.)
| | - Jelena M Janjic
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA (J.M.J.)
| | - Willem J M Mulder
- Laboratory of Chemical Biology, Department of Biochemical Engineering, Eindhoven University of Technology, the Netherlands (W.J.M.M.)
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands (W.J.M.M.)
| | - Laura M Schreiber
- Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center (CHFC), Wuerzburg University Hospitals, Germany (L.M.S.)
| | - Juerg Schwitter
- Division of Cardiology, Cardiovascular Department (J.S.), Lausanne University Hospital (CHUV), Switzerland
- CMR Center (J.S.), Lausanne University Hospital (CHUV), Switzerland
- Faculty of Biology and Medicine, University of Lausanne (UNIL), Switzerland (J.S.)
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging (U.F.), Heinrich Heine University, Germany
- Cardiovascular Research Institute Düsseldorf (CARID) (U.F.), Heinrich Heine University, Germany
| |
Collapse
|
3
|
Bauer K, Janke T, Schwarze R. Oxygen transport during liquid ventilation: an in vitro study. Sci Rep 2022; 12:1244. [PMID: 35075158 PMCID: PMC8786849 DOI: 10.1038/s41598-022-05105-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 01/06/2022] [Indexed: 11/10/2022] Open
Abstract
An in vitro experiment on the dissolved oxygen transport during liquid ventilation by means of measuring global oxygen concentration fields is presented within this work. We consider the flow in an idealized four generation model of the human airways in a range of peak Reynolds numbers of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Re = 500$$\end{document}Re=500–3400 and Womersley numbers of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha = 3$$\end{document}α=3–5. Fluorescence quenching measurements were employed in order to visualize and quantify the oxygen distribution with high temporal and spatial resolution during the breathing cycle. Measurements with varying tidal volumes and oscillating frequencies reveal short living times of characteristic concentration patterns for all parameter variations. Similarities to typical velocity patterns in similar lung models persist only in early phases during each cycle. Concentration gradients are quickly homogenized by secondary motions within the lung model. A strong dependency of peak oxygen concentration on tidal volume is observed with considerably higher relative concentrations for higher tidal volumes.
Collapse
Affiliation(s)
- Katrin Bauer
- Institute of Mechanics and Fluid Dynamics, TU Bergakademie Freiberg, Freiberg, Germany.
| | | | - Rüdiger Schwarze
- Institute of Mechanics and Fluid Dynamics, TU Bergakademie Freiberg, Freiberg, Germany
| |
Collapse
|
4
|
Wu L, Liu F, Liu S, Xu X, Liu Z, Sun X. Perfluorocarbons-Based 19F Magnetic Resonance Imaging in Biomedicine. Int J Nanomedicine 2020; 15:7377-7395. [PMID: 33061385 PMCID: PMC7537992 DOI: 10.2147/ijn.s255084] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022] Open
Abstract
Fluorine-19 (19F) magnetic resonance (MR) molecular imaging is a promising noninvasive and quantitative molecular imaging approach with intensive research due to the high sensitivity and low endogenous background signal of the 19F atom in vivo. Perfluorocarbons (PFCs) have been used as blood substitutes since 1970s. More recently, a variety of PFC nanoparticles have been designed for the detection and imaging of physiological and pathological changes. These molecular imaging probes have been developed to label cells, target specific epitopes in tumors, monitor the prognosis and therapy efficacy and quantitate characterization of tumors and changes in tumor microenvironment noninvasively, therefore, significantly improving the prognosis and therapy efficacy. Herein, we discuss the recent development and applications of 19F MR techniques with PFC nanoparticles in biomedicine, with particular emphasis on ligand-targeted and quantitative 19F MR imaging approaches for tumor detection, oxygenation measurement, smart stimulus response and therapy efficacy monitoring, et al.
Collapse
Affiliation(s)
- Lina Wu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China.,TOF-PET/CT/MR Center, Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China
| | - Fang Liu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China.,Department of Medical Imaging, Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China
| | - Shuang Liu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China.,TOF-PET/CT/MR Center, Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China
| | - Xiuan Xu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China.,Department of Medical Imaging, Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China
| | - Zhaoxi Liu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China.,TOF-PET/CT/MR Center, Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China
| | - Xilin Sun
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China.,TOF-PET/CT/MR Center, Harbin Medical University, Harbin, Heilongjiang 150028, People's Republic of China
| |
Collapse
|
5
|
Hövener JB, Pravdivtsev AN, Kidd B, Bowers CR, Glöggler S, Kovtunov KV, Plaumann M, Katz-Brull R, Buckenmaier K, Jerschow A, Reineri F, Theis T, Shchepin RV, Wagner S, Bhattacharya P, Zacharias NM, Chekmenev EY. Parahydrogen-Based Hyperpolarization for Biomedicine. Angew Chem Int Ed Engl 2018; 57:11140-11162. [PMID: 29484795 PMCID: PMC6105405 DOI: 10.1002/anie.201711842] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/14/2018] [Indexed: 12/22/2022]
Abstract
Magnetic resonance (MR) is one of the most versatile and useful physical effects used for human imaging, chemical analysis, and the elucidation of molecular structures. However, its full potential is rarely used, because only a small fraction of the nuclear spin ensemble is polarized, that is, aligned with the applied static magnetic field. Hyperpolarization methods seek other means to increase the polarization and thus the MR signal. A unique source of pure spin order is the entangled singlet spin state of dihydrogen, parahydrogen (pH2 ), which is inherently stable and long-lived. When brought into contact with another molecule, this "spin order on demand" allows the MR signal to be enhanced by several orders of magnitude. Considerable progress has been made in the past decade in the area of pH2 -based hyperpolarization techniques for biomedical applications. It is the goal of this Review to provide a selective overview of these developments, covering the areas of spin physics, catalysis, instrumentation, preparation of the contrast agents, and applications.
Collapse
Affiliation(s)
- Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Andrey N Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Bryce Kidd
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| | - C Russell Bowers
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Stefan Glöggler
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, Von-Siebold-Strasse 3A, 37075, Göttingen, Germany
| | - Kirill V Kovtunov
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Markus Plaumann
- Department of Biometry and Medical Informatics, Otto-von-Guericke University of Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - Rachel Katz-Brull
- Department of Radiology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Kai Buckenmaier
- Magnetic resonance center, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
| | - Alexej Jerschow
- Department of Chemistry, New York University, 100 Washington Sq. East, New York, NY, 10003, USA
| | - Francesca Reineri
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, Torino, Italy
| | - Thomas Theis
- Department of Chemistry & Department of Physics, Duke University, Durham, NC, 27708, USA
| | - Roman V Shchepin
- Vanderbilt University Institute of Imaging Science (VUIIS), Department of Radiology and Radiological Sciences, 1161 21st Ave South, MCN AA-1105, Nashville, TN, 37027, USA
| | - Shawn Wagner
- Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Pratip Bhattacharya
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Niki M Zacharias
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Eduard Y Chekmenev
- Russian Academy of Sciences (RAS), Leninskiy Prospekt 14, Moscow, 119991, Russia
- Department of Chemistry, Karmanos Cancer Institute (KCI) and Integrative Biosciences (Ibio), Wayne State University, Detroit, MI, 48202, USA
| |
Collapse
|
6
|
Hövener J, Pravdivtsev AN, Kidd B, Bowers CR, Glöggler S, Kovtunov KV, Plaumann M, Katz‐Brull R, Buckenmaier K, Jerschow A, Reineri F, Theis T, Shchepin RV, Wagner S, Bhattacharya P, Zacharias NM, Chekmenev EY. Parawasserstoff‐basierte Hyperpolarisierung für die Biomedizin. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711842] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jan‐Bernd Hövener
- Sektion Biomedizinische Bildgebung, Molecular Imaging North Competence Center (MOIN CC) Klinik für Radiologie und Neuroradiologie Universitätsklinikum Schleswig-Holstein, Christian-Albrechts-Universität Kiel Am Botanischen Garten 14 24118 Kiel Deutschland
| | - Andrey N. Pravdivtsev
- Sektion Biomedizinische Bildgebung, Molecular Imaging North Competence Center (MOIN CC) Klinik für Radiologie und Neuroradiologie Universitätsklinikum Schleswig-Holstein, Christian-Albrechts-Universität Kiel Am Botanischen Garten 14 24118 Kiel Deutschland
| | - Bryce Kidd
- Department of Chemistry and Biochemistry Southern Illinois University Carbondale IL 62901 USA
| | - C. Russell Bowers
- Department of Chemistry University of Florida Gainesville FL 32611 USA
| | - Stefan Glöggler
- Max Planck-Institut für Biophysikalische Chemie Am Fassberg 11 37077 Göttingen Deutschland
- Center for Biostructural Imaging of Neurodegeneration Von-Siebold-Straße 3A 37075 Göttingen Deutschland
| | - Kirill V. Kovtunov
- International Tomography Center SB RAS 630090 Novosibirsk Russland
- Department of Natural Sciences Novosibirsk State University Pirogova St. 2 630090 Novosibirsk Russland
| | - Markus Plaumann
- Institut für Biometrie und Medizinische Informatik Otto-von-Guericke-Universität Magdeburg Leipziger Straße 44 39120 Magdeburg Deutschland
| | - Rachel Katz‐Brull
- Department of Radiology Hadassah-Hebrew University Medical Center Jerusalem Israel
| | - Kai Buckenmaier
- Magnetresonanz-Zentrum Max Planck-Institut für biologische Kybernetik Tübingen Deutschland
| | - Alexej Jerschow
- Department of Chemistry New York University 100 Washington Sq. East New York NY 10003 USA
| | - Francesca Reineri
- Department of Molecular Biotechnology and Health Sciences University of Torino via Nizza 52 Torino Italien
| | - Thomas Theis
- Department of Chemistry & Department of Physics Duke University Durham NC 27708 USA
| | - Roman V. Shchepin
- Vanderbilt University Institute of Imaging Science (VUIIS) Department of Radiology and Radiological Sciences 1161 21st Ave South, MCN AA-1105 Nashville TN 37027 USA
| | - Shawn Wagner
- Biomedical Imaging Research Institute Cedars Sinai Medical Center Los Angeles CA 90048 USA
| | - Pratip Bhattacharya
- Department of Cancer Systems Imaging University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| | - Niki M. Zacharias
- Department of Cancer Systems Imaging University of Texas MD Anderson Cancer Center Houston TX 77030 USA
| | - Eduard Y. Chekmenev
- Vanderbilt University Institute of Imaging Science (VUIIS) Department of Radiology and Radiological Sciences 1161 21st Ave South, MCN AA-1105 Nashville TN 37027 USA
- Russian Academy of Sciences (RAS) Leninskiy Prospekt 14 Moscow 119991 Russland
- Department of Chemistry, Karmanos Cancer Institute (KCI) and Integrative Biosciences (Ibio) Wayne State University Detroit MI 48202 USA
| |
Collapse
|
7
|
Kruger SJ, Nagle SK, Couch MJ, Ohno Y, Albert M, Fain SB. Functional imaging of the lungs with gas agents. J Magn Reson Imaging 2016; 43:295-315. [PMID: 26218920 PMCID: PMC4733870 DOI: 10.1002/jmri.25002] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/26/2015] [Indexed: 12/22/2022] Open
Abstract
This review focuses on the state-of-the-art of the three major classes of gas contrast agents used in magnetic resonance imaging (MRI)-hyperpolarized (HP) gas, molecular oxygen, and fluorinated gas--and their application to clinical pulmonary research. During the past several years there has been accelerated development of pulmonary MRI. This has been driven in part by concerns regarding ionizing radiation using multidetector computed tomography (CT). However, MRI also offers capabilities for fast multispectral and functional imaging using gas agents that are not technically feasible with CT. Recent improvements in gradient performance and radial acquisition methods using ultrashort echo time (UTE) have contributed to advances in these functional pulmonary MRI techniques. The relative strengths and weaknesses of the main functional imaging methods and gas agents are compared and applications to measures of ventilation, diffusion, and gas exchange are presented. Functional lung MRI methods using these gas agents are improving our understanding of a wide range of chronic lung diseases, including chronic obstructive pulmonary disease, asthma, and cystic fibrosis in both adults and children.
Collapse
Affiliation(s)
- Stanley J. Kruger
- Department of Medical Physics, University of Wisconsin – Madison, WI, U.S.A
| | - Scott K. Nagle
- Department of Medical Physics, University of Wisconsin – Madison, WI, U.S.A
- Department of Radiology, University of Wisconsin – Madison, WI, U.S.A
- Department of Pediatrics, University of Wisconsin – Madison, WI, U.S.A
| | - Marcus J. Couch
- Thunder Bay Regional Research Institute, Thunder Bay, ON, Canada
- Biotechnology Program, Lakehead University, Thunder Bay, ON, Canada
| | - Yoshiharu Ohno
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mitchell Albert
- Thunder Bay Regional Research Institute, Thunder Bay, ON, Canada
- Department of Chemistry, Lakehead University, Thunder Bay, ON, Canada
| | - Sean B. Fain
- Department of Medical Physics, University of Wisconsin – Madison, WI, U.S.A
- Department of Radiology, University of Wisconsin – Madison, WI, U.S.A
- Department of Biomedical Engineering, University of Wisconsin – Madison, WI, U.S.A
| |
Collapse
|
8
|
Swartz HM, Williams BB, Zaki BI, Hartford AC, Jarvis LA, Chen EY, Comi RJ, Ernstoff MS, Hou H, Khan N, Swarts SG, Flood AB, Kuppusamy P. Clinical EPR: unique opportunities and some challenges. Acad Radiol 2014; 21:197-206. [PMID: 24439333 DOI: 10.1016/j.acra.2013.10.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/03/2013] [Accepted: 10/14/2013] [Indexed: 11/29/2022]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy has been well established as a viable technique for measurement of free radicals and oxygen in biological systems, from in vitro cellular systems to in vivo small animal models of disease. However, the use of EPR in human subjects in the clinical setting, although attractive for a variety of important applications such as oxygen measurement, is challenged with several factors including the need for instrumentation customized for human subjects, probe, and regulatory constraints. This article describes the rationale and development of the first clinical EPR systems for two important clinical applications, namely, measurement of tissue oxygen (oximetry) and radiation dose (dosimetry) in humans. The clinical spectrometers operate at 1.2 GHz frequency and use surface-loop resonators capable of providing topical measurements up to 1 cm depth in tissues. Tissue pO2 measurements can be carried out noninvasively and repeatedly after placement of an oxygen-sensitive paramagnetic material (currently India ink) at the site of interest. Our EPR dosimetry system is capable of measuring radiation-induced free radicals in the tooth of irradiated human subjects to determine the exposure dose. These developments offer potential opportunities for clinical dosimetry and oximetry, which include guiding therapy for individual patients with tumors or vascular disease by monitoring of tissue oxygenation. Further work is in progress to translate this unique technology to routine clinical practice.
Collapse
Affiliation(s)
- Harold M Swartz
- Department of Radiology, Geisel School of Medicine at Dartmouth, Dartmouth College, 48 Lafayette Street, Lebanon, NH 03766.
| | - Benjamin B Williams
- Department of Radiology, Geisel School of Medicine at Dartmouth, Dartmouth College, 48 Lafayette Street, Lebanon, NH 03766
| | - Bassem I Zaki
- Department of Medicine, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH
| | - Alan C Hartford
- Department of Medicine, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH
| | - Lesley A Jarvis
- Department of Medicine, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH
| | - Eunice Y Chen
- Department of Surgery, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH
| | - Richard J Comi
- Department of Medicine, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH
| | - Marc S Ernstoff
- Department of Medicine, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH
| | - Huagang Hou
- Department of Radiology, Geisel School of Medicine at Dartmouth, Dartmouth College, 48 Lafayette Street, Lebanon, NH 03766
| | - Nadeem Khan
- Department of Radiology, Geisel School of Medicine at Dartmouth, Dartmouth College, 48 Lafayette Street, Lebanon, NH 03766
| | - Steven G Swarts
- Dept. of Radiation Oncology, University of Florida, Gainesville, FL
| | - Ann B Flood
- Department of Radiology, Geisel School of Medicine at Dartmouth, Dartmouth College, 48 Lafayette Street, Lebanon, NH 03766
| | - Periannan Kuppusamy
- Department of Radiology, Geisel School of Medicine at Dartmouth, Dartmouth College, 48 Lafayette Street, Lebanon, NH 03766
| |
Collapse
|
9
|
Zhong J, Sakaki M, Okada H, Ahrens ET. In vivo intracellular oxygen dynamics in murine brain glioma and immunotherapeutic response of cytotoxic T cells observed by fluorine-19 magnetic resonance imaging. PLoS One 2013; 8:e59479. [PMID: 23667419 PMCID: PMC3648573 DOI: 10.1371/journal.pone.0059479] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 02/14/2013] [Indexed: 12/31/2022] Open
Abstract
Noninvasive biomarkers of anti-tumoral efficacy are of great importance to the development of therapeutic agents. Tumor oxygenation has been shown to be an important indicator of therapeutic response. We report the use of intracellular labeling of tumor cells with perfluorocarbon (PFC) molecules, combined with quantitative ¹⁹F spin-lattice relaxation rate (R₁) measurements, to assay tumor cell oxygen dynamics in situ. In a murine central nervous system (CNS) GL261 glioma model, we visualized the impact of Pmel-1 cytotoxic T cell immunotherapy, delivered intravenously, on intracellular tumor oxygen levels. GL261 glioma cells were labeled ex vivo with PFC and inoculated into the mouse striatum. The R₁ of ¹⁹F labeled cells was measured using localized single-voxel magnetic resonance spectroscopy, and the absolute intracellular partial pressure of oxygen (pO₂) was ascertained. Three days after tumor implantation, mice were treated with 2×10⁷ cytotoxic T cells intravenously. At day five, a transient spike in pO₂ was observed indicating an influx of T cells into the CNS and putative tumor cell apoptosis. Immunohistochemistry and quantitative flow cytometry analysis confirmed that the pO₂ was causally related to the T cells infiltration. Surprisingly, the pO₂ spike was detected even though few (∼4×10⁴) T cells actually ingress into the CNS and with minimal tumor shrinkage. These results indicate the high sensitivity of this approach and its utility as a non-invasive surrogate biomarker of anti-cancer immunotherapeutic response in preclinical models.
Collapse
Affiliation(s)
- Jia Zhong
- Department of Biological Sciences and Pittsburgh NMR Center for Biomedical Research, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Masashi Sakaki
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
| | - Hideho Okada
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
| | - Eric T. Ahrens
- Department of Biological Sciences and Pittsburgh NMR Center for Biomedical Research, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
10
|
Yu JX, Hallac RR, Chiguru S, Mason RP. New frontiers and developing applications in 19F NMR. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 70:25-49. [PMID: 23540575 PMCID: PMC3613763 DOI: 10.1016/j.pnmrs.2012.10.001] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 10/23/2012] [Indexed: 05/06/2023]
Affiliation(s)
- Jian-Xin Yu
- Laboratory of Prognostic Radiology, Division of Advanced Radiological Sciences, Department of Radiology, UT Southwestern Medical Center, Dallas, Texas
| | - Rami R. Hallac
- Laboratory of Prognostic Radiology, Division of Advanced Radiological Sciences, Department of Radiology, UT Southwestern Medical Center, Dallas, Texas
| | - Srinivas Chiguru
- Laboratory of Prognostic Radiology, Division of Advanced Radiological Sciences, Department of Radiology, UT Southwestern Medical Center, Dallas, Texas
| | - Ralph P. Mason
- Laboratory of Prognostic Radiology, Division of Advanced Radiological Sciences, Department of Radiology, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
11
|
Kadayakkara DK, Ranganathan S, Young WB, Ahrens ET. Assaying macrophage activity in a murine model of inflammatory bowel disease using fluorine-19 MRI. J Transl Med 2012; 92:636-45. [PMID: 22330343 PMCID: PMC3397682 DOI: 10.1038/labinvest.2012.7] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Macrophages have an important role in the pathogenesis of most chronic inflammatory diseases. A means of non-invasively quantifying macrophage migration would contribute significantly towards our understanding of chronic inflammatory processes and aid the evaluation of novel therapeutic strategies. We describe the use of a perfluorocarbon tracer reagent and in vivo (19)F magnetic resonance imaging (MRI) to quantify macrophage burden longitudinally. We apply these methods to evaluate the severity and three-dimensional distribution of macrophages in a murine model of inflammatory bowel disease (IBD). MRI results were validated by histological analysis, immunofluorescence and quantitative real-time polymerase chain reaction. Selective depletion of macrophages in vivo was also performed, further validating that macrophage accumulation of perfluorocarbon tracers was the basis of (19)F MRI signals observed in the bowel. We tested the effects of two common clinical drugs, dexamethasone and cyclosporine A, on IBD progression. Whereas cyclosporine A provided mild therapeutic effect, unexpectedly dexamethasone enhanced colon inflammation, especially in the descending colon. Overall, (19)F MRI can be used to evaluate early-stage inflammation in IBD and is suitable for evaluating putative therapeutics. Due to its high macrophage specificity and quantitative ability, we envisage (19)F MRI having an important role in evaluating a wide range of chronic inflammatory conditions mediated by macrophages.
Collapse
Affiliation(s)
- Deepak K Kadayakkara
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Sarangarajan Ranganathan
- Department of Pathology, University of Pittsburgh School of Medicine, Children’s Hospital of Pittsburgh, One Children’s Hospital Drive, Pittsburgh, PA, USA
| | - Won-Bin Young
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Eric T Ahrens
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
12
|
Youn H, Hong KJ. In vivo Noninvasive Small Animal Molecular Imaging. Osong Public Health Res Perspect 2012; 3:48-59. [PMID: 24159487 PMCID: PMC3738683 DOI: 10.1016/j.phrp.2012.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 02/13/2012] [Accepted: 02/13/2012] [Indexed: 12/16/2022] Open
Abstract
The remarkable efforts that are made on molecular imaging technologies demonstrate its potential importance and range of applications. The generation of disease-specific animal models, and the developments of target-specific probes and genetically encoded reporters are another important component. Continued improvements in the instrumentation, the identification of novel targets and genes, and the availability of improved imaging probes should be made. Multimodal imaging probes should provide easier transitions between laboratory studies, including small animal studies and clinical applications. Here, we reviewed basic strategies of noninvasive in vivo imaging methods in small animals to introducing the concept of molecular imaging.
Collapse
Affiliation(s)
- Hyewon Youn
- Department of Nuclear Medicine, Cancer Imaging Center, Seoul National University Cancer Hospital, Seoul, Korea
- Laboratory of Molecular Imaging and Therapy, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Kee-Jong Hong
- Division of High-Risk Pathogen Research, Korea National Institute of Health, Osong, Korea
| |
Collapse
|
13
|
Ruiz-Cabello J, Barnett BP, Bottomley PA, Bulte JW. Fluorine (19F) MRS and MRI in biomedicine. NMR IN BIOMEDICINE 2011; 24:114-29. [PMID: 20842758 PMCID: PMC3051284 DOI: 10.1002/nbm.1570] [Citation(s) in RCA: 366] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 04/23/2010] [Accepted: 04/26/2010] [Indexed: 05/04/2023]
Abstract
Shortly after the introduction of (1)H MRI, fluorinated molecules were tested as MR-detectable tracers or contrast agents. Many fluorinated compounds, which are nontoxic and chemically inert, are now being used in a broad range of biomedical applications, including anesthetics, chemotherapeutic agents, and molecules with high oxygen solubility for respiration and blood substitution. These compounds can be monitored by fluorine ((19)F) MRI and/or MRS, providing a noninvasive means to interrogate associated functions in biological systems. As a result of the lack of endogenous fluorine in living organisms, (19)F MRI of 'hotspots' of targeted fluorinated contrast agents has recently opened up new research avenues in molecular and cellular imaging. This includes the specific targeting and imaging of cellular surface epitopes, as well as MRI cell tracking of endogenous macrophages, injected immune cells and stem cell transplants.
Collapse
Affiliation(s)
- Jesús Ruiz-Cabello
- Russell H. Morgan Department of Radiology, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Vascular Biology Program and Cellular Imaging Section, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, USA
- NMR Group, Institute of Functional Studies, Complutense University and CIBERES, Madrid, Spain
| | - Brad P. Barnett
- Russell H. Morgan Department of Radiology, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Vascular Biology Program and Cellular Imaging Section, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Paul A. Bottomley
- Russell H. Morgan Department of Radiology, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeff W.M. Bulte
- Russell H. Morgan Department of Radiology, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Vascular Biology Program and Cellular Imaging Section, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
14
|
Weigel JK, Steinmann D, Emerich P, Stahl CA, v Elverfeldt D, Guttmann J. High-resolution three-dimensional 19F-magnetic resonance imaging of rat lung in situ: evaluation of airway strain in the perfluorocarbon-filled lung. Physiol Meas 2010; 32:251-62. [PMID: 21193813 DOI: 10.1088/0967-3334/32/2/008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Perfluorocarbons (PFC) are biologically and chemically inert fluids with high oxygen and CO(2) carrying capacities. Their use as liquid intrapulmonary gas carriers during liquid ventilation has been investigated. We established a method of high resolution 3D-(19)F-MRI of the totally PFC-filled lung. The goal of this study was to investigate longitudinal and circumferential airway strain in the setting of increasing airway pressures on 3D-(19)F-MR images of the PFC-filled lung. Sixteen female Wistar rats were euthanized and the liquid perfluorocarbon FC-84 instilled into their lungs. 3D-(19)F-MRI was performed at various intrapulmonary pressures. Measurements of bronchial length and cross-sectional area were obtained from transversal 2D images for each pressure range. Changes in bronchial area were used to determine circumferential strain, while longitudinal strain was calculated from changes in bronchial length. Our method of 3D-(19)F-MRI allowed clear visualization of the great bronchi. Longitudinal strain increased significantly up to 31.1 cmH(2)O. The greatest strain could be found in the range of low airway pressures. Circumferential strain increased strongly with the initial pressure rise, but showed no significant changes above 10.4 cmH(2)O. Longitudinal strain was generally higher in distal airways, while circumferential strain showed no difference. Analysis of mechanical characteristics showed that longitudinal and circumferential airway expansion occurred in an anisotropic fashion. Whereas longitudinal strain still increased with higher pressures, circumferential strain quickly reached a 'strain limit'. Longitudinal strain was higher in distal bronchi, as dense PFCs gravitate to dependent, in this case to dorso-basal parts of the lung, acting as liquid positive end expiratory pressure.
Collapse
Affiliation(s)
- Julia K Weigel
- Department of Anaesthesia and Critical Care Medicine, University Hospital Freiburg, Hugstetter Strasse 55, D 79106 Freiburg, Germany.
| | | | | | | | | | | |
Collapse
|
15
|
Magat J, Jordan BF, Cron GO, Gallez B. Noninvasive mapping of spontaneous fluctuations in tumor oxygenation using F19 MRI. Med Phys 2010; 37:5434-41. [DOI: 10.1118/1.3484056] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
16
|
Scholz AWK, Eberle B, Heussel CP, David M, Schmittner MD, Quintel M, Schreiber LM, Weiler N. Ventilation-Perfusion Ratio in Perflubron During Partial Liquid Ventilation. Anesth Analg 2010; 110:1661-8. [DOI: 10.1213/ane.0b013e3181d3e1d5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Caruthers SD, Cyrus T, Winter PM, Wickline SA, Lanza GM. Anti-angiogenic perfluorocarbon nanoparticles for diagnosis and treatment of atherosclerosis. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2010; 1:311-23. [PMID: 20049799 DOI: 10.1002/wnan.9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Complementary developments in nanotechnology, genomics, proteomics, molecular biology and imaging offer the potential for early, accurate diagnosis. Molecularly-targeted diagnostic imaging agents will allow noninvasive phenotypic characterization of pathologies and, therefore, tailored treatment close to the onset. For atherosclerosis, this includes anti-angiogenic therapy with specifically-targeted drug delivery systems to arrest the development of plaques before they impinge upon the lumen. Additionally, monitoring the application and effects of this targeted therapy in a serial fashion will be important. This review covers the specific application of alpha(nu)beta(3)-targeted anti-angiogenic perfluorocarbon nanoparticles in (1) the detection of molecular markers for atherosclerosis, (2) the immediate verification of drug delivery with image-based prediction of therapy outcomes, and (3) the serial, noninvasive observation of therapeutic efficacy.
Collapse
Affiliation(s)
- Shelton D Caruthers
- Washington University School of Medicine and Philips Medical Systems, St. Louis, MO, USA.
| | | | | | | | | |
Collapse
|
18
|
Janjic JM, Ahrens ET. Fluorine-containing nanoemulsions for MRI cell tracking. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2009; 1:492-501. [PMID: 19920872 PMCID: PMC2777673 DOI: 10.1002/wnan.35] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this article we review the chemistry and nanoemulsion formulation of perfluorocarbons used for in vivo(19)F MRI cell tracking. In this application, cells of interest are labeled in culture using a perfluorocarbon nanoemulsion. Labeled cells are introduced into a subject and tracked using (19)F MRI or NMR spectroscopy. In the same imaging session, a high-resolution, conventional ((1)H) image can be used to place the (19)F-labeled cells into anatomical context. Perfluorocarbon-based (19)F cell tracking is a useful technology because of the high specificity for labeled cells, ability to quantify cell accumulations, and biocompatibility. This technology can be widely applied to studies of inflammation, cellular regenerative medicine, and immunotherapy.
Collapse
Affiliation(s)
- Jelena M. Janjic
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Eric T. Ahrens
- Department of Biological Sciences and Pittsburgh NMR Center for Biomedical Research, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
19
|
Jordan BF, Cron GO, Gallez B. Rapid monitoring of oxygenation by 19F magnetic resonance imaging: Simultaneous comparison with fluorescence quenching. Magn Reson Med 2009; 61:634-8. [PMID: 19097235 DOI: 10.1002/mrm.21594] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The aim of this study was to develop an MRI fluorocarbon oximetry technique using snapshot inversion recovery and compare it with fluorescence quenching fiber-optic probe oximetry (OxyLite) performed simultaneously in experimental mouse tumors. The oxygen reporter probe hexafluorobenzene (HFB) was injected directly into the tumors, along with the insertion of the OxyLite probe. Tumor oxygenation (pO(2)) was modified using carbogen or lethal doses of the anesthetic gas. MRI pO(2) maps were generated in 1.5 min with an in-plane spatial resolution of 1.88 mm. MRI and OxyLite showed consistent baseline and postmortem pO(2) values. Increases in tumor pO(2) during carbogen breathing showed similar kinetics for the two methods. The pO(2) values observed using the OxyLite corresponded with relatively hypoxic values observed by MRI. The apparent discrepancy between mean values might be due to the difference in sampling volumes of the techniques and the observation of multiple locations using (19)F MRI versus a single location using the large optical fiber. Overall, the present method provides a rapid way to map the tumor oxygenation and is particularly suitable to monitor acute changes of pO(2) in tumors.
Collapse
Affiliation(s)
- Bénédicte F Jordan
- Laboratory of Biomedical Magnetic Resonance, Université Catholique de Louvain, Brussels, Belgium
| | | | | |
Collapse
|
20
|
Cell labeling and tracking for experimental models using magnetic resonance imaging. Methods 2009; 48:112-24. [PMID: 19362150 DOI: 10.1016/j.ymeth.2009.03.020] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 03/28/2009] [Indexed: 01/05/2023] Open
Abstract
Magnetic Resonance Imaging (MRI), as one of the most powerful methods in clinical diagnosis, has emerged as an additional method in the field of molecular and cellular imaging. Compared to established molecular imaging methods, MRI provides in vivo images with high resolution. In particularly in the field of cell-based therapy, non-invasively acquired information on temporal changes of cell location linked to high-resolution anatomical information is of great interest. Relatively new approaches like responsive contrast agents or MR imaging reporter gene expression are MRI applications beyond temporal and spatial information on labeled cells towards investigations on functional changes of cells in vivo. MRI-based cell monitoring and tracking studies require prior labeling of the cells under investigation for excellent contrast against the background of host tissue. Here, an overview is provided on contrast generation strategies for MRI of cells. This includes MR contrast agents, various approaches of cell labeling and MRI as well as MR spectroscopic methods used for cell tracking in vivo. Advantages and disadvantages of the particular labeling approaches and methods are discussed. In addition to description of the methods, the emphasis is on the potential but also challenges and shortcomings of this imaging technique for applications that aim to visualize cellular processes in vivo.
Collapse
|
21
|
Liu Y, Villamena FA, Sun J, Wang TY, Zweier JL. Esterified trityl radicals as intracellular oxygen probes. Free Radic Biol Med 2009; 46:876-83. [PMID: 19135524 PMCID: PMC2673998 DOI: 10.1016/j.freeradbiomed.2008.12.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 11/17/2008] [Accepted: 12/11/2008] [Indexed: 10/21/2022]
Abstract
Triarylmethyl (trityl) radicals exhibit high stability and narrow linewidth under physiological conditions which provide high sensitivity and resolution for the measurement of O2 concentrations, making them attractive as EPR oximetry probes. However, the application of previously available compounds has been limited by their poor intracellular permeability. We recently reported the synthesis and characterization of esterified trityl radicals as potential intracellular EPR probes and their oxygen sensitivity, redox properties, and enzyme-mediated hydrolysis were investigated. In this paper, we report the cellular permeability and stability of these trityls in the presence of bovine aortic endothelial cells. Results show that the acetoxymethoxycarbonyl-containing trityl AMT-02 exhibits high stability in the presence of cells and can be effectively internalized. The intracellular hydrolysis of AMT-02 to the carboxylate form of the trityl (CT-03) was also observed. In addition, this internalized trityl probe was applied to measure intracellular O2 concentrations and the effects of menadione and KCN on the rates of O2 consumption in endothelial cells. This study demonstrates that these esterified trityl radicals can function as effective EPR oximetry probes measuring intracellular O2 concentration and consumption.
Collapse
Affiliation(s)
- Yangping Liu
- Center for Biomedical EPR Spectroscopy and Imaging, The Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, Department of Internal Medicine, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
22
|
Nyström AM, Bartels JW, Du W, Wooley KL. Perfluorocarbon-loaded Shell Crosslinked Knedel-like Nanoparticles: Lessons regarding polymer mobility and self assembly. JOURNAL OF POLYMER SCIENCE. PART A, POLYMER CHEMISTRY 2009; 47:1023-1037. [PMID: 20157345 PMCID: PMC2779516 DOI: 10.1002/pola.23184] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reversible addition-fragmentation chain transfer polymerization was employed to synthesize a set of copolymers of styrene (PS) and 2,3,4,5,6-pentafluorostyrene (PPFS), as well as block copolymers with tert-butyl acrylate (PtBA)-b-PS-co-PPFS, with control over molecular weight and polydispersity. It was found that the copolymerization of styrene and PFS allowed for the preparation of gradient copolymers with opposite levels of monomer consumption, depending on the feed ratio. Conversion to amphiphilic block copolymers, PAA-b-(PS-co-PPFS), by removing the protecting groups was followed by fitting with monomethoxy poly(ethylene glycol) chains. Solution-state assembly and intramicellar crosslinking afforded shell crosslinked (SCK) block copolymer nanoparticles. These fluorinated nanoparticles (ca. 20 nm diameters) were studied as potential magnetic resonance imaging (MRI) contrast agents based on the (19)F-nuclei, however, it was found that packaging of the hydrophobic fluorinated polymers into the core domain restricted the mobility of the chains and prohibited (19)F-NMR spectroscopy when the particles were dispersed in water without an organic cosolvent. Packing of perflouro-15-crown-5-ether (PFCE) into the polymer micelle was demonstrated with good uptake efficiency, however, it was necessary to swell the core with a good solvent (DMSO) to increase the mobility and observe the (19)F-NMR signal of the PFCE.
Collapse
Affiliation(s)
- Andreas M Nyström
- Department of Chemistry and Department of Radiology, Washington University in Saint Louis, Saint Louis, Missouri 63130-4899 (USA)
| | | | | | | |
Collapse
|
23
|
Du W, Nyström AM, Zhang L, Powell KT, Li Y, Cheng C, Wickline SA, Wooley KL. Amphiphilic hyperbranched fluoropolymers as nanoscopic 19F magnetic resonance imaging agent assemblies. Biomacromolecules 2008; 9:2826-33. [PMID: 18795785 DOI: 10.1021/bm800595b] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Three hyperbranched fluoropolymers were synthesized and their micelles were constructed as potential (19)F MRI agents. A hyperbranched star-like core was first synthesized via atom transfer radical self-condensing vinyl (co)polymerization (ATR-SCVCP) of 4-chloromethyl styrene (CMS), lauryl acrylate (LA), and 1,1,1-tris(4'-(2''-bromoisobutyryloxy)phenyl)ethane (TBBPE). The polymerization gave a small core with M n of 5.5 kDa with PDI of 1.6, which served as a macroinitiator. Trifluoroethyl methacrylate (TFEMA) and tert-butyl acrylate (tBA) in different ratios were then "grafted" from the core to give three polymers with M(n) of about 120 kDa and PDI values of about 1.6-1.8. After acidolysis of the tert-butyl ester groups, amphiphilic, hyperbranched star-like polymers with M(n) of about 100 kDa were obtained. These structures were subjected to micelle formation in aqueous solution to give micelles having TEM-measured diameters ranging from 3-8 nm and DLS-measured hydrodynamic diameters from 20-30 nm. These micelles gave a narrow, single resonance by (19)F NMR spectroscopy, with a half-width of approximately 130 Hz. The T1/T2 parameters were about 500 and 50 ms, respectively, and were not significantly affected by the composition and sizes of the micelles. (19)F MRI phantom images of these fluorinated micelles were acquired, which demonstrated that these fluorinated micelles maybe useful as novel (19)F MRI agents for a variety of biomedical studies.
Collapse
Affiliation(s)
- Wenjun Du
- Department of Chemistry, Washington University in Saint Louis, Saint Louis, Missouri 63130, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Liu Y, Villamena FA, Sun J, Xu Y, Dhimitruka I, Zweier JL. Synthesis and Characterization of Ester-Derivatized Tetrathiatriarylmethyl Radicals as Intracellular Oxygen Probes. J Org Chem 2008; 73:1490-7. [DOI: 10.1021/jo7022747] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yangping Liu
- Center for Biomedical EPR Spectroscopy and Imaging, The Davis Heart and Lung Research Institute, the Division of Cardiovascular Medicine, Department of Internal Medicine, and Department of Pharmacology, College of Medicine, The Ohio State University, Columbus, Ohio 43210
| | - Frederick A. Villamena
- Center for Biomedical EPR Spectroscopy and Imaging, The Davis Heart and Lung Research Institute, the Division of Cardiovascular Medicine, Department of Internal Medicine, and Department of Pharmacology, College of Medicine, The Ohio State University, Columbus, Ohio 43210
| | - Jian Sun
- Center for Biomedical EPR Spectroscopy and Imaging, The Davis Heart and Lung Research Institute, the Division of Cardiovascular Medicine, Department of Internal Medicine, and Department of Pharmacology, College of Medicine, The Ohio State University, Columbus, Ohio 43210
| | - Yingkai Xu
- Center for Biomedical EPR Spectroscopy and Imaging, The Davis Heart and Lung Research Institute, the Division of Cardiovascular Medicine, Department of Internal Medicine, and Department of Pharmacology, College of Medicine, The Ohio State University, Columbus, Ohio 43210
| | - Ilirian Dhimitruka
- Center for Biomedical EPR Spectroscopy and Imaging, The Davis Heart and Lung Research Institute, the Division of Cardiovascular Medicine, Department of Internal Medicine, and Department of Pharmacology, College of Medicine, The Ohio State University, Columbus, Ohio 43210
| | - Jay L. Zweier
- Center for Biomedical EPR Spectroscopy and Imaging, The Davis Heart and Lung Research Institute, the Division of Cardiovascular Medicine, Department of Internal Medicine, and Department of Pharmacology, College of Medicine, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
25
|
Caruthers SD, Neubauer AM, Hockett FD, Lamerichs R, Winter PM, Scott MJ, Gaffney PJ, Wickline SA, Lanza GM. In vitro demonstration using 19F magnetic resonance to augment molecular imaging with paramagnetic perfluorocarbon nanoparticles at 1.5 Tesla. Invest Radiol 2006; 41:305-12. [PMID: 16481914 DOI: 10.1097/01.rli.0000199281.60135.6a] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES This study explored the use of F spectroscopy and imaging with targeted perfluorocarbon nanoparticles for the simultaneous identification of multiple bio-signatures at 1.5 T. MATERIALS AND METHODS Two nanoparticle emulsions with perfluoro-15-crown-5-ether (CE) or perfluorooctylbromide (PFOB) cores were targeted in vitro to fibrin clot phantoms (n=12) in 4 progressive ratios using biotin-avidin interactions. The CE nanoparticles incorporated gadolinium. Fluorine images were acquired using steady-state gradient-echo techniques; spectra using volume-selective and nonselective sampling. RESULTS On conventional T1-weighted imaging, clots with CE nanoparticles enhanced as expected, with intensity decreasing monotonically with CE concentration. All clots were visualized using wide bandwidth fluorine imaging, while restricted bandwidth excitation permitted independent imaging of CE or PFOB nanoparticles. Furthermore, F imaging and spectroscopy allowed visual and quantitative confirmation of relative perfluorocarbon nanoparticle distributions. CONCLUSIONS F MRI/S molecular imaging of perfluorocarbon nanoparticles in vitro suggests that noninvasive phenotypic characterization of pathologic bio-signatures is feasible at clinical field strengths.
Collapse
Affiliation(s)
- Shelton D Caruthers
- Division of Cardiology, Washington University Medical School, St. Louis, Missouri 63110, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Shen J, Liu S, Miyake M, Liu W, Pritchard A, Kao JPY, Rosen GM, Tong Y, Liu KJ. Use of 3-acetoxymethoxycarbonyl-2,2,5,5-tetramethyl-1-pyrrolidinyloxyl as an EPR oximetry probe: Potential for in vivo measurement of tissue oxygenation in mouse brain. Magn Reson Med 2006; 55:1433-40. [PMID: 16680679 DOI: 10.1002/mrm.20894] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Measurement of oxygen concentration and distribution in the brain is essential for understanding the pathophysiology of stroke. Low-frequency electron paramagnetic resonance (EPR) spectroscopy with a paramagnetic probe is an attractive imaging modality that potentially can be used to map O(2) concentration in the brain. We examined two nitroxides, 3-methoxycarbonyl-2,2,5,5-tetramethyl-1-pyrrolidinyloxyl [2] and 3-acetoxymethoxycarbonyl-2,2,5,5-tetramethyl-1-pyrrolidinyloxyl [3], as pro-imaging agents to deliver 3-carboxy-2,2,5,5-tetramethyl-1-pyrrolidinyloxyl [1] across the blood-brain barrier (BBB). In primary cultured neurons, nitroxide [3] but not [2] was hydrolyzed by intracellular esterases to [1], which, being anionic at physiologic pH, was well retained intracellularly. In contrast, [2] was not well retained by neurons. In vivo pharmacokinetic and pharmacodynamic studies in mice suggested that esterase-labile nitroxide [3] crossed the BBB, and was converted to [1] and retained. Retention occurred in brain tissue and not in the extensive vasculature, as evidenced by the fact that removal of blood by whole-body saline perfusion did not eliminate the nitroxide EPR signal from the brain. The EPR linewidths of [1] and [3] were more O(2)-sensitive than that of the commonly-used oximetry probe 4-oxo-2,2,6,6-tetramethylpiperidine-d(16)-1-(15)N-oxyl [4]. Moreover, we used [3] in vivo to estimate O(2) concentration in mouse brains. These results indicate that nitroxide [3] could be useful for mapping O(2) distribution in the brain following stroke.
Collapse
Affiliation(s)
- Jiangang Shen
- Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico, Albuquerque, 87131, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
In this review of liquid ventilation, concepts and applications are presented that summarise the pulmonary applications of perfluorochemical liquids. Beginning with the question of whether this alternative form of respiratory support is needed and ending with lessons learned from clinical trials, the various methods of liquid assisted ventilation are compared and contrasted, evidence for mechanoprotective and cytoprotective attributes of intrapulmonary perfluorochemical liquid are presented and alternative intrapulmonary applications, including their use as vehicles for drugs, for thermal control and as imaging agents are presented.
Collapse
Affiliation(s)
- Marla R Wolfson
- Department of Physiology, Temple University School of Medicine, 3420 North Broad Street, Philadelphia, PA 19140, USA
| | | |
Collapse
|
28
|
Lanza GM, Winter PM, Neubauer AM, Caruthers SD, Hockett FD, Wickline SA. 1H/19F magnetic resonance molecular imaging with perfluorocarbon nanoparticles. Curr Top Dev Biol 2005; 70:57-76. [PMID: 16338337 DOI: 10.1016/s0070-2153(05)70003-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Developments in genomics, proteomics, and cell biology are leading a trend toward individualized segmentation and treatment of patients based on early, noninvasive recognition of unique biosignatures. Although developments in molecular imaging have been dominated by nuclear medicine agents in the past, the advent of nanotechnology in the 1990s has led to magnetic resonance (MR) molecular agents that allow detection of sparse biomarkers with a high-resolution imaging modality that can provide both physiological and functional agents. A wide variety of nanoparticulate MR contrast agents have emerged, most of which are superparamagnetic iron oxide-based constructs. However, this chapter focuses on a diagnostic and therapeutic perfluorocarbon (PFC) nanoparticulate platform that is not only effective as a T1-weighted agent, but also supports (19)F MR spectroscopy and imaging. The unique capability of (19)F permits confirmation and segmentation of MR contrast images as well as direct quantification of nanoparticle concentrations within a voxel. PFC nanoparticles have the capability to effectively deliver therapeutic agents to target sites by a novel mechanism termed "contact-facilitated drug delivery." Combined with MR spectroscopy, the concentration of drug delivered to the target site can be determined and the expected response predicted. Moreover, mixtures of nanoparticles with different perfluorocarbon cores can provide a quantitative, multispectral signal, which can be used to simultaneously distinguish the relative concentrations of several important epitopes within a region of interest. In conjunction with rapid improvements in MR imaging, the prospects for personalized medicine and early recognition and treatment of disease have never been better.
Collapse
Affiliation(s)
- Gregory M Lanza
- Division of Cardiology, Washington University Medical School, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
29
|
Kimura A, Narazaki M, Kanazawa Y, Fujiwara H. 19F Magnetic resonance imaging of perfluorooctanoic acid encapsulated in liposome for biodistribution measurement. Magn Reson Imaging 2004; 22:855-60. [PMID: 15234455 DOI: 10.1016/j.mri.2004.01.060] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2003] [Accepted: 01/30/2004] [Indexed: 11/26/2022]
Abstract
The tissue distribution of perfluorooctanoic acid (PFOA), which is known to show unique biological responses, has been visualized in female mice by (19)F magnetic resonance imaging (MRI) incorporated with the recent advances in microimaging technique. The chemical shift selected fast spin-echo method was applied to acquire in vivo (19)F MR images of PFOA. The in vivo T(1) and T(2) relaxation times of PFOA were proven to be extremely short, which were 140 (+/- 20) ms and 6.3 (+/- 2.2) ms, respectively. To acquire the in vivo (19)F MR images of PFOA, it was necessary to optimize the parameters of signal selection and echo train length. The chemical shift selection was effectively performed by using the (19)F NMR signal of CF(3) group of PFOA without the signal overlapping because the chemical shift difference between the CF(3) and neighbor signals reaches to 14 kHz. The most optimal echo train length to obtain (19)F images efficiently was determined so that the maximum echo time (TE) value in the fast spin-echo sequence was comparable to the in vivo T(2) value. By optimizing these parameters, the in vivo (19)F MR image of PFOA was enabled to obtain efficiently in 12 minutes. As a result, the time course of the accumulation of PFOA into the mouse liver was clearly pursued in the (19)F MR images. Thus, it was concluded that the (19)F MRI becomes the effective method toward the future pharmacological and toxicological studies of perfluorocarboxilic acids.
Collapse
Affiliation(s)
- Atsuomi Kimura
- Division of Medical Physics and Engineering, Area of Medical Technology and Science Course of Health Science, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | | | | | | |
Collapse
|
30
|
Huang MQ, Basse PH, Yang Q, Horner JA, Hichens TK, Ho C. MRI detection of tumor in mouse lung using partial liquid ventilation with a perfluorocarbon-in-water emulsion. Magn Reson Imaging 2004; 22:645-52. [PMID: 15172058 DOI: 10.1016/j.mri.2004.01.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Accepted: 01/29/2004] [Indexed: 11/25/2022]
Abstract
Transverse relaxation time (T(2*))-weighted (1)H-MRI of mouse lungs has been performed using partial liquid ventilation (PLV) with a perfluorocarbon (PFC)-in-water emulsion as a contrast modality for lung MRI. Significant sensitivity enhancement in MRI of mouse lungs has been demonstrated with the protocol. The results show that the T(2*) value in lung is approximately proportional to the infusion dose up to a dose of 5 ml/kg body weight (BW) (4.5 g PFC/kg BW) and becomes essentially constant beyond this dosage. T(2*) maps of lungs have been calculated and T(2*) in lungs is in the range of 10-35 ms with this technique, which is an order of magnitude greater than the T(2*) value of mouse lungs without using a PFC-in-water emulsion. T(2*)-weighted (1)H-MR images of mouse lungs have been obtained with good quality under our experimental conditions. We have applied this technique to detect tumors in mouse lungs. Our technique can detect small lung tumors of B16 melanoma, about 1 mm in diameter, in mice. With its significant MR sensitivity enhancement and technical simplicity, T(2*)-weighted (1)H-MRI using PLV with PFC-in-water emulsion offers a promising approach to investigate lung cancers using rodent models.
Collapse
Affiliation(s)
- Ming Qiang Huang
- Department of Biological Sciences, Pittsburgh NMR Center for Biomedical Research, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- Dawen Zhao
- Department of The University of Texas Southwestern Medicial Center at Dallas, 75390, USA
| | | | | |
Collapse
|
32
|
Morawski AM, Winter PM, Yu X, Fuhrhop RW, Scott MJ, Hockett F, Robertson JD, Gaffney PJ, Lanza GM, Wickline SA. Quantitative ?magnetic resonance immunohistochemistry? with ligand-targeted19F nanoparticles. Magn Reson Med 2004; 52:1255-62. [PMID: 15562481 DOI: 10.1002/mrm.20287] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Unstable atherosclerotic plaques exhibit microdeposits of fibrin that may indicate the potential for a future rupture. However, current methods for evaluating the stage of an atherosclerotic lesion only involve characterizing the level of vessel stenosis, without delineating which lesions are beginning to rupture. Previous work has shown that fibrin-targeted, liquid perfluorocarbon nanoparticles, which carry a high payload of gadolinium, have a high sensitivity and specificity for detecting fibrin with clinical (1)H MRI. In this work, the perfluorocarbon content of the targeted nanoparticles is exploited for the purposes of (19)F imaging and spectroscopy to demonstrate a method for quantifiable molecular imaging of fibrin in vitro at 4.7 T. Additionally, the quantity of bound nanoparticles formulated with different perfluorocarbon species was calculated using spectroscopy. Results indicate that the high degree of nanoparticle binding to fibrin clots and the lack of background (19)F signal allow accurate quantification using spectroscopy at 4.7 T, as corroborated with proton relaxation rate measurements at 1.5 T and trace element (gadolinium) analysis. Finally, the extension of these techniques to a clinically relevant application, the evaluation of the fibrin burden within an ex vivo human carotid endarterectomy sample, demonstrates the potential use of these particles for uniquely identifying unstable atherosclerotic lesions in vivo.
Collapse
Affiliation(s)
- Anne M Morawski
- Department of Medicine, Washington University, Saint Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Pandian RP, Parinandi NL, Ilangovan G, Zweier JL, Kuppusamy P. Novel particulate spin probe for targeted determination of oxygen in cells and tissues. Free Radic Biol Med 2003; 35:1138-48. [PMID: 14572616 DOI: 10.1016/s0891-5849(03)00496-9] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The synthesis and characterization of a new lithium octa-n-butoxy-substituted naphthalocyanine radical probe (LiNc-BuO) and its use in the determination of concentration of oxygen (oximetry) by electron paramagnetic resonance (EPR) spectroscopy are reported. The probe is synthesized as a needle-shaped microcrystalline particulate. The particulate shows a single-line EPR spectrum that is highly exchange-narrowed with a line-width of 210 mG. The EPR line-width is sensitive to molecular oxygen showing a linear relationship between the line-width and concentration of oxygen (pO(2)) with a sensitivity of 8.5 mG/mmHg. We studied a variety of physicochemical and biological properties of LiNc-BuO particulates to evaluate the suitability of the probe for in vivo oximetry. The probe is unaffected by biological oxidoreductants, stable in tissues for several months, and can be successfully internalized in cells. We used this probe to monitor changes in concentration of oxygen in the normal muscle and RIF-1 tumor tissue of mice as a function of tumor growth. The data showed a rapid decrease in the tumor pO(2) with increase of tumor volume. Human arterial smooth muscle cells, upon internalization of the LiNc-BuO probe, showed a marked oxygen gradient across the cell membrane. In summary, the newly synthesized octa-n-butoxy derivative of lithium naphthalocyanine has unique properties that are useful for determining oxygen concentration in chemical and biological systems by EPR spectroscopy and also for magnetic tagging of cells.
Collapse
Affiliation(s)
- Ramasamy P Pandian
- Center for Biomedical EPR Spectroscopy and Imaging, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
34
|
Heussel CP, Scholz A, Schmittner M, Laukemper-Ostendorf S, Schreiber WG, Ley S, Quintel M, Weiler N, Thelen M, Kauczor HU. Measurements of Alveolar pO2 Using 19F-MRI in Partial Liquid Ventilation. Invest Radiol 2003; 38:635-41. [PMID: 14501491 DOI: 10.1097/01.rli.0000077056.41954.eb] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
RATIONALE AND OBJECTIVES Partial liquid ventilation using Perfluorcarbon (PFC) is an innovative treatment of acute respiratory distress syndrome. However, the underlying mechanisms are not totally clear. The aim was to investigate the distribution of oxygen partial pressure within the PFC-filled lung (ppO2). METHODS Nine pigs underwent partial liquid ventilation, receiving 20 mL PFC/kg bodyweight (bw). Measurements were obtained by a chemical shift selective TurboFLASH sequence at different axial lung levels. ppO2 was calculated from 19F-MRI by nonlinear curve T1-fitting technique after noise correction. RESULTS Quantification and distribution of ppO2 was performed successfully. A narrow relationship of the inspiratory O2 fraction and ppO2, as well as a significant ventral-to-dorsal gradient of ppO2 (ventral:dependent lung = 1.9:1) were detected in all subjects and slice positions. CONCLUSIONS In vivo measurement of local ppO2 gains new and clinical important insights into the physiology of PLV. The previously unknown ppO2 gradient within PFC fits to distribution of perfusion. Dependent lung regions appear to have limited access to O2 from central airways.
Collapse
|
35
|
Mills GH, Wild JM, Eberle B, Van Beek EJR. Functional magnetic resonance imaging of the lung. Br J Anaesth 2003; 91:16-30. [PMID: 12821562 DOI: 10.1093/bja/aeg149] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- G H Mills
- Unit of Academic Anaesthesia, University of Sheffield and The Directorate of Critical Care Medicine, Royal Hallamshire Hospital, Glossop Road, UK.
| | | | | | | |
Collapse
|
36
|
Huang MQ, Ye Q, Williams DS, Ho C. MRI of lungs using partial liquid ventilation with water-in-perfluorocarbon emulsions. Magn Reson Med 2002; 48:487-92. [PMID: 12210913 DOI: 10.1002/mrm.10231] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A novel (1)H-MRI contrast modality for rat lungs has been developed using water-in-perfluorocarbon (PFC) emulsions for partial liquid ventilation (PLV). The feasibility of the new ventilation protocol for (1)H-MRI studies of lungs has been demonstrated. (1)H-MR images of lungs have been obtained with sensitivity and spatial resolution higher than those of the (19)F-MRI of lungs previously reported. Diffusion-weighted MRI measurements of lungs showed that the results obtained are related to the pulmonary architecture and functional properties of lungs. Although the methodology needs further improvement and evaluation, it appears to have great potential in a wide range of new applications in the field of lung MRI, such as in vivo detection of lung cancer, emphysema, and allograft rejection following lung transplantation. The ability of this technique to achieve high-quality MR images of lungs, together with its technical simplicity, stability, and low cost, makes this method a promising imaging technique for the lungs.
Collapse
Affiliation(s)
- Ming Qiang Huang
- Pittsburgh NMR Center for Biomedical Research, Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | |
Collapse
|
37
|
Current awareness in NMR in biomedicine. NMR IN BIOMEDICINE 2002; 15:305-312. [PMID: 12112613 DOI: 10.1002/nbm.749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|