1
|
Abstract
The clinical presentation of glioblastomas is varied, and definitive diagnosis requires pathologic examination and study of the tissue. Management of glioblastomas includes surgery and adjuvant chemotherapy and radiotherapy, with surgery playing an important role in the prognosis of these patients. Awake craniotomy plays a crucial role in tumors in or adjacent to eloquent areas, allowing surgeons to maximize resection, while minimizing iatrogenic deficits. However, the prognosis remains dismal. This article presents the perioperative management of patients with glioblastoma including tools and surgical adjuncts to maximize extent of resection and minimize poor outcomes.
Collapse
|
2
|
Abstract
PURPOSE OF REVIEW The current treatment of gliomas dovetails results of decades-old clinical trials with modern trends in chemotherapy. Molecular characterization now plays a pivotal role, and IDH mutations are key characteristics and the subject of active debate. IDH-mutant tumors produce the 'onco-metabolite', 2-hydroxyglutarate. Metabolic changes have become central to the understanding of tumor biology, and tumors display a fundamental metabolic change called the Warburg Effect. The Warburg Effect represents a preference for glycolysis, as opposed to oxidative phosphorylation. The present review details the clinical context and discusses clinical and preclinical metabolic imaging tools to characterize the Warburg Effect. RECENT FINDINGS A clinical Warburg Index is proposed, defined as the lactate concentration measured by H-MRSI over the SUV measured by FDG-PET, to measure the Warburg Effect. A preclinical technique called deuterium metabolic imaging has successfully imaged the Warburg Effect in vivo in glioblastoma. SUMMARY Metabolic imaging provides an opportunity to measure the Warburg Effect and other metabolic changes in brain tumors. An increased understanding of metabolic shifts integral to brain cancer has the potential to address multiple contemporary debates on glioma pathophysiology and treatment. Metabolic imaging tools thus have the potential to advance research findings, clinical trial development, and clinical care.
Collapse
|
3
|
Ortega-Martorell S, Candiota AP, Thomson R, Riley P, Julia-Sape M, Olier I. Embedding MRI information into MRSI data source extraction improves brain tumour delineation in animal models. PLoS One 2019; 14:e0220809. [PMID: 31415601 PMCID: PMC6695141 DOI: 10.1371/journal.pone.0220809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/23/2019] [Indexed: 01/22/2023] Open
Abstract
Glioblastoma is the most frequent malignant intra-cranial tumour. Magnetic resonance imaging is the modality of choice in diagnosis, aggressiveness assessment, and follow-up. However, there are examples where it lacks diagnostic accuracy. Magnetic resonance spectroscopy enables the identification of molecules present in the tissue, providing a precise metabolomic signature. Previous research shows that combining imaging and spectroscopy information results in more accurate outcomes and superior diagnostic value. This study proposes a method to combine them, which builds upon a previous methodology whose main objective is to guide the extraction of sources. To this aim, prior knowledge about class-specific information is integrated into the methodology by setting the metric of a latent variable space where Non-negative Matrix Factorisation is performed. The former methodology, which only used spectroscopy and involved combining spectra from different subjects, was adapted to use selected areas of interest that arise from segmenting the T2-weighted image. Results showed that embedding imaging information into the source extraction (the proposed semi-supervised analysis) improved the quality of the tumour delineation, as compared to those obtained without this information (unsupervised analysis). Both approaches were applied to pre-clinical data, involving thirteen brain tumour-bearing mice, and tested against histopathological data. On results of twenty-eight images, the proposed Semi-Supervised Source Extraction (SSSE) method greatly outperformed the unsupervised one, as well as an alternative semi-supervised approach from the literature, with differences being statistically significant. SSSE has proven successful in the delineation of the tumour, while bringing benefits such as 1) not constricting the metabolomic-based prediction to the image-segmented area, 2) ability to deal with signal-to-noise issues, 3) opportunity to answer specific questions by allowing researchers/radiologists define areas of interest that guide the source extraction, 4) creation of an intra-subject model and avoiding contamination from inter-subject overlaps, and 5) extraction of meaningful, good-quality sources that adds interpretability, conferring validation and better understanding of each case.
Collapse
Affiliation(s)
- Sandra Ortega-Martorell
- Department of Applied Mathematics, Liverpool John Moores University, Liverpool, England, United Kingdom
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
- * E-mail:
| | - Ana Paula Candiota
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
- Departament de Bioquímica i Biologia Molecular, Unitat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ryan Thomson
- Department of Applied Mathematics, Liverpool John Moores University, Liverpool, England, United Kingdom
| | - Patrick Riley
- Department of Applied Mathematics, Liverpool John Moores University, Liverpool, England, United Kingdom
| | - Margarida Julia-Sape
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
- Departament de Bioquímica i Biologia Molecular, Unitat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ivan Olier
- Department of Applied Mathematics, Liverpool John Moores University, Liverpool, England, United Kingdom
| |
Collapse
|
4
|
Metabolomics of Therapy Response in Preclinical Glioblastoma: A Multi-Slice MRSI-Based Volumetric Analysis for Noninvasive Assessment of Temozolomide Treatment. Metabolites 2017; 7:metabo7020020. [PMID: 28524099 PMCID: PMC5487991 DOI: 10.3390/metabo7020020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/30/2017] [Accepted: 05/15/2017] [Indexed: 01/07/2023] Open
Abstract
Glioblastoma (GBM) is the most common aggressive primary brain tumor in adults, with a short survival time even after aggressive therapy. Non-invasive surrogate biomarkers of therapy response may be relevant for improving patient survival. Previous work produced such biomarkers in preclinical GBM using semi-supervised source extraction and single-slice Magnetic Resonance Spectroscopic Imaging (MRSI). Nevertheless, GBMs are heterogeneous and single-slice studies could prevent obtaining relevant information. The purpose of this work was to evaluate whether a multi-slice MRSI approach, acquiring consecutive grids across the tumor, is feasible for preclinical models and may produce additional insight into therapy response. Nosological images were analyzed pixel-by-pixel and a relative responding volume, the Tumor Responding Index (TRI), was defined to quantify response. Heterogeneous response levels were observed and treated animals were ascribed to three arbitrary predefined groups: high response (HR, n = 2), TRI = 68.2 ± 2.8%, intermediate response (IR, n = 6), TRI = 41.1 ± 4.2% and low response (LR, n = 2), TRI = 13.4 ± 14.3%, producing therapy response categorization which had not been fully registered in single-slice studies. Results agreed with the multi-slice approach being feasible and producing an inverse correlation between TRI and Ki67 immunostaining. Additionally, ca. 7-day oscillations of TRI were observed, suggesting that host immune system activation in response to treatment could contribute to the responding patterns detected.
Collapse
|
5
|
Sundstrom A, Bar-Sagi D, Mishra B. Simulating Heterogeneous Tumor Cell Populations. PLoS One 2016; 11:e0168984. [PMID: 28030620 PMCID: PMC5193460 DOI: 10.1371/journal.pone.0168984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 12/09/2016] [Indexed: 12/12/2022] Open
Abstract
Certain tumor phenomena, like metabolic heterogeneity and local stable regions of chronic hypoxia, signify a tumor's resistance to therapy. Although recent research has shed light on the intracellular mechanisms of cancer metabolic reprogramming, little is known about how tumors become metabolically heterogeneous or chronically hypoxic, namely the initial conditions and spatiotemporal dynamics that drive these cell population conditions. To study these aspects, we developed a minimal, spatially-resolved simulation framework for modeling tissue-scale mixed populations of cells based on diffusible particles the cells consume and release, the concentrations of which determine their behavior in arbitrarily complex ways, and on stochastic reproduction. We simulate cell populations that self-sort to facilitate metabolic symbiosis, that grow according to tumor-stroma signaling patterns, and that give rise to stable local regions of chronic hypoxia near blood vessels. We raise two novel questions in the context of these results: (1) How will two metabolically symbiotic cell subpopulations self-sort in the presence of glucose, oxygen, and lactate gradients? We observe a robust pattern of alternating striations. (2) What is the proper time scale to observe stable local regions of chronic hypoxia? We observe the stability is a function of the balance of three factors related to O2-diffusion rate, local vessel release rate, and viable and hypoxic tumor cell consumption rate. We anticipate our simulation framework will help researchers design better experiments and generate novel hypotheses to better understand dynamic, emergent whole-tumor behavior.
Collapse
Affiliation(s)
- Andrew Sundstrom
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Department of Computer Science, Courant Institute of Mathematical Sciences, New York, NY, United States of America
| | - Dafna Bar-Sagi
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY, United States of America
| | - Bud Mishra
- Department of Computer Science, Courant Institute of Mathematical Sciences, New York, NY, United States of America
| |
Collapse
|
6
|
Delgado-Goñi T, Ortega-Martorell S, Ciezka M, Olier I, Candiota AP, Julià-Sapé M, Fernández F, Pumarola M, Lisboa PJ, Arús C. MRSI-based molecular imaging of therapy response to temozolomide in preclinical glioblastoma using source analysis. NMR IN BIOMEDICINE 2016; 29:732-743. [PMID: 27061401 DOI: 10.1002/nbm.3521] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 02/14/2016] [Accepted: 02/23/2016] [Indexed: 06/05/2023]
Abstract
Characterization of glioblastoma (GB) response to treatment is a key factor for improving patients' survival and prognosis. MRI and magnetic resonance spectroscopic imaging (MRSI) provide morphologic and metabolic profiles of GB but usually fail to produce unequivocal biomarkers of response. The purpose of this work is to provide proof of concept of the ability of a semi-supervised signal source extraction methodology to produce images with robust recognition of response to temozolomide (TMZ) in a preclinical GB model. A total of 38 female C57BL/6 mice were used in this study. The semi-supervised methodology extracted the required sources from a training set consisting of MRSI grids from eight GL261 GBs treated with TMZ, and six control untreated GBs. Three different sources (normal brain parenchyma, actively proliferating GB and GB responding to treatment) were extracted and used for calculating nosologic maps representing the spatial response to treatment. These results were validated with an independent test set (7 control and 17 treated cases) and correlated with histopathology. Major differences between the responder and non-responder sources were mainly related to the resonances of mobile lipids (MLs) and polyunsaturated fatty acids in MLs (0.9, 1.3 and 2.8 ppm). Responding tumors showed significantly lower mitotic (3.3 ± 2.9 versus 14.1 ± 4.2 mitoses/field) and proliferation rates (29.8 ± 10.3 versus 57.8 ± 5.4%) than control untreated cases. The methodology described in this work is able to produce nosological images of response to TMZ in GL261 preclinical GBs and suitably correlates with the histopathological analysis of tumors. A similar strategy could be devised for monitoring response to treatment in patients. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- T Delgado-Goñi
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, Surrey, UK
| | - S Ortega-Martorell
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Department of Mathematics and Statistics, Liverpool John Moores University, Liverpool, UK
| | - M Ciezka
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - I Olier
- Institute for Science and Technology in Medicine, Keele University, Stoke-On-Trent, UK
- Centre for Health Informatics, Institute of Population Health University of Manchester, Manchester, UK
| | - A P Candiota
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - M Julià-Sapé
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - F Fernández
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - M Pumarola
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - P J Lisboa
- Department of Mathematics and Statistics, Liverpool John Moores University, Liverpool, UK
| | - C Arús
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
7
|
Basic Principles and Clinical Applications of Magnetic Resonance Spectroscopy in Neuroradiology. J Comput Assist Tomogr 2016; 40:1-13. [PMID: 26484954 DOI: 10.1097/rct.0000000000000322] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Magnetic resonance spectroscopy is a powerful tool to assist daily clinical diagnostics. This review is intended to give an overview on basic principles of the technology, discuss some of its technical aspects, and present typical applications in daily clinical routine in neuroradiology.
Collapse
|
8
|
Julià-Sapé M, Griffiths JR, Tate AR, Howe FA, Acosta D, Postma G, Underwood J, Majós C, Arús C. Classification of brain tumours from MR spectra: the INTERPRET collaboration and its outcomes. NMR IN BIOMEDICINE 2015; 28:1772-1787. [PMID: 26768492 DOI: 10.1002/nbm.3439] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 07/15/2015] [Accepted: 10/01/2015] [Indexed: 06/05/2023]
Abstract
The INTERPRET project was a multicentre European collaboration, carried out from 2000 to 2002, which developed a decision-support system (DSS) for helping neuroradiologists with no experience of MRS to utilize spectroscopic data for the diagnosis and grading of human brain tumours. INTERPRET gathered a large collection of MR spectra of brain tumours and pseudo-tumoural lesions from seven centres. Consensus acquisition protocols, a standard processing pipeline and strict methods for quality control of the aquired data were put in place. Particular emphasis was placed on ensuring the diagnostic certainty of each case, for which all cases were evaluated by a clinical data validation committee. One outcome of the project is a database of 304 fully validated spectra from brain tumours, pseudotumoural lesions and normal brains, along with their associated images and clinical data, which remains available to the scientific and medical community. The second is the INTERPRET DSS, which has continued to be developed and clinically evaluated since the project ended. We also review here the results of the post-INTERPRET period. We evaluate the results of the studies with the INTERPRET database by other consortia or research groups. A summary of the clinical evaluations that have been performed on the post-INTERPRET DSS versions is also presented. Several have shown that diagnostic certainty can be improved for certain tumour types when the INTERPRET DSS is used in conjunction with conventional radiological image interpretation. About 30 papers concerned with the INTERPRET single-voxel dataset have so far been published. We discuss stengths and weaknesses of the DSS and the lessons learned. Finally we speculate on how the INTERPRET concept might be carried into the future.
Collapse
Affiliation(s)
- Margarida Julià-Sapé
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| | | | - A Rosemary Tate
- School of Informatics, University of Sussex, Falmer, Brighton, UK
| | - Franklyn A Howe
- Cardiovascular and Cell Sciences Research Institute, St George's, University of London, London, UK
| | - Dionisio Acosta
- CHIME, University College London, The Farr Institute of Health Informatics Research, London, UK
| | - Geert Postma
- Radboud University Nijmegen, Institute for Molecules and Materials, Analytical Chemistry, Nijmegen, The Netherlands
| | | | - Carles Majós
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
- Institut de Diagnòstic per la Imatge (IDI), CSU de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Carles Arús
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| |
Collapse
|
9
|
Landheer K, Sahgal A, Das S, Graham SJ. Constrained Source Space MR Spectroscopy: Multiple Voxels, No Gradient Readout. AJNR Am J Neuroradiol 2015; 36:1436-43. [PMID: 26089315 PMCID: PMC7964693 DOI: 10.3174/ajnr.a4319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/19/2015] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Our goal was to develop a novel technique for measuring a small number of localized spectra simultaneously and in a time-efficient manner. MATERIALS AND METHODS Using appropriate radiofrequency pulses, the magnetization from multiple voxels is excited simultaneously and then separated (reconstructed) by using the individual coil-sensitivity profiles from a multichannel receiver coil. Because no gradients are used for k-space encoding, constrained source space MR spectroscopy provides a time advantage over conventional spectroscopic imaging and an improved signal-to-noise ratio per square root of unit time over single-voxel spectroscopy applied at each successive location. In the present work, we considered prototype application of constrained source space MR spectroscopy for 2 voxels. RESULTS Experimental data from healthy volunteers and simulation results showed that constrained source space MR spectroscopy is effective at extracting 2 independent spectra even in the challenging scenario of the voxels being closely spaced. Also, from 6 patients with various types of brain cancer we obtained 2-voxel constrained source space MR spectroscopy data, which showed spectra of clinical quality in half the time required to perform successive single-voxel MR spectroscopy. CONCLUSIONS Constrained source space MR spectroscopy provides clinical quality spectra and could be used to probe multiple voxels simultaneously in combination with Hadamard encoding for further scan-time reductions.
Collapse
Affiliation(s)
- K Landheer
- From the Departments of Medical Biophysics (K.L., S.J.G.) Physical Sciences (K.L., S.J.G.), Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - A Sahgal
- Radiation Oncology, Sunnybrook Odette Cancer Centre (A.S.), University of Toronto, Ontario, Canada
| | - S Das
- Surgery (S.D.) Keenan Research Centre (S.D.), St. Michael's Hospital, Toronto, Ontario, Canada
| | - S J Graham
- From the Departments of Medical Biophysics (K.L., S.J.G.) Physical Sciences (K.L., S.J.G.), Sunnybrook Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Abstract
BACKGROUND AND PURPOSE To determine in vivo magnetic resonance spectroscopy (MRS) characteristics of intracranial glial tumours and to assess MRS reliability in glioma grading and discrimination between different histopathological types of tumours. MATERIAL AND METHODS Analysis of spectra of 26 patients with glioblastomas, 6 with fibrillary astrocytomas, 4 with anaplastic astrocytomas, 2 with pilocytic astrocytoma, 3 with oligodendrogliomas, 3 with anaplastic oligodendrogliomas and 17 control spectra taken from healthy hemispheres. RESULTS All tumours' metabolite ratios, except for Cho/Cr in fibrillary astrocytomas (p = 0.06), were statistically significantly different from the control. The tumours showed decreased Naa and Cr contents and a high Cho signal. The Lac-Lip signal was high in grade III astrocytomas and glioblastomas. Reports that Cho/Cr ratio increases with glioma's grade whereas Naa/Cr decreases were not confirmed. Anaplastic astrocytomas compared to grade II astrocytomas had a statistically significantly greater mI/Cr ratio (p = 0.02). In pilocytic astrocytomas the Naa/Cr value (2.58 ± 0.39) was greater, whilst the Cho/Naa ratio was lower (2.14 ± 0.64) than in the other astrocytomas. The specific feature of oligodendrogliomas was the presence of glutamate/glutamine peak Glx. However, this peak was absent in two out of three anaplastic oligodendrogliomas. Characteristically, the latter tumours had a high Lac-Lip signal. CONCLUSIONS MRS in vivo cannot be used as a reliable method for glioma grading. The method is useful in discrimination between WHO grade I and WHO grade II astrocytomas as well as oligodendrogliomas from other gliomas.
Collapse
|
11
|
Ortega-Martorell S, Lisboa PJG, Vellido A, Simões RV, Pumarola M, Julià-Sapé M, Arús C. Convex non-negative matrix factorization for brain tumor delimitation from MRSI data. PLoS One 2012; 7:e47824. [PMID: 23110107 PMCID: PMC3479143 DOI: 10.1371/journal.pone.0047824] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 09/17/2012] [Indexed: 11/24/2022] Open
Abstract
Background Pattern Recognition techniques can provide invaluable insights in the field of neuro-oncology. This is because the clinical analysis of brain tumors requires the use of non-invasive methods that generate complex data in electronic format. Magnetic Resonance (MR), in the modalities of spectroscopy (MRS) and spectroscopic imaging (MRSI), has been widely applied to this purpose. The heterogeneity of the tissue in the brain volumes analyzed by MR remains a challenge in terms of pathological area delimitation. Methodology/Principal Findings A pre-clinical study was carried out using seven brain tumor-bearing mice. Imaging and spectroscopy information was acquired from the brain tissue. A methodology is proposed to extract tissue type-specific sources from these signals by applying Convex Non-negative Matrix Factorization (Convex-NMF). Its suitability for the delimitation of pathological brain area from MRSI is experimentally confirmed by comparing the images obtained with its application to selected target regions, and to the gold standard of registered histopathology data. The former showed good accuracy for the solid tumor region (proliferation index (PI)>30%). The latter yielded (i) high sensitivity and specificity in most cases, (ii) acquisition conditions for safe thresholds in tumor and non-tumor regions (PI>30% for solid tumoral region; ≤5% for non-tumor), and (iii) fairly good results when borderline pixels were considered. Conclusions/Significance The unsupervised nature of Convex-NMF, which does not use prior information regarding the tumor area for its delimitation, places this approach one step ahead of classical label-requiring supervised methods for discrimination between tissue types, minimizing the negative effect of using mislabeled voxels. Convex-NMF also relaxes the non-negativity constraints on the observed data, which allows for a natural representation of the MRSI signal. This should help radiologists to accurately tackle one of the main sources of uncertainty in the clinical management of brain tumors, which is the difficulty of appropriately delimiting the pathological area.
Collapse
Affiliation(s)
- Sandra Ortega-Martorell
- Departament de Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| | - Paulo J. G. Lisboa
- Department of Mathematics and Statistics, Liverpool John Moores University (LJMU), Liverpool, United Kingdom
| | - Alfredo Vellido
- Department of Computer Languages and Systems, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
| | - Rui V. Simões
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Martí Pumarola
- Murine Pathology Unit, Centre de Biotecnologia Animal i Teràpia Gènica, Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| | - Margarida Julià-Sapé
- Departament de Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| | - Carles Arús
- Departament de Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- * E-mail:
| |
Collapse
|
12
|
Simões RV, Ortega-Martorell S, Delgado-Goñi T, Le Fur Y, Pumarola M, Candiota AP, Martín J, Stoyanova R, Cozzone PJ, Julià-Sapé M, Arús C. Improving the classification of brain tumors in mice with perturbation enhanced (PE)-MRSI. Integr Biol (Camb) 2011; 4:183-91. [PMID: 22193155 DOI: 10.1039/c2ib00079b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Classifiers based on statistical pattern recognition analysis of MRSI data are becoming important tools for the non-invasive diagnosis of human brain tumors. Here we investigate the potential interest of perturbation-enhanced MRSI (PE-MRSI), in this case acute hyperglycemia, for improving the discrimination between mouse brain MRS patterns of glioblastoma multiforme (GBM), oligodendroglioma (ODG), and non-tumor brain parenchyma (NT). Six GBM-bearing mice and three ODG-bearing mice were scanned at 7 Tesla by PRESS-MRSI with 12 and 136 ms echo-time, during euglycemia (Eug) and also during induced acute hyperglycemia (Hyp), generating altogether four datasets per animal (echo time + glycemic condition): 12Eug, 136Eug, 12Hyp, and 136Hyp. For classifier development all spectral vectors (spv) selected from the MRSI matrix were unit length normalized (UL2) and used either as a training set (76 GBM spv, four mice; 70 ODG spv, two mice; 54 NT spv) or as an independent testing set (61 GBM spv, two mice; 31 ODG, one mouse; 23 NT spv). All Fisher's LDA classifiers obtained were evaluated as far as their descriptive performance-correctly classified cases of the training set (bootstrapping)-and predictive accuracy-balanced error rate of independent testing set classification. MRSI-based classifiers at 12Hyp were consistently more efficient in separating GBM, ODG, and NT regions, with overall accuracies always >80% and up to 95-96%; remaining classifiers were within the 48-85% range. This was also confirmed by user-independent selection of training and testing sets, using leave-one-out (LOO). This highlights the potential interest of perturbation-enhanced MRSI protocols for improving the non-invasive characterization of preclinical brain tumors.
Collapse
Affiliation(s)
- Rui Vasco Simões
- Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
He T, Doblas S, Saunders D, Casteel R, Lerner M, Ritchey JW, Snider T, Floyd RA, Towner RA. Effects of PBN and OKN007 in rodent glioma models assessed by 1H MR spectroscopy. Free Radic Biol Med 2011; 51:490-502. [PMID: 21600283 DOI: 10.1016/j.freeradbiomed.2011.04.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 04/12/2011] [Accepted: 04/22/2011] [Indexed: 10/18/2022]
Abstract
Gliomas, the most common primary brain tumors in adults, have a poor outcome. PBN (α-phenyl-tert-butylnitrone) and OKN007 (2,4-disulfophenyl-PBN) are nitrones that have demonstrated beneficial effects in many aging diseases. In this study, we evaluated the anti-tumor effects of PBN and OKN007 in several rodent glioma models (C6, RG2, and GL261) by assessing metabolite alterations with magnetic resonance spectroscopy (MRS). PBN or OKN007 was administered in drinking water before or after tumor formation. MR imaging and single-voxel point-resolved spectroscopy were done to assess tumor morphology and metabolites, after therapy. Major metabolite ratios (choline, N-acetylaspartate, and lipid (methylene or methyl), all compared to creatine), as well as quantification of individual metabolite concentrations, were assessed. Nitrones induced tumor metabolism changes that resulted in restoring major metabolite ratios close to their normal levels, in the glioma regression phase. Nitrone treatment decreased the lipid (methylene)-to-creatine ratio, as well as the estimated concentration of lipid (methylene) significantly. Alterations in lipids can be a useful marker for the evaluation of the efficacy associated with treatment and were found in this study to be related to the reduction of necrosis, but not apoptosis. OKN007 was more effective than PBN when administered after tumor formation in the C6 glioma model. In conclusion, (1)H MRS and conventional MRI are useful methods to assess and follow the response of varied glioma models to anti-tumor treatments.
Collapse
Affiliation(s)
- Ting He
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Liimatainen TJ, Erkkilä AT, Valonen P, Vidgren H, Lakso M, Wong G, Gröhn OHJ, Ylä-Herttuala S, Hakumäki JM. 1H MR spectroscopic imaging of phospholipase-mediated membrane lipid release in apoptotic rat glioma in vivo. Magn Reson Med 2008; 59:1232-8. [PMID: 18506792 DOI: 10.1002/mrm.21607] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The purpose of the current study was to determine regional spatiotemporal differences and to gain insight on the mechanisms responsible for lipid accumulation during apoptotic cell death using in vivo MR spectroscopic imaging in combination with histology and biochemical membrane lipid analyses. Rats bearing BT4C gliomas were treated with ganciclovir (GCV) for 14 days, and combined in vivo quantitative MR spectroscopic imaging (MRSI) of gliomas with histology and a biochemical analysis of major cell membrane constituents. By using 1H MRSI in vivo in combination with histology, we were able to demonstrate previously unattainable regional lipid concentration differences in tumors during GCV-induced apoptosis, with 5-microL tissue volume resolution. Our results also show that, during treatment, phospholipase A2 (PLA2) expression is significantly elevated by 37+/-13% (P<0.05) and tumor cell membranes loose a significant proportion of unsaturated fatty acyl moieties (56+/-6 mmol/kg, P<0.05). These changes are reflected in both histology and significant MR-visible lipid accumulation, demonstrating that phospholipid hydrolysis in tissue undergoing apoptosis can be imaged with MRSI. Our work demonstrates the versatility of 1H MRSI in studying apoptosis in vivo, which is likely to pave way for the use of MRSI in both experimental and clinical anticancer trials.
Collapse
Affiliation(s)
- Timo J Liimatainen
- Department of Biomedical NMR, A.I. Virtanen Institute, University of Kuopio, and Gene Therapy Unit, Department of Internal Medicine, Kuopio University Hospital, Kuopio, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Alimenti A, Delavelle J, Lazeyras F, Yilmaz H, Dietrich PY, de Tribolet N, Lövblad KO. Monovoxel 1H Magnetic Resonance Spectroscopy in the Progression of Gliomas. Eur Neurol 2007; 58:198-209. [PMID: 17823533 DOI: 10.1159/000107940] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Accepted: 02/21/2007] [Indexed: 11/19/2022]
Abstract
AIM Can monovoxel magnetic resonance spectroscopy (MRS) reliably follow tumour progression in low-grade glioma? MATERIALS AND METHODS 21 patients with low-grade glioma underwent at least 3 MRS. RESULTS For progression from a grade II to grade III tumour, a sensitivity of 57.1% and specificity of 60% were observed, with a positive predictive value (PPV) of 48.8% and a negative predictive value (NPV) of 54.5%. For progression under treatment, we obtained a sensitivity of 57.1% by N-acetylaspartate (NAA)/choline (Cho) and myoinositol/creatine (Cr) and a specificity of 100% by Cho/Cr and lipids, with a PPV of 80% and a NPV of 63.6%. CONCLUSION We found that NAA/Cho is the best marker of tumour progression before therapy, with a sensitivity of 53.9%. For the therapeutic response, sensitivity was only 28.2%.
Collapse
|
16
|
Prompers JJ, Jeneson JAL, Drost MR, Oomens CCW, Strijkers GJ, Nicolay K. Dynamic MRS and MRI of skeletal muscle function and biomechanics. NMR IN BIOMEDICINE 2006; 19:927-53. [PMID: 17075956 DOI: 10.1002/nbm.1095] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
MR is a powerful technique for studying the biomechanical and functional properties of skeletal muscle in vivo in health and disease. This review focuses on 31P, 1H and 13C MR spectroscopy for assessment of the dynamics of muscle metabolism and on dynamic 1H MRI methods for non-invasive measurement of the biomechanical and functional properties of skeletal muscle. The information thus obtained ranges from the microscopic level of the metabolism of the myocyte to the macroscopic level of the contractile function of muscle complexes. The MR technology presented plays a vital role in achieving a better understanding of many basic aspects of muscle function, including the regulation of mitochondrial activity and the intricate interplay between muscle fiber organization and contractile function. In addition, these tools are increasingly being employed to establish novel diagnostic procedures as well as to monitor the effects of therapeutic and lifestyle interventions for muscle disorders that have an increasing impact in modern society.
Collapse
Affiliation(s)
- Jeanine J Prompers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands
| | | | | | | | | | | |
Collapse
|
17
|
Tate AR, Underwood J, Acosta DM, Julià-Sapé M, Majós C, Moreno-Torres A, Howe FA, van der Graaf M, Lefournier V, Murphy MM, Loosemore A, Ladroue C, Wesseling P, Luc Bosson J, Cabañas ME, Simonetti AW, Gajewicz W, Calvar J, Capdevila A, Wilkins PR, Bell BA, Rémy C, Heerschap A, Watson D, Griffiths JR, Arús C. Development of a decision support system for diagnosis and grading of brain tumours using in vivo magnetic resonance single voxel spectra. NMR IN BIOMEDICINE 2006; 19:411-34. [PMID: 16763971 DOI: 10.1002/nbm.1016] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A computer-based decision support system to assist radiologists in diagnosing and grading brain tumours has been developed by the multi-centre INTERPRET project. Spectra from a database of 1H single-voxel spectra of different types of brain tumours, acquired in vivo from 334 patients at four different centres, are clustered according to their pathology, using automated pattern recognition techniques and the results are presented as a two-dimensional scatterplot using an intuitive graphical user interface (GUI). Formal quality control procedures were performed to standardize the performance of the instruments and check each spectrum, and teams of expert neuroradiologists, neurosurgeons, neurologists and neuropathologists clinically validated each case. The prototype decision support system (DSS) successfully classified 89% of the cases in an independent test set of 91 cases of the most frequent tumour types (meningiomas, low-grade gliomas and high-grade malignant tumours--glioblastomas and metastases). It also helps to resolve diagnostic difficulty in borderline cases. When the prototype was tested by radiologists and other clinicians it was favourably received. Results of the preliminary clinical analysis of the added value of using the DSS for brain tumour diagnosis with MRS showed a small but significant improvement over MRI used alone. In the comparison of individual pathologies, PNETs were significantly better diagnosed with the DSS than with MRI alone.
Collapse
Affiliation(s)
- Anne R Tate
- St George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Nelson SJ. Magnetic resonance spectroscopic imaging. Evaluating responses to therapy for gliomas. ACTA ACUST UNITED AC 2005; 23:30-9. [PMID: 15565797 DOI: 10.1109/memb.2004.1360406] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sarah J Nelson
- Department of Radiology, University of California, San Francisco 94143-0775, USA.
| |
Collapse
|
19
|
Simonetti AW, Melssen WJ, Szabo de Edelenyi F, van Asten JJA, Heerschap A, Buydens LMC. Combination of feature-reduced MR spectroscopic and MR imaging data for improved brain tumor classification. NMR IN BIOMEDICINE 2005; 18:34-43. [PMID: 15657908 DOI: 10.1002/nbm.919] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The purpose of this paper is to evaluate the effect of the combination of magnetic resonance spectroscopic imaging (MRSI) data and magnetic resonance imaging (MRI) data on the classification result of four brain tumor classes. Suppressed and unsuppressed short echo time MRSI and MRI were performed on 24 patients with a brain tumor and four volunteers. Four different feature reduction procedures were applied to the MRSI data: simple quantitation, principal component analysis, independent component analysis and LCModel. Water intensities were calculated from the unsuppressed MRSI data. Features were extracted from the MR images which were acquired with four different contrasts to comply with the spatial resolution of the MRSI. Evaluation was performed by investigating different combinations of the MRSI features, the MRI features and the water intensities. For each data set, the isolation in feature space of the tumor classes, healthy brain tissue and cerebrospinal fluid was calculated and visualized. A test set was used to calculate classification results for each data set. Finally, the effect of the selected feature reduction procedures on the MRSI data was investigated to ascertain whether it was more important than the addition of MRI information. Conclusions are that the combination of features from MRSI data and MRI data improves the classification result considerably when compared with features obtained from MRSI data alone. This effect is larger than the effect of specific feature reduction procedures on the MRSI data. The addition of water intensities to the data set also increases the classification result, although not significantly. We show that the combination of data from different MR investigations can be very important for brain tumor classification, particularly if a large number of tumors are to be classified simultaneously.
Collapse
Affiliation(s)
- Arjan W Simonetti
- Laboratory for Analytical Chemistry, University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
20
|
Jeun SS, Kim MC, Kim BS, Lee JM, Chung ST, Oh CH, Lee SY, Choe BY. Assessment of malignancy in gliomas by 3T 1H MR spectroscopy. Clin Imaging 2005; 29:10-5. [PMID: 15859012 DOI: 10.1016/j.clinimag.2004.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The purpose of this study was to assess clinical 1H MR spectroscopy (MRS) as a noninvasive method for evaluating brain tumor malignancy at 3T high-field system. Using 3T MRI/MRS system, localized water-suppressed single-voxel technique in patients with brain tumor (i.e., gliomas) was employed to evaluate spectra with peaks of N-acetyl aspartate (NAA), choline-containing compounds (Cho), creatine/phosphocreatine (Cr) and lactate. On the basis of Cr, these peak areas were quantitated as a relative ratio. The variation of metabolite measurements of the designated region in 10 normal volunteers was less than 10%. Normal ranges of NAA/Cr and Cho/Cr ratios were 1.67+/-018 and 1.16+/-0.15, respectively. NAA/Cr ratio of gliomas was significantly lower than that of the normal tissues (P= .005), but Cho/Cr ratio of gliomas was significantly higher (P= .001). Cho/Cr ratio of high-grade gliomas was significantly higher than that of low-grade gliomas. The present study demonstrated that the neuronal degradation or loss was observed in all gliomas. Higher-grade glioma was correlated with higher Cho/Cr ratio, indicating a significant dependence of Cho levels on malignancy of gliomas. Our results suggest that clinical 1H MR spectroscopy could be useful to predict tumor malignancy.
Collapse
Affiliation(s)
- Sin-Soo Jeun
- Department of Neurosurgery, The Catholic University of Korea, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Gruber S, Stadlbauer A, Mlynarik V, Gatterbauer B, Roessler K, Moser E. Proton magnetic resonance spectroscopic imaging in brain tumor diagnosis. Neurosurg Clin N Am 2005; 16:101-14, vi. [PMID: 15561531 DOI: 10.1016/j.nec.2004.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The current state of standard tumor diagnostics using contrast-enhanced MRI and biopsy is assessed in this review, and the progress of proton magnetic resonance spectroscopy (MRS) over the last 15 years is discussed. We summarize MRS basics and describe a typical magnetic resonance session for noninvasive routine tumor diagnostics at 1.5 T, including two-dimensional magnetic resonance spectroscopic imaging (MRSI). The results that can be obtained from such procedures are illustrated with clinical examples. Attention is turned to cutting-edge methodologic and clinical research at 3 T, with examples using high-resolution or very short echo-time three-dimensional MRSI. The current status and limitations in proton MRSI are discussed, and we look to the potential of faster data collection and even higher field strength.
Collapse
Affiliation(s)
- Stephen Gruber
- Magnetic Resonance Centre of Excellence, Medical University of Vienna, Lazarettgasse 14, A-1090 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
22
|
Sajda P, Du S, Brown TR, Stoyanova R, Shungu DC, Mao X, Parra LC. Nonnegative matrix factorization for rapid recovery of constituent spectra in magnetic resonance chemical shift imaging of the brain. IEEE TRANSACTIONS ON MEDICAL IMAGING 2004; 23:1453-65. [PMID: 15575404 DOI: 10.1109/tmi.2004.834626] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We present an algorithm for blindly recovering constituent source spectra from magnetic resonance (MR) chemical shift imaging (CSI) of the human brain. The algorithm, which we call constrained nonnegative matrix factorization (cNMF), does not enforce independence or sparsity, instead only requiring the source and mixing matrices to be nonnegative. It is based on the nonnegative matrix factorization (NMF) algorithm, extending it to include a constraint on the positivity of the amplitudes of the recovered spectra. This constraint enables recovery of physically meaningful spectra even in the presence of noise that causes a significant number of the observation amplitudes to be negative. We demonstrate and characterize the algorithm's performance using 31P volumetric brain data, comparing the results with two different blind source separation methods: Bayesian spectral decomposition (BSD) and nonnegative sparse coding (NNSC). We then incorporate the cNMF algorithm into a hierarchical decomposition framework, showing that it can be used to recover tissue-specific spectra given a processing hierarchy that proceeds coarse-to-fine. We demonstrate the hierarchical procedure on 1H brain data and conclude that the computational efficiency of the algorithm makes it well-suited for use in diagnostic work-up.
Collapse
Affiliation(s)
- Paul Sajda
- Laboratory of Intelligent Imaging and Neural Computing, Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace Building, Mail Code 8904, 1210 Amsterdam Ave., New York, NY 10027, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Chan AA, Lau A, Pirzkall A, Chang SM, Verhey LJ, Larson D, McDermott MW, Dillon WP, Nelson SJ. Proton magnetic resonance spectroscopy imaging in the evaluation of patients undergoing gamma knife surgery for Grade IV glioma. J Neurosurg 2004; 101:467-75. [PMID: 15352605 DOI: 10.3171/jns.2004.101.3.0467] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object. The purpose of this study was to assess the differences in spatial extent and metabolic activity in a comparison of a radiosurgical target defined by conventional strategies that utilize the enhancing lesion and a metabolic lesion defined by proton magnetic resonance spectroscopy (MRS) imaging. The authors evaluated whether these differences manifest themselves in the clinical outcome of patients and assessed the value of incorporating 1H-MRS imaging—derived spatial information into the treatment planning process for gamma knife surgery (GKS).
Methods. Twenty-six patients harboring Grade IV gliomas who had previously been treated with external-beam radiation therapy were evaluated by comparing the radiosurgically treated lesion volume with the volume of metabolically active tumor defined on 1H-MRS imaging. The cohort was evenly divided into two groups based on the percentage of overlap between the radiosurgical target and the metabolic lesion volumes. Patients with a percentage of overlap greater than 50% with respect to the metabolic lesion volume were classified as low risk and those with an overlap less than 50% were classified as high risk.
Kaplan—Meier estimators were calculated using time to progression and survival as dependent variables. The metabolite levels within the metabolic lesion were significantly greater than those within the radiosurgical target (p ≤ 0.001). The median survival was 15.7 months for patients in the low-risk group and 10.4 months for those in the highrisk group. This difference was statistically significant (p < 0.01).
Conclusions. Analysis of the results of this study indicates that patients undergoing GKS may benefit from the inclusion of 1H-MRS imaging in the treatment planning process.
Collapse
Affiliation(s)
- Antoinette A Chan
- Department of Radiology, University of California, San Francisco, California 94107-1739, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Simonetti AW, Melssen WJ, van der Graaf M, Postma GJ, Heerschap A, Buydens LMC. A Chemometric Approach for Brain Tumor Classification Using Magnetic Resonance Imaging and Spectroscopy. Anal Chem 2003; 75:5352-61. [PMID: 14710812 DOI: 10.1021/ac034541t] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new classification approach was developed to improve the noninvasive diagnosis of brain tumors. Within this approach, information is extracted from magnetic resonance imaging and spectroscopy data, from which the relative location and distribution of selected tumor classes in feature space can be calculated. This relative location and distribution is used to select the best information extraction procedure, to identify overlapping tumor classes, and to calculate probabilities of class membership. These probabilities are very important, since they provide information about the reliability of classification and might provide information about the heterogeneity of the tissue. Classification boundaries were calculated by setting thresholds for each investigated tumor class, which enabled the classification of new objects. Results on histopathologically determined tumors are excellent, demonstrated by spatial maps showing a high probability for the correctly identified tumor class and, moreover, low probabilities for other tumor classes.
Collapse
Affiliation(s)
- Arjan W Simonetti
- Laboratory for Analytical Chemistry, University of Nijmegen, Toernooiveld 1 6525 ED Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
25
|
Murphy PS, Rowland IJ, Viviers L, Brada M, Leach MO, Dzik-Jurasz ASK. Could assessment of glioma methylene lipid resonance by in vivo (1)H-MRS be of clinical value? Br J Radiol 2003; 76:459-63. [PMID: 12857705 DOI: 10.1259/bjr/16316438] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The potential clinical role of in vivo (1)H-MRS ((1)H-magnetic resonance spectroscopy) lipid methylene resonance measurements of human glioma has been assessed. 20 patients, 14 with low grade and 6 with high grade gliomas have been investigated using single voxel (1)H-MRS. Three of the low grade group had undergone transformation by clinical and imaging criteria. Short echo time (TE=20 ms, TR=2500 ms) single voxel Stimulated Echo Acquisition (STEAM) spectra with (acquisitions=64) and without (acquisitions=4) water suppression were acquired. Additionally, T(1) weighted (T(1)W) water spectra (TE=20 ms, TR=888 ms) were acquired pre- and post-injection of Gd-DTPA (0.2 mmol x kg(-1)). The T(1)W water spectra were used to determine the water proton enhancement occurring within the spectroscopic voxel. The enhancement expressed as a percentage was compared with the lipid methylene peak. All the high grade tumours had significantly higher levels of lipid than low grade tumours (p=0.002). Low grade tumours had significantly less water proton enhancement than transformers (p=0.04) and high grade tumours (p=0.001). The lipid methylene signal correlated strongly with the voxel water enhancement (r(2)=0.74, p<0.0001). The data support the view that the spectroscopically detected lipid methylene signal may be a useful criterion in grading glioma. The correlation of the lipid methylene signal with blood-brain barrier breakdown suggests that detection of a previously absent (1)H-MRS lipid methylene signal in low grade tumours might be an early indicator of transformation.
Collapse
Affiliation(s)
- P S Murphy
- Cancer Research UK Clinical MR Research Group, The Institute of Cancer Research and The Royal Marsden NHS Trust, Sutton, Surrey SM2 5PT, UK
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Glioblastoma multiforme are infiltrative lesions that have a high degree of heterogeneity, both within and between different patients. Imaging is critical for all phases in the evaluation and treatment of these lesions, but has been limited in providing information that is reliable enough to stratify patients into groups with uniform behavior and to predict outcome. Although magnetic resonance imaging is the method of choice for visualizing anatomic features of the lesion, its results are ambiguous in terms of defining the functional characteristics of the lesion and distinguishing tumor from treatment induced necrosis. Recent advances in magnetic resonance have made possible the routine acquisition of physiological data such as perfusion- and diffusion-weighted images and of metabolic data such as water suppressed proton spectroscopic images. These provide quantitative measurements that are more closely related to the biological properties of the tumor and reflect changes in tumor vascularity, cellularity and proliferation that are associated with tumor progression. As the molecular properties that influence invasion and neoplastic transformation are elucidated, it is critical that noninvasive imaging techniques are available for investigating new therapies and tailoring treatment to individual patient characteristics. The data obtained from patients with glioblastoma multiforme have already demonstrated that these new magnetic resonance techniques are able to contribute to diagnosis, characterization of malignant potential, treatment planning and assessment of response to therapy.
Collapse
Affiliation(s)
- Sarah J Nelson
- Magnetic Resonance Science Center, Department of Radiology, University of California San Francisco, San Francisco, California 94143, USA.
| | | |
Collapse
|
27
|
Rabinov JD, Lee PL, Barker FG, Louis DN, Harsh GR, Cosgrove GR, Chiocca EA, Thornton AF, Loeffler JS, Henson JW, Gonzalez RG. In vivo 3-T MR spectroscopy in the distinction of recurrent glioma versus radiation effects: initial experience. Radiology 2002; 225:871-9. [PMID: 12461273 DOI: 10.1148/radiol.2253010997] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To determine if 3-T magnetic resonance (MR) spectroscopy allows accurate distinction of recurrent tumor from radiation effects in patients with gliomas of grade II or higher. MATERIALS AND METHODS This blinded prospective study included 14 patients who underwent in vivo 3-T MR spectroscopy prior to stereotactic biopsy. All patients received a previous diagnosis of glioma (grade II or higher) and high-dose radiation therapy (>54 Gy). Prior to MR spectroscopy, conventional MR imaging was performed at 1.5 T to identify a gadolinium-enhanced region within the irradiated volume. Diagnosis was assigned by means of histopathologic analysis of the biopsy samples. RESULTS Sixteen of 17 biopsy locations could be classified as predominantly tumor or predominantly radiation effect on the basis of the ratio of choline at the biopsy site to normal creatine level by using a value greater than 1.3 as the criterion for tumor. The remaining case, classified as recurrent tumor on the basis of MR spectroscopy results, was diagnosed as predominantly radiation effect on the basis of histopathologic findings. Disease in this patient progressed to biopsy-proven recurrence within 3 months. Overall, the ratio of choline at the biopsy site to normal creatine level was significantly elevated (unpaired two-tailed Student t test, P <.002) in those biopsy samples composed predominantly of tumor (n = 9) compared with those containing predominantly radiation effects (n = 8). The ratio was not significantly different between the two histopathologic groups. CONCLUSION In vivo 3-T MR spectroscopy has sufficient spatial resolution and chemical specificity to allow distinction of recurrent tumor from radiation effects in patients with treated gliomas.
Collapse
Affiliation(s)
- James D Rabinov
- Departments of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Gray 2, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Nelson SJ, McKnight TR, Henry RG. Characterization of untreated gliomas by magnetic resonance spectroscopic imaging. Neuroimaging Clin N Am 2002; 12:599-613. [PMID: 12687914 DOI: 10.1016/s1052-5149(02)00037-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Although there are trends in the morphologic, metabolic, hemodynamic, and structural properties of untreated gliomas that are reflected in MR measurements, there is considerable heterogeneity both within and between lesions of the same histologic grade. The spatial extent of the abnormality in ADC and RA images is similar to the T2 lesion, but there is no obvious difference in intensity between grades. The rCBV is significantly increased in the enhancing volume of grade 4 lesions but is similar or reduced in intensity for most grade 3 lesions. There are clear differences between the enhancing volumes and the regions with increased Cho that may be highly significant for planning focal therapy. The location and intensity of the Lac/Lip peaks are consistent with those representing regions of necrosis for grade 4 lesions. The fact that small Lac/Lip peaks can also be seen in grade 2 and grade 3 lesions suggests that their presence may be indicative of regions that are likely to progress to a higher grade. If this were the case, it would be valuable for directing biopsies. The correlations between rCBV, Cho, and ADC suggest that cellularity, membrane turnover, and vascularity are linked in grade 4 lesions. It is not clear whether there is any relationship between these parameters regions in grade 2 or grade 3 gliomas. While further work is required to optimize the methodology associated with these MR parameters, it seems likely that combining the information from such measurements may be valuable for predicting outcome and tailoring therapy to individual patients.
Collapse
Affiliation(s)
- Sarah J Nelson
- Magnetic Resonance Science Center, Department of Radiology, University of California at San Francisco, One Irving Street, Box 1290, San Francisco, CA 94143, USA.
| | | | | |
Collapse
|
29
|
Nelson SJ, Graves E, Pirzkall A, Li X, Antiniw Chan A, Vigneron DB, McKnight TR. In vivo molecular imaging for planning radiation therapy of gliomas: an application of 1H MRSI. J Magn Reson Imaging 2002; 16:464-76. [PMID: 12353260 DOI: 10.1002/jmri.10183] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Gliomas are infiltrative lesions that typically have poorly defined margins on conventional magnetic resonance (MR) and computed tomography (CT) images. This presents a considerable challenge for planning radiation and other forms of focal therapy, and introduces the possibility of both under-treating macroscopic tumor, and over-treating regions of normal brain tissue. New therapy systems are able to deliver radiation more precisely and accurately to irregular three-dimensional target volumes, and have placed a premium on definition of the spatial extent of the lesion. Proton MR spectroscopic imaging (H-MRSI) has been proposed as an in vivo molecular imaging technique that assists in targeting and predicts response to radiation therapy for patients with gliomas. The evidence that supports the use of H-MRSI for planning radiation treatment is reviewed, together with the technical requirements for implementing data acquisition and analysis procedures in a clinical setting. Although there is room for improvement in the spatial resolution and chemical specificity obtained at the conventional field strength of 1.5 T, there are clear benefits to integrating H-MRSI into treatment planning and follow-up examinations. Further work is required to integrate the results of the H-MRSI examination into the treatment planning workstation, and to improve the quality of the data using more sensitive phased array coils and higher field strength magnets.
Collapse
Affiliation(s)
- Sarah J Nelson
- Mgnetic Resonance Science Center, Department of Radiology, University of California, San Francisco, California 94143, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Kimura T, Sako K, Gotoh T, Tanaka K, Tanaka T. In vivo single-voxel proton MR spectroscopy in brain lesions with ring-like enhancement. NMR IN BIOMEDICINE 2001; 14:339-349. [PMID: 11599032 DOI: 10.1002/nbm.711] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
It is often difficult to make a correct diagnosis of ring-like enhanced lesions on Gd-enhanced MR brain images. To differentiate these lesions using proton MR spectroscopy (1H-MRS), we retrospectively evaluated the correlation between the 1H-MR spectra and histopathological findings. We evaluated proton MR spectra obtained from the lesions in 45 patients, including metastasis (n = 19), glioblastoma (n = 10), radiation necrosis (n = 7), brain abscess (n = 5), and cerebral infarction (n = 4). The rate of misdiagnosis was found to be lowest at the threshold level of 2.48 for the (choline containing compounds)/(creatine and phosphocreatine) ratio (Cho/Cr) obtained from the whole lesions, which include the enhanced rim and the non-enhanced inner region. That is, the positively predictive values of a Cho/Cr greater than 2.48 for diagnosing metastasis or glioblastoma was 88.9 and 60.0%, respectively, and the positively predictive value of a Cho/Cr less than 2.48 for diagnosing radiation necrosis or cerebral infarction was 71.4 and 100%, respectively. For further differentiating between metastasis and glioblastoma, information about the presence and absence of an N-acetyl-aspartate (NAA) peak and lipid- or lactate-dominant peak was found to be useful. In 73.7% of metastasis cases a lipid-dominant peak was observed in the whole lesion without an NAA peak in the inner region, whereas the same pattern was observed in only 10% of the glioblastoma cases. Correlation with the histopathological findings showed that a high Cho signal is suggestive of neoplasm. Lipid signal in the non-enhanced central region was correlated to necrosis. Lactate signals were often observed in glioblastoma, abscess and sometimes metastasis, presumably reflecting the anaerobic glycolysis by the living cells in the ring-like enhanced rim. Single-voxel proton MR spectroscopy may serve as a potential tool to provide useful information of differentiation of ring-like enhanced lesions that cannot be diagnosed correctly using enhanced MR images alone.
Collapse
Affiliation(s)
- T Kimura
- Department of Neurosurgery, Asahikawa Medical College, Asahikawa, Hokkaido 078-8510, Japan.
| | | | | | | | | |
Collapse
|
31
|
Abstract
PURPOSE The purpose of this work was to quantify the impact of contrast agents on short-TE single-voxel 1H MR spectroscopy (MRS) diagnosis of recurrent brain tumors. METHOD Short-TE 1H MRS was performed in 49 patients with biopsy-proven brain tumors and 14 control subjects. Eight patients (nine paired exams) were examined before and after administration of Gd-DTPA (interval approximately 5-7 min). RESULTS Tumor spectra showed increased choline/creatine ratio (Cho/Cr; p < 0.009) and Cho concentrations (p < 0.02). Receiver operator characteristic for Cho/Cr = 0.93 differentiated 100% of tumors from control in the absence or presence of contrast agent. Repeated 1H MRS varied <3%. Cho T2 was significantly longer than Cr T2 (p < 0.02). CONCLUSION Proton MRS with TE of 30 ms may safely be used in combined contrast-enhanced MRI/MRS protocols. Further study is required with long-TE MRS because of the prolonged T2 of Cho.
Collapse
Affiliation(s)
- A P Lin
- Magnetic Resonance Spectroscopy Unit, Huntington Medical Research Institutes, Pasadena, CA 91105, USA
| | | |
Collapse
|
32
|
Nelson SJ. Analysis of volume MRI and MR spectroscopic imaging data for the evaluation of patients with brain tumors. Magn Reson Med 2001; 46:228-39. [PMID: 11477625 DOI: 10.1002/mrm.1183] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The combination of volumetric MRI and multivoxel localized MR spectroscopic imaging (MRSI) data provides the potential for quantifying variations in tissue morphology and function. These techniques have numerous applications for the evaluation of neurological diseases. While state-of-the-art whole-body MR scanners are able to acquire both types of data, there have been relatively few reports which have presented clinical applications of the technology. One of the reasons for this has been the need to develop software for reconstruction and reliable interpretation of 3D imaging and spectral data. In this article, we describe the strategy developed for quantitative analysis of combined MRI and MRSI examinations from patients with brain tumors and evaluate the key components of this procedure using both simulations and empirical data from phantoms, normal volunteers, and patients. Important factors are the use of volume or interleaved multislice anatomic images as a reference, the reconstruction and correction of the spectral data for frequency, phase, and baseline distortions and consideration of the characteristics of the coil, RF pulses used for spatial selection, and phase encoding procedures. These studies show that the metabolic parameters most critical for distinguishing tumor from normal and necrotic tissue were relative levels of choline and NAA. Levels of creatine and lactate were found to be variable, both in terms of their spatial distribution within individual lesions and between different patients.
Collapse
Affiliation(s)
- S J Nelson
- Magnetic Resonance Science Center, Department of Radiology, University of California, San Francisco, California 94143, USA.
| |
Collapse
|
33
|
Pirzkall A, McKnight TR, Graves EE, Carol MP, Sneed PK, Wara WW, Nelson SJ, Verhey LJ, Larson DA. MR-spectroscopy guided target delineation for high-grade gliomas. Int J Radiat Oncol Biol Phys 2001; 50:915-28. [PMID: 11429219 DOI: 10.1016/s0360-3016(01)01548-6] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE Functional/metabolic information provided by MR-spectroscopy (MRSI) suggests MRI may not be a reliable indicator of active and microscopic disease in malignant brain tumors. We assessed the impact MRSI might have on the target volumes used for radiation therapy treatment planning for high-grade gliomas. METHODS AND MATERIALS Thirty-four patients (22 Grade III; 12 Grade IV astrocytomas) were evaluated; each had undergone MRI and MRSI studies before surgery. MRI data sets were contoured for T1 region of contrast enhancement (T1), region of necrosis, and T2 region of hyperintensity (T2). The three-dimensional MRSI peak parameters for choline (Cho) and N-acetylaspartate (NAA), acquired by a multivoxel technique, were categorized based on an abnormality index (AI), a quantitative assessment of tissue metabolite levels. The AI data were aligned to the MRI and displayed as three-dimensional contours. AI vs. T conjoint and disjoint volumes were compared. RESULTS For both grades, although T2 estimated the region at risk of microscopic disease as being as much as 50% greater than by MRSI, metabolically active tumor still extended outside the T2 region in 88% of patients by as many as 28 mm. In addition, T1 suggested a lesser volume and different location of active disease compared to MRSI. CONCLUSION The use of MRSI to define target volumes for RT treatment planning would increase, and change the location of, the volume receiving a boost dose as well as reduce the volume receiving a standard dose. Incorporation of MRSI into the treatment-planning process may have the potential to improve control while reducing complications.
Collapse
Affiliation(s)
- A Pirzkall
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA 94143-0226, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Liu H, Hall WA, Martin AJ, Truwit CL. An efficient chemical shift imaging scheme for magnetic resonance-guided neurosurgery. J Magn Reson Imaging 2001; 14:1-7. [PMID: 11436207 DOI: 10.1002/jmri.1143] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
An efficient magnetic resonance spectroscopic imaging (MRSI) or chemical shift imaging (CSI) technique based on multiple spin echoes (MSE) has been implemented, validated, and used in both phantom and in vivo MR-guided neurosurgical applications. The key concept of the method is to employ MSE to significantly speed up the data collection rate for mapping hydrogen-containing metabolites. Using an echo train length (ETL) of three per excitation to simultaneously fill three consecutive k-space areas, the total scan time for a spectroscopic image matrix size of 32 x 32 has been shortened to approximately 11 minutes. An interecho spacing time of 273 msec was used to null the phase anomalies of lactate double peaks due to the J-coupling. This allowed a sufficient long data sampling time to achieve 4 Hz spectral resolution. Performing CSI intraopertively during an MR-guided neurosurgical procedure was shown to be feasible at 1.5 T. More importantly, it was shown that more relevant information can be obtained regarding neurochemistry about a targeted lesion, in addition to conventional MR morphological imaging noninvasively. In 25 MR-guided neurosurgical cases, the alleviated choline signal has been found to be consistent with the existence of rapid tumor cell proliferation in the corresponding area. The actual neurobiopsy guided by the spectroscopic imaging method demonstrated that it could provide valuable information in specifying the optimal site in a biopsy procedure, especially in the case involving a nonenhancing tumor. The multiecho scheme has made the CSI technique efficient enough to be routinely used in MR-guided surgical procedures at 1.5 T and also allows the possibility of taking full advantage of MRI capability.
Collapse
Affiliation(s)
- H Liu
- Center for MR-Guided Therapy, Department of Radiology, Medical School, University of Minnesota, Mayo Building, Minneapolis, Minnesota 55455, USA.
| | | | | | | |
Collapse
|
35
|
Garnett MR, Corkill RG, Blamire AM, Rajagopalan B, Manners DN, Young JD, Styles P, Cadoux-Hudson TA. Altered cellular metabolism following traumatic brain injury: a magnetic resonance spectroscopy study. J Neurotrauma 2001; 18:231-40. [PMID: 11284544 DOI: 10.1089/08977150151070838] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Experimental studies have reported early reductions in pH, phosphocreatine, and free intracellular magnesium following traumatic brain injury using phosphorus magnetic resonance spectroscopy. Paradoxically, in clinical studies there is some evidence for an increase in the pH in the subacute stage following traumatic brain injury. We therefore performed phosphorus magnetic resonance spectroscopy on seven patients in the subacute stage (mean 9 days postinjury) following traumatic brain injury to assess cellular metabolism. In areas of normal-appearing white matter, the pH was significantly alkaline (patients 7.09 +/- 0.04 [mean +/- SD], controls 7.01 +/- 0.04, p = 0.008), the phosphocreatine to inorganic phosphate ratio (PCr/Pi) was significantly increased (patients 4.03 +/- 1.18, controls 2.64 +/- 0.71, p = 0.03), the inorganic phosphate to adenosine triphosphate ratio (Pi/ATP) was significantly reduced (patients 0.37 +/- 0.10, controls 0.56 +/- 0.19, p = 0.04), and the PCr/ATP ratio was nonsignificantly increased (patients 1.53 +/- 0.29, controls 1.34 +/- 0.19, p = 0.14) in patients compared to controls. Furthermore, the calculated free intracellular magnesium was significantly increased in the patients compared to the controls (patients 0.33 +/- 0.09 mM, controls 0.22 +/- 0.09 mM, p = 0.03)). Proton spectra, acquired from similar regions showed a significant reduction in N-acetylaspartate (patients 9.64 +/- 2.49 units, controls 12.84 +/- 2.35 units, p = 0.03) and a significant increase in choline compounds (patients 7.96 +/- 1.02, controls 6.67 +/- 1.01 units, p = 0.03). No lactate was visible in any patient or control spectrum. The alterations in metabolism observed in these patients could not be explained by ongoing ischemia but might be secondary to a loss of normal cellular homeostasis or a relative alteration in the cellular population, in particular an increase in the glial cell density, in these regions.
Collapse
Affiliation(s)
- M R Garnett
- Department of Biochemistry, University of Oxford, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Kallén K, Burtscher IM, Holtås S, Ryding E, Rosén I. 201Thallium SPECT and 1H-MRS compared with MRI in chemotherapy monitoring of high-grade malignant astrocytomas. J Neurooncol 2001; 46:173-85. [PMID: 10894370 DOI: 10.1023/a:1006429329677] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE To compare chemotherapy treatment monitoring in astrocytoma by 201thallium single photon emission computed tomography (SPECT) and photon magnetic resonance spectroscopy (1H-MRS) with magnetic resonance imaging (MRI), and to evaluate the influence of morphological tumor changes on cerebral 201thallium uptake and metabolic changes in 1H-MRS. MATERIALS AND METHODS Six patients with highly malignant astrocytomas were followed with quantitative 201thallium SPECT, MRI, and 1H-MRS during chemotherapy. Maximum follow-up included six examinations per patient by either method during 18 months. Criteria were set for: (1) regression (> or = 25% tumor reduction), (2) status quo (< 25% reduction and < 25% increase), and (3) progression of disease (> or = 25% tumor increase). Results were compared with the clinical state of disease. Changes of tumor volume, contrast enhancement, necrosis, hemorrhage and edema on MRI were compared to changes in 201thallium uptake volumes and 1H-MRS metabolite ratios. RESULTS Six patients were followed with a total of twenty-four examinations with 201thallium SPECT, MRI and 1H-MRS, respectively, between February 1997 and October 1998. Five patients developed clinical progression of disease, 4 out of 5 cases showed SPECT progression, 4 out of 5 cases MRI progression, and 1 out of 2 interpretable cases 1H-MRS progression at final assessment before clinical deterioration. During the phase of clinically stable disease; (A) the criterion for regression or status quo was met in 10 out of 13 assessments with SPECT, 11 out of 13 with MRI, and 8 out of 9 interpretable 1H-MRS; (B) the criterion for progression was met in 3 out of 13 with SPECT, 2 out of 13 with MRI, and 1 out of 9 interpretable 1H-MRS. The accuracy of SPECT, MRI, and 1H-MRS in identifying changes of tumor burden concordant with patients' clinical course was 78%, 83%, and 82%, respectively. SPECT regression was associated with MRI decrease of tumor size, contrast enhancement, edema and hemorrhage. SPECT progression was associated with MRI increase of the same parameters and the increase of necrosis. 1H-MRS regression was associated with decrease of edema. 1H-MRS progression was associated with increase of tumor size, hemorrhage, and increase or decrease of contrast enhancement. CONCLUSIONS Both 201thallium SPECT and 1H-MRS evaluation showed sensitivity for detection of astrocytoma progression. We did not find a higher accuracy of SPECT or MRS than of MRI in astrocytoma chemotherapy monitoring. Treatment induced MRI changes were associated with 201thallium uptake variations. 1H-MRS was difficult to apply for astrocytoma treatment monitoring. Improvements regarding size of measurement area such as multivoxel MRS and fat suppression pulses appeared desirable, and also the use of functional techniques with superior resolution such as dual isotope SPECT. However, our results suggest that 201thallium SPECT and 1H-MRS can provide additional information to MRI for chemotherapy efficacy evaluation in selected cases.
Collapse
Affiliation(s)
- K Kallén
- Department of Neurology, University Hospital, Lund, Sweden.
| | | | | | | | | |
Collapse
|
37
|
McKnight TR, Noworolski SM, Vigneron DB, Nelson SJ. An automated technique for the quantitative assessment of 3D-MRSI data from patients with glioma. J Magn Reson Imaging 2001; 13:167-77. [PMID: 11169821 DOI: 10.1002/1522-2586(200102)13:2<167::aid-jmri1026>3.0.co;2-k] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Although proton magnetic resonance spectroscopic imaging (1H-MRSI) has been shown to be effective for localizing tumor in patients with gliomas, it is not a routinely used clinical tool. This is due, in part, to the lack of a standardized, objective method for analyzing spectra. We present an automated technique for a) selecting a population of voxels from each patient that have the spectral features of normal brain regions, and b) using the selected voxels as internal controls for quantifying the probability of abnormality at each voxel location. The technique was demonstrated on a phantom, 14 normal volunteers, and 30 patients with histologically proven tumor. In addition, we demonstrated the usefulness of the method for monitoring patients in serial studies from two glioma patients with progressive disease.
Collapse
Affiliation(s)
- T R McKnight
- Department of Radiology, University of California, San Francisco, California 94143, USA.
| | | | | | | |
Collapse
|
38
|
De Edelenyi FS, Rubin C, Estève F, Grand S, Décorps M, Lefournier V, Le Bas JF, Rémy C. A new approach for analyzing proton magnetic resonance spectroscopic images of brain tumors: nosologic images. Nat Med 2000; 6:1287-9. [PMID: 11062544 DOI: 10.1038/81401] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- F S De Edelenyi
- Unité mixte INSERM-Université Joseph Fourier, U438, LRC CEA, CHU de Grenoble, BP 217, 38043 Grenoble Cedex 9, France
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Magnetic resonance spectroscopy provides metabolic information about brain tumors beyond what can be obtained from anatomic images. In contrast to other metabolism-based imaging techniques such as single photon emission computed tomography and positron-emission tomography, magnetic resonance spectroscopy yields multiparametric data, does not require radio-labeled tracers or ionizing radiation, and can be performed in conjunction with other magnetic resonance imaging studies. Magnetic resonance spectral patterns have been shown to be distinct for different tumor types and grades. Response to radiation therapy is also reflected by magnetic resonance spectral patterns. Although there are quantitative issues still to be addressed, correlation of in vivo spectral patterns with ex vivo spectral patterns obtained from actual biopsy samples indicates that magnetic resonance spectroscopy is a fundamentally valid tool for monitoring disease progression and therapeutic response in patients with brain tumors.
Collapse
Affiliation(s)
- P L Lee
- NMR Center, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown 02129, USA
| | | |
Collapse
|
40
|
Abstract
Following the impetus of early clinical and experimental investigations, in vivo and in vitro MRS studies of tumours pointed in the eighties to the possible significance of signals arising from phospholipid (PL) precursors and catabolites as novel biochemical indicators of in vivo tumour progression and response to therapy. In the present decade, MRS analyses of individual components contributing to the 31P PME (phosphomonoester) and PDE (phosphodiester) resonances, as well as to the 1H 'choline peak', have reinforced some of these expectations. Moreover, the absolute quantification of these signals provided the basis for addressing more specific (although still open) questions on the biochemical mechanisms responsible for the formation of intracellular pools of PL derivatives in tumours, under different conditions of cell proliferative status and/or malignancy level. This article is aimed at providing an overview on: (a) quantitative MRS measurements on the contents of phosphocholine (PCho), phosphoethanolamine (PEtn) and their glycerol derivatives ģlycerol 3-phosphocholine (GPC) and glycerol 3-phosphoethanolamine (GPE)[ in human tumours and cells (with particular attention to breast and brain cancer and lymphomas), as well as in normal mammalian tissues (including developing organs and rapidly proliferating tissues); (b) possible correlations of MRS parameters like PEtn/PCho and PCho/GPC ratios with in vitro cell growth status and/or cell tumorigenicity; and (c) current and new hypotheses on the role and interplay of biosynthetic and catabolic pathways of the choline and ethanolamine cycles in modulating the intracellular sizes of PCho and PEtn pools, either in response to mitogenic stimuli or in relation to malignant transformation.
Collapse
Affiliation(s)
- F Podo
- Laboratory of Cell Biology, Istituto Superiore di Sanità, Rome,
| |
Collapse
|
41
|
Nelson SJ, Vigneron DB, Dillon WP. Serial evaluation of patients with brain tumors using volume MRI and 3D 1H MRSI. NMR IN BIOMEDICINE 1999; 12:123-138. [PMID: 10414947 DOI: 10.1002/(sici)1099-1492(199905)12:3<123::aid-nbm541>3.0.co;2-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Patients with brain tumors are routinely monitored for tumor progression and response to therapy using magnetic resonance imaging (MRI). Although serial changes in gadolinium enhancing lesions provide valuable information for making treatment decisions, they do not address the fate of non-enhancing lesions and are unable to distinguish treatment induced necrosis from residual or recurrent tumor. The introduction of a non-invasive methodology, which could identify an active tumor more reliably, would have a major impact upon patient care and evaluation of new therapies. There is now compelling evidence that magnetic resonance spectroscopic imaging (MRSI) can provide such information as an add-on to a conventional MRI examination. We discuss data acquisition and analysis procedures which are required to perform such serial MRI-MRSI examinations and compare their results with data from histology, contrast enhanced MRI, MR cerebral blood volume imaging and FDG-PET. Applications to the serial assessment of response to therapy are illustrated by considering populations of patients being treated with brachytherapy and gamma knife radiosurgery.
Collapse
Affiliation(s)
- S J Nelson
- Department of Radiology, University of California, San Francisco 94143, USA.
| | | | | |
Collapse
|
42
|
Lee CW, Lee JH, Kim JJ, Park SW, Hong MK, Kim ST, Lim TH, Park SJ. Cerebral metabolic abnormalities in congestive heart failure detected by proton magnetic resonance spectroscopy. J Am Coll Cardiol 1999; 33:1196-202. [PMID: 10193716 DOI: 10.1016/s0735-1097(98)00701-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Using proton magnetic resonance spectroscopy, we investigated cerebral metabolism and its determinants in congestive heart failure (CHF), and the effects of cardiac transplantation on these measurements. BACKGROUND Few data are available about cerebral metabolism in CHF. METHODS Fifty patients with CHF (ejection fraction < or = 35%) and 20 healthy volunteers were included for this study. Of the patients, 10 patients underwent heart transplantation. All subjects performed symptom-limited bicycle exercise test. Proton magnetic resonance spectroscopy (1H MRS) was obtained from localized regions (8 to 10 ml) of occipital gray matter (OGM) and parietal white matter (PWM). Absolute levels of the metabolites (N-acetylaspartate, creatine, choline, myo-inositol) were calculated. RESULTS In PWM only creatine level was significantly lower in CHF than in control subjects, but in OGM all four metabolite levels were decreased in CHF. The creatine level was independently correlated with half-recovery time and duration of heart failure symptoms in PWM (r = -0.56, p < 0.05), and with peak oxygen consumption and serum sodium concentration in OGM (r = 0.58, p < 0.05). Cerebral metabolic abnormalities were improved after successful cardiac transplantation. CONCLUSIONS This study shows that cerebral metabolism is abnormally deranged in advanced CHF and it may serve as a potential marker of the disease severity.
Collapse
Affiliation(s)
- C W Lee
- Department of Medicine, Asan Medical Center, University of Ulsan, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Sabatier J, Gilard V, Malet-Martino M, Ranjeva JP, Terral C, Breil S, Delisle MB, Manelfe C, Tremoulet M, Berry I. Characterization of choline compounds with in vitro 1H magnetic resonance spectroscopy for the discrimination of primary brain tumors. Invest Radiol 1999; 34:230-5. [PMID: 10084669 DOI: 10.1097/00004424-199903000-00013] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
RATIONALE AND OBJECTIVES The authors sought to compare 1H magnetic resonance spectroscopy (MRS) spectra from extracts of low-grade and high-grade gliomas, especially with respect to the signals of choline-containing compounds. METHODS Perchloric acid extracts of six high-grade and six low-grade gliomas were analyzed by 1H MRS at 9.4 Tesla. RESULTS The signals of glycerophosphocholine (GPC) at 3.23 ppm, phosphocholine (PC) at 3.22 ppm, and choline (Cho) at 3.21 ppm were identified in both types of tumors. The absolute concentrations of all Cho-containing compounds (GPC + PC + Cho) in high-grade and low-grade gliomas were significantly different. The relative contributions of each of the Cho-containing compounds to the total choline signal were also statistically different. For high-grade gliomas, the choline signal is composed of GPC, PC, and Cho in a well-balanced contribution, whereas in low-grade gliomas, the signal is largely due to GPC with a small involvement of PC and Cho. CONCLUSIONS The differences in the concentration and the repartition of Cho-containing compounds seem to be a marker of high-grade gliomas. They could also help to discriminate between high- and low-grade gliomas in some difficult cases, especially if there is histologic uncertainty between anaplastic astrocytomas and low-grade oligodendrogliomas.
Collapse
Affiliation(s)
- J Sabatier
- Department of Neurosurgery, University Hospital Purpan, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Sijens PE, Oudkerk M, van Dijk P, Levendag PC, Vecht CJ. 1H MR spectroscopy monitoring of changes in choline peak area and line shape after Gd-contrast administration. Magn Reson Imaging 1998; 16:1273-80. [PMID: 9858285 DOI: 10.1016/s0730-725x(98)00143-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Fifteen percent loss in the peak area of choline containing compounds (Cho) was recently observed in 1H MR spectra of contrast-enhancing tumor at 5-10 min after Gd-contrast administration [Magn. Reson. Med. 37:222-225, 1997]. In this study, chemical shift imaging (CSI, 1500/135 ms PRESS) was used to assess the spectral changes in 47 Gd-enhancing glial brain tumors and metastatic brain tumors measured at 0-5, 5-10, and/or 10-15 min after administration of Gd-contrast. Percent Cho peak area losses measured at these times, 3 +/- 3, 12 +/- 2, and 14 +/- 3 SEM, respectively, coincided with trends of line narrowing and up-field shift of the Cho peak. Significant changes in creatine and N-acetyl acetate signals were not observed. It is concluded that the Gd-induced loss of tumor Cho signal measured after 5 min, typically required for post contrast-MRI and the positioning of the CSI volume on tumor, shows little further change with time, if any.
Collapse
Affiliation(s)
- P E Sijens
- Department of Radiology, Dr. Daniel den Hoed Cancer Center, University Hospital Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
45
|
Naumann M, Warmuth-Metz M, Hillerer C, Solymosi L, Reiners K. 1H magnetic resonance spectroscopy of the lentiform nucleus in primary focal hand dystonia. Mov Disord 1998; 13:929-33. [PMID: 9827617 DOI: 10.1002/mds.870130611] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Several radiologic findings point toward the lentiform nucleus as a possible site of lesion in primary dystonia. Histologic examinations, however, have shown inconsistent results. 1H-magnetic resonance spectroscopy (MRS) has proved helpful to assess neuronal degeneration in a variety of basal ganglia disorders. MRS data of dystonia patients are, however, lacking so far. 1H-MRS centered on the lentiform nuclei was performed in 14 patients with primary focal hand dystonia and in 12 healthy control subjects using a 1.5-T MR imager. No statistically significant differences of N-acetylaspartate/creatine and lactate/creatine ratios were found between patients and control subjects. Based on these data, the authors found no evidence that primary focal dystonia was associated with a conspicuous loss of lentiform nucleus neurons or a marked disturbance of the aerobic metabolism, although minor abnormalities cannot be excluded because of the possibly limited sensitivity of the method.
Collapse
Affiliation(s)
- M Naumann
- Department of Neurology, Bayerische Julius-Maximilians-Universität, Würzburg, Germany
| | | | | | | | | |
Collapse
|
46
|
Preul MC, Caramanos Z, Leblanc R, Villemure JG, Arnold DL. Using pattern analysis of in vivo proton MRSI data to improve the diagnosis and surgical management of patients with brain tumors. NMR IN BIOMEDICINE 1998; 11:192-200. [PMID: 9719573 DOI: 10.1002/(sici)1099-1492(199806/08)11:4/5<192::aid-nbm535>3.0.co;2-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have used pattern analysis of proton magnetic resonance spectroscopic imaging (1H MRSI) data in a variety of situations related to the clinical management of patients with brain tumors and other cerebral space-occupying lesions (SOLs). Here, we review how 'leave-one-out' linear discriminant analyses (LDAs) of in vivo 1H MRSI spectral patterns have enabled us to quickly, accurately, and non-invasively: (1) discriminate amongst tissue arising from the five most common types of supratentorial tumors found in adults, and (2) use the metabolic heterogeneity of cerebral SOLs to predict certain pathological characteristics that are useful in guiding stereotaxic biopsy and selective tumor resection. These findings suggest that pattern analysis of 1H MRSI data can significantly improve the diagnostic specificity and surgical management of patients with certain cerebral SOLs.
Collapse
Affiliation(s)
- M C Preul
- McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
47
|
Preul MC, Leblanc R, Caramanos Z, Kasrai R, Narayanan S, Arnold DL. Magnetic resonance spectroscopy guided brain tumor resection: differentiation between recurrent glioma and radiation change in two diagnostically difficult cases. Neurol Sci 1998; 25:13-22. [PMID: 9532276 DOI: 10.1017/s0317167100033436] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND It is often difficult to differentiate a recurrent glioma from the effects of post-operative radiotherapy by means of conventional neurodiagnostic imaging. Proton magnetic resonance spectroscopic imaging (1H-MRSI), that allows in vivo measurements of the concentration of brain metabolites such as choline-containing phospholipids (Cho), may provide in vivo biochemical information helpful in distinguishing areas of tumor recurrence from areas of radiation effect. PATIENTS AND METHODS Two patients who had undergone resection and post-operative radiotherapy for a cerebral glioma became newly symptomatic. Computed tomographic (CT) and magnetic resonance imaging (MRI) performed after the intravenous infusion of contrast material, and in one case, [18F]fluorodeoxyglucose positron emission tomography (PET), could not differentiate between the possibilities of recurrent glioma and radiation effect. The patients underwent 1H-MRSI prior to reoperation and the 1H-MRSI results were compared to histological findings originating from the same locations. RESULTS A high Cho signal measured by 1H-MRSI was seen in areas of histologically-proven dense tumor recurrence, while low Cho signal was present where radiation changes predominated. CONCLUSIONS The differentiation between the recurrence of a cerebral glioma and the effects of post-operative irradiation was achieved using 1H-MRSI in these two patients whose conventional neurodiagnostic imaging was equivocal for such a distinction. Where these two conditions are present, metabolite images from 1H-MRSI, such as that based on Cho, can be co-registered with other imaging modalities such as MRI and may also be integrated with functional MRI or functional PET within a multimodal imaging-guided surgical navigation system to assure maximal resection of recurrent tumor while minimizing the risk of added neurological damage.
Collapse
Affiliation(s)
- M C Preul
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
48
|
Estève F, Rubin C, Grand S, Kolodié H, Le Bas JF. Transient metabolic changes observed with proton MR spectroscopy in normal human brain after radiation therapy. Int J Radiat Oncol Biol Phys 1998; 40:279-86. [PMID: 9457810 DOI: 10.1016/s0360-3016(97)00714-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE To observe the time course of the proton magnetic resonance spectroscopy (1H-MRS) variations due to radiation therapy on normal human brain. METHODS AND MATERIALS We followed 11 patients receiving an exclusive external radiation therapy for brain tumor for 8 months. They underwent proton MRS scans before any radiation exposure and 1, 4, and 8 months after they began the radiation therapy. The patients received 60 Gy in tumoral area fractionated over 6 weeks. The contralateral normal brain hemisphere received a radiation dose from 20 to 50 Gy. The main metabolite concentrations (N-acetylaspartate (NAA), choline compounds (Cho), creatine (Cr), and lactate (Lac) were evaluated by the areas of the peaks after peak fitting. Normalized values (NV) were obtained by processing the ratio of the peak area of a given metabolite to the sum of all the spectrum peak areas; ratios (NAA/Cho, NAA/Cr, and Cho/Cr) were processed. One patient, who received panencephalic radiotherapy (30 Gy) after metastasectomy from a primary kidney adenocarcinoma, has been monitored with 1H-MRS eight times for 6 months to observe the onset of the metabolic changes. RESULTS Changes were observed in irradiated normal brain tissue 4 months after radiation therapy began: the NAA/Cho and NAA/Cr ratios and the NAA (NV) decreased while the Choline (NV) increased. Four months later, normal values were recovered. CONCLUSION 1H-MRS has the potentiality to detect and to evaluate in vivo early adverse metabolic effects of radiation therapy in the normal human brain. These changes are significant 4 months after the radiation therapy began and appear to resolve over time.
Collapse
Affiliation(s)
- F Estève
- Department of Magnetic Resonance Imaging and Institut National de la Santé et de la Recherche Medicale unit 438, Centre Hospitalier Universitaire de Grenoble, France
| | | | | | | | | |
Collapse
|
49
|
Nelson SJ, Huhn S, Vigneron DB, Day MR, Wald LL, Prados M, Chang S, Gutin PH, Sneed PK, Verhey L, Hawkins RA, Dillon WP. Volume MRI and MRSI techniques for the quantitation of treatment response in brain tumors: presentation of a detailed case study. J Magn Reson Imaging 1997; 7:1146-52. [PMID: 9400861 DOI: 10.1002/jmri.1880070630] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Patients with primary brain tumors may be considered for several different treatments during the course of their disease. Assessments of disease progression and response to therapy are typically performed by visual interpretation of serial MRI examinations. Although such examinations provide useful morphologic information, they are unable to reliably distinguish active tumor from radiation necrosis. This poses a particular problem in the assessment of response to localized radiation therapies such as gamma knife radiosurgery. In this paper, we present methodology for evaluating changes in tissue morphology and metabolism based on serial volumetric MRI and magnetic resonance spectroscopic imaging (MRSI) examinations. Registration and quantitative analysis of these data provide measurements of the temporal and spatial distributions of gadolinium enhancement and of N-acetylasparate, choline, creatine, and lactate/lipid. The key features of this approach and the potential clinical benefits are illustrated by a detailed analysis of six serial MRI/MRSI examinations and three serial 1-[F-18] fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET) studies on a patient with a recurrent anaplastic astrocytoma.
Collapse
Affiliation(s)
- S J Nelson
- Department of Radiology, University of California, San Francisco 94143, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Tedeschi G, Lundbom N, Raman R, Bonavita S, Duyn JH, Alger JR, Di Chiro G. Increased choline signal coinciding with malignant degeneration of cerebral gliomas: a serial proton magnetic resonance spectroscopy imaging study. Neurosurg Focus 1997. [DOI: 10.3171/foc.1997.3.5.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The authors tested the hypothesis that proton magnetic resonance spectroscopic (1H-MRS) imaging can be used as a supportive diagnostic tool to differentiate clinically stable brain tumors from those progressing as a result of low- to high-grade malignant transformation or posttherapeutic recurrence. Twenty-seven patients with cerebral gliomas verified on histological examination were studied repeatedly with 1H-MRS imaging over a period of 3.5 years. At the time of each 1H-MRS imaging study, clinical examination, MR imaging, positron emission tomography with 18F-fluorodeoxyglucose, and biopsy findings (when available) were used to categorize each patient as having either stable or progressive disease. Measures of the percentage changes in the choline (Cho) 1H-MRS imaging signal intensity between studies, which were obtained without knowledge of the clinical categorization, allowed the investigators to segregate the groups with a high degree of statistical significance. All progressive cases showed a Cho signal increase between studies of more than 45%, whereas all stable cases showed an elevation of less than 35%, no change, or even a decreased signal. The authors conclude that increased Cho levels coincide with malignant degeneration of cerebral gliomas and therefore may possibly be used as a supportive indicator of progression of these neoplasms.
Collapse
|