1
|
Shepelytskyi Y, Grynko V, Rao MR, Li T, Agostino M, Wild JM, Albert MS. Hyperpolarized 129 Xe imaging of the brain: Achievements and future challenges. Magn Reson Med 2022; 88:83-105. [PMID: 35253919 PMCID: PMC9314594 DOI: 10.1002/mrm.29200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/22/2021] [Accepted: 01/25/2022] [Indexed: 11/25/2022]
Abstract
Hyperpolarized (HP) xenon-129 (129 Xe) brain MRI is a promising imaging modality currently under extensive development. HP 129 Xe is nontoxic, capable of dissolving in pulmonary blood, and is extremely sensitive to the local environment. After dissolution in the pulmonary blood, HP 129 Xe travels with the blood flow to the brain and can be used for functional imaging such as perfusion imaging, hemodynamic response detection, and blood-brain barrier permeability assessment. HP 129 Xe MRI imaging of the brain has been performed in animals, healthy human subjects, and in patients with Alzheimer's disease and stroke. In this review, the overall progress in the field of HP 129 Xe brain imaging is discussed, along with various imaging approaches and pulse sequences used to optimize HP 129 Xe brain MRI. In addition, current challenges and limitations of HP 129 Xe brain imaging are discussed, as well as possible methods for their mitigation. Finally, potential pathways for further development are also discussed. HP 129 Xe MRI of the brain has the potential to become a valuable novel perfusion imaging technique and has the potential to be used in the clinical setting in the future.
Collapse
Affiliation(s)
- Yurii Shepelytskyi
- Chemistry Department, Lakehead University, Thunder Bay, Ontario, Canada.,Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada
| | - Vira Grynko
- Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada.,Chemistry and Materials Science Program, Lakehead University, Thunder Bay, Ontario, Canada
| | - Madhwesha R Rao
- POLARIS, Unit of Academic Radiology, Department of IICD, University of Sheffield, Sheffield, UK
| | - Tao Li
- Chemistry Department, Lakehead University, Thunder Bay, Ontario, Canada
| | - Martina Agostino
- Chemistry Department, Lakehead University, Thunder Bay, Ontario, Canada
| | - Jim M Wild
- POLARIS, Unit of Academic Radiology, Department of IICD, University of Sheffield, Sheffield, UK.,Insigneo Institute for in Silico Medicine, Sheffield, UK
| | - Mitchell S Albert
- Chemistry Department, Lakehead University, Thunder Bay, Ontario, Canada.,Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada.,Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada
| |
Collapse
|
2
|
Xu P, Zhang J, Nan Z, Meersmann T, Wang C. Free-Breathing Phase-Resolved Oxygen-Enhanced Pulmonary MRI Based on 3D Stack-of-Stars UTE Sequence. SENSORS (BASEL, SWITZERLAND) 2022; 22:3270. [PMID: 35590959 PMCID: PMC9105788 DOI: 10.3390/s22093270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Compared with hyperpolarized noble gas MRI, oxygen-enhanced lung imaging is a cost-effective approach to investigate lung function. In this study, we investigated the feasibility of free-breathing phase-resolved oxygen-enhanced pulmonary MRI based on a 3D stack-of-stars ultra-short echo time (UTE) sequence. We conducted both computer simulation and in vivo experiments and calculated percent signal enhancement maps of four different respiratory phases on four healthy volunteers from the end of expiration to the end of inspiration. The phantom experiment was implemented to verify simulation results. The respiratory phase was segmented based on the extracted respiratory signal and sliding window reconstruction, providing phase-resolved pulmonary MRI. Demons registration algorithm was applied to compensate for respiratory motion. The mean percent signal enhancement of the average phase increases from anterior to posterior region, matching previous literature. More details of pulmonary tissues were observed on post-oxygen inhalation images through the phase-resolved technique. Phase-resolved UTE pulmonary MRI shows the potential as a valuable method for oxygen-enhanced MRI that enables the investigation of lung ventilation on middle states of the respiratory cycle.
Collapse
Affiliation(s)
- Pengfei Xu
- Electrical and Electronic Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo 315100, China; (P.X.); (J.Z.); (Z.N.)
| | - Jichang Zhang
- Electrical and Electronic Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo 315100, China; (P.X.); (J.Z.); (Z.N.)
| | - Zhen Nan
- Electrical and Electronic Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo 315100, China; (P.X.); (J.Z.); (Z.N.)
| | - Thomas Meersmann
- Sir Peter Mansfield Magnetic Imaging Center, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Chengbo Wang
- Electrical and Electronic Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo 315100, China; (P.X.); (J.Z.); (Z.N.)
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, Ningbo 315040, China
| |
Collapse
|
3
|
Khan AS, Harvey RL, Birchall JR, Irwin RK, Nikolaou P, Schrank G, Emami K, Dummer A, Barlow MJ, Goodson BM, Chekmenev EY. Enabling Clinical Technologies for Hyperpolarized 129 Xenon Magnetic Resonance Imaging and Spectroscopy. Angew Chem Int Ed Engl 2021; 60:22126-22147. [PMID: 34018297 PMCID: PMC8478785 DOI: 10.1002/anie.202015200] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 11/06/2022]
Abstract
Hyperpolarization is a technique that can increase nuclear spin polarization with the corresponding gains in nuclear magnetic resonance (NMR) signals by 4-8 orders of magnitude. When this process is applied to biologically relevant samples, the hyperpolarized molecules can be used as exogenous magnetic resonance imaging (MRI) contrast agents. A technique called spin-exchange optical pumping (SEOP) can be applied to hyperpolarize noble gases such as 129 Xe. Techniques based on hyperpolarized 129 Xe are poised to revolutionize clinical lung imaging, offering a non-ionizing, high-contrast alternative to computed tomography (CT) imaging and conventional proton MRI. Moreover, CT and conventional proton MRI report on lung tissue structure but provide little functional information. On the other hand, when a subject breathes hyperpolarized 129 Xe gas, functional lung images reporting on lung ventilation, perfusion and diffusion with 3D readout can be obtained in seconds. In this Review, the physics of SEOP is discussed and the different production modalities are explained in the context of their clinical application. We also briefly compare SEOP to other hyperpolarization methods and conclude this paper with the outlook for biomedical applications of hyperpolarized 129 Xe to lung imaging and beyond.
Collapse
Affiliation(s)
- Alixander S Khan
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Rebecca L Harvey
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Jonathan R Birchall
- Intergrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Robert K Irwin
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, NG7 2RD, UK
| | | | - Geoffry Schrank
- Northrup Grumman Space Systems, 45101 Warp Drive, Sterling, VA, 20166, USA
| | | | | | - Michael J Barlow
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Boyd M Goodson
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Drive, Carbondale, IL, 62901, USA
- Materials Technology Center, Southern Illinois University, 1245 Lincoln Drive, Carbondale, IL, 62901, USA
| | - Eduard Y Chekmenev
- Intergrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), 5101 Cass Avenue, Detroit, MI, 48202, USA
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow, 119991, Russia
| |
Collapse
|
4
|
Khan AS, Harvey RL, Birchall JR, Irwin RK, Nikolaou P, Schrank G, Emami K, Dummer A, Barlow MJ, Goodson BM, Chekmenev EY. Enabling Clinical Technologies for Hyperpolarized
129
Xenon Magnetic Resonance Imaging and Spectroscopy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Alixander S. Khan
- Sir Peter Mansfield Imaging Centre University of Nottingham Nottingham NG7 2RD UK
| | - Rebecca L. Harvey
- Sir Peter Mansfield Imaging Centre University of Nottingham Nottingham NG7 2RD UK
| | - Jonathan R. Birchall
- Intergrative Biosciences (Ibio) Wayne State University, Karmanos Cancer Institute (KCI) 5101 Cass Avenue Detroit MI 48202 USA
| | - Robert K. Irwin
- Sir Peter Mansfield Imaging Centre University of Nottingham Nottingham NG7 2RD UK
| | | | - Geoffry Schrank
- Northrup Grumman Space Systems 45101 Warp Drive Sterling VA 20166 USA
| | | | | | - Michael J. Barlow
- Sir Peter Mansfield Imaging Centre University of Nottingham Nottingham NG7 2RD UK
| | - Boyd M. Goodson
- Department of Chemistry and Biochemistry Southern Illinois University 1245 Lincoln Drive Carbondale IL 62901 USA
- Materials Technology Center Southern Illinois University 1245 Lincoln Drive Carbondale IL 62901 USA
| | - Eduard Y. Chekmenev
- Intergrative Biosciences (Ibio) Wayne State University, Karmanos Cancer Institute (KCI) 5101 Cass Avenue Detroit MI 48202 USA
- Russian Academy of Sciences Leninskiy Prospekt 14 Moscow 119991 Russia
| |
Collapse
|
5
|
Brooke JP, Hall IP. Novel Thoracic MRI Approaches for the Assessment of Pulmonary Physiology and Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:123-145. [PMID: 34019267 DOI: 10.1007/978-3-030-68748-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Excessive pulmonary inflammation can lead to damage of lung tissue, airway remodelling and established structural lung disease. Novel therapeutics that specifically target inflammatory pathways are becoming increasingly common in clinical practice, but there is yet to be a similar stepwise change in pulmonary diagnostic tools. A variety of thoracic magnetic resonance imaging (MRI) tools are currently in development, which may soon fulfil this emerging clinical need for highly sensitive assessments of lung structure and function. Given conventional MRI techniques are poorly suited to lung imaging, alternate strategies have been developed, including the use of inhaled contrast agents, intravenous contrast and specialized lung MR sequences. In this chapter, we discuss technical challenges of performing MRI of the lungs and how they may be overcome. Key thoracic MRI modalities are reviewed, namely, hyperpolarized noble gas MRI, oxygen-enhanced MRI (OE-MRI), ultrashort echo time (UTE) MRI and dynamic contrast-enhanced (DCE) MRI. Finally, we consider potential clinical applications of these techniques including phenotyping of lung disease, evaluation of novel pulmonary therapeutic efficacy and longitudinal assessment of specific patient groups.
Collapse
Affiliation(s)
- Jonathan P Brooke
- Department of Respiratory Medicine, University of Nottingham, Queens Medical Centre, Nottingham, UK.
| | - Ian P Hall
- Department of Respiratory Medicine, University of Nottingham, Queens Medical Centre, Nottingham, UK.
| |
Collapse
|
6
|
Abstract
At low temperatures and high magnetic fields, electron and hole spins in an organic light-emitting diode become polarized so that recombination preferentially forms molecular triplet excited-state species. For low device currents, magnetoelectroluminescence perfectly follows Boltzmann activation, implying a virtually complete polarization outcome. As the current increases, the magnetoelectroluminescence effect is reduced because spin polarization is suppressed by the reduction in carrier residence time within the device. Under these conditions, an additional field-dependent process affecting the spin-dependent recombination emerges, possibly related to the build-up of triplet excitons and their interaction with free charge carriers. Suppression of the EL alone does not prove electronic spin polarization. We therefore probe changes in the spin statistics of recombination directly in a dual singlet-triplet emitting material, which shows a concomitant rise in phosphorescence intensity as fluorescence is suppressed. Finite spin-orbit coupling in these materials gives rise to a microscopic distribution in effective g-factors of electrons and holes, Δg, i.e., a distribution in Larmor frequencies. This Δg effect in the pair, which mixes singlet and triplet, further suppresses singlet-exciton formation at high fields in addition to thermal spin polarization of the individual carriers. Though literature reports magnetoelectroluminescence (MEL) affects in organic light‐emitting diodes (OLEDs), probing the organic layer’s effective spin polarization remains a challenge. Here, the authors utilize dual singlet‐triplet emitting OLEDs to reveal the spin polarization in the materials.
Collapse
|
7
|
Inhaled Gas Magnetic Resonance Imaging: Advances, Applications, Limitations, and New Frontiers. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
8
|
Kose K. Physical and technical aspects of human magnetic resonance imaging: present status and 50 years historical review. ADVANCES IN PHYSICS: X 2021. [DOI: 10.1080/23746149.2021.1885310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Katsumi Kose
- MRIsimulations Inc., University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
9
|
Topping GJ, Hundshammer C, Nagel L, Grashei M, Aigner M, Skinner JG, Schulte RF, Schilling F. Acquisition strategies for spatially resolved magnetic resonance detection of hyperpolarized nuclei. MAGMA (NEW YORK, N.Y.) 2020; 33:221-256. [PMID: 31811491 PMCID: PMC7109201 DOI: 10.1007/s10334-019-00807-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/08/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Hyperpolarization is an emerging method in magnetic resonance imaging that allows nuclear spin polarization of gases or liquids to be temporarily enhanced by up to five or six orders of magnitude at clinically relevant field strengths and administered at high concentration to a subject at the time of measurement. This transient gain in signal has enabled the non-invasive detection and imaging of gas ventilation and diffusion in the lungs, perfusion in blood vessels and tissues, and metabolic conversion in cells, animals, and patients. The rapid development of this method is based on advances in polarizer technology, the availability of suitable probe isotopes and molecules, improved MRI hardware and pulse sequence development. Acquisition strategies for hyperpolarized nuclei are not yet standardized and are set up individually at most sites depending on the specific requirements of the probe, the object of interest, and the MRI hardware. This review provides a detailed introduction to spatially resolved detection of hyperpolarized nuclei and summarizes novel and previously established acquisition strategies for different key areas of application.
Collapse
Affiliation(s)
- Geoffrey J Topping
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christian Hundshammer
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Luca Nagel
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Martin Grashei
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maximilian Aigner
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jason G Skinner
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Franz Schilling
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
10
|
Burant A, Antonacci M, McCallister D, Zhang L, Branca RT. Effects of superparamagnetic iron oxide nanoparticles on the longitudinal and transverse relaxation of hyperpolarized xenon gas. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 291:53-62. [PMID: 29702362 PMCID: PMC5975651 DOI: 10.1016/j.jmr.2018.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/26/2018] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
SuperParamagnetic Iron Oxide Nanoparticles (SPIONs) are often used in magnetic resonance imaging experiments to enhance Magnetic Resonance (MR) sensitivity and specificity. While the effect of SPIONs on the longitudinal and transverse relaxation time of 1H spins has been well characterized, their effect on highly diffusive spins, like those of hyperpolarized gases, has not. For spins diffusing in linear magnetic field gradients, the behavior of the magnetization is characterized by the relative size of three length scales: the diffusion length, the structural length, and the dephasing length. However, for spins diffusing in non-linear gradients, such as those generated by iron oxide nanoparticles, that is no longer the case, particularly if the diffusing spins experience the non-linearity of the gradient. To this end, 3D Monte Carlo simulations are used to simulate the signal decay and the resulting image contrast of hyperpolarized xenon gas near SPIONs. These simulations reveal that signal loss near SPIONs is dominated by transverse relaxation, with little contribution from T1 relaxation, while simulated image contrast and experiments show that diffusion provides no appreciable sensitivity enhancement to SPIONs.
Collapse
Affiliation(s)
- Alex Burant
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, USA; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, USA
| | - Michael Antonacci
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, USA; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, USA
| | - Drew McCallister
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, USA; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, USA
| | - Le Zhang
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, USA; Department of Applied Physical Science, University of North Carolina at Chapel Hill, USA
| | - Rosa Tamara Branca
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, USA; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, USA.
| |
Collapse
|
11
|
Capaldi DPI, Eddy RL, Svenningsen S, Guo F, Baxter JSH, McLeod AJ, Nair P, McCormack DG, Parraga G. Free-breathing Pulmonary MR Imaging to Quantify Regional Ventilation. Radiology 2018; 287:693-704. [PMID: 29470939 DOI: 10.1148/radiol.2018171993] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Purpose To measure regional specific ventilation with free-breathing hydrogen 1 (1H) magnetic resonance (MR) imaging without exogenous contrast material and to investigate correlations with hyperpolarized helium 3 (3He) MR imaging and pulmonary function test measurements in healthy volunteers and patients with asthma. Materials and Methods Subjects underwent free-breathing 1H and static breath-hold hyperpolarized 3He MR imaging as well as spirometry and plethysmography; participants were consecutively recruited between January and June 2017. Free-breathing 1H MR imaging was performed with an optimized balanced steady-state free-precession sequence; images were retrospectively grouped into tidal inspiration or tidal expiration volumes with exponentially weighted phase interpolation. MR imaging volumes were coregistered by using optical flow deformable registration to generate 1H MR imaging-derived specific ventilation maps. Hyperpolarized 3He MR imaging- and 1H MR imaging-derived specific ventilation maps were coregistered to quantify regional specific ventilation within hyperpolarized 3He MR imaging ventilation masks. Differences between groups were determined with the Mann-Whitney test and relationships were determined with Spearman (ρ) correlation coefficients. Statistical analyses were performed with software. Results Thirty subjects (median age: 50 years; interquartile range [IQR]: 30 years), including 23 with asthma and seven healthy volunteers, were evaluated. Both 1H MR imaging-derived specific ventilation and hyperpolarized 3He MR imaging-derived ventilation percentage were significantly greater in healthy volunteers than in patients with asthma (specific ventilation: 0.14 [IQR: 0.05] vs 0.08 [IQR: 0.06], respectively, P < .0001; ventilation percentage: 99% [IQR: 1%] vs 94% [IQR: 5%], P < .0001). For all subjects, 1H MR imaging-derived specific ventilation correlated with plethysmography-derived specific ventilation (ρ = 0.54, P = .002) and hyperpolarized 3He MR imaging-derived ventilation percentage (ρ = 0.67, P < .0001) as well as with forced expiratory volume in 1 second (FEV1) (ρ = 0.65, P = .0001), ratio of FEV1 to forced vital capacity (ρ = 0.75, P < .0001), ratio of residual volume to total lung capacity (ρ = -0.68, P < .0001), and airway resistance (ρ = -0.51, P = .004). 1H MR imaging-derived specific ventilation was significantly greater in the gravitational-dependent versus nondependent lung in healthy subjects (P = .02) but not in patients with asthma (P = .1). In patients with asthma, coregistered 1H MR imaging specific ventilation and hyperpolarized 3He MR imaging maps showed that specific ventilation was diminished in corresponding 3He MR imaging ventilation defects (0.05 ± 0.04) compared with well-ventilated regions (0.09 ± 0.05) (P < .0001). Conclusion 1H MR imaging-derived specific ventilation correlated with plethysmography-derived specific ventilation and ventilation defects seen by using hyperpolarized 3He MR imaging. © RSNA, 2018 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Dante P I Capaldi
- From the Robarts Research Institute (D.P.I.C., R.L.E., S.S., F.G., J.S.H.B., A.J.M., G.P.), Department of Medical Biophysics (D.P.I.C., R.L.E., G.P.), Graduate Program in Biomedical Engineering (F.G., J.S.H.B., A.J.M.), and Department of Medicine, Division of Respirology (D.G.M.), Western University, University of Western Ontario, 1151 Richmond St N, London, ON, Canada N6A 5B7; and Firestone Institute for Respiratory Health, McMaster University, Hamilton, ON, Canada (S.S., P.N., G.P.)
| | - Rachel L Eddy
- From the Robarts Research Institute (D.P.I.C., R.L.E., S.S., F.G., J.S.H.B., A.J.M., G.P.), Department of Medical Biophysics (D.P.I.C., R.L.E., G.P.), Graduate Program in Biomedical Engineering (F.G., J.S.H.B., A.J.M.), and Department of Medicine, Division of Respirology (D.G.M.), Western University, University of Western Ontario, 1151 Richmond St N, London, ON, Canada N6A 5B7; and Firestone Institute for Respiratory Health, McMaster University, Hamilton, ON, Canada (S.S., P.N., G.P.)
| | - Sarah Svenningsen
- From the Robarts Research Institute (D.P.I.C., R.L.E., S.S., F.G., J.S.H.B., A.J.M., G.P.), Department of Medical Biophysics (D.P.I.C., R.L.E., G.P.), Graduate Program in Biomedical Engineering (F.G., J.S.H.B., A.J.M.), and Department of Medicine, Division of Respirology (D.G.M.), Western University, University of Western Ontario, 1151 Richmond St N, London, ON, Canada N6A 5B7; and Firestone Institute for Respiratory Health, McMaster University, Hamilton, ON, Canada (S.S., P.N., G.P.)
| | - Fumin Guo
- From the Robarts Research Institute (D.P.I.C., R.L.E., S.S., F.G., J.S.H.B., A.J.M., G.P.), Department of Medical Biophysics (D.P.I.C., R.L.E., G.P.), Graduate Program in Biomedical Engineering (F.G., J.S.H.B., A.J.M.), and Department of Medicine, Division of Respirology (D.G.M.), Western University, University of Western Ontario, 1151 Richmond St N, London, ON, Canada N6A 5B7; and Firestone Institute for Respiratory Health, McMaster University, Hamilton, ON, Canada (S.S., P.N., G.P.)
| | - John S H Baxter
- From the Robarts Research Institute (D.P.I.C., R.L.E., S.S., F.G., J.S.H.B., A.J.M., G.P.), Department of Medical Biophysics (D.P.I.C., R.L.E., G.P.), Graduate Program in Biomedical Engineering (F.G., J.S.H.B., A.J.M.), and Department of Medicine, Division of Respirology (D.G.M.), Western University, University of Western Ontario, 1151 Richmond St N, London, ON, Canada N6A 5B7; and Firestone Institute for Respiratory Health, McMaster University, Hamilton, ON, Canada (S.S., P.N., G.P.)
| | - A Jonathan McLeod
- From the Robarts Research Institute (D.P.I.C., R.L.E., S.S., F.G., J.S.H.B., A.J.M., G.P.), Department of Medical Biophysics (D.P.I.C., R.L.E., G.P.), Graduate Program in Biomedical Engineering (F.G., J.S.H.B., A.J.M.), and Department of Medicine, Division of Respirology (D.G.M.), Western University, University of Western Ontario, 1151 Richmond St N, London, ON, Canada N6A 5B7; and Firestone Institute for Respiratory Health, McMaster University, Hamilton, ON, Canada (S.S., P.N., G.P.)
| | - Parameswaran Nair
- From the Robarts Research Institute (D.P.I.C., R.L.E., S.S., F.G., J.S.H.B., A.J.M., G.P.), Department of Medical Biophysics (D.P.I.C., R.L.E., G.P.), Graduate Program in Biomedical Engineering (F.G., J.S.H.B., A.J.M.), and Department of Medicine, Division of Respirology (D.G.M.), Western University, University of Western Ontario, 1151 Richmond St N, London, ON, Canada N6A 5B7; and Firestone Institute for Respiratory Health, McMaster University, Hamilton, ON, Canada (S.S., P.N., G.P.)
| | - David G McCormack
- From the Robarts Research Institute (D.P.I.C., R.L.E., S.S., F.G., J.S.H.B., A.J.M., G.P.), Department of Medical Biophysics (D.P.I.C., R.L.E., G.P.), Graduate Program in Biomedical Engineering (F.G., J.S.H.B., A.J.M.), and Department of Medicine, Division of Respirology (D.G.M.), Western University, University of Western Ontario, 1151 Richmond St N, London, ON, Canada N6A 5B7; and Firestone Institute for Respiratory Health, McMaster University, Hamilton, ON, Canada (S.S., P.N., G.P.)
| | - Grace Parraga
- From the Robarts Research Institute (D.P.I.C., R.L.E., S.S., F.G., J.S.H.B., A.J.M., G.P.), Department of Medical Biophysics (D.P.I.C., R.L.E., G.P.), Graduate Program in Biomedical Engineering (F.G., J.S.H.B., A.J.M.), and Department of Medicine, Division of Respirology (D.G.M.), Western University, University of Western Ontario, 1151 Richmond St N, London, ON, Canada N6A 5B7; and Firestone Institute for Respiratory Health, McMaster University, Hamilton, ON, Canada (S.S., P.N., G.P.)
| | -
- From the Robarts Research Institute (D.P.I.C., R.L.E., S.S., F.G., J.S.H.B., A.J.M., G.P.), Department of Medical Biophysics (D.P.I.C., R.L.E., G.P.), Graduate Program in Biomedical Engineering (F.G., J.S.H.B., A.J.M.), and Department of Medicine, Division of Respirology (D.G.M.), Western University, University of Western Ontario, 1151 Richmond St N, London, ON, Canada N6A 5B7; and Firestone Institute for Respiratory Health, McMaster University, Hamilton, ON, Canada (S.S., P.N., G.P.)
| |
Collapse
|
12
|
Abstract
This article reviews the physics and technology of producing large quantities of highly spin-polarized 3He nuclei using spin-exchange (SEOP) and metastability-exchange (MEOP) optical pumping. Both technical developments and deeper understanding of the physical processes involved have led to substantial improvements in the capabilities of both methods. For SEOP, the use of spectrally narrowed lasers and K-Rb mixtures has substantially increased the achievable polarization and polarizing rate. For MEOP nearly lossless compression allows for rapid production of polarized 3He and operation in high magnetic fields has likewise significantly increased the pressure at which this method can be performed, and revealed new phenomena. Both methods have benefitted from development of storage methods that allow for spin-relaxation times of hundreds of hours, and specialized precision methods for polarimetry. SEOP and MEOP are now widely applied for spin-polarized targets, neutron spin filters, magnetic resonance imaging, and precision measurements.
Collapse
Affiliation(s)
- T. R. Gentile
- National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899, USA
| | - P. J. Nacher
- Laboratoire Kastler Brossel, ENS-PSL Research University, CNRS, UPMC-Sorbonne Universités, Collège de France, Paris, France
| | - B. Saam
- Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112, USA
| | - T. G. Walker
- Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
13
|
Altes TA, Meyer CH, Mata JF, Froh DK, Paget-Brown A, Gerald Teague W, Fain SB, de Lange EE, Ruppert K, Botfield MC, Johnson MA, Mugler JP. Hyperpolarized helium-3 magnetic resonance lung imaging of non-sedated infants and young children: a proof-of-concept study. Clin Imaging 2017. [DOI: 10.1016/j.clinimag.2017.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Barskiy DA, Coffey AM, Nikolaou P, Mikhaylov DM, Goodson BM, Branca RT, Lu GJ, Shapiro MG, Telkki VV, Zhivonitko VV, Koptyug IV, Salnikov OG, Kovtunov KV, Bukhtiyarov VI, Rosen MS, Barlow MJ, Safavi S, Hall IP, Schröder L, Chekmenev EY. NMR Hyperpolarization Techniques of Gases. Chemistry 2017; 23:725-751. [PMID: 27711999 PMCID: PMC5462469 DOI: 10.1002/chem.201603884] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Indexed: 01/09/2023]
Abstract
Nuclear spin polarization can be significantly increased through the process of hyperpolarization, leading to an increase in the sensitivity of nuclear magnetic resonance (NMR) experiments by 4-8 orders of magnitude. Hyperpolarized gases, unlike liquids and solids, can often be readily separated and purified from the compounds used to mediate the hyperpolarization processes. These pure hyperpolarized gases enabled many novel MRI applications including the visualization of void spaces, imaging of lung function, and remote detection. Additionally, hyperpolarized gases can be dissolved in liquids and can be used as sensitive molecular probes and reporters. This Minireview covers the fundamentals of the preparation of hyperpolarized gases and focuses on selected applications of interest to biomedicine and materials science.
Collapse
Affiliation(s)
- Danila A Barskiy
- Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN, 37232, USA
| | - Aaron M Coffey
- Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN, 37232, USA
| | - Panayiotis Nikolaou
- Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN, 37232, USA
| | | | - Boyd M Goodson
- Southern Illinois University, Department of Chemistry and Biochemistry, Materials Technology Center, Carbondale, IL, 62901, USA
| | - Rosa T Branca
- Department of Physics and Astronomy, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - George J Lu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | | | - Vladimir V Zhivonitko
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Igor V Koptyug
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Oleg G Salnikov
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Kirill V Kovtunov
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Valerii I Bukhtiyarov
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
| | - Matthew S Rosen
- MGH/A.A. Martinos Center for Biomedical Imaging, Boston, MA, 02129, USA
| | - Michael J Barlow
- Respiratory Medicine Department, Queen's Medical Centre, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | - Shahideh Safavi
- Respiratory Medicine Department, Queen's Medical Centre, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | - Ian P Hall
- Respiratory Medicine Department, Queen's Medical Centre, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | - Leif Schröder
- Molecular Imaging, Department of Structural Biology, Leibniz-Institut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Eduard Y Chekmenev
- Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN, 37232, USA
- Russian Academy of Sciences, 119991, Moscow, Russia
| |
Collapse
|
15
|
Taegtmeyer H, Young ME, Lopaschuk GD, Abel ED, Brunengraber H, Darley-Usmar V, Des Rosiers C, Gerszten R, Glatz JF, Griffin JL, Gropler RJ, Holzhuetter HG, Kizer JR, Lewandowski ED, Malloy CR, Neubauer S, Peterson LR, Portman MA, Recchia FA, Van Eyk JE, Wang TJ. Assessing Cardiac Metabolism: A Scientific Statement From the American Heart Association. Circ Res 2016; 118:1659-701. [PMID: 27012580 DOI: 10.1161/res.0000000000000097] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In a complex system of interrelated reactions, the heart converts chemical energy to mechanical energy. Energy transfer is achieved through coordinated activation of enzymes, ion channels, and contractile elements, as well as structural and membrane proteins. The heart's needs for energy are difficult to overestimate. At a time when the cardiovascular research community is discovering a plethora of new molecular methods to assess cardiac metabolism, the methods remain scattered in the literature. The present statement on "Assessing Cardiac Metabolism" seeks to provide a collective and curated resource on methods and models used to investigate established and emerging aspects of cardiac metabolism. Some of those methods are refinements of classic biochemical tools, whereas most others are recent additions from the powerful tools of molecular biology. The aim of this statement is to be useful to many and to do justice to a dynamic field of great complexity.
Collapse
|
16
|
Kruger SJ, Nagle SK, Couch MJ, Ohno Y, Albert M, Fain SB. Functional imaging of the lungs with gas agents. J Magn Reson Imaging 2016; 43:295-315. [PMID: 26218920 PMCID: PMC4733870 DOI: 10.1002/jmri.25002] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/26/2015] [Indexed: 12/22/2022] Open
Abstract
This review focuses on the state-of-the-art of the three major classes of gas contrast agents used in magnetic resonance imaging (MRI)-hyperpolarized (HP) gas, molecular oxygen, and fluorinated gas--and their application to clinical pulmonary research. During the past several years there has been accelerated development of pulmonary MRI. This has been driven in part by concerns regarding ionizing radiation using multidetector computed tomography (CT). However, MRI also offers capabilities for fast multispectral and functional imaging using gas agents that are not technically feasible with CT. Recent improvements in gradient performance and radial acquisition methods using ultrashort echo time (UTE) have contributed to advances in these functional pulmonary MRI techniques. The relative strengths and weaknesses of the main functional imaging methods and gas agents are compared and applications to measures of ventilation, diffusion, and gas exchange are presented. Functional lung MRI methods using these gas agents are improving our understanding of a wide range of chronic lung diseases, including chronic obstructive pulmonary disease, asthma, and cystic fibrosis in both adults and children.
Collapse
Affiliation(s)
- Stanley J. Kruger
- Department of Medical Physics, University of Wisconsin – Madison, WI, U.S.A
| | - Scott K. Nagle
- Department of Medical Physics, University of Wisconsin – Madison, WI, U.S.A
- Department of Radiology, University of Wisconsin – Madison, WI, U.S.A
- Department of Pediatrics, University of Wisconsin – Madison, WI, U.S.A
| | - Marcus J. Couch
- Thunder Bay Regional Research Institute, Thunder Bay, ON, Canada
- Biotechnology Program, Lakehead University, Thunder Bay, ON, Canada
| | - Yoshiharu Ohno
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mitchell Albert
- Thunder Bay Regional Research Institute, Thunder Bay, ON, Canada
- Department of Chemistry, Lakehead University, Thunder Bay, ON, Canada
| | - Sean B. Fain
- Department of Medical Physics, University of Wisconsin – Madison, WI, U.S.A
- Department of Radiology, University of Wisconsin – Madison, WI, U.S.A
- Department of Biomedical Engineering, University of Wisconsin – Madison, WI, U.S.A
| |
Collapse
|
17
|
Hochhegger B, de Souza VVS, Marchiori E, Irion KL, Souza AS, Elias Junior J, Rodrigues RS, Barreto MM, Escuissato DL, Mançano AD, Araujo Neto CA, Guimarães MD, Nin CS, Santos MK, Silva JLPE. Chest magnetic resonance imaging: a protocol suggestion. Radiol Bras 2016; 48:373-80. [PMID: 26811555 PMCID: PMC4725399 DOI: 10.1590/0100-3984.2014.0017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In the recent years, with the development of ultrafast sequences, magnetic
resonance imaging (MRI) has been established as a valuable diagnostic modality
in body imaging. Because of improvements in speed and image quality, MRI is now
ready for routine clinical use also in the study of pulmonary diseases. The main
advantage of MRI of the lungs is its unique combination of morphological and
functional assessment in a single imaging session. In this article, the authors
review most technical aspects and suggest a protocol for performing chest MRI.
The authors also describe the three major clinical indications for MRI of the
lungs: staging of lung tumors; evaluation of pulmonary vascular diseases; and
investigation of pulmonary abnormalities in patients who should not be exposed
to radiation.
Collapse
Affiliation(s)
- Bruno Hochhegger
- PhD, Associate Professor, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | | | - Edson Marchiori
- PhD, Full Professor Emeritus, Universidade Federal Fluminense (UFF), Niterói, RJ, Brazil
| | - Klaus Loureiro Irion
- PhD, Consultant Radiologist, Liverpool Heart and Chest Hospital NHS Trust, Liverpool, UK
| | - Arthur Soares Souza
- PhD, Professor, Faculdade de Medicina de São José do Rio Preto (Famerp), São José do Rio Preto, SP, Brazil
| | - Jorge Elias Junior
- PhD, Associate Professor, Centro de Ciências das Imagens e Física Médica (CCIFM) - Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
| | - Rosana Souza Rodrigues
- PhD, Professor, Program of Post-graduation in Radiology, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Miriam Menna Barreto
- PhD, Professor, Program of Post-graduation in Radiology, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Dante Luiz Escuissato
- PhD, Associate Professor, Department of Medical Practice, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | | | | | - Marcos Duarte Guimarães
- PhD, Professor, Program of Post-graduation stricto sensu, A.C.Camargo Cancer Center, São Paulo, SP, Brazil
| | - Carlos Schuler Nin
- MD, Resident in Radiology and Imaging Diagnosis, Irmandade Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, RS, Brazil
| | - Marcel Koenigkam Santos
- PhD, Attending Physician at Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (HCFMRP-USP), Ribeirão Preto, SP, Brazil
| | - Jorge Luiz Pereira E Silva
- PhD, Associate Professor, Department of Medicine and Diagnostic Support, Universidade Federal da Bahia (UFBA), Salvador, BA, Brazil
| |
Collapse
|
18
|
|
19
|
Kaga Y, Oida T, Kobayashi T. Hyperpolarized Xenon Imaging with the SWIFT Approach in Ultra-low Field MRI: A Simulation Study. ADVANCED BIOMEDICAL ENGINEERING 2015. [DOI: 10.14326/abe.4.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Yuki Kaga
- Department of Electronics Engineering, Graduate of Engineering, Kyoto University
| | - Takenori Oida
- Department of Electronics Engineering, Graduate of Engineering, Kyoto University
| | - Tetsuo Kobayashi
- Department of Electronics Engineering, Graduate of Engineering, Kyoto University
| |
Collapse
|
20
|
Mata J, Sheng K, Hagspiel K, Ruppert K, Sylvester P, Mugler J, Fernandes C, Guan S, Larner J, Read P. Pulmonary toxicity in a rabbit model of stereotactic lung radiation therapy: efficacy of a radioprotector. Exp Lung Res 2014; 40:308-16. [PMID: 24926529 DOI: 10.3109/01902148.2014.918213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study aimed to assess the efficacy of the radioprotector amifostine in limiting radiation toxicity in a rabbit model of lung stereotactic body radiation therapy (SBRT) by correlating contrast-enhanced magnetic resonance angiography (ce-MRA), computed tomography (CT), and helium-3 (He-3) magnetic resonance imaging (MRI) with histopathology. Multiple MRI techniques were tested to obtain complementing physiologic information. Thirteen rabbits received SBRT to the right lower lobe of the lung. Specifically, 4 received 3 × 11 Gray (Gy), 6 received 3 × 11 Gy and 50 mg/kg of amifostine pre-SRBT, and 3 received 3 × 7, 3 × 9, or 3 × 13 Gy. Imaging was performed at baseline and 4, 8, 12, and 16 weeks post-SBRT. Ce-MRA perfusion difference between lungs in the irradiated group at 16 weeks post-treatment was statistically significant (P = .04) whereas the difference in the irradiated + amifostine group was not (P = .30). Histologically observed low red blood cell (RBC) count and CT hypodensity suggests changes were primarily related to perfusion; however, structural changes, such as increased alveolar size, were also present. No changes in He-3 MRI lung ventilation were observed in either group. Although radiation-induced injury detected in rabbits as CT hypodensity contrasted with increased density observed in humans/rodents, the changes in ce-MRA and CT were still significantly reduced after the addition of amifostine to SBRT. Use of CT and selected MRI techniques helped to pinpoint primary physiologic changes.
Collapse
Affiliation(s)
- Jaime Mata
- 1Departments of Radiology and 2Radiation-Oncology, University of Virginia, Charlottesville, Virginia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Głowacz B, Suchanek M, Olejniczak Z. Production of laser-polarized 3He gas via metastability exchange optical pumping for magnetic resonance imaging. BIO-ALGORITHMS AND MED-SYSTEMS 2014. [DOI: 10.1515/bams-2014-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Hyperpolarized NMR probes for biological assays. SENSORS 2014; 14:1576-97. [PMID: 24441771 PMCID: PMC3926627 DOI: 10.3390/s140101576] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 12/20/2013] [Accepted: 01/07/2014] [Indexed: 11/17/2022]
Abstract
During the last decade, the development of nuclear spin polarization enhanced (hyperpolarized) molecular probes has opened up new opportunities for studying the inner workings of living cells in real time. The hyperpolarized probes are produced ex situ, introduced into biological systems and detected with high sensitivity and contrast against background signals using high resolution NMR spectroscopy. A variety of natural, derivatized and designed hyperpolarized probes has emerged for diverse biological studies including assays of intracellular reaction progression, pathway kinetics, probe uptake and export, pH, redox state, reactive oxygen species, ion concentrations, drug efficacy or oncogenic signaling. These probes are readily used directly under natural conditions in biofluids and are often directly developed and optimized for cellular assays, thus leaving little doubt about their specificity and utility under biologically relevant conditions. Hyperpolarized molecular probes for biological NMR spectroscopy enable the unbiased detection of complex processes by virtue of the high spectral resolution, structural specificity and quantifiability of NMR signals. Here, we provide a survey of strategies used for the selection, design and use of hyperpolarized NMR probes in biological assays, and describe current limitations and developments.
Collapse
|
23
|
Six JS, Hughes-Riley T, Lilburn DM, Dorkes AC, Stupic KF, Shaw DE, Morris PG, Hall IP, Pavlovskaya GE, Meersmann T. Pulmonary MRI contrast using Surface Quadrupolar Relaxation (SQUARE) of hyperpolarized (83)Kr. Magn Reson Imaging 2014; 32:48-53. [PMID: 24144493 PMCID: PMC3898897 DOI: 10.1016/j.mri.2013.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 08/08/2013] [Accepted: 08/20/2013] [Indexed: 11/24/2022]
Abstract
Hyperpolarized (83)Kr has previously been demonstrated to enable MRI contrast that is sensitive to the chemical composition of the surface in a porous model system. Methodological advances have lead to a substantial increase in the (83)Kr hyperpolarization and the resulting signal intensity. Using the improved methodology for spin exchange optical pumping of isotopically enriched (83)Kr, internal anatomical details of ex vivo rodent lung were resolved with hyperpolarized (83)Kr MRI after krypton inhalation. Different (83)Kr relaxation times were found between the main bronchi and the parenchymal regions in ex vivo rat lungs. The T1 weighted hyperpolarized (83)Kr MRI provided a first demonstration of surface quadrupolar relaxation (SQUARE) pulmonary MRI contrast.
Collapse
Affiliation(s)
- Joseph S. Six
- Sir Peter Mansfield Magnetic Resonance Centre, University of Nottingham, Nottingham NG7 2RD, UK
- School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Theodore Hughes-Riley
- Sir Peter Mansfield Magnetic Resonance Centre, University of Nottingham, Nottingham NG7 2RD, UK
- School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - David M.L. Lilburn
- Sir Peter Mansfield Magnetic Resonance Centre, University of Nottingham, Nottingham NG7 2RD, UK
- School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Alan C. Dorkes
- Sir Peter Mansfield Magnetic Resonance Centre, University of Nottingham, Nottingham NG7 2RD, UK
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Karl F. Stupic
- Sir Peter Mansfield Magnetic Resonance Centre, University of Nottingham, Nottingham NG7 2RD, UK
- School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Dominick E. Shaw
- Nottingham Respiratory Research Unit, University of Nottingham, Nottingham NG5 1PB, UK
| | - Peter G. Morris
- Sir Peter Mansfield Magnetic Resonance Centre, University of Nottingham, Nottingham NG7 2RD, UK
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Ian P. Hall
- School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Galina E. Pavlovskaya
- Sir Peter Mansfield Magnetic Resonance Centre, University of Nottingham, Nottingham NG7 2RD, UK
- School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Thomas Meersmann
- Sir Peter Mansfield Magnetic Resonance Centre, University of Nottingham, Nottingham NG7 2RD, UK
- School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
24
|
Ramirez MS, Lee J, Walker CM, Sandulache VC, Hennel F, Lai SY, Bankson JA. Radial spectroscopic MRI of hyperpolarized [1-(13) C] pyruvate at 7 tesla. Magn Reson Med 2013; 72:986-95. [PMID: 24186845 DOI: 10.1002/mrm.25004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/25/2013] [Accepted: 09/27/2013] [Indexed: 01/24/2023]
Abstract
PURPOSE The transient and nonrenewable signal from hyperpolarized metabolites necessitates extensive sequence optimization for encoding spatial, spectral, and dynamic information. In this work, we evaluate the utility of radial single-timepoint and cumulative spectroscopic MRI of hyperpolarized [1-(13) C] pyruvate and its metabolic products at 7 Tesla (T). METHODS Simulations of radial echo planar spectroscopic imaging (EPSI) and multiband frequency encoding (MBFE) acquisitions were performed to confirm feasibility and evaluate performance for HP (13) C imaging. Corresponding sequences were implemented on a 7T small-animal MRI system, tested in phantom, and demonstrated in a murine model of anaplastic thyroid cancer. RESULTS MBFE provides excellent spectral separation but is susceptible to blurring and T2 * signal loss inherent to using low readout gradients. The higher readout gradients and more flexible spectral encoding for EPSI result in good spatial resolution and spectral separation. Radial acquisition throughout HP signal evolution offers the flexibility for reconstructing spatial maps of mean metabolite distribution and global dynamic time courses of multiple metabolites. CONCLUSION Radial EPSI and MBFE acquisitions are well-suited for hyperpolarized (13) C MRI over short and long durations. Advantages to this approach include robustness to nonstationary magnetization, insensitivity to precise acquisition timing, and versatility for reconstructing dynamically acquired spectroscopic data.
Collapse
Affiliation(s)
- Marc S Ramirez
- The Department of Imaging Physics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Lilburn DML, Hughes-Riley T, Six JS, Stupic KF, Shaw DE, Pavlovskaya GE, Meersmann T. Validating excised rodent lungs for functional hyperpolarized xenon-129 MRI. PLoS One 2013; 8:e73468. [PMID: 24023683 PMCID: PMC3758272 DOI: 10.1371/journal.pone.0073468] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 07/21/2013] [Indexed: 12/15/2022] Open
Abstract
Ex vivo rodent lung models are explored for physiological measurements of respiratory function with hyperpolarized (hp) (129)Xe MRI. It is shown that excised lung models allow for simplification of the technical challenges involved and provide valuable physiological insights that are not feasible using in vivo MRI protocols. A custom designed breathing apparatus enables MR images of gas distribution on increasing ventilation volumes of actively inhaled hp (129)Xe. Straightforward hp (129)Xe MRI protocols provide residual lung volume (RV) data and permit for spatially resolved tracking of small hp (129)Xe probe volumes during the inhalation cycle. Hp (129)Xe MRI of lung function in the excised organ demonstrates the persistence of post mortem airway responsiveness to intravenous methacholine challenges. The presented methodology enables physiology of lung function in health and disease without additional regulatory approval requirements and reduces the technical and logistical challenges with hp gas MRI experiments. The post mortem lung functional data can augment histological measurements and should be of interest for drug development studies.
Collapse
Affiliation(s)
- David M. L. Lilburn
- Sir Peter Mansfield Magnetic Resonance Centre, School of Clinical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Theodore Hughes-Riley
- Sir Peter Mansfield Magnetic Resonance Centre, School of Clinical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Joseph S. Six
- Sir Peter Mansfield Magnetic Resonance Centre, School of Clinical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Karl F. Stupic
- Sir Peter Mansfield Magnetic Resonance Centre, School of Clinical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Dominick E. Shaw
- Nottingham Respiratory Research Unit, Nottingham City Hospital, Nottingham, United Kingdom
| | - Galina E. Pavlovskaya
- Sir Peter Mansfield Magnetic Resonance Centre, School of Clinical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Thomas Meersmann
- Sir Peter Mansfield Magnetic Resonance Centre, School of Clinical Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
26
|
Mugler JP, Altes TA. Hyperpolarized 129Xe MRI of the human lung. J Magn Reson Imaging 2013; 37:313-31. [PMID: 23355432 DOI: 10.1002/jmri.23844] [Citation(s) in RCA: 255] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Accepted: 08/29/2012] [Indexed: 11/07/2022] Open
Abstract
By permitting direct visualization of the airspaces of the lung, magnetic resonance imaging (MRI) using hyperpolarized gases provides unique strategies for evaluating pulmonary structure and function. Although the vast majority of research in humans has been performed using hyperpolarized (3)He, recent contraction in the supply of (3)He and consequent increases in price have turned attention to the alternative agent, hyperpolarized (129) Xe. Compared to (3)He, (129)Xe yields reduced signal due to its smaller magnetic moment. Nonetheless, taking advantage of advances in gas-polarization technology, recent studies in humans using techniques for measuring ventilation, diffusion, and partial pressure of oxygen have demonstrated results for hyperpolarized (129)Xe comparable to those previously demonstrated using hyperpolarized (3)He. In addition, xenon has the advantage of readily dissolving in lung tissue and blood following inhalation, which makes hyperpolarized (129)Xe particularly attractive for exploring certain characteristics of lung function, such as gas exchange and uptake, which cannot be accessed using (3)He. Preliminary results from methods for imaging (129) Xe dissolved in the human lung suggest that these approaches will provide new opportunities for quantifying relationships among gas delivery, exchange, and transport, and thus show substantial potential to broaden our understanding of lung disease. Finally, recent changes in the commercial landscape of the hyperpolarized-gas field now make it possible for this innovative technology to move beyond the research laboratory.
Collapse
Affiliation(s)
- John P Mugler
- Center for In-vivo Hyperpolarized Gas MR Imaging, Department of Radiology and Medical Imaging, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA.
| | | |
Collapse
|
27
|
Berganza CJ, Zhang JH. The role of helium gas in medicine. Med Gas Res 2013; 3:18. [PMID: 23916029 PMCID: PMC3751721 DOI: 10.1186/2045-9912-3-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 07/25/2013] [Indexed: 01/04/2023] Open
Abstract
The noble gas helium has many applications owing to its distinct physical and chemical characteristics, namely: its low density, low solubility, and high thermal conductivity. Chiefly, the abundance of studies in medicine relating to helium are concentrated in its possibility of being used as an adjunct therapy in a number of respiratory ailments such as asthma exacerbation, COPD, ARDS, croup, and bronchiolitis. Helium gas, once believed to be biologically inert, has been recently shown to be beneficial in protecting the myocardium from ischemia by various mechanisms. Though neuroprotection of brain tissue has been documented, the mechanism by which it does so has yet to be made clear. Surgeons are exploring using helium instead of carbon dioxide to insufflate the abdomen of patients undergoing laparoscopic abdominal procedures due to its superiority in preventing respiratory acidosis in patients with comorbid conditions that cause carbon dioxide retention. Newly discovered applications in Pulmonary MRI radiology and imaging of organs in very fine detail using Helium Ion Microscopy has opened exciting new possibilities for the use of helium gas in technologically advanced fields of medicine.
Collapse
Affiliation(s)
- Carlos J Berganza
- Departments of Neurosurgery and Physiology, Loma Linda University, Loma Linda California, USA.
| | | |
Collapse
|
28
|
Qian C, Yu X, Chen DY, Dodd S, Bouraoud N, Pothayee N, Chen Y, Beeman S, Bennett K, Murphy-Boesch J, Koretsky A. Wireless amplified nuclear MR detector (WAND) for high-spatial-resolution MR imaging of internal organs: preclinical demonstration in a rodent model. Radiology 2013; 268:228-36. [PMID: 23392428 DOI: 10.1148/radiol.13121352] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To assess the feasibility of imaging deep-lying internal organs at high spatial resolution by imaging kidney glomeruli in a rodent model with use of a newly developed, wireless amplified nuclear magnetic resonance (MR) detector. MATERIALS AND METHODS This study was approved by the Animal Care and Use Committee at the National Institutes of Health/National Institute of Neurologic Disorder and Stroke. As a preclinical demonstration of this new detection technology, five different millimeter-scale wireless amplified nuclear MR detectors configured as double frequency resonators were chronically implanted on the medial surface of the kidney in five Sprague-Dawley rats for MR imaging at 11.7 T. Among these rats, two were administered gadopentetate dimeglumine to visualize renal tubules on T1-weighted gradient-refocused echo (GRE) images, two were administered cationized ferritin to visualize glomeruli on T2*-weighted GRE images, and the remaining rat was administered both gadopentetate dimeglumine and cationized ferritin to visualize the interleaved pattern of renal tubules and glomeruli. The image intensity in each pixel was compared with the local tissue signal intensity average to identify regions of hyper- or hypointensity. RESULTS T1-weighted images with 70-μm in-plane resolution and 200-μm section thickness were obtained within 3.2 minutes to image renal tubules, and T2*-weighted images of the same resolution were obtained within 5.8 minutes to image the glomeruli. Hyperintensity from gadopentetate dimeglumine enabled visualization of renal tubules, and hypointensity from cationic ferritin enabled visualization of the glomeruli. CONCLUSION High-spatial-resolution images have been obtained to observe kidney microstructures in vivo with a wireless amplified nuclear MR detector.
Collapse
Affiliation(s)
- Chunqi Qian
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Dr, Room 1D48, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Xenon-Enhanced Dual-Energy CT of Patients With Asthma: Dynamic Ventilation Changes After Methacholine and Salbutamol Inhalation. AJR Am J Roentgenol 2012; 199:975-81. [DOI: 10.2214/ajr.11.7624] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
Acosta RH, Blümler P, Münnemann K, Spiess HW. Mixture and dissolution of laser polarized noble gases: spectroscopic and imaging applications. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2012; 66:40-69. [PMID: 22980033 DOI: 10.1016/j.pnmrs.2012.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 03/20/2012] [Indexed: 06/01/2023]
Affiliation(s)
- Rodolfo H Acosta
- FAMAF, Universidad Nacional de Córdoba, IFEG - CONICET, Córdoba, Argentina
| | | | | | | |
Collapse
|
31
|
Hochhegger B, Marchiori E, Irion K, Souza AS, Volkart J, Rubin AS. Magnetic resonance of the lung: a step forward in the study of lung disease. J Bras Pneumol 2012; 38:105-15. [PMID: 22407047 DOI: 10.1590/s1806-37132012000100015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 11/03/2011] [Indexed: 11/21/2022] Open
Abstract
Magnetic resonance imaging (MRI) of the lung has progressed tremendously in recent years. Because of improvements in speed and image quality, MRI is now ready for routine clinical use. The main advantage of MRI of the lung is its unique combination of structural and functional assessment in a single imaging session. We review the three major clinical indications for MRI of the lung: staging of lung tumors; evaluation of pulmonary vascular disease; and investigation of pulmonary abnormalities in patients who should not be exposed to radiation.
Collapse
Affiliation(s)
- Bruno Hochhegger
- Departamento de Pneumologia, Complexo Hospitalar Santa Casa de Porto Alegre, RS, Brasil
| | | | | | | | | | | |
Collapse
|
32
|
Bauman G, Eichinger M. Ventilation and perfusion magnetic resonance imaging of the lung. Pol J Radiol 2012; 77:37-46. [PMID: 22802864 PMCID: PMC3389953 DOI: 10.12659/pjr.882579] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/19/2012] [Indexed: 02/02/2023] Open
Abstract
A close interaction between the respiratory pump, pulmonary parenchyma and blood circulation is essential for a normal lung function. Many pulmonary diseases present, especially in their initial phase, a variable regional impairment of ventilation and perfusion. In the last decades various techniques have been established to measure the lung function. Besides the global pulmonary function tests (PFTs) imaging techniques gained increasing importance to detect local variations in lung function, especially for ventilation and perfusion assessment. Imaging modalities allow for a deeper regional insight into pathophysiological processes and enable improved planning of invasive procedures. In contrast to computed tomography (CT) and the nuclear medicine techniques, magnetic resonance imaging (MRI), as a radiation free imaging modality gained increasing importance since the early 1990 for the assessment of pulmonary function. The major inherent problems of lung tissue, namely the low proton density and the pulmonary and cardiac motion, were overcome in the last years by a constant progress in MR technology. Some MR techniques are still under development, a process which is driven by scientific questions regarding the physiology and pathophysiology of pulmonary diseases, as well as by the need for fast and robust clinically applicable imaging techniques as safe therapy monitoring tools. MRI can be considered a promising ionizing-free alternative to techniques like CT or nuclear medicine techniques for the evaluation of lung function. The goal of this article is to provide an overview on selected MRI techniques for the assessment of pulmonary ventilation and perfusion.
Collapse
Affiliation(s)
- Grzegorz Bauman
- German Cancer Research Center, Department of Medical Physics in Radiology, Heidelberg, Germany
| | | |
Collapse
|
33
|
Kircher MF, Willmann JK. Molecular body imaging: MR imaging, CT, and US. part I. principles. Radiology 2012; 263:633-43. [PMID: 22623690 DOI: 10.1148/radiol.12102394] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Molecular imaging, generally defined as noninvasive imaging of cellular and subcellular events, has gained tremendous depth and breadth as a research and clinical discipline in recent years. The coalescence of major advances in engineering, molecular biology, chemistry, immunology, and genetics has fueled multi- and interdisciplinary innovations with the goal of driving clinical noninvasive imaging strategies that will ultimately allow disease identification, risk stratification, and monitoring of therapy effects with unparalleled sensitivity and specificity. Techniques that allow imaging of molecular and cellular events facilitate and go hand in hand with the development of molecular therapies, offering promise for successfully combining imaging with therapy. While traditionally nuclear medicine imaging techniques, in particular positron emission tomography (PET), PET combined with computed tomography (CT), and single photon emission computed tomography, have been the molecular imaging methods most familiar to clinicians, great advances have recently been made in developing imaging techniques that utilize magnetic resonance (MR), optical, CT, and ultrasonographic (US) imaging. In the first part of this review series, we present an overview of the principles of MR imaging-, CT-, and US-based molecular imaging strategies.
Collapse
Affiliation(s)
- Moritz F Kircher
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | |
Collapse
|
34
|
Massot P, Parzy E, Pourtau L, Mellet P, Madelin G, Marque S, Franconi JM, Thiaudiere E. In vivo high-resolution 3D overhauser-enhanced MRI in mice at 0.2 T. CONTRAST MEDIA & MOLECULAR IMAGING 2012; 7:45-50. [PMID: 22344879 DOI: 10.1002/cmmi.464] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Overhauser-enhanced MRI (OMRI) offers the potentiality of detecting low-concentrated species generated by specific biological processes. However molecular imaging applications of OMRI need significant improvement in spatial localization. Here it is shown that 3D-OMRI of a free radical injected in tumor-bearing mice can be performed at high anatomical resolution at a constant field. A 30 mm cavity operating at 5.43 GHz was inserted in a C-shaped magnet for proton MRI at 0.194 T. Nude mice with or without brain-implanted C6 rat glioma were positioned in the cavity and injected with TOPCA (1-oxyl-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrole-3-carboxylic acid). OMRI was performed in 3D within several minutes in the brain region without high overheating of the animals. Voxel size was 0.5 × 0.5 × 1 mm³ , providing good delineation of brain regions. Signal amplifications ranged from 2 in tumors to 10 in vessels several minutes after TOPCA injection. Time-course of signal enhancement could be measured by 2D OMRI at 15 s time intervals in a localized thin slice. The method opens the way for molecular imaging of biological activities able to generate OMRI-visible free radicals.
Collapse
|
35
|
Chang YV. MOXE: a model of gas exchange for hyperpolarized 129Xe magnetic resonance of the lung. Magn Reson Med 2012; 69:884-90. [PMID: 22565296 DOI: 10.1002/mrm.24304] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 02/29/2012] [Accepted: 03/30/2012] [Indexed: 11/06/2022]
Abstract
We present a model of gas exchange for hyperpolarized (129)Xe in the lung, which we refer to as the Model of Xenon Exchange. The model consists of two expressions and characterizes uptake of dissolved xenon in the lung at two different resonance frequencies. The two expressions are governed by the following five critical pulmonary parameters that characterize both lung function and structure: the surface-area-to-volume ratio, barrier-to-septum ratio (ratio between air-blood barrier thickness and septal thickness), hematocrit, gas-exchange time constant, and pulmonary capillary transit time. The model is first validated by computer simulation. We show that Model of Xenon Exchange can be used to measure the pulmonary parameters mentioned above under various pathological or physiological conditions and is robust against moderate noise. Model of Xenon Exchange is further used to fit an existing data set of xenon uptake, thereby we demonstrate that the data can be well interpreted with Model of Xenon Exchange and reasonable parameters from the fitting routine. The good results obtained in both simulation and fitting to real data indicate that the model is sensitive to various functional and structural changes of the lung, and that it will allow for screening for a variety of pulmonary diseases by using hyperpolarized (129)Xe of the lung.
Collapse
Affiliation(s)
- Yulin V Chang
- Department of Mechanical Engineering and Materials Science, Washington University, St Louis, Missouri 63110, USA.
| |
Collapse
|
36
|
Risse F, Pesic J, Young S, Olsson LE. A texture analysis approach to quantify ventilation changes in hyperpolarised ³He MRI of the rat lung in an asthma model. NMR IN BIOMEDICINE 2012; 25:131-141. [PMID: 21739495 DOI: 10.1002/nbm.1725] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 03/17/2011] [Accepted: 03/17/2011] [Indexed: 05/31/2023]
Abstract
In preclinical research, allergic asthma is investigated in rats sensitised with the antigen ovalbumin (OVA), followed by a challenge with aerosolised OVA to induce an inflammatory reaction of the lower airways. This causes diffuse, nonfocal ventilation defects that lead to heterogeneously distributed signal intensities in hyperpolarised (HP) (3)He MR images, which are difficult to assess directly by diagnostic grading or volumetry. Texture analysis can characterise these changes and does not require segmentation of the lung structures prior to the analysis. The aim of this work was to evaluate a texture analysis approach to quantify changes in lung ventilation in HP (3)He MRI of OVA-challenged rats. OVA-challenged animals were treated with two different compound doses to evaluate the sensitivity of the texture analysis. Four groups were investigated using HP (3)He MRI at 4.7 T: controls, vehicle-treated, and low- and high-dose budesonide-treated rats. In addition, broncho-alveolar lavage was performed and the eosinophil cell count was used as a biological reference marker. First-order texture, geometrical features and features based on second-order statistics using run-length and grey-level co-occurrence matrices were calculated. In addition, wavelet transforms were applied to compute first-order statistics on multiple scales. The texture analysis was able to show significant differences between the control and untreated vehicle groups as well as between the vehicle and treatment groups. This is in agreement with the findings of the eosinophil cell counts, which were used as a marker for the severity of inflammation. However, not all features used in the different texture analysis methods could differentiate between the treatment groups. In conclusion, texture analysis can be used to quantify changes in lung ventilation as measured with HP (3)He MRI after therapeutic intervention with budesonide.
Collapse
Affiliation(s)
- Frank Risse
- DECS Imaging&Antibodies, AstraZeneca R&D, Mölndal, Sweden.
| | | | | | | |
Collapse
|
37
|
Kadlecek S, Vahdat V, Nakayama T, Ng D, Emami K, Rizi R. A simple and low-cost device for generating hyperpolarized contrast agents using parahydrogen. NMR IN BIOMEDICINE 2011; 24:933-42. [PMID: 21845739 DOI: 10.1002/nbm.1757] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 04/28/2011] [Accepted: 05/09/2011] [Indexed: 05/12/2023]
Abstract
A detailed description of the construction and use of a device for hyperpolarization of select contrast agents is presented. The device is based on molecular incorporation of the spin-order inherent to parahydrogen, followed by order transfer to a metastable heteronuclear alignment. Design considerations and experimental results relating to catalyst/solvent choice and handling, solvent heating, efficient gas entrainment and spin-order transfer are described. The resulting degree of hyperpolarization is shown to be substantial, ranging from a few to over 50%, depending on the choice of target molecule. Finally, the use of the hyperpolarized agent is demonstrated in a series of in vivo images.
Collapse
Affiliation(s)
- Stephen Kadlecek
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Malloy CR, Merritt ME, Sherry AD. Could 13C MRI assist clinical decision-making for patients with heart disease? NMR IN BIOMEDICINE 2011; 24:973-9. [PMID: 21608058 PMCID: PMC3174329 DOI: 10.1002/nbm.1718] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 01/25/2011] [Accepted: 02/22/2011] [Indexed: 05/08/2023]
Abstract
Even at this early stage of development, it is clear that the imaging of hyperpolarized (13)C-enriched molecules and their metabolic products offers a new approach to the study of the physiology and disease of the heart. The technology is practical in humans and, for this reason, we consider whether a role in clinical decision-making should motivate further development. The range of interventions available to treat coronary and valvular heart disease is already extensive, and new options are imminent. Yet the appropriate management of patients with left ventricular dysfunction can be challenging because the mechanism of reduced function may be unclear and the ability of the ventricle to respond to therapy may be difficult to predict. Pyruvate is a promising early target for development as a diagnostic agent because it lies at a critical branch point in cardiac biochemistry. The rate of metabolism of hyperpolarized pyruvate to CO(2) relative to lactate may prove to be a useful indicator of preserved mitochondrial function, and therefore provide a specific signal of viable myocardium. Other species including physiological substrates and nonphysiological molecules may provide additional information. Once suitable technology becomes available, it is likely that clinical research will progress quickly. The ability to monitor directly specific metabolic pathways may lead to an improvement in the selection of patients who will benefit from interventions, pharmacologic or otherwise.
Collapse
Affiliation(s)
- Craig R Malloy
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390-8568, USA.
| | | | | |
Collapse
|
39
|
Mata J, Altes T, Truwit J, Sylvester P, de Lange E, Shim Y, Vinayak A, Brookeman J, Mugler J. Characterization and detection of physiologic lung changes before and after placement of bronchial valves using hyperpolarized helium-3 MR imaging: preliminary study. Acad Radiol 2011; 18:1195-9. [PMID: 21536465 DOI: 10.1016/j.acra.2011.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 03/11/2011] [Accepted: 03/14/2011] [Indexed: 10/18/2022]
Abstract
RATIONALE AND OBJECTIVES The aim of this study was to determine the efficacy of hyperpolarized (3)He (HHe) ventilation and apparent diffusion coefficient (ADC) HHe magnetic resonance imaging (MRI) in detecting changes in lung function and microstructure in emphysematous lung after bronchial valve (BV) placement. MATERIALS AND METHODS One patient diagnosed with emphysema had nine BVs placed in upper lobe bronchi. Imaging was performed before and 6 months after BV placement. Coronal HHe ventilation MRI was used to assess volume changes in the ventilated portions of the lung. Coronal ADC HHe MRI, acquired with b value pairs of 0 and 1.6 s/cm(2) during a second 10-second breath-hold, was used to compute ADC values. RESULTS HHe ventilation MRI revealed decreased ventilation in the treated segments of the upper lobes after BV placement. Increased ventilation in the lower lobes and two untreated segments of the left upper lobes were also observed, with an upward shift of the major fissure of the right lung. Whole-lung mean ADC decreased by 6.3% from baseline, from 0.48 ± 0.196 to 0.45 ± 0.176 cm(2)/s (toward healthier values) following BV placement. CONCLUSIONS HHe ventilation MRI detected an increase in whole-lung volume and an interlobar fissure shift indicative of increased ventilation of lower relative to upper lobes. Reduced ADC values suggest increased ventilation to healthy lower lobes at the expense of more diseased, expanded alveolar spaces in the upper lobes distal to BV placement. These results suggest that this ionizing radiation-free method of examining the lungs may offer functional and structural information useful in BV intervention planning.
Collapse
|
40
|
Affiliation(s)
- Ching-Long Lin
- Department of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | |
Collapse
|
41
|
Gore JC, Manning HC, Quarles CC, Waddell KW, Yankeelov TE. Magnetic resonance in the era of molecular imaging of cancer. Magn Reson Imaging 2011; 29:587-600. [PMID: 21524870 PMCID: PMC3285504 DOI: 10.1016/j.mri.2011.02.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 02/26/2011] [Indexed: 12/16/2022]
Abstract
Magnetic resonance imaging (MRI) has played an important role in the diagnosis and management of cancer since it was first developed, but other modalities also continue to advance and provide complementary information on the status of tumors. In the future, there will be a major continuing role for noninvasive imaging in order to obtain information on the location and extent of cancer, as well as assessments of tissue characteristics that can monitor and predict treatment response and guide patient management. Developments are currently being undertaken that aim to provide improved imaging methods for the detection and evaluation of tumors, for identifying important characteristics of tumors such as the expression levels of cell surface receptors that may dictate what types of therapy will be effective and for evaluating their response to treatments. Molecular imaging techniques based mainly on radionuclide imaging can depict numerous, specific, cellular and molecular markers of disease and have unique potential to address important clinical and research challenges. In this review, we consider what continuing and evolving roles will be played by MRI in this era of molecular imaging. We discuss some of the challenges for MRI of detecting imaging agents that report on molecular events, but highlight also the ability of MRI to assess other features such as cell density, blood flow and metabolism which are not specific hallmarks of cancer but which reflect molecular changes. We discuss the future role of MRI in cancer and describe the use of selected quantitative imaging techniques for characterizing tumors that can be translated to clinical applications, particularly in the context of evaluating novel treatments.
Collapse
Affiliation(s)
- John C Gore
- Vanderbilt University Institute of Imaging Science AA1105 MCN, Vanderbilt University Nashville, TN 37232-2310, USA.
| | | | | | | | | |
Collapse
|
42
|
Stupic KF, Elkins ND, Pavlovskaya GE, Repine JE, Meersmann T. Effects of pulmonary inhalation on hyperpolarized krypton-83 magnetic resonance T1 relaxation. Phys Med Biol 2011; 56:3731-48. [PMID: 21628780 DOI: 10.1088/0031-9155/56/13/001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The (83)Kr magnetic resonance (MR) relaxation time T(1) of krypton gas in contact with model surfaces was previously found to be highly sensitive to surface composition, surface-to-volume ratio, and surface temperature. The work presented here explored aspects of pulmonary (83)Kr T(1) relaxation measurements in excised lungs from healthy rats using hyperpolarized (hp) (83)Kr with approximately 4.4% spin polarization. MR spectroscopy without spatial resolution was applied to the ex vivo lungs that actively inhale hp (83)Kr through a custom designed ventilation system. Various inhalation schemes were devised to study the influence of anatomical dead space upon the measured (83)Kr T(1) relaxation times. The longitudinal (83)Kr relaxation times in the distal airways and the respiratory zones were independent of the lung inhalation volume, with T(1) = 1.3 s and T(1) = 1.0 s, depending only on the applied inhalation scheme. The obtained data were highly reproducible between different specimens. Further, the (83)Kr T(1) relaxation times in excised lungs were unaffected by the presence of up to 40% oxygen in the hp gas mixture. The results support the possible importance of (83)Kr as a biomarker for evaluating lung function.
Collapse
Affiliation(s)
- K F Stupic
- Sir Peter Mansfield Magnetic Resonance Centre, School of Clinical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | | | | | | | | |
Collapse
|
43
|
Çukur T, Lustig M, Saritas EU, Nishimura DG. Signal compensation and compressed sensing for magnetization-prepared MR angiography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2011; 30:1017-27. [PMID: 21335307 PMCID: PMC3156830 DOI: 10.1109/tmi.2011.2116123] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Magnetization-prepared acquisitions offer a trade-off between image contrast and scan efficiency for magnetic resonance imaging. Because the prepared signals gradually decay, the contrast can be improved by frequently repeating the preparation, which in turn significantly increases the scan time. A common solution is to perform the data collection progressing from low- to high-spatial-frequency samples following each preparation. Unfortunately, this leads to loss of spatial resolution, and thereby image blurring. In this work, a new technique is proposed that first corrects the signal decay in high-frequency data to mitigate the resolution loss and improve the image contrast without reducing the scan efficiency. The proposed technique then employs a sparsity-based nonlinear reconstruction to further improve the image quality. In addition to reducing the amplified high-frequency noise, this reconstruction extrapolates missing k-space samples in the case of undersampled compressed-sensing acquisitions. The technique is successfully demonstrated for noncontrast-enhanced flow-independent angiography of the lower extremities, an application that substantially benefits from both the signal compensation and the nonlinear reconstruction.
Collapse
Affiliation(s)
- Tolga Çukur
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA.
| | | | | | | |
Collapse
|
44
|
Peterson ET, Dai J, Holmes JH, Fain SB. Measurement of lung airways in three dimensions using hyperpolarized helium-3 MRI. Phys Med Biol 2011; 56:3107-22. [PMID: 21521907 DOI: 10.1088/0031-9155/56/10/014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Large airway measurement is clinically important in cases of airway disease and trauma. The gold standard is computed tomography (CT), which allows for airway measurement. However, the ionizing radiation dose associated with CT is a major limitation in longitudinal studies and trauma. To avoid ionizing radiation from CT, we present a method for measuring the large airway diameter in humans using hyperpolarized helium-3 (HPHe) MRI in conjunction with a dynamic 3D radial acquisition. An algorithm is introduced which utilizes the significant airway contrast for semi-automated segmentation and skeletonization which is used to derive the airway lumen diameter. The HPHe MRI method was validated with quantitative CT in an excised and desiccated porcine lung (linear regression R(2) = 0.974 and slope = 0.966 over 32 airway segments). The airway lumen diameters were then compared in 24 human subjects (22 asthmatics and 2 normals; linear regression R(2) value of 0.799 and slope = 0.768 over 309 airway segments). The feasibility for airway path analysis to areas of ventilation defect is also demonstrated.
Collapse
Affiliation(s)
- Eric T Peterson
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | |
Collapse
|
45
|
Tawhai MH, Lin CL. Image-based modeling of lung structure and function. J Magn Reson Imaging 2011; 32:1421-31. [PMID: 21105146 DOI: 10.1002/jmri.22382] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The current state-of-the-art in image-based modeling allows derivation of patient-specific models of the lung, lobes, airways, and pulmonary vascular trees. The application of traditional engineering analyses of fluid and structural mechanics to image-based subject-specific models has the potential to provide new insight into structure-function relationships in the individual via functional interpretation that complements imaging and experimental studies. Three major issues that are encountered in studies of airflow through the bronchial airways are the representation of airway geometry, the imposition of physiological boundary conditions, and the treatment of turbulence. Here we review some efforts to resolve each of these issues, with particular focus on image-based models that have been developed to simulate airflow from the mouth to the terminal bronchiole, and subjected to physiologically meaningful boundary conditions via image registration and soft-tissue mechanics models.
Collapse
Affiliation(s)
- Merryn H Tawhai
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.
| | | |
Collapse
|
46
|
Fain S, Schiebler ML, McCormack DG, Parraga G. Imaging of lung function using hyperpolarized helium-3 magnetic resonance imaging: Review of current and emerging translational methods and applications. J Magn Reson Imaging 2011; 32:1398-408. [PMID: 21105144 DOI: 10.1002/jmri.22375] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
During the past several years there has been extensive development and application of hyperpolarized helium-3 (HP (3)He) magnetic resonance imaging (MRI) in clinical respiratory indications such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, radiation-induced lung injury, and transplantation. This review focuses on the state-of-the-art of HP (3)He MRI and its application to clinical pulmonary research. This is not an overview of the physics of the method, as this topic has been covered previously. We focus here on the potential of this imaging method and its challenges in demonstrating new types of information that has the potential to influence clinical research and decision making in pulmonary medicine. Particular attention is given to functional imaging approaches related to ventilation and diffusion-weighted imaging with applications in chronic obstructive pulmonary disease, cystic fibrosis, asthma, and radiation-induced lung injury. The strengths and challenges of the application of (3)He MRI in these indications are discussed along with a comparison to established and emerging imaging techniques.
Collapse
Affiliation(s)
- Sean Fain
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | | | |
Collapse
|
47
|
Zurek M, Crémillieux Y. MRI of the lung: non-invasive protocols and applications to small animal models of lung disease. Methods Mol Biol 2011; 771:459-474. [PMID: 21874493 DOI: 10.1007/978-1-61779-219-9_24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Magnetic resonance imaging (MRI) can be used in pre-clinical studies as a non-invasive imaging tool for assessing the morphological and functional impact of lung diseases and for evaluating the efficacy of potential treatments for airways diseases. Hyperpolarized gases ((3)He or (129)Xe) MRI provides insight into the lung ventilation function. Lung proton MRI provides information on lung diseases associated with inflammatory activity or with changes in lung tissue density. These imaging techniques can be implemented with non-invasive protocols appropriate for longitudinal investigations in small animal models of lung diseases. This chapter will detail two (3)He and proton lung MR imaging protocols applied on two models of lung pathology in rodents.
Collapse
|
48
|
Abstract
Hyperpolarization is a technique to enhance the nuclear polarization and thereby increase the available signal in magnetic resonance (MR). This chapter provides an introduction to the concept of hyperpolarization as well as an overview of dynamic nuclear polarization (DNP) and para-hydrogen induced polarization (PHIP), two methods used to generate hyperpolarized molecules in aqueous solution.
Collapse
|
49
|
Stupic KF, Cleveland ZI, Pavlovskaya GE, Meersmann T. Hyperpolarized (131)Xe NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2011; 208:58-69. [PMID: 21051249 PMCID: PMC3160776 DOI: 10.1016/j.jmr.2010.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Revised: 08/08/2010] [Accepted: 10/05/2010] [Indexed: 05/11/2023]
Abstract
Hyperpolarized (hp) (131)Xe with up to 2.2% spin polarization (i.e., 5000-fold signal enhancement at 9.4 T) was obtained after separation from the rubidium vapor of the spin-exchange optical pumping (SEOP) process. The SEOP was applied for several minutes in a stopped-flow mode, and the fast, quadrupolar-driven T(1) relaxation of this spin I = 3/2 noble gas isotope required a rapid subsequent rubidium removal and swift transfer into the high magnetic field region for NMR detection. Because of the xenon density dependent (131)Xe quadrupolar relaxation in the gas phase, the SEOP polarization build-up exhibits an even more pronounced dependence on xenon partial pressure than that observed in (129)Xe SEOP. (131)Xe is the only stable noble gas isotope with a positive gyromagnetic ratio and shows therefore a different relative phase between hp signal and thermal signal compared to all other noble gases. The gas phase (131)Xe NMR spectrum displays a surface and magnetic field dependent quadrupolar splitting that was found to have additional gas pressure and gas composition dependence. The splitting was reduced by the presence of water vapor that presumably influences xenon-surface interactions. The hp (131)Xe spectrum shows differential line broadening, suggesting the presence of strong adsorption sites. Beyond hp (131)Xe NMR spectroscopy studies, a general equation for the high temperature, thermal spin polarization, P, for spin I ≥ 1/2 nuclei is presented.
Collapse
Affiliation(s)
- Karl F. Stupic
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, United States
- University of Nottingham, School of Clinical Sciences, Sir Peter Mansfield Magnetic Resonance Centre, Nottingham NG7 2RD, United Kingdom
| | - Zackary I. Cleveland
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, United States
| | - Galina E. Pavlovskaya
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, United States
- University of Nottingham, School of Clinical Sciences, Sir Peter Mansfield Magnetic Resonance Centre, Nottingham NG7 2RD, United Kingdom
| | - Thomas Meersmann
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, United States
- University of Nottingham, School of Clinical Sciences, Sir Peter Mansfield Magnetic Resonance Centre, Nottingham NG7 2RD, United Kingdom
- Corresponding author at: University of Nottingham, Sir Peter Mansfield Magnetic Resonance Centre, Nottingham NG7 2RD, United Kingdom. Fax: +44 (0) 115 9515166.
| |
Collapse
|
50
|
Tawhai MH, Hoffman EA, Lin CL. The lung physiome: merging imaging-based measures with predictive computational models. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2010; 1:61-72. [PMID: 20835982 DOI: 10.1002/wsbm.17] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Global measurements of the lung provided by standard pulmonary function tests do not give insight into the regional basis of lung function and lung disease. Advances in imaging methodologies, computer technologies, and subject-specific simulations are creating new opportunities to study structure-function relationships in the lung through multidisciplinary research. The digital Human Lung Atlas is an image-based resource compiled from male and female subjects spanning several decades of age. The Atlas comprises both structural and functional measures, and includes computational models derived to match individual subjects for personalized prediction of function. The computational models in the Atlas form part of the Lung Physiome project, which is an international effort to develop integrative models of lung function at all levels of biological organization. The computational models provide mechanistic interpretation of imaging measures; the Atlas provides structural data on which to base model geometry, and functional data against which to test hypotheses. The example of simulating airflow on a subject-specific basis is considered. Methods for deriving multiscale models of the airway geometry for individual subjects in the Atlas are outlined, and methods for modeling turbulent flows in the airway are reviewed.
Collapse
Affiliation(s)
- Merryn H Tawhai
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Eric A Hoffman
- Department of Radiology and Biomedical Engineering, The University of Iowa, Iowa City, IA 52242, USA
| | - Ching-Long Lin
- Department of Mechanical Engineering and IIHR, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|