1
|
McDannold N, Zhang Y, Fletcher SM, Wen PY, Reardon DA, Golby AJ, Livingstone M. Non-Invasive Blood-Brain Barrier Disruption Using Acoustic Holography With a Clinical Focused Ultrasound System. IEEE Trans Biomed Eng 2024; 71:3046-3054. [PMID: 38814760 PMCID: PMC11412788 DOI: 10.1109/tbme.2024.3407678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
OBJECTIVE Holographic methods can be used with phased array transducers to shape an ultrasound field. We tested a simple method to create holograms with a hemispherical 1024-element phased array transducer and explored how it could benefit ultrasound-mediated blood-brain barrier (BBB) disruption. METHODS With this method, individual acoustic simulations for each element of the transducer were simultaneously loaded into computer memory. Each element's phase was systematically modulated until the combined field matched a desired pattern. The method was evaluated with a 220 kHz transducer being tested clinically to enhance drug delivery via BBB disruption. The holograms were evaluated in a tissue-mimicking phantom and in vivo in experiments disrupting the BBB in rats and in a macaque. We also explored whether this approach could mitigate secondary reflections from the skull using simulations of transcranial focusing in clinical treatments of transcranial sonication for BBB disruption. RESULTS This approach can enlarge the focal volume in a patient-specific manner and could reduce the number of sonication targets needed to disrupt large volumes, improve the homogeneity of the disruption, and improve our ability to detect microbubble activity in tissues with low vascular density. Simulations suggest that the method could also mitigate secondary reflections during transcranial sonication.
Collapse
|
2
|
Feddersen TV, Hernandez-Tamames JA, Paulides MM, Kroesen M, van Rhoon GC, Poot DHJ. Magnetic resonance thermometry for hyperthermia in the oropharynx region. Int J Hyperthermia 2024; 41:2352545. [PMID: 38991549 DOI: 10.1080/02656736.2024.2352545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 05/02/2024] [Indexed: 07/13/2024] Open
Abstract
Magnetic resonance thermometry (MRT) can measure in-vivo 3D-temperature changes in real-time and noninvasively. However, for the oropharynx region and the entire head and neck, motion potentially introduces large artifacts. Considering long treatment times of 60-90 min, this study aims to evaluate whether MRT around the oropharynx is clinically feasible for hyperthermia treatments and quantify the effects of breathing and swallowing on MRT performance. A 3D-ME-FGRE sequence was used in a phantom cooling down and around the oropharynx of five volunteers over ∼75 min. The imaging protocol consisted of imaging with acceleration (ARC = 2), number of image averages (NEX = 1,2 and 3). For volunteers, the acquisitions included a breath-hold scan and scans with deliberate swallowing. MRT performance was quantified in neck muscle, spinal cord and masseter muscle, using mean average error (MAE), mean error (ME) and spatial standard deviation (SD). In phantom, an increase in NEX leads to a significant decrease in SD, but MAE and ME were unchanged. No significant difference was found in volunteers between the different scans. There was a significant difference between the regions evaluated: neck muscle had the best MAE (=1.96 °C) and SD (=0.82 °C), followed by spinal cord (MAE = 3.17 °C, SD = 0.92 °C) and masseter muscle (MAE = 4.53 °C, SD = 1.16 °C). Concerning the ME, spinal cord did best, then neck muscle and masseter muscle, with values of -0.64 °C, 1.15 °C and -3.05 °C respectively. Breathing, swallowing, and different ways of imaging (acceleration and NEX) do not significantly influence the MRT performance in the oropharynx region. The ROI selected however, leads to significant differences.
Collapse
Affiliation(s)
- Theresa V Feddersen
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Juan A Hernandez-Tamames
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Imaging Physics, Applied Physics Faculty, Delft University of Technology, Delft, the Netherlands
| | - Margarethus M Paulides
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Care & Cure Research Lab of the Electromagnetics Group, Center for Care & Cure Technology (C3Te), Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Michiel Kroesen
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Gerard C van Rhoon
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Applied Radiation and Isotopes, Reactor Institute Delft, Delft University of Technology, Delft, the Netherlands
| | - Dirk H J Poot
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
3
|
Xi Y, Schriver KE, Roe AW, Zhang X. Quantifying tissue temperature changes induced by infrared neural stimulation: numerical simulation and MR thermometry. BIOMEDICAL OPTICS EXPRESS 2024; 15:4111-4131. [PMID: 39022552 PMCID: PMC11249695 DOI: 10.1364/boe.530854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 07/20/2024]
Abstract
Infrared neural stimulation (INS) delivered via short pulse trains is an innovative tool that has potential for us use for studying brain function and circuitry, brain machine interface, and clinical use. The prevailing mechanism for INS involves the conversion of light energy into thermal transients, leading to neuronal membrane depolarization. Due to the potential risks of thermal damage, it is crucial to ensure that the resulting local temperature increases are within non-damaging limits for brain tissues. Previous studies have estimated damage thresholds using histological methods and have modeled thermal effects based on peripheral nerves. However, additional quantitative measurements and modeling studies are needed for the central nervous system. Here, we performed 7 T MRI thermometry on ex vivo rat brains following the delivery of infrared pulse trains at five different intensities from 0.1-1.0 J/cm2 (each pulse train 1,875 nm, 25 us/pulse, 200 Hz, 0.5 s duration, delivered through 200 µm fiber). Additionally, we utilized the General BioHeat Transfer Model (GBHTM) to simulate local temperature changes in perfused brain tissues while delivering these laser energies to tissue (with optical parameters of human skin) via three different sizes of optical fibers at five energy intensities. The simulation results clearly demonstrate that a 0.5 second INS pulse train induces an increase followed by an immediate drop in temperature at stimulation offset. The delivery of multiple pulse trains with 2.5 s interstimulus interval (ISI) leads to rising temperatures that plateau. Both thermometry and modeling results show that, using parameters that are commonly used in biological applications (200 µm diameter fiber, 0.1-1.0 J/cm2), the final temperature increase at the end of the 60 sec stimuli duration does not exceed 1°C with stimulation values of 0.1-0.5 J/cm2 and does not exceed 2°C with stimulation values of up to 1.0 J/cm2. Thus, the maximum temperature rise is consistent with the thermal damage threshold reported in previous studies. This study provides a quantitative evaluation of the temperature changes induced by INS, suggesting that existing practices pose minimal major safety concerns for biological tissues.
Collapse
Affiliation(s)
- Yinghua Xi
- Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University , Hangzhou 310027, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou 310058, China
| | - Kenneth E Schriver
- School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| | - Anna Wang Roe
- Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University , Hangzhou 310027, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou 310058, China
- Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xiaotong Zhang
- Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University , Hangzhou 310027, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou 310058, China
- Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
4
|
Kim K, Narsinh K, Ozhinsky E. Technical advances in motion-robust MR thermometry. Magn Reson Med 2024; 92:15-27. [PMID: 38501903 PMCID: PMC11132643 DOI: 10.1002/mrm.30057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 03/20/2024]
Abstract
Proton resonance frequency shift (PRFS) MR thermometry is the most common method used in clinical thermal treatments because of its fast acquisition and high sensitivity to temperature. However, motion is the biggest obstacle in PRFS MR thermometry for monitoring thermal treatment in moving organs. This challenge arises because of the introduction of phase errors into the PRFS calculation through multiple methods, such as image misregistration, susceptibility changes in the magnetic field, and intraframe motion during MRI acquisition. Various approaches for motion correction have been developed for real-time, motion-robust, and volumetric MR thermometry. However, current technologies have inherent trade-offs among volume coverage, processing time, and temperature accuracy. These tradeoffs should be considered and chosen according to the thermal treatment application. In hyperthermia treatment, precise temperature measurements are of increased importance rather than the requirement for exceedingly high temporal resolution. In contrast, ablation procedures require robust temporal resolution to accurately capture a rapid temperature rise. This paper presents a comprehensive review of current cutting-edge MRI techniques for motion-robust MR thermometry, and recommends which techniques are better suited for each thermal treatment. We expect that this study will help discern the selection of motion-robust MR thermometry strategies and inspire the development of motion-robust volumetric MR thermometry for practical use in clinics.
Collapse
Affiliation(s)
- Kisoo Kim
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, California, USA
| | - Kazim Narsinh
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, California, USA
| | - Eugene Ozhinsky
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, California, USA
| |
Collapse
|
5
|
Beisteiner R, Lozano A, Di Lazzaro V, George MS, Hallett M. Clinical recommendations for non-invasive ultrasound neuromodulation. Brain Stimul 2024; 17:890-895. [PMID: 39084519 DOI: 10.1016/j.brs.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
Non-invasive ultrasound neuromodulation has experienced exponential growth in the neuroscientific literature, recently also including clinical studies and applications. However, clinical recommendations for the secure and effective application of ultrasound neuromodulation in pathological brains are currently lacking. Here, clinical experts with neuroscientific expertise in clinical brain stimulation and ultrasound neuromodulation present initial clinical recommendations for ultrasound neuromodulation with relevance for all ultrasound neuromodulation techniques. The recommendations start with methodological safety issues focusing on technical issues to avoid harm to the brain. This is followed by clinical safety issues focusing on important factors concerning pathological situations.
Collapse
Affiliation(s)
- Roland Beisteiner
- Department of Neurology, Functional Brain Diagnostics and Therapy, High Field MR Center, Medical University of Vienna, Vienna, Austria.
| | - Andres Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, M5T 2S8, Canada
| | - Vincenzo Di Lazzaro
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Mark S George
- Brain Stimulation Division, Psychiatry, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Mark Hallett
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, USA
| |
Collapse
|
6
|
M'Rad Y, Charbonnier C, de Oliveira ME, Guillemin PC, Crowe LA, Kössler T, Poletti PA, Boudabbous S, Ricoeur A, Salomir R, Lorton O. Computer-Aided Intra-Operatory Positioning of an MRgHIFU Applicator Dedicated to Abdominal Thermal Therapy Using Particle Swarm Optimization. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2024; 5:524-533. [PMID: 39050977 PMCID: PMC11268946 DOI: 10.1109/ojemb.2024.3410118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/30/2024] [Accepted: 05/29/2024] [Indexed: 07/27/2024] Open
Abstract
PURPOSE Transducer positioning for liver ablation by magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU) is challenging due to the presence of air-filled organs or bones on the beam path. This paper presents a software tool developed to optimize the positioning of a HIFU transducer dedicated to abdominal thermal therapy, to maximize the treatment's efficiency while minimizing the near-field risk. METHODS A software tool was developed to determine the theoretical optimal position (TOP) of the transducer based on the minimization of a cost function using the particle swarm optimization (PSO). After an initialization phase and a manual segmentation of the abdomen of 5 pigs, the program randomly generates particles with 2 degrees of freedom and iteratively minimizes the cost function of the particles considering 3 parameters weighted according to their criticality. New particles are generated around the best position obtained at the previous step and the process is repeated until the optimal position of the transducer is reached. MR imaging data from in vivo HIFU ablation in pig livers was used for ground truth comparison between the TOP and the experimental position (EP). RESULTS As compared to the manual EP, the rotation difference with the TOP was on average -3.1 ± 7.1° and the distance difference was on average -7.1 ± 5.4 mm. The computational time to suggest the TOP was 20s. The software tool is modulable and demonstrated consistency and robustness when repeating the calculation and changing the initial position of the transducer.
Collapse
Affiliation(s)
- Yacine M'Rad
- University of Geneva, Faculty of MedicineImage Guided Interventions Laboratory (GR-949)CH-1211GenevaSwitzerland
| | | | | | - Pauline Coralie Guillemin
- University of Geneva, Faculty of MedicineImage Guided Interventions Laboratory (GR-949)CH-1211GenevaSwitzerland
| | | | - Thibaud Kössler
- University Hopsitals of GenevaOncology Department1205GenevaSwitzerland
| | | | - Sana Boudabbous
- University of Geneva, Faculty of MedicineImage Guided Interventions Laboratory (GR-949)CH-1211GenevaSwitzerland
- University Hospitals of GenevaRadiology Department1205GenevaSwitzerland
| | - Alexis Ricoeur
- University of Geneva, Faculty of MedicineImage Guided Interventions Laboratory (GR-949)CH-1211GenevaSwitzerland
- University Hospitals of GenevaRadiology Department1205GenevaSwitzerland
| | - Rares Salomir
- University of Geneva, Faculty of MedicineImage Guided Interventions Laboratory (GR-949)CH-1211GenevaSwitzerland
- University Hospitals of GenevaRadiology Department1205GenevaSwitzerland
| | - Orane Lorton
- University of Geneva, Faculty of MedicineImage Guided Interventions Laboratory (GR-949)CH-1211GenevaSwitzerland
- University Hospitals of GenevaRadiology Department1205GenevaSwitzerland
| |
Collapse
|
7
|
Chu Kwan W, Partanen A, Narayanan U, Waspe AC, Drake JM. Biomechanical testing of ex vivo porcine tendons following high intensity focused ultrasound thermal ablation. PLoS One 2024; 19:e0302778. [PMID: 38713687 DOI: 10.1371/journal.pone.0302778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/12/2024] [Indexed: 05/09/2024] Open
Abstract
INTRODUCTION Magnetic resonance-guided focused ultrasound (MRgFUS) has been demonstrated to be able to thermally ablate tendons with the aim to non-invasively disrupt tendon contractures in the clinical setting. However, the biomechanical changes of tendons permitting this disrupting is poorly understood. We aim to obtain a dose-dependent biomechanical response of tendons following magnetic resonance-guided focused ultrasound (MRgFUS) thermal ablation. METHODS Ex vivo porcine tendons (n = 72) were embedded in an agar phantom and randomly assigned to 12 groups based on MRgFUS treatment. The treatment time was 10, 20, or 30s, and the applied acoustic power was 25, 50, 75, or 100W. Following each MRgFUS treatment, tendons underwent biomechanical tensile testing on an Instron machine, which calculated stress-strain curves during tendon elongation. Rupture rate, maximum treatment temperature, Young's modulus and ultimate strength were analyzed for each treatment energy. RESULTS The study revealed a dose-dependent response, with tendons rupturing in over 50% of cases when energy delivery exceeded 1000J and 100% disruption at energy levels beyond 2000J. The achieved temperatures during MRgFUS were directly proportional to energy delivery. The highest recorded temperature was 56.8°C ± 9.34 (3000J), while the lowest recorded temperate was 18.6°C ± 0.6 (control). The Young's modulus was highest in the control group (47.3 MPa ± 6.5) and lowest in the 3000J group (13.2 MPa ± 5.9). There was no statistically significant difference in ultimate strength between treatment groups. CONCLUSION This study establishes crucial thresholds for reliable and repeatable disruption of tendons, laying the groundwork for future in vivo optimization. The findings prompt further exploration of MRgFUS as a non-invasive modality for tendon disruption, offering hope for improved outcomes in patients with musculotendinous contractures.
Collapse
Affiliation(s)
| | | | - Unni Narayanan
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Adam C Waspe
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - James M Drake
- The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Kim K, Gupta P, Narsinh K, Diederich CJ, Ozhinsky E. Volumetric hyperthermia delivery using the ExAblate Body MR-guided focused ultrasound system. Int J Hyperthermia 2024; 41:2349080. [PMID: 38705588 PMCID: PMC11135290 DOI: 10.1080/02656736.2024.2349080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024] Open
Abstract
OBJECTIVES To investigate image-guided volumetric hyperthermia strategies using the ExAblate Body MR-guided focused ultrasound ablation system, involving mechanical transducer movement and sector-vortex beamforming. MATERIALS AND METHODS Acoustic and thermal simulations were performed to investigate volumetric hyperthermia using mechanical transducer movement combined with sector-vortex beamforming, specifically for the ExAblate Body transducer. The system control in the ExAblate Body system was modified to achieve fast transducer movement and MR thermometry-based hyperthermia control, mechanical transducer movements and electronic sector-vortex beamforming were combined to optimize hyperthermia delivery. The experimental validation was performed using a tissue-mimicking phantom. RESULTS The developed simulation framework allowed for a parametric study with varying numbers of heating spots, sonication durations, and transducer movement times to evaluate the hyperthermia characteristics for mechanical transducer movement and sector-vortex beamforming. Hyperthermic patterns involving 2-4 sequential focal spots were analyzed. To demonstrate the feasibility of volumetric hyperthermia in the system, a tissue-mimicking phantom was sonicated with two distinct spots through mechanical transducer movement and sector-vortex beamforming. During hyperthermia, the average values of Tmax, T10, Tavg, T90, and Tmin over 200 s were measured within a circular ROI with a diameter of 10 pixels. These values were found to be 8.6, 7.9, 6.6, 5.2, and 4.5 °C, respectively, compared to the baseline temperature. CONCLUSIONS This study demonstrated the volumetric hyperthermia capabilities of the ExAblate Body system. The simulation framework developed in this study allowed for the evaluation of hyperthermia characteristics that could be implemented with the ExAblate MRgFUS system.
Collapse
Affiliation(s)
- Kisoo Kim
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, USA
| | - Pragya Gupta
- Department of Radiation Oncology, University of California, San Francisco, USA
| | - Kazim Narsinh
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, USA
| | - Chris J. Diederich
- Department of Radiation Oncology, University of California, San Francisco, USA
| | - Eugene Ozhinsky
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, USA
| |
Collapse
|
9
|
Algarawi M, Saraswatula JS, Pathare RR, Zhang Y, Shah GA, Eresen A, Gulsen G, Nouizi F. Self-Guided Algorithm for Fast Image Reconstruction in Photo-Magnetic Imaging: Artificial Intelligence-Assisted Approach. Bioengineering (Basel) 2024; 11:126. [PMID: 38391612 PMCID: PMC10886351 DOI: 10.3390/bioengineering11020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Previously, we introduced photomagnetic imaging (PMI) that synergistically utilizes laser light to slightly elevate the tissue temperature and magnetic resonance thermometry (MRT) to measure the induced temperature. The MRT temperature maps are then converted into absorption maps using a dedicated PMI image reconstruction algorithm. In the MRT maps, the presence of abnormalities such as tumors would create a notable high contrast due to their higher hemoglobin levels. In this study, we present a new artificial intelligence-based image reconstruction algorithm that improves the accuracy and spatial resolution of the recovered absorption maps while reducing the recovery time. Technically, a supervised machine learning approach was used to detect and delineate the boundary of tumors directly from the MRT maps based on their temperature contrast to the background. This information was further utilized as a soft functional a priori in the standard PMI algorithm to enhance the absorption recovery. Our new method was evaluated on a tissue-like phantom with two inclusions representing tumors. The reconstructed absorption map showed that the well-trained neural network not only increased the PMI spatial resolution but also improved the accuracy of the recovered absorption to as low as a 2% percentage error, reduced the artifacts by 15%, and accelerated the image reconstruction process approximately 9-fold.
Collapse
Affiliation(s)
- Maha Algarawi
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia
- Tu and Yuen Center for Functional Onco-Imaging, Department of Radiological Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - Janaki S Saraswatula
- Tu and Yuen Center for Functional Onco-Imaging, Department of Radiological Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - Rajas R Pathare
- Tu and Yuen Center for Functional Onco-Imaging, Department of Radiological Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - Yang Zhang
- Tu and Yuen Center for Functional Onco-Imaging, Department of Radiological Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - Gyanesh A Shah
- Tu and Yuen Center for Functional Onco-Imaging, Department of Radiological Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - Aydin Eresen
- Tu and Yuen Center for Functional Onco-Imaging, Department of Radiological Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - Gultekin Gulsen
- Tu and Yuen Center for Functional Onco-Imaging, Department of Radiological Sciences, University of California Irvine, Irvine, CA 92697, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA
| | - Farouk Nouizi
- Tu and Yuen Center for Functional Onco-Imaging, Department of Radiological Sciences, University of California Irvine, Irvine, CA 92697, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
10
|
Schröer S, Alpers J, Gutberlet M, Brüsch I, Rumpel R, Wacker F, Hensen B, Hansen C. A probabilistic thermal dose model for the estimation of necrosis in MR-guided tumor ablations. Med Phys 2024; 51:239-250. [PMID: 37449443 DOI: 10.1002/mp.16605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 04/25/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Monitoring minimally invasive thermo ablation procedures using magnetic resonance (MR) thermometry allows therapy of tumors even close to critical anatomical structures. Unfortunately, intraoperative monitoring remains challenging due to the necessary accuracy and real-time capability. One reason for this is the statistical error introduced by MR measurement, which causes the prediction of ablation zones to become inaccurate. PURPOSE In this work, we derive a probabilistic model for the prediction of ablation zones during thermal ablation procedures based on the thermal damage model CEM43 . By integrating the statistical error caused by MR measurement into the conventional prediction, we hope to reduce the amount of falsely classified voxels. METHODS The probabilistic CEM43 model is empirically evaluated using a polyacrilamide gel phantom and three in-vivo pig livers. RESULTS The results show a higher accuracy in three out of four data sets, with a relative difference in Sørensen-Dice coefficient from- 3.04 % $-3.04\%$ to 3.97% compared to the conventional model. Furthermore, the ablation zones predicted by the probabilistic model show a false positive rate with a relative decrease of 11.89%-30.04% compared to the conventional model. CONCLUSION The presented probabilistic thermal dose model might help to prevent false classification of voxels within ablation zones. This could potentially result in an increased success rate for MR-guided thermal ablation procedures. Future work may address additional error sources and a follow-up study in a more realistic clinical context.
Collapse
Affiliation(s)
- Simon Schröer
- Department of Diagnostic and Interventional Radiology, Medical School Hanover, Hanover, Germany
- Department of Simulation and Graphics, Otto-von-Guericke-University, Magdeburg, Germany
| | - Julian Alpers
- Department of Simulation and Graphics, Otto-von-Guericke-University, Magdeburg, Germany
| | - Marcel Gutberlet
- Department of Diagnostic and Interventional Radiology, Medical School Hanover, Hanover, Germany
| | - Inga Brüsch
- Department of Laboratory Animal Science, Medical School Hanover, Hanover, Germany
| | - Regina Rumpel
- Department of Laboratory Animal Science, Medical School Hanover, Hanover, Germany
| | - Frank Wacker
- Department of Diagnostic and Interventional Radiology, Medical School Hanover, Hanover, Germany
| | - Bennet Hensen
- Department of Diagnostic and Interventional Radiology, Medical School Hanover, Hanover, Germany
| | - Christian Hansen
- Department of Simulation and Graphics, Otto-von-Guericke-University, Magdeburg, Germany
| |
Collapse
|
11
|
Mattay RR, Kim K, Shah L, Shah B, Sugrue L, Safoora F, Ozhinsky E, Narsinh KH. MR Thermometry during Transcranial MR Imaging-Guided Focused Ultrasound Procedures: A Review. AJNR Am J Neuroradiol 2023; 45:1-8. [PMID: 38123912 PMCID: PMC10756580 DOI: 10.3174/ajnr.a8038] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/04/2023] [Indexed: 12/23/2023]
Abstract
Interest in transcranial MR imaging-guided focused ultrasound procedures has recently grown. These incisionless procedures enable precise focal ablation of brain tissue using real-time monitoring by MR thermometry. This article will provide an updated review on clinically applicable technical underpinnings and considerations of proton resonance frequency MR thermometry, the most common clinically used MR thermometry sequence.
Collapse
Affiliation(s)
- Raghav R Mattay
- From the Department of Radiology and Biomedical Imaging (R.R.M., K.K., L. Sugrue, F.S., E.O., K.H.N.), University of California San Francisco, California
| | - Kisoo Kim
- From the Department of Radiology and Biomedical Imaging (R.R.M., K.K., L. Sugrue, F.S., E.O., K.H.N.), University of California San Francisco, California
| | - Lubdha Shah
- Department of Radiology and Neurosurgery (L. Shah), University of Utah, Salt Lake City, Utah
| | - Bhavya Shah
- Department of Radiology (B.S.), University of Texas Southwestern, Dallas, Texas
| | - Leo Sugrue
- From the Department of Radiology and Biomedical Imaging (R.R.M., K.K., L. Sugrue, F.S., E.O., K.H.N.), University of California San Francisco, California
- Department of Psychiatry (L. Sugrue), University of California San Francisco, California
| | - Fatima Safoora
- From the Department of Radiology and Biomedical Imaging (R.R.M., K.K., L. Sugrue, F.S., E.O., K.H.N.), University of California San Francisco, California
| | - Eugene Ozhinsky
- From the Department of Radiology and Biomedical Imaging (R.R.M., K.K., L. Sugrue, F.S., E.O., K.H.N.), University of California San Francisco, California
| | - Kazim H Narsinh
- From the Department of Radiology and Biomedical Imaging (R.R.M., K.K., L. Sugrue, F.S., E.O., K.H.N.), University of California San Francisco, California
- Department of Neurological Surgery (K.H.N.), University of California San Francisco, California
| |
Collapse
|
12
|
Gómez FM, Van der Reijd DJ, Panfilov IA, Baetens T, Wiese K, Haverkamp-Begemann N, Lam SW, Runge JH, Rice SL, Klompenhouwer EG, Maas M, Helmberger T, Beets-Tan RG. Imaging in interventional oncology, the better you see, the better you treat. J Med Imaging Radiat Oncol 2023; 67:895-902. [PMID: 38062853 DOI: 10.1111/1754-9485.13610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/22/2023] [Indexed: 01/14/2024]
Abstract
Imaging and image processing is the fundamental pillar of interventional oncology in which diagnostic, procedure planning, treatment and follow-up are sustained. Knowing all the possibilities that the different image modalities can offer is capital to select the most appropriate and accurate guidance for interventional procedures. Despite there is a wide variability in physicians preferences and availability of the different image modalities to guide interventional procedures, it is important to recognize the advantages and limitations for each of them. In this review, we aim to provide an overview of the most frequently used image guidance modalities for interventional procedures and its typical and future applications including angiography, computed tomography (CT) and spectral CT, magnetic resonance imaging, Ultrasound and the use of hybrid systems. Finally, we resume the possible role of artificial intelligence related to image in patient selection, treatment and follow-up.
Collapse
Affiliation(s)
- Fernando M Gómez
- Grupo de Investigación Biomédica en Imagen, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Área Clínica de Imagen Médica, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Ilia A Panfilov
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Tarik Baetens
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Kevin Wiese
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Siu W Lam
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jurgen H Runge
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Samuel L Rice
- Radiology, Interventional Radiology Section, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Monique Maas
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Thomas Helmberger
- Institut für Radiologie, Neuroradiologie und Minimal-Invasive Therapie, München Klinik Bogenhausen, Munich, Germany
| | - Regina Gh Beets-Tan
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- GROW School for Oncology and Developmental Biology, University of Maastricht, Maastricht, The Netherlands
| |
Collapse
|
13
|
Nouwens S, Paulides M, Lindemeyer J, Sebeke L, van Kampen R, Grüll H, Heemels M. Simultaneous estimation of SAR, thermal diffusivity, and damping using periodic power modulation for MRgFUS quality assurance. Int J Hyperthermia 2023; 40:2283388. [PMID: 37994800 DOI: 10.1080/02656736.2023.2283388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
Purpose: A crucial aspect of quality assurance in thermal therapy is periodic demonstration of the heating performance of the device. Existing methods estimate the specific absorption rate (SAR) from the temperature rise after a short power pulse, which yields a biased estimate as thermal diffusion broadens the apparent SAR pattern. To obtain an unbiased estimate, we propose a robust frequency-domain method that simultaneously identifies the SAR as well as the thermal dynamics.Methods: We propose a method consisting of periodic modulation of the FUS power while recording the response with MR thermometry (MRT). This approach enables unbiased measurements of spatial Fourier coefficients that encode the thermal response. These coefficients are substituted in a generic thermal model to simultaneously estimate the SAR, diffusivity, and damping. The method was tested using a cylindrical phantom and a 3 T clinical MR-HIFU system. Three scenarios with varying modulation strategies are chosen to challenge the method. The results are compared to the well-known power pulse technique.Results: The thermal diffusivity is estimated at 0.151 mm2s-1 with a standard deviation of 0.01 mm2s-1 between six experiments. The SAR estimates are consistent between all experiments and show an excellent signal-to-noise ratio (SNR) compared to the well established power pulse method. The frequency-domain method proved to be insensitive to B0-drift and non steady-state initial temperature distributions.Conclusion: The proposed frequency-domain estimation method shows a high SNR and provided reproducible estimates of the SAR and the corresponding thermal diffusivity. The findings suggest that frequency-domain tools can be highly effective at estimating the SAR from (biased) MRT data acquired during periodic power modulation.
Collapse
Affiliation(s)
- Sven Nouwens
- Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Maarten Paulides
- Department of Radiotherapy, Erasmus University Medical Center Cancer Institute, Rotterdam, The Netherlands
- Care & Cure lab of the Electromagnetics group (EM4C&C), Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Johannes Lindemeyer
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Lukas Sebeke
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | | | - Holger Grüll
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Maurice Heemels
- Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
14
|
Yan X, Allen S, Lu M, Moore D, Meyer CH, Grissom WA. Dark band artifact in transcranial MR-guided focused ultrasound: Mechanism and mitigation with passive crossed wire antennas. Magn Reson Imaging 2023; 103:169-178. [PMID: 37543175 PMCID: PMC10528914 DOI: 10.1016/j.mri.2023.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023]
Abstract
Current FDA-approved transcranial MR-guided focused ultrasound (tcMRgFUS) transducers cause a curved dark band in 3 T brain images that runs through midbrain targets of ablative treatments for essential tremor and other applications, and signal is reduced by at least 25% elsewhere in the brain. This limits the set of scans that can be performed to guide and assess the effects of treatment. An electromagnetic simulation study was performed to elucidate the mechanisms causing the dark band. Based on the results, a pair of passive antennas in a "propeller-beanie" configuration were designed to manipulate the reflected waves to avoid signal cancellation within the brain. The antennas were optimized and validated with in-vivo experiments and hydrophone measurements. The simulation study revealed that the dark band is caused by RF waves reflected from the transducer's ground plane, which cancel with incoming waves from the scanner's body coil. The passive antennas shifted the dark band out of the brain and increased transmit efficiency in the center of brain 2.3 times while improving field homogeneity by 50%. They also increased receive sensitivity and SNR in anatomic and temperature imaging. They caused no detectable distortion in hydrophone-measured focal pressure profiles. The conductive ground planes and coupling media used in tcMRgFUS and other piezoelectric FUS transducers interact with a 3 T scanner's RF fields to reduce transmit efficiency and SNR. For tcMRgFUS scenario, "propeller beanie" passive reflecting antennas alleviated these effects. This could make a broader set of imaging sequences available to guide tcMRgFUS treatment.
Collapse
Affiliation(s)
- Xinqiang Yan
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37232, USA.
| | - Steven Allen
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Ming Lu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - David Moore
- Focused Ultrasound Foundation, Charlottesville, VA, USA
| | - Craig H Meyer
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - William A Grissom
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
15
|
Mooiweer R, Rogers C, Vidya Shankar R, Razavi R, Neji R, Roujol S. Feasibility of cardiac MR thermometry at 0.55 T. Front Cardiovasc Med 2023; 10:1233065. [PMID: 37859681 PMCID: PMC10584305 DOI: 10.3389/fcvm.2023.1233065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
Radiofrequency catheter ablation is an established treatment strategy for ventricular tachycardia, but remains associated with a low success rate. MR guidance of ventricular tachycardia shows promises to improve the success rate of these procedures, especially due to its potential to provide real-time information on lesion formation using cardiac MR thermometry. Modern low field MRI scanners (<1 T) are of major interest for MR-guided ablations as the potential benefits include lower costs, increased patient access and device compatibility through reduced device-induced imaging artefacts and safety constraints. However, the feasibility of cardiac MR thermometry at low field remains unknown. In this study, we demonstrate the feasibility of cardiac MR thermometry at 0.55 T and characterized its in vivo stability (i.e., precision) using state-of-the-art techniques based on the proton resonance frequency shift method. Nine healthy volunteers were scanned using a cardiac MR thermometry protocol based on single-shot EPI imaging (3 slices in the left ventricle, 150 dynamics, TE = 41 ms). The reconstruction pipeline included image registration to align all the images, multi-baseline approach (look-up-table length = 30) to correct for respiration-induced phase variations, and temporal filtering to reduce noise in temperature maps. The stability of thermometry was defined as the pixel-wise standard deviation of temperature changes over time. Cardiac MR thermometry was successfully acquired in all subjects and the stability averaged across all subjects was 1.8 ± 1.0°C. Without multi-baseline correction, the overall stability was 2.8 ± 1.6°C. In conclusion, cardiac MR thermometry is feasible at 0.55 T and further studies on MR-guided catheter ablations at low field are warranted.
Collapse
Affiliation(s)
- Ronald Mooiweer
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
- MR Research Collaborations, Siemens Healthcare Limited, Camberley, United Kingdom
| | - Charlotte Rogers
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Rohini Vidya Shankar
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Reza Razavi
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
- MR Research Collaborations, Siemens Healthcare Limited, Camberley, United Kingdom
| | - Sébastien Roujol
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| |
Collapse
|
16
|
Choquet K, Vappou J, Cabras P, Ishak O, Gangi A, Breton E. Magnetic Resonance Acoustic Radiation Force Imaging (MR-ARFI) for the monitoring of High Intensity Focused Ultrasound (HIFU) ablation in anisotropic tissue. MAGMA (NEW YORK, N.Y.) 2023; 36:737-747. [PMID: 36723689 DOI: 10.1007/s10334-023-01062-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 02/02/2023]
Abstract
OBJECTIVE We introduce a non-invasive MR-Acoustic Radiation Force Imaging (ARFI)-based elastography method that provides both the local shear modulus and temperature maps for the monitoring of High Intensity Focused Ultrasound (HIFU) therapy. MATERIALS AND METHODS To take tissue anisotropy into account, the local shear modulus μ is determined in selected radial directions around the focal spot by fitting the phase profiles to a linear viscoelastic model, including tissue-specific mechanical relaxation time τ. MR-ARFI was evaluated on a calibrated phantom, then applied to the monitoring of HIFU in a gel phantom, ex vivo and in vivo porcine muscle tissue, in parallel with MR-thermometry. RESULTS As expected, the shear modulus polar maps reflected the isotropy of phantoms and the anisotropy of muscle. In the HIFU monitoring experiments, both the shear modulus polar map and the thermometry map were updated with every pair of MR-ARFI phase images acquired with opposite MR-ARFI-encoding. The shear modulus was found to decrease (phantom and ex vivo) or increase (in vivo) during heating, before remaining steady during the cooling phase. The mechanical relaxation time, estimated pre- and post-HIFU, was found to vary in muscle tissue. DISCUSSION MR-ARFI allowed for monitoring of viscoelasticity changes around the HIFU focal spot even in anisotropic muscle tissue.
Collapse
Affiliation(s)
- Karine Choquet
- Université de Strasbourg, CNRS, ICube, UMR 7357, Strasbourg, France.
| | - Jonathan Vappou
- Université de Strasbourg, CNRS, ICube, UMR 7357, Strasbourg, France
| | - Paolo Cabras
- Université de Strasbourg, CNRS, ICube, UMR 7357, Strasbourg, France
- Image Guided Therapy, Pessac, France
| | - Ounay Ishak
- Université de Strasbourg, CNRS, ICube, UMR 7357, Strasbourg, France
| | - Afshin Gangi
- Université de Strasbourg, CNRS, ICube, UMR 7357, Strasbourg, France
- Department of Interventional Imaging, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Elodie Breton
- Université de Strasbourg, CNRS, ICube, UMR 7357, Strasbourg, France.
| |
Collapse
|
17
|
Chu Kwan W, den Otter-Moore I, Partanen A, Piorkowska K, Waspe AC, Drake JM. Noninvasive magnetic resonance-guided focused ultrasound for tendon disruption: an in vivo Animal study. Int J Hyperthermia 2023; 40:2260129. [PMID: 37743063 DOI: 10.1080/02656736.2023.2260129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
PURPOSE Surgical resection of the tendon is an effective treatment for severe contracture. Magnetic Resonance-guided Focused Ultrasound (MRgFUS) is a non-invasive ultrasonic therapy which produces a focal increase in temperature, subsequent tissue ablation and disruption. We evaluated MRgFUS as a clinically translatable treatment modality to non-invasively disrupt in vivo porcine tendons. MATERIAL AND METHODS In vivo Achilles tendons (n = 28) from 15-20kg Yorkshire pigs (n = 16) were randomly assigned to 4 treatment groups of 600, 900, 1200 and 1500 J. Pretreatment range of motion (ROM) of the ankle joint was measured with the animal under general anesthesia. Following MRgFUS treatment, success of tendon rupture, ROM increase, temperature, thermal dosage, skin burn, and histology analyses were performed. RESULTS Rupture success was found to be 29%, 86%, 100% and 100% for treatment energies of 600, 900, 1200 and 1500 J respectfully. ROM difference at 90° flexion showed a statistically significant change in ROM between 900 J and 1200 J from 16° to 27°. There was no statistical significance between other groups, but there was an increase in ROM as more energy was delivered in the treatment. For each of the respective treatment groups, the maximal temperatures were 58.4 °C, 63.3 °C, 67.6 °C, and 69.9 °C. The average areas of thermal dose measured were 24.3mm2, 53.2mm2, 77.8mm2 and 91.6mm2. The average areas of skin necrosis were 5.4mm2, 21.8mm2, 37.2mm2, and 91.4mm2. Histologic analysis confirmed tissue ablation and structural collagen fiber disruption. CONCLUSIONS This study demonstrated that MRgFUS is able to disrupt porcine tendons in vivo without skin incisions.
Collapse
Affiliation(s)
| | | | | | | | - Adam C Waspe
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - James M Drake
- The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Lorton O, Guillemin PC, Peloso A, M’Rad Y, Crowe LA, Koessler T, Poletti PA, Boudabbous S, Ricoeur A, Salomir R. In Vivo Thermal Ablation of Deep Intrahepatic Targets Using a Super-Convergent MRgHIFU Applicator and a Pseudo-Tumor Model. Cancers (Basel) 2023; 15:3961. [PMID: 37568777 PMCID: PMC10417404 DOI: 10.3390/cancers15153961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND HIFU ablation of liver malignancies is particularly challenging due to respiratory motion, high tissue perfusion and the presence of the rib cage. Based on our previous development of a super-convergent phased-array transducer, we aimed to further investigate, in vivo, its applicability to deep intrahepatic targets. METHODS In a series of six pigs, a pseudo-tumor model was used as target, visible both on intra-operatory MRI and post-mortem gross pathology. The transcostal MRgHIFU ablation was prescribed coplanar with the pseudo-tumor, either axial or sagittal, but deliberately shifted 7 to 18 mm to the side. No specific means of protection of the ribs were implemented. Post-treatment MRI follow-up was performed at D7, followed by animal necropsy and gross pathology of the liver. RESULTS The pseudo-tumor was clearly identified on T1w MR imaging and subsequently allowed the MRgHIFU planning. The peak temperature at the focal point ranged from 58-87 °C. Gross pathology confirmed the presence of the pseudo-tumor and the well-delineated MRgHIFU ablation at the expected locations. CONCLUSIONS The specific design of the transducer enabled a reliable workflow. It demonstrated a good safety profile for in vivo transcostal MRgHIFU ablation of deep-liver targets, graded as challenging for standard surgery.
Collapse
Affiliation(s)
- Orane Lorton
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Pauline Coralie Guillemin
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Andrea Peloso
- Visceral Surgery Division, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Yacine M’Rad
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | | | - Thibaud Koessler
- Oncology Department, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | | | - Sana Boudabbous
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Radiology Division, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Alexis Ricoeur
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Radiology Division, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Rares Salomir
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Radiology Division, University Hospitals of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
19
|
Zhou Y, Bie C, van Zijl PC, Yadav NN. The relayed nuclear Overhauser effect in magnetization transfer and chemical exchange saturation transfer MRI. NMR IN BIOMEDICINE 2023; 36:e4778. [PMID: 35642102 PMCID: PMC9708952 DOI: 10.1002/nbm.4778] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/19/2022] [Accepted: 05/29/2022] [Indexed: 05/23/2023]
Abstract
Magnetic resonance (MR) is a powerful technique for noninvasively probing molecular species in vivo but suffers from low signal sensitivity. Saturation transfer (ST) MRI approaches, including chemical exchange saturation transfer (CEST) and conventional magnetization transfer contrast (MTC), allow imaging of low-concentration molecular components with enhanced sensitivity using indirect detection via the abundant water proton pool. Several recent studies have shown the utility of chemical exchange relayed nuclear Overhauser effect (rNOE) contrast originating from nonexchangeable carbon-bound protons in mobile macromolecules in solution. In this review, we describe the mechanisms leading to the occurrence of rNOE-based signals in the water saturation spectrum (Z-spectrum), including those from mobile and immobile molecular sources and from molecular binding. While it is becoming clear that MTC is mainly an rNOE-based signal, we continue to use the classical MTC nomenclature to separate it from the rNOE signals of mobile macromolecules, which we will refer to as rNOEs. Some emerging applications of the use of rNOEs for probing macromolecular solution components such as proteins and carbohydrates in vivo or studying the binding of small substrates are discussed.
Collapse
Affiliation(s)
- Yang Zhou
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, Guangdong 518055 (China)
| | - Chongxue Bie
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N. Broadway, Baltimore MD 21205 (USA)
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Baltimore, MD 21205 (USA)
- Department of Information Science and Technology, Northwest University, No.1 Xuefu Avenue, Xi’an, Shanxi 710127 (China)
| | - Peter C.M. van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N. Broadway, Baltimore MD 21205 (USA)
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Baltimore, MD 21205 (USA)
| | - Nirbhay N. Yadav
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N. Broadway, Baltimore MD 21205 (USA)
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Baltimore, MD 21205 (USA)
| |
Collapse
|
20
|
Kryukov E, Karabanov A, Langlais D, Iuga D, Reckless R, Good J. Cryogen-free 400 MHz (9.4 T) solid state MAS NMR system with liquid state NMR potential. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2023; 125:101873. [PMID: 37172429 DOI: 10.1016/j.ssnmr.2023.101873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
We show that the temporal magnetic field distortion generated by the Cold Head operation can be removed and high quality Solid-State Magic Angle Spinning NMR results can be obtained with a cryogen-free magnet. The compact design of the cryogen-free magnets allows for the probe to be inserted either from the bottom (as in most NMR systems) or, more conveniently, from the top. The magnetic field settling time can be made as short as an hour after a field ramp. Therefore, a single cryogen-free magnet can be used at different fixed fields. The magnetic field can be changed every day without compromising the measurement resolution.
Collapse
Affiliation(s)
| | | | | | - Dinu Iuga
- The University of Warwick, Coventry, UK
| | | | | |
Collapse
|
21
|
Pan Z, Liu S, Hu J, Luo H, Han M, Sun H, Liu W, Wu Z, Guo H. Improved MR temperature imaging at 0.5 T using view-sharing accelerated multiecho thermometry for MR-guided laser interstitial thermal therapy. NMR IN BIOMEDICINE 2023:e4933. [PMID: 36941216 DOI: 10.1002/nbm.4933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
The aim of the current study was to improve temperature-monitoring precision using multiecho proton resonance frequency shift-based thermometry with view-sharing acceleration for MR-guided laser interstitial thermal therapy (MRgLITT) on a 0.5-T low-field MR system. Both precision and speed of the temperature measurement for clinical MRgLITT treatments suffer at low field, due to reduced image signal-to-noise ratio (SNR), decreased temperature-induced phase changes, and limited RF receiver channels. In this work, a bipolar multiecho gradient-recalled echo sequence with a temperature-to-noise ratio optimal weighted echo combination is applied to improve the temperature precision. A view-sharing-based approach is utilized to accelerate signal acquisitions while preserving image SNRs. The method was evaluated using ex vivo (pork and pig brain) LITT heating experiments and in vivo (human brain) nonheating experiments on a high-performance 0.5-T scanner. In terms of results, (1) after echo combination, multiecho thermometry (i.e., ~7.5-40.5 ms, 7 TEs) provides ~1.5-1.9 times higher temperature precision than the no echo combination case (i.e., TE7 = 40.5 ms) within the same readout bandwidth. Additionally, echo registration is necessary for the bipolar multiecho sequence; (2) for a threefold acceleration, the view-sharing approach with variable-density subsampling shows around 1.8 times lower temperature errors than the GRAPPA method. Particularly for view-sharing, variable-density subsampling performs better than Interleave subsampling; and (3) ex vivo heating and in vivo nonheating experiments demonstrated that the temperature accuracy was less than 0.5 ° C $$ {}^{{}^{\circ}}\mathrm{C} $$ and that the temperature precision was less than 0.6 ° C $$ {}^{{}^{\circ}}\mathrm{C} $$ using the proposed 0.5-T thermometry. It was concluded that view-sharing accelerated multiecho thermometry is a practical temperature measurement approach for MRgLITT at 0.5 T.
Collapse
Affiliation(s)
- Ziyi Pan
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Simin Liu
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | | | - Hai Luo
- Marvel Stone Healthcare, Wuxi, Jiangsu, China
| | - Meng Han
- Sinovation Medical, Beijing, China
| | - Hao Sun
- Sinovation Medical, Beijing, China
| | | | - Ziyue Wu
- Marvel Stone Healthcare, Wuxi, Jiangsu, China
| | - Hua Guo
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
22
|
Kim E, Kim HC, Van Reet J, Böhlke M, Yoo SS, Lee W. Transcranial focused ultrasound-mediated unbinding of phenytoin from plasma proteins for suppression of chronic temporal lobe epilepsy in a rodent model. Sci Rep 2023; 13:4128. [PMID: 36914775 PMCID: PMC10011522 DOI: 10.1038/s41598-023-31383-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
The efficacy of many anti-epileptic drugs, including phenytoin (PHT), is reduced by plasma protein binding (PPB) that sequesters therapeutically active drug molecules within the bloodstream. An increase in systemic dose elevates the risk of drug side effects, which demands an alternative technique to increase the unbound concentration of PHT in a region-specific manner. We present a low-intensity focused ultrasound (FUS) technique that locally enhances the efficacy of PHT by transiently disrupting its binding to albumin. We first identified the acoustic parameters that yielded the highest PHT unbinding from albumin among evaluated parameter sets using equilibrium dialysis. Then, rats with chronic mesial temporal lobe epilepsy (mTLE) received four sessions of PHT injection, each followed by 30 min of FUS delivered to the ictal region, across 2 weeks. Two additional groups of mTLE rats underwent the same procedure, but without receiving PHT or FUS. Assessment of electrographic seizure activities revealed that FUS accompanying administration of PHT effectively reduced the number and mean duration of ictal events compared to other conditions, without damaging brain tissue or the blood-brain barrier. Our results demonstrated that the FUS technique enhanced the anti-epileptic efficacy of PHT in a chronic mTLE rodent model by region-specific PPB disruption.
Collapse
Affiliation(s)
- Evgenii Kim
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Hyun-Chul Kim
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
- Department of Artificial Intelligence, Kyungpook National University, Daegu, South Korea
| | - Jared Van Reet
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Mark Böhlke
- Massachusetts College of Pharmacy and Health Sciences University, Boston, MA, USA
| | - Seung-Schik Yoo
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Wonhye Lee
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
23
|
Adams-Tew SI, Johnson S, Odéen H, Parker DL, Payne A. Validation of a drift-corrected 3D MR temperature imaging sequence for breast MR-guided focused ultrasound treatments. Magn Reson Imaging 2023; 96:126-134. [PMID: 36496098 PMCID: PMC9810259 DOI: 10.1016/j.mri.2022.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/11/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Real-time temperature monitoring is critical to the success of thermally ablative therapies. This work validates a 3D thermometry sequence with k-space field drift correction designed for use in magnetic resonance-guided focused ultrasound treatments for breast cancer. Fiberoptic probes were embedded in tissue-mimicking phantoms, and temperature change measurements from the probes were compared with the magnetic resonance temperature imaging measurements following heating with focused ultrasound. Precision and accuracy of measurements were also evaluated in free-breathing healthy volunteers (N = 3) under a non-heating condition. MR temperature measurements agreed closely with those of fiberoptic probes, with a 95% confidence interval of measurement difference from -2.0 °C to 1.4 °C. Field drift-corrected measurements in vivo had a precision of 1.1 ± 0.7 °C and were accurate within 1.3 ± 0.9 °C across the three volunteers. The field drift correction method improved precision and accuracy by an average of 46 and 42%, respectively, when compared to the uncorrected data. This temperature imaging sequence can provide accurate measurements of temperature change in aqueous tissues in the breast and support the use of this sequence in clinical investigations of focused ultrasound treatments for breast cancer.
Collapse
Affiliation(s)
- Samuel I Adams-Tew
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
| | - Sara Johnson
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA.
| | - Henrik Odéen
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA.
| | - Dennis L Parker
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA.
| | - Allison Payne
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
24
|
Ishak O, Breton E, Choquet K, Josset A, Cabras P, Vappou J. Monitoring MR-guided high intensity focused ultrasound therapy using transient supersonic shear wave MR-elastography. Phys Med Biol 2023; 68. [PMID: 36595333 DOI: 10.1088/1361-6560/acac5e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Objective.The aim of the paper is to propose an all-in-one method based on magnetic resonance-supersonic shear wave imaging (MR-SSI) and proton resonance frequency shift (PRFS) to monitor high intensity focused ultrasound (HIFU) thermal ablations.Approach.Mechanical properties have been shown to be related to tissue damage induced by thermal ablations. Monitoring elasticity in addition to temperature changes may help in ensuring the efficacy and the accuracy of HIFU therapies. For this purpose, an MR-SSI method has been developed where the ultrasonic transducer is used for both mechanical wave generation and thermal ablation. Transient quasi-planar shear waves are generated using the acoustic radiation force, and their propagation is monitored in motion-sensitized phase MR images. Using a single-shot gradient-echo echo-planar-imaging sequence, MR images can be acquired at a sufficiently high temporal resolution to provide an update of PRFS thermometry and MR-SSI elastography maps in real time.Main results.The proposed method was first validated on a calibrated elasticity phantom, in which both the possibility to detect inclusions with different stiffness and repeatability were demonstrated. The standard deviation between the 8 performed measurements was 2% on the background of the phantom and 11%, at most, on the inclusions. A second experiment consisted in performing a HIFU heating in a gelatin phantom. The temperature increase was estimated to be 9 °C and the shear modulus was found to decrease from 2.9 to 1.8 kPa, reflecting the gel softening around the HIFU focus, whereas it remained steady in non-heated areas.Significance.The proposed MR-SSI technique allows monitoring HIFU ablations using thermometry and elastography simultaneously, without the need for an additional external mechanical exciter such as those used in MR elastography.
Collapse
Affiliation(s)
- Ounay Ishak
- Université de Strasbourg, CNRS, ICube, UMR7357, Strasbourg, France
| | - Elodie Breton
- Université de Strasbourg, CNRS, ICube, UMR7357, Strasbourg, France
| | - Karine Choquet
- Université de Strasbourg, CNRS, ICube, UMR7357, Strasbourg, France
| | - Anne Josset
- Université de Strasbourg, CNRS, ICube, UMR7357, Strasbourg, France
| | - Paolo Cabras
- Université de Strasbourg, CNRS, ICube, UMR7357, Strasbourg, France.,Image Guided Therapy, Pessac, France
| | - Jonathan Vappou
- Université de Strasbourg, CNRS, ICube, UMR7357, Strasbourg, France
| |
Collapse
|
25
|
Williams SN, McElhinney P, Gunamony S. Ultra-high field MRI: parallel-transmit arrays and RF pulse design. Phys Med Biol 2023; 68. [PMID: 36410046 DOI: 10.1088/1361-6560/aca4b7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 11/21/2022] [Indexed: 11/22/2022]
Abstract
This paper reviews the field of multiple or parallel radiofrequency (RF) transmission for magnetic resonance imaging (MRI). Currently the use of ultra-high field (UHF) MRI at 7 tesla and above is gaining popularity, yet faces challenges with non-uniformity of the RF field and higher RF power deposition. Since its introduction in the early 2000s, parallel transmission (pTx) has been recognized as a powerful tool for accelerating spatially selective RF pulses and combating the challenges associated with RF inhomogeneity at UHF. We provide a survey of the types of dedicated RF coils used commonly for pTx and the important modeling of the coil behavior by electromagnetic (EM) field simulations. We also discuss the additional safety considerations involved with pTx such as the specific absorption rate (SAR) and how to manage them. We then describe the application of pTx with RF pulse design, including a practical guide to popular methods. Finally, we conclude with a description of the current and future prospects for pTx, particularly its potential for routine clinical use.
Collapse
Affiliation(s)
- Sydney N Williams
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom
| | - Paul McElhinney
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom
| | - Shajan Gunamony
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom.,MR CoilTech Limited, Glasgow, United Kingdom
| |
Collapse
|
26
|
Kim K, Diederich C, Narsinh K, Ozhinsky E. Motion-robust, multi-slice, real-time MR thermometry for MR-guided thermal therapy in abdominal organs. Int J Hyperthermia 2023; 40:2151649. [PMID: 36535967 PMCID: PMC10269483 DOI: 10.1080/02656736.2022.2151649] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE To develop an effective and practical reconstruction pipeline to achieve motion-robust, multi-slice, real-time MR thermometry for monitoring thermal therapy in abdominal organs. METHODS The application includes a fast spiral magnetic resonance imaging (MRI) pulse sequence and a real-time reconstruction pipeline based on multi-baseline proton resonance frequency shift (PRFS) method with visualization of temperature imaging. The pipeline supports multi-slice acquisition with minimal reconstruction lag. Simulations with a virtual motion phantom were performed to investigate the influence of the number of baselines and respiratory rate on the accuracy of temperature measurement. Phantom experiments with ultrasound heating were performed using a custom-made motion phantom to evaluate the performance of the pipeline. Lastly, experiments in healthy volunteers (N = 2) without heating were performed to evaluate the accuracy and stability of MR thermometry in abdominal organs (liver and kidney). RESULTS The multi-baseline approach with greater than 25 baselines resulted in minimal temperature errors in the simulation. Phantom experiments demonstrated a 713 ms update time for 3-slice acquisitions. Temperature maps with 30 baselines showed clear temperature distributions caused by ultrasound heating in the respiratory phantom. Finally, the pipeline was evaluated with physiologic motions in healthy volunteers without heating, which demonstrated the accuracy (root mean square error [RMSE]) of 1.23 ± 0.18 °C (liver) and 1.21 ± 0.17 °C (kidney) and precision of 1.13 ± 0.11 °C (liver) and 1.16 ± 0.15 °C (kidney) using 32 baselines. CONCLUSIONS The proposed real-time acquisition and reconstruction pipeline allows motion-robust, multi-slice, real-time temperature monitoring within the abdomen during free breathing.
Collapse
Affiliation(s)
- Kisoo Kim
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, USA
| | - Chris Diederich
- Department of Radiation Oncology, University of California, San Francisco, USA
| | - Kazim Narsinh
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, USA
| | - Eugene Ozhinsky
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, USA
| |
Collapse
|
27
|
Serial MR, Benders S, Rotzetter P, Brummerloh DL, Metzger JP, Gross SP, Nussbaum J, Müller CR, Pruessmann KP, Penn A. Temperature distribution in a gas-solid fixed bed probed by rapid magnetic resonance imaging. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
28
|
Feddersen TV, Poot DHJ, Paulides MM, Salim G, van Rhoon GC, Hernandez-Tamames JA. Multi-echo gradient echo pulse sequences: which is best for PRFS MR thermometry guided hyperthermia? Int J Hyperthermia 2023; 40:2184399. [PMID: 36907223 DOI: 10.1080/02656736.2023.2184399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
PURPOSE MR thermometry (MRT) enables noninvasive temperature monitoring during hyperthermia treatments. MRT is already clinically applied for hyperthermia treatments in the abdomen and extremities, and devices for the head are under development. In order to optimally exploit MRT in all anatomical regions, the best sequence setup and post-processing must be selected, and the accuracy needs to be demonstrated. METHODS MRT performance of the traditionally used double-echo gradient-echo sequence (DE-GRE, 2 echoes, 2D) was compared to multi-echo sequences: a 2D fast gradient-echo (ME-FGRE, 11 echoes) and a 3D fast gradient-echo sequence (3D-ME-FGRE, 11 echoes). The different methods were assessed on a 1.5 T MR scanner (GE Healthcare) using a phantom cooling down from 59 °C to 34 °C and unheated brains of 10 volunteers. In-plane motion of volunteers was compensated by rigid body image registration. For the ME sequences, the off-resonance frequency was calculated using a multi-peak fitting tool. To correct for B0 drift, the internal body fat was selected automatically using water/fat density maps. RESULTS The accuracy of the best performing 3D-ME-FGRE sequence was 0.20 °C in phantom (in the clinical temperature range) and 0.75 °C in volunteers, compared to DE-GRE values of 0.37 °C and 1.96 °C, respectively. CONCLUSION For hyperthermia applications, where accuracy is more important than resolution or scan-time, the 3D-ME-FGRE sequence is deemed the most promising candidate. Beyond its convincing MRT performance, the ME nature enables automatic selection of internal body fat for B0 drift correction, an important feature for clinical application.
Collapse
Affiliation(s)
- Theresa V Feddersen
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dirk H J Poot
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Margarethus M Paulides
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Electromagnetics for Care & Cure Research Lab, Center for Care and Cure Technologies Eindhoven (C3Te), Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Ghassan Salim
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Gerard C van Rhoon
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Applied Radiation and Isotopes, Reactor Institute Delft, Delft University of Technology, Delft, The Netherlands
| | - Juan A Hernandez-Tamames
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Imaging Physics, Applied Physics Faculty, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
29
|
Huang CFJ, Lin WL, Hwang SC, Yao C, Chang H, Chen YY, Kuo LW. A feasibility study of wireless inductively coupled surface coil for MR-guided high-intensity focused ultrasound ablation of rodents on clinical MRI systems. Sci Rep 2022; 12:21907. [PMID: 36536022 PMCID: PMC9763396 DOI: 10.1038/s41598-022-26452-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Recently, to conduct preclinical imaging research on clinical MRI systems has become an attractive alternative to researchers due to its wide availability, cost, and translational application to clinical human studies when compared to dedicated small animal, high-field preclinical MRI. However, insufficient signal-to-noise ratio (SNR) significantly degrades the applicability of those applications which require high SNR, e.g. magnetic resonance guided high-intensity focused ultrasound (MRgHIFU) treatment. This study introduces a wireless inductively coupled surface (WICS) coil design used on a clinical 3 T MRI system for MRgHIFU ablation. To evaluate the SNR improvement and temperature accuracy of WICS coil, the ex vivo experiments were performed on the pork tenderloins (n = 7) and the hind legs of deceased Sprague-Dawley rats (n = 5). To demonstrate the feasibility, the in vivo experiments were performed on the hind leg of Sprague-Dawley rat (n = 1). For all experiments, temperature measurements were performed before and during HIFU ablation. Temperature curves with and without WICS coil were compared to evaluate the temperature precision in ex vivo experiments. The use of WICS coil improves the temperature accuracy from 0.85 to 0.14 °C, demonstrating the feasibility of performing small animal MRgHIFU experiments using clinical 3 T MRI system with WICS coil.
Collapse
Affiliation(s)
- Chien-Feng Judith Huang
- grid.19188.390000 0004 0546 0241Department of Biomedical Engineering, National Taiwan University, Taipei, 100233 Taiwan ,grid.59784.370000000406229172Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, 35053 Taiwan
| | - Win-Li Lin
- grid.19188.390000 0004 0546 0241Department of Biomedical Engineering, National Taiwan University, Taipei, 100233 Taiwan ,grid.59784.370000000406229172Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, 35053 Taiwan
| | - San-Chao Hwang
- MBInsight Technology Corporation, New Taipei City, 236658 Taiwan
| | - Ching Yao
- MBInsight Technology Corporation, New Taipei City, 236658 Taiwan
| | - Hsu Chang
- MBInsight Technology Corporation, New Taipei City, 236658 Taiwan
| | - Yung-Yaw Chen
- grid.19188.390000 0004 0546 0241Department of Electrical Engineering, National Taiwan University, Taipei, 100233 Taiwan
| | - Li-Wei Kuo
- grid.59784.370000000406229172Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, 35053 Taiwan ,grid.19188.390000 0004 0546 0241Institute of Medical Device and Imaging, National Taiwan University, Taipei, 100233 Taiwan
| |
Collapse
|
30
|
Lottner T, Reiss S, Rieger SB, Schuettler M, Fischer J, Bielak L, Özen AC, Bock M. Radio-frequency induced heating of intra-cranial EEG electrodes: The more the colder? Neuroimage 2022; 264:119691. [PMID: 36375783 DOI: 10.1016/j.neuroimage.2022.119691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 09/20/2022] [Accepted: 10/16/2022] [Indexed: 11/13/2022] Open
Abstract
Many neurological disorders are analyzed and treated with implantable electrodes. Many patients with such electrodes have to undergo MRI examinations - often unrelated to their implant - at the risk of radio-frequency induced heating. The number of electrode contact sites of these implants keeps increasing due to improvements in manufacturing and computational algorithms. Electrode grids with multiple receive channels couple to the RF fields present in MRI, but, due to their proximity, a combination of leads has a coupling response which is not a superposition of the individual leads' response. To investigate the problem of RF-induced heating of coupled multi-lead implants, temperature mapping was performed on a set of intra-cranial electroencephalogram (icEEG) electrode grid prototypes with increasing number of contact sites (1-16). Additionally, electric field measurements were used to investigate the radio-frequency heating characteristics of the implants in different media combinations, simulating the device being partially immersed inside the patient. MR measurements show RF-induced heating up to 19.6 K for the single electrode, reducing monotonically with larger number of contact sites to a minimum of 0.9 K for the largest grid. The SAR calculated from temperature measurements agrees well with electric field mapping: The same trend is visible for different insertion lengths, however, the energy dissipated by the whole implant varies with the grid size and insertion length. Thus, in the tested circumstances, a larger electrode number either reduced or had a similar risk of RF induced heating, indicating, that the size of electrode grids is a design parameter, which can be used to change an implants RF response and in turn to reduce the risk of RF induced heating and improve the safety of patient with neuro-implants undergoing MRI examinations.
Collapse
Affiliation(s)
- Thomas Lottner
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Simon Reiss
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | | | - Johannes Fischer
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lars Bielak
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ali C Özen
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Bock
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
31
|
Muacevic A, Adler JR, Jimenez MJD, Budnick HC, Raskin J. Thermal Damage Estimate Artifact Following Antecedent Biopsy: A Case Report. Cureus 2022; 14:e31913. [PMID: 36579245 PMCID: PMC9792349 DOI: 10.7759/cureus.31913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2022] [Indexed: 11/27/2022] Open
Abstract
MR-guided laser interstitial therapy (MRgLITT) is becoming more commonly used for minimal access approaches to intracranial lesions of all etiologies. The short-term safety profile of MRgLITT is favorable compared with sweeping incisions and open craniotomies, especially for lesions located in deep, periventricular, and highly eloquent areas. The Visualase software (Medtronic Inc., Minneapolis, MN, USA) has multiple adaptations to assist with this safety margin, including the thermal damage estimate (TDE), which applies predictive mathematical modeling to a two-dimensional (2D) graphical representation. TDE has been shown to highly correlate with actual tissue destruction in a priori MRgLITT cases and to anecdotally be imprecise when MRgLITT is combined with biopsy. We present a case regarding a 17-year-old male patient with intractable focal epilepsy. He underwent stereotactic biopsy and then ablation where it was shown that TDE is ~35% larger in the coronal plane than in the actual ablation zone. Air may have caused this artifact in the biopsy cavity, which affected the proton resonance frequency (PRF) and caused TDE pigment deposition. We believe in the need for a more comprehensive understanding and investigation regarding this TDE artifact. Future prospective studies into MRgLITT should attend carefully in cases where it is combined with biopsy.
Collapse
|
32
|
Mooiweer R, Schneider R, Krafft AJ, Empanger K, Stroup J, Neofytou AP, Mukherjee RK, Williams SE, Lloyd T, O'Neill M, Razavi R, Schaeffter T, Neji R, Roujol S. Active Tracking-based cardiac triggering for MR-thermometry during radiofrequency ablation therapy in the left ventricle. Front Cardiovasc Med 2022; 9:971869. [PMID: 36093156 PMCID: PMC9453599 DOI: 10.3389/fcvm.2022.971869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiac MR thermometry shows promise for real-time guidance of radiofrequency ablation of cardiac arrhythmias. This technique uses ECG triggering, which can be unreliable in this situation. A prospective cardiac triggering method was developed for MR thermometry using the active tracking (AT) signal measured from catheter microcoils. In the proposed AT-based cardiac triggering (AT-trig) sequence, AT modules were repeatedly acquired to measure the catheter motion until a cardiac trigger was identified to start cardiac MR thermometry using single-shot echo-planar imaging. The AT signal was bandpass filtered to extract the motion induced by the beating heart, and cardiac triggers were defined as the extremum (peak or valley) of the filtered AT signal. AT-trig was evaluated in a beating heart phantom and in vivo in the left ventricle of a swine during temperature stability experiments (6 locations) and during one ablation. Stability was defined as the standard deviation over time. In the phantom, AT-trig enabled triggering of MR thermometry and resulted in higher temperature stability than an untriggered sequence. In all in vivo experiments, AT-trig intervals matched ECG-derived RR intervals. Mis-triggers were observed in 1/12 AT-trig stability experiments. Comparable stability of MR thermometry was achieved using peak AT-trig (1.0 ± 0.4°C), valley AT-trig (1.1 ± 0.5°C), and ECG triggering (0.9 ± 0.4°C). These experiments show that continuously acquired AT signal for prospective cardiac triggering is feasible. MR thermometry with AT-trig leads to comparable temperature stability as with conventional ECG triggering. AT-trig could serve as an alternative cardiac triggering strategy in situations where ECG triggering is not effective.
Collapse
Affiliation(s)
- Ronald Mooiweer
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- MR Research Collaborations, Siemens Healthcare Limited, Camberley, United Kingdom
| | | | | | - Katy Empanger
- Imricor Medical Systems, Burnsville, MN, United States
| | - Jason Stroup
- Imricor Medical Systems, Burnsville, MN, United States
| | - Alexander Paul Neofytou
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Rahul K. Mukherjee
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Steven E. Williams
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, United Kingdom
| | - Tom Lloyd
- Imricor Medical Systems, Burnsville, MN, United States
| | - Mark O'Neill
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Reza Razavi
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Tobias Schaeffter
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- MR Research Collaborations, Siemens Healthcare Limited, Camberley, United Kingdom
| | - Sébastien Roujol
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| |
Collapse
|
33
|
Yoo SS, Kim HC, Kim J, Kim E, Kowsari K, Van Reet J, Yoon K. Enhancement of cerebrospinal fluid tracer movement by the application of pulsed transcranial focused ultrasound. Sci Rep 2022; 12:12940. [PMID: 35902724 PMCID: PMC9334279 DOI: 10.1038/s41598-022-17314-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/25/2022] [Indexed: 11/10/2022] Open
Abstract
Efficient transport of solutes in the cerebrospinal fluid (CSF) plays a critical role in their clearance from the brain. Convective bulk flow of solutes in the CSF in the perivascular space (PVS) is considered one of the important mechanisms behind solute movement in the brain, before their ultimate drainage to the systemic lymphatic system. Acoustic pressure waves can impose radiation force on a medium in its path, inducing localized and directional fluidic flow, known as acoustic streaming. We transcranially applied low-intensity focused ultrasound (FUS) to rats that received an intracisternal injection of fluorescent CSF tracers (dextran and ovalbumin, having two different molecular weights-Mw). The sonication pulsing parameter was determined on the set that propelled the aqueous solution of toluidine blue O dye into a porous media (melamine foam) at the highest level of infiltration. Fluorescence imaging of the brain showed that application of FUS increased the uptake of ovalbumin at the sonicated plane, particularly around the ventricles, whereas the uptake of high-Mw dextran was unaffected. Numerical simulation showed that the effects of sonication were non-thermal. Sonication did not alter the animals' behavior or disrupt the blood-brain barrier (BBB) while yielding normal brain histology. The results suggest that FUS may serve as a new non-invasive means to promote interstitial CSF solute transport in a region-specific manner without disrupting the BBB, providing potential for enhanced clearance of waste products from the brain.
Collapse
Affiliation(s)
- Seung-Schik Yoo
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| | - Hyun-Chul Kim
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
- Department of Artificial Intelligence, Kyungpook National University, Daegu, Republic of Korea
| | - Jaeho Kim
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
- Department of Neurology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Evgenii Kim
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Kavin Kowsari
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Boston, MA, USA
| | - Jared Van Reet
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Kyungho Yoon
- School of Mathematics and Computing (Computational Science and Engineering), Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
34
|
Gd 2O 3-mesoporous silica/gold nanoshells: A potential dual T1/ T2 contrast agent for MRI-guided localized near-IR photothermal therapy. Proc Natl Acad Sci U S A 2022; 119:e2123527119. [PMID: 35858309 PMCID: PMC9303993 DOI: 10.1073/pnas.2123527119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A promising clinical trial utilizing gold-silica core-shell nanostructures coated with polyethylene glycol (PEG) has been reported for near-infrared (NIR) photothermal therapy (PTT) of prostate cancer. The next critical step for PTT is the visualization of therapeutically relevant nanoshell (NS) concentrations at the tumor site. Here we report the synthesis of PEGylated Gd2O3-mesoporous silica/gold core/shell NSs (Gd2O3-MS NSs) with NIR photothermal properties that also supply sufficient MRI contrast to be visualized at therapeutic doses (≥108 NSs per milliliter). The nanoparticles have r1 relaxivities more than three times larger than those of conventional T1 contrast agents, requiring less concentration of Gd3+ to observe an equivalent signal enhancement in T1-weighted MR images. Furthermore, Gd2O3-MS NS nanoparticles have r2 relaxivities comparable to those of existing T2 contrast agents, observed in agarose phantoms. This highly unusual combination of simultaneous T1 and T2 contrast allows for MRI enhancement through different approaches. As a rudimentary example, we demonstrate T1/T2 ratio MR images with sixfold contrast signal enhancement relative to its T1 MRI and induced temperature increases of 20 to 55 °C under clinical illumination conditions. These nanoparticles facilitate MRI-guided PTT while providing real-time temperature feedback through thermal MRI mapping.
Collapse
|
35
|
Ehdaie B, Tempany CM, Holland F, Sjoberg DD, Kibel AS, Trinh QD, Durack JC, Akin O, Vickers AJ, Scardino PT, Sperling D, Wong JYC, Yuh B, Woodrum DA, Mynderse LA, Raman SS, Pantuck AJ, Schiffman MH, McClure TD, Sonn GA, Ghanouni P. MRI-guided focused ultrasound focal therapy for patients with intermediate-risk prostate cancer: a phase 2b, multicentre study. Lancet Oncol 2022; 23:910-918. [PMID: 35714666 PMCID: PMC9400094 DOI: 10.1016/s1470-2045(22)00251-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Men with grade group 2 or 3 prostate cancer are often considered ineligible for active surveillance; some patients with grade group 2 prostate cancer who are managed with active surveillance will have early disease progression requiring radical therapy. This study aimed to investigate whether MRI-guided focused ultrasound focal therapy can safely reduce treatment burden for patients with localised grade group 2 or 3 intermediate-risk prostate cancer. METHODS In this single-arm, multicentre, phase 2b study conducted at eight health-care centres in the USA, we recruited men aged 50 years and older with unilateral, MRI-visible, primary, intermediate-risk, previously untreated prostate adenocarcinoma (prostate-specific antigen ≤20 ng/mL, grade group 2 or 3; tumour classification ≤T2) confirmed on combined biopsy (combining MRI-targeted and systematic biopsies). MRI-guided focused ultrasound energy, sequentially titrated to temperatures sufficient for tissue ablation (about 60-70°C), was delivered to the index lesion and a planned margin of 5 mm or more of normal tissue, using real-time magnetic resonance thermometry for intraoperative monitoring. Co-primary outcomes were oncological outcomes (absence of grade group 2 and higher cancer in the treated area at 6-month and 24-month combined biopsy; when 24-month biopsy data were not available and grade group 2 or higher cancer had occurred in the treated area at 6 months, the 6-month biopsy results were included in the final analysis) and safety (adverse events up to 24 months) in all patients enrolled in the study. This study is registered with ClinicalTrials.gov, NCT01657942, and is no longer recruiting. FINDINGS Between May 4, 2017, and Dec 21, 2018, we assessed 194 patients for eligibility and treated 101 patients with MRI-guided focused ultrasound. Median age was 63 years (IQR 58-67) and median concentration of prostate-specific antigen was 5·7 ng/mL (IQR 4·2-7·5). Most cancers were grade group 2 (79 [78%] of 101). At 24 months, 78 (88% [95% CI 79-94]) of 89 men had no evidence of grade group 2 or higher prostate cancer in the treated area. No grade 4 or grade 5 treatment-related adverse events were reported, and only one grade 3 adverse event (urinary tract infection) was reported. There were no treatment-related deaths. INTERPRETATION 24-month biopsy outcomes show that MRI-guided focused ultrasound focal therapy is safe and effectively treats grade group 2 or 3 prostate cancer. These results support focal therapy for select patients and its use in comparative trials to determine if a tissue-preserving approach is effective in delaying or eliminating the need for radical whole-gland treatment in the long term. FUNDING Insightec and the National Cancer Institute.
Collapse
Affiliation(s)
- Behfar Ehdaie
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Clare M Tempany
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Ford Holland
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel D Sjoberg
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adam S Kibel
- Division of Urology, Brigham and Women's Hospital, Boston, MA, USA
| | - Quoc-Dien Trinh
- Division of Urology, Brigham and Women's Hospital, Boston, MA, USA
| | - Jeremy C Durack
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Cordis-X, Miami Lakes, FL, USA
| | - Oguz Akin
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew J Vickers
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Peter T Scardino
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Jeffrey Y C Wong
- Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Bertram Yuh
- Department of Urology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | | | | | - Steven S Raman
- Department of Radiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Allan J Pantuck
- Department of Urology, University of California Los Angeles, Los Angeles, CA, USA
| | - Marc H Schiffman
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | - Timothy D McClure
- Department of Urology, Weill Cornell Medical College, New York, NY, USA
| | - Geoffrey A Sonn
- Department of Urology, Stanford University, Stanford, CA, USA
| | - Pejman Ghanouni
- Department of Radiology, Stanford University, Stanford, CA, USA
| |
Collapse
|
36
|
VilasBoas-Ribeiro I, Nouwens SAN, Curto S, Jager BD, Franckena M, van Rhoon GC, Heemels WPMH, Paulides MM. POD-Kalman filtering for improving noninvasive 3D temperature monitoring in MR-guided hyperthermia. Med Phys 2022; 49:4955-4970. [PMID: 35717578 PMCID: PMC9545729 DOI: 10.1002/mp.15811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 12/21/2022] Open
Abstract
Background During resonance frequency (RF) hyperthermia treatment, the temperature of the tumor tissue is elevated to the range of 39–44°C. Accurate temperature monitoring is essential to guide treatments and ensure precise heat delivery and treatment quality. Magnetic resonance (MR) thermometry is currently the only clinical method to measure temperature noninvasively in a volume during treatment. However, several studies have shown that this approach is not always sufficiently accurate for thermal dosimetry in areas with motion, such as the pelvic region. Model‐based temperature estimation is a promising approach to correct and supplement 3D online temperature estimation in regions where MR thermometry is unreliable or cannot be measured. However, complete 3D temperature modeling of the pelvic region is too complex for online usage. Purpose This study aimed to evaluate the use of proper orthogonal decomposition (POD) model reduction combined with Kalman filtering to improve temperature estimation using MR thermometry. Furthermore, we assessed the benefit of this method using data from hyperthermia treatment where there were limited and unreliable MR thermometry measurements. Methods The performance of POD–Kalman filtering was evaluated in several heating experiments and for data from patients treated for locally advanced cervical cancer. For each method, we evaluated the mean absolute error (MAE) concerning the temperature measurements acquired by the thermal probes, and we assessed the reproducibility and consistency using the standard deviation of error (SDE). Furthermore, three patient groups were defined according to susceptibility artifacts caused by the level of intestinal gas motion to assess if the POD–Kalman filtering could compensate for missing and unreliable MR thermometry measurements. Results First, we showed that this method is beneficial and reproducible in phantom experiments. Second, we demonstrated that the combined method improved the match between temperature prediction and temperature acquired by intraluminal thermometry for patients treated for locally advanced cervical cancer. Considering all patients, the POD–Kalman filter improved MAE by 43% (filtered MR thermometry = 1.29°C, POD–Kalman filtered temperature = 0.74°C). Moreover, the SDE was improved by 47% (filtered MR thermometry = 1.16°C, POD–Kalman filtered temperature = 0.61°C). Specifically, the POD–Kalman filter reduced the MAE by approximately 60% in patients whose MR thermometry was unreliable because of the great amount of susceptibilities caused by the high level of intestinal gas motion. Conclusions We showed that the POD–Kalman filter significantly improved the accuracy of temperature monitoring compared to MR thermometry in heating experiments and hyperthermia treatments. The results demonstrated that POD–Kalman filtering can improve thermal dosimetry during RF hyperthermia treatment, especially when MR thermometry is inaccurate.
Collapse
Affiliation(s)
- Iva VilasBoas-Ribeiro
- Department of Radiotherapy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Sven A N Nouwens
- Control System Technology Group, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Sergio Curto
- Department of Radiotherapy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Bram de Jager
- Control System Technology Group, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Martine Franckena
- Department of Radiotherapy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Gerard C van Rhoon
- Department of Radiotherapy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - W P M H Heemels
- Control System Technology Group, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Margarethus M Paulides
- Department of Radiotherapy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Care and Cure Research Lab (EM-4C&C) of the Electromagnetics Group, Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
37
|
Dong Z, Milak MS, Mann JJ. Proton magnetic resonance spectroscopy thermometry: Impact of separately acquired full water or partially suppressed water data on quantification and measurement error. NMR IN BIOMEDICINE 2022; 35:e4681. [PMID: 34961997 DOI: 10.1002/nbm.4681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/02/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
In proton magnetic resonance spectroscopy (1 H MRS) thermometry, separately acquired full water and partially suppressed water are commonly used for measuring temperature. This paper compares these two approaches. Single-voxel 1 H MRS data were collected on a 3-T GE scanner from 26 human subjects. Every subject underwent five continuous MRS sessions, each separated by a 2-min phase. Each MRS session lasted 13 min and consisted of two free induction decays (FIDs) without water suppression (with full water [FW or w]) and 64 FIDs with partial water suppression (with partially suppressed water [PW or w']). Frequency differences between the two FWs, the first two PWs, the second FW and the first PW (FW2 , PW1 ), or between averaged water ( wav' ) and N-acetylaspartate (NAA), were measured. Intrasubject and intersubject variations of the frequency differences were used as a metric for the error in temperature measurement. The intrasubject variations of frequency differences between FW2 and PW1fw2-fw1' , calculated from the five MRS sessions for each subject, were larger than those between the two FWs or between the first two PWs (p = 1.54 x 10-4 and p = 1.72 x 10-4 , respectively). The mean values of intrasubject variations of fw2-fw1' for all subjects were 4.7 and 4.5 times those of fw2-fw1 and fw2'-fw1' , respectively. The intrasubject variations of the temperatures based on frequency differences, fw2-fNAA or ( fw1'-fNAA ), were about 2.5 times greater than those based on averaged water and NAA frequencies (fwav'-fNAA ). The mean temperature measured from (fwav'-fNAA ) (n = 26) was 0.29°C lower than that measured from fw2-fNAA and was 0.83°C higher than that from ( fw1'-fNAA ). It was concluded that the use of separately acquired unsuppressed or partially suppressed water signals may result in large errors in frequency and, consequently, temperature measurement.
Collapse
Affiliation(s)
- Zhengchao Dong
- Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, New York, USA
- Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, New York, USA
| | - Matthew S Milak
- Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, New York, USA
- Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, New York, USA
| | - J John Mann
- Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, New York, USA
- Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, New York, USA
- Department of Radiology, Columbia University, College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
38
|
A new versatile MR-guided high-intensity focused ultrasound (HIFU) device for the treatment of musculoskeletal tumors. Sci Rep 2022; 12:9095. [PMID: 35641597 PMCID: PMC9156664 DOI: 10.1038/s41598-022-13213-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/23/2022] [Indexed: 11/08/2022] Open
Abstract
Magnetic Resonance (MR) Imaging-guided High Intensity focused Ultrasound (MRgHIFU) is a non-invasive, non-ionizing thermal ablation therapy that is particularly interesting for the palliative or curative treatment of musculoskeletal tumors. We introduce a new modular MRgHIFU device that allows the ultrasound transducer to be positioned precisely and interactively over the body part to be treated. A flexible, MR-compatible supporting structure allows free positioning of the transducer under MRI/optical fusion imaging guidance. The same structure can be rigidified using pneumatic depression, holding the transducer rigidly in place. Targeting accuracy was first evaluated in vitro. The average targeting error of the complete process was found to be equal to 5.4 ± 2.2 mm in terms of focus position, and 4.7° ± 2° in terms of transducer orientation. First-in-man feasibility is demonstrated on a patient suffering from important, uncontrolled pain from a bone metastasis located in the forearm. The 81 × 47 × 34 mm3 lesion was successfully treated using five successive positions of the transducer, under real-time monitoring by MR Thermometry. Significant pain palliation was observed 3 days after the intervention. The system described and characterized in this study is a particularly interesting modular, low-cost MRgHIFU device for musculoskeletal tumor therapy.
Collapse
|
39
|
Fite BZ, Wang J, Ghanouni P, Ferrara KW. A Review of Imaging Methods to Assess Ultrasound-Mediated Ablation. BME FRONTIERS 2022; 2022:9758652. [PMID: 35957844 PMCID: PMC9364780 DOI: 10.34133/2022/9758652] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/21/2022] [Indexed: 12/18/2022] Open
Abstract
Ultrasound ablation techniques are minimally invasive alternatives to surgical resection and have rapidly increased in use. The response of tissue to HIFU ablation differs based on the relative contributions of thermal and mechanical effects, which can be varied to achieve optimal ablation parameters for a given tissue type and location. In tumor ablation, similar to surgical resection, it is desirable to include a safety margin of ablated tissue around the entirety of the tumor. A factor in optimizing ablative techniques is minimizing the recurrence rate, which can be due to incomplete ablation of the target tissue. Further, combining focal ablation with immunotherapy is likely to be key for effective treatment of metastatic cancer, and therefore characterizing the impact of ablation on the tumor microenvironment will be important. Thus, visualization and quantification of the extent of ablation is an integral component of ablative procedures. The aim of this review article is to describe the radiological findings after ultrasound ablation across multiple imaging modalities. This review presents readers with a general overview of the current and emerging imaging methods to assess the efficacy of ultrasound ablative treatments.
Collapse
Affiliation(s)
- Brett Z. Fite
- Department of Radiology, Stanford University, Palo Alto, CA 94305, USA
| | - James Wang
- Department of Radiology, Stanford University, Palo Alto, CA 94305, USA
| | - Pejman Ghanouni
- Department of Radiology, Stanford University, Palo Alto, CA 94305, USA
| | | |
Collapse
|
40
|
Scotti AM, Damen F, Gao J, Li W, Liew CW, Cai Z, Zhang Z, Cai K. Phase-independent thermometry by Z-spectrum MR imaging. Magn Reson Med 2022; 87:1731-1741. [PMID: 34752646 PMCID: PMC10029969 DOI: 10.1002/mrm.29072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/30/2021] [Accepted: 10/17/2021] [Indexed: 01/05/2023]
Abstract
PURPOSE Z-spectrum imaging, defined as the consecutive collection of images after saturating over a range of frequency offsets, has been recently proposed as a method to measure the fat-water fraction by the simultaneous detection of fat and water resonances. By incorporating a binomial pulse irradiated at each offset before the readout, the spectral selectivity of the sequence can be further amplified, making it possible to monitor the subtle proton resonance frequency shift that follows a change in temperature. METHODS We tested the hypothesis in aqueous and cream phantoms and in healthy mice, all under thermal challenge. The binomial module consisted of 2 sinc-shaped pulses of opposite phase separated by a delay. Such a delay served to spread out off-resonance spins, with the resulting excitation profile being a periodic function of the delay and the chemical shift. RESULTS During heating experiments, the water resonance shifted downfield, and by fitting the curve to a sine function it was possible to quantify the change in temperature. Results from Z-spectrum imaging correlated linearly with data from conventional MRI techniques like T1 mapping and phase differences from spoiled GRE. CONCLUSION Because the measurement is performed solely on magnitude images, the technique is independent of phase artifacts and is therefore applicable in mixed tissues (e.g., fat). We showed that Z-spectrum imaging can deliver reliable temperature change measurement in both muscular and fatty tissues.
Collapse
Affiliation(s)
- Alessandro M. Scotti
- Department of Radiology, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Frederick Damen
- Department of Radiology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Jin Gao
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
- Research Resources Center, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Weiguo Li
- Department of Radiology, University of Illinois at Chicago, Chicago, Illinois, USA
- Research Resources Center, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Chong Wee Liew
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Zimeng Cai
- School of Medical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Image Processing, Southern Medical University, Guangzhou, China
| | - Zhuoli Zhang
- Department of Radiology, Northwestern University, Evanston, Illinois, USA
| | - Kejia Cai
- Department of Radiology, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
41
|
Hyvärinen M, Huang Y, David E, Hynynen K. Comparison of computer simulations and clinical treatment results of magnetic resonance-guided focused ultrasound surgery (MRgFUS) of uterine fibroids. Med Phys 2022; 49:2101-2119. [PMID: 34601729 PMCID: PMC9314069 DOI: 10.1002/mp.15263] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 11/15/2022] Open
Abstract
PURPOSE Magnetic resonance-guided focused ultrasound surgery (MRgFUS) can be used to noninvasively treat symptomatic uterine fibroids by heating with focused ultrasound sonications while monitoring the temperature with magnetic resonance (MR) thermometry. While prior studies have compared focused ultrasound simulations to clinical results, studies involving uterine fibroids remain scarce. In our study, we perform such a comparison to assess the suitability of simulations for treatment planning. METHODS Sonications (N = 67) were simulated retrospectively using acoustic and thermal models based on the Rayleigh integral and Pennes bioheat equation followed by MR-thermometry simulation in seven patients who underwent MRgFUS treatment for uterine fibroids. The spatial accuracy of simulated focus location was assessed by evaluating displacements of the centers of mass of the thermal dose distributions between simulated and treatment MR thermometry slices. Temperature-time curves and sizes of 240 equivalent minutes at 43°C (240EM43 ) volumes between treatment and simulation were compared. RESULTS The simulated focus location showed errors of 2.7 ± 4.1, -0.7 ± 2.0, and 1.3 ± 1.2 mm (mean ± SD) in the anterior-posterior, foot-head, and right-left directions for a fibroid absorption coefficient of 4.9 Np m-1 MHz-1 and perfusion parameter of 1.89 kg m-3 s-1 . Linear regression of 240EM43 volumes of 67 sonications of patient treatments and simulations utilizing these parameters yielded a slope of 1.04 and a correlation coefficient of 0.54. The temperature rise ratio of simulation to treatment near the end of sonication was 0.47 ± 0.22, 1.28 ± 0.60, and 1.49 ± 0.71 for 66 sonications simulated utilizing fibroid absorption coefficient of 1.2, 4.9, and 8.6 Np m-1 MHz-1 , respectively, and the aforementioned perfusion value. The impact of perfusion on peak temperature rise is minimal between 1.89 and 10 kg m-3 s-1 , but became more substantial when utilizing a value of 100 kg m-3 s-1 . CONCLUSIONS The results of this study suggest that perfusion, while in some cases having a substantial impact on thermal dose volumes, has less impact than ultrasound absorption for predicting peak temperature elevation at least when using perfusion parameter values up to 10 kg m-3 s-1 for this particular array geometry, frequencies, and tissue target which is good for clinicians to be aware of. The results suggest that simulations show promise in treatment planning, particularly in terms of spatial accuracy. However, in order to use simulations to predict temperature rise due to a sonication, knowledge of the patient-specific tissue parameters, in particular the absorption coefficient is important. Currently, spatially varying patient-specific tissue parameter values are not available during treatment, so simulations can only be used for planning purposes to estimate sonication performance on average.
Collapse
Affiliation(s)
- Mikko Hyvärinen
- Sunnybrook Research InstituteTorontoOntarioCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
| | - Yuexi Huang
- Sunnybrook Research InstituteTorontoOntarioCanada
| | | | - Kullervo Hynynen
- Sunnybrook Research InstituteTorontoOntarioCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
42
|
Boehm C, Goeger-Neff M, Mulder HT, Zilles B, Lindner LH, van Rhoon GC, Karampinos DC, Wu M. Susceptibility artifact correction in MR thermometry for monitoring of mild radiofrequency hyperthermia using total field inversion. Magn Reson Med 2022; 88:120-132. [PMID: 35313384 DOI: 10.1002/mrm.29191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/28/2022]
Abstract
PURPOSE MR temperature monitoring of mild radiofrequency hyperthermia (RF-HT) of cancer exploits the linear resonance frequency shift of water with temperature. Motion-induced susceptibility distribution changes cause artifacts that we correct here using the total field inversion (TFI) approach. METHODS The performance of TFI was compared to two background field removal (BFR) methods: Laplacian boundary value (LBV) and projection onto dipole fields (PDF). Data sets with spatial susceptibility change and B 0 -drift were simulated, phantom heating experiments were performed, four volunteer data sets at thermoneutral conditions as well as data from one cervical cancer, two sarcoma, and one seroma patients undergoing mild RF-HT were corrected using the proposed methods. RESULTS Simulations and phantom heating experiments revealed that using BFR or TFI preserves temperature-induced phase change, while removing susceptibility artifacts and B 0 -drift. TFI resulted in the least cumulative error for all four volunteers. Temperature probe information from four patient data sets were best depicted by TFI-corrected data in terms of accuracy and precision. TFI also performed best in case of the sarcoma treatment without temperature probe. CONCLUSION TFI outperforms previously suggested BFR methods in terms of accuracy and robustness. While PDF consistently overestimates susceptibility contribution, and LBV removes valuable pixel information, TFI is more robust and leads to more accurate temperature estimations.
Collapse
Affiliation(s)
- Christof Boehm
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
| | | | | | - Benjamin Zilles
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Lars H Lindner
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | | | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Mingming Wu
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
43
|
Continuous cardiac thermometry via simultaneous catheter tracking and undersampled radial golden angle acquisition for radiofrequency ablation monitoring. Sci Rep 2022; 12:4006. [PMID: 35256627 PMCID: PMC8901729 DOI: 10.1038/s41598-022-06927-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/24/2022] [Indexed: 01/18/2023] Open
Abstract
The complexity of the MRI protocol is one of the factors limiting the clinical adoption of MR temperature mapping for real-time monitoring of cardiac ablation procedures and a push-button solution would ease its use. Continuous gradient echo golden angle radial acquisition combined with intra-scan motion correction and undersampled temperature determination could be a robust and more user-friendly alternative than the ultrafast GRE-EPI sequence which suffers from sensitivity to magnetic field susceptibility artifacts and requires ECG-gating. The goal of this proof-of-concept work is to establish the temperature uncertainty as well as the spatial and temporal resolutions achievable in an Agar-gel phantom and in vivo using this method. GRE radial golden angle acquisitions were used to monitor RF ablations in a phantom and in vivo in two sheep hearts with different slice orientations. In each case, 2D rigid motion correction based on catheter micro-coil signal, tracking its motion, was performed and its impact on the temperature imaging was assessed. The temperature uncertainty was determined for three spatial resolutions (1 × 1 × 3 mm3, 2 × 2 × 3 mm3, and 3 × 3 × 3 mm3) and three temporal resolutions (0.48, 0.72, and 0.97 s) with undersampling acceleration factors ranging from 2 to 17. The combination of radial golden angle GRE acquisition, simultaneous catheter tracking, intra-scan 2D motion correction, and undersampled thermometry enabled temperature monitoring in the myocardium in vivo during RF ablations with high temporal (< 1 s) and high spatial resolution. The temperature uncertainty ranged from 0.2 ± 0.1 to 1.8 ± 0.2 °C for the various temporal and spatial resolutions and, on average, remained superior to the uncertainty of an EPI acquisition while still allowing clinical monitoring of the RF ablation process. The proposed method is a robust and promising alternative to EPI acquisition to monitor in vivo RF cardiac ablations. Further studies remain required to improve the temperature uncertainty and establish its clinical applicability.
Collapse
|
44
|
Kuroda K, Yatsushiro S. New Insights into MR Safety for Implantable Medical Devices. Magn Reson Med Sci 2022; 21:110-131. [PMID: 35228487 PMCID: PMC9199981 DOI: 10.2463/mrms.rev.2021-0160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/08/2022] [Indexed: 12/24/2022] Open
Abstract
Over the last two decades, the status of MR safety has dramatically changed. In particular, ever since the MR-conditional cardiac device was approved by the Food and Drug Administration (FDA) in 2008 and by the Pharmaceuticals and Medical Devices Agency (PMDA) in 2012, the safety of patients with an implantable medical device (IMD) has been one of the most important issues in terms of MR use. In conjunction with the regulatory approvals for various IMDs, standards, technical specifications, and guidelines have also been rapidly created and developed. Many invaluable papers investigating and reviewing the history and status of MR use in the presence of IMDs already exist. As such, this review paper seeks to bridge the gap between clinical practice and the information that is obtained by standard-based tests and provided by an IMD's package insert or instructions for use. Interpretation of the gradient of the magnetic flux density intensity of the static magnetic field with respect to the magnetic displacement force is discussed, along with the physical background of RF field. The relationship between specific absorption rate (SAR) and B1+RMS, and their effects on image quality are described. In addition, insofar as providing new directions for future research and practice, the feasibility of safety test methods for RF-induced heating of IMDs using MR thermometry, evaluation of tissue heat damage, and challenges in cardiac IMDs will be discussed.
Collapse
Affiliation(s)
- Kagayaki Kuroda
- Department of Human and Information Sciences, School of Information Science and Technology, Tokai University, Hiratsuka, Kanagawa, Japan
| | - Satoshi Yatsushiro
- Department of Human and Information Sciences, School of Information Science and Technology, Tokai University, Hiratsuka, Kanagawa, Japan
- Biosim Laboratory, Bioview, Inc., Tokyo, Japan
| |
Collapse
|
45
|
Tang M, Yamamoto T. Progress in Understanding Radiofrequency Heating and Burn Injuries for Safer MR Imaging. Magn Reson Med Sci 2022; 22:7-25. [PMID: 35228437 PMCID: PMC9849420 DOI: 10.2463/mrms.rev.2021-0047] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
RF electromagnetic wave exposure during MRI scans induces heat and occasionally causes burn injuries to patients. Among all the types of physical injuries that have occurred during MRI examinations, RF burn injuries are the most common ones. The number of RF burn injuries increases as the static magnetic field of MRI systems increases because higher RFs lead to higher heating. The commonly believed mechanisms of RF burn injuries are the formation of a conductive loop by the patient's posture or cables, such as an electrocardiogram lead; however, the mechanisms of RF burn injuries that occur at the contact points, such as the bore wall and the elbow, remain unclear. A comprehensive understanding of RF heating is needed to address effective countermeasures against all RF burn injuries for safe MRI examinations. In this review, we summarize the occurrence of RF burn injury cases by categorizing RF burn injuries reported worldwide in recent decades. Safety standards and regulations governing RF heating that occurs during MRI examinations are presented, along with their theoretical and physiological backgrounds. The experimental assessment techniques for RF heating are then reviewed, and the development of numerical simulation techniques is explained. In addition, a comprehensive theoretical interpretation of RF burn injuries is presented. By including the results of recent experimental and numerical simulation studies on RF heating, this review describes the progress achieved in understanding RF heating from the standpoint of MRI burn injury prevention.
Collapse
Affiliation(s)
- Minghui Tang
- Department of Diagnostic Imaging, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Toru Yamamoto
- Division of Biomedical Engineering and Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan,Corresponding author: Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0812, Japan. Phone: +81-11-706-3412, Fax: +81-11-706-4916, E-mail:
| |
Collapse
|
46
|
Clinical Evidence for Thermometric Parameters to Guide Hyperthermia Treatment. Cancers (Basel) 2022; 14:cancers14030625. [PMID: 35158893 PMCID: PMC8833668 DOI: 10.3390/cancers14030625] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 01/01/2023] Open
Abstract
Hyperthermia (HT) is a cancer treatment modality which targets malignant tissues by heating to 40-43 °C. In addition to its direct antitumor effects, HT potently sensitizes the tumor to radiotherapy (RT) and chemotherapy (CT), thereby enabling complete eradication of some tumor entities as shown in randomized clinical trials. Despite the proven efficacy of HT in combination with classic cancer treatments, there are limited international standards for the delivery of HT in the clinical setting. Consequently, there is a large variability in reported data on thermometric parameters, including the temperature obtained from multiple reference points, heating duration, thermal dose, time interval, and sequence between HT and other treatment modalities. Evidence from some clinical trials indicates that thermal dose, which correlates with heating time and temperature achieved, could be used as a predictive marker for treatment efficacy in future studies. Similarly, other thermometric parameters when chosen optimally are associated with increased antitumor efficacy. This review summarizes the existing clinical evidence for the prognostic and predictive role of the most important thermometric parameters to guide the combined treatment of RT and CT with HT. In conclusion, we call for the standardization of thermometric parameters and stress the importance for their validation in future prospective clinical studies.
Collapse
|
47
|
Holman R, Lorton O, Guillemin PC, Desgranges S, Santini F, Preso DB, Farhat M, Contino-Pépin C, Salomir R. Perfluorocarbon emulsion enhances MR-ARFI displacement and temperature in vitro: Evaluating the response with MRI, NMR, and hydrophone. Front Oncol 2022; 12:1025481. [PMID: 36713528 PMCID: PMC9880467 DOI: 10.3389/fonc.2022.1025481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/18/2022] [Indexed: 01/15/2023] Open
Abstract
Sonosensitive perfluorocarbon F8TAC18-PFOB emulsion is under development to enhance heating, increase thermal contrast, and reduce treatment times during focused ultrasound tumor ablation of highly perfused tissue. The emulsion previously showed enhanced heating during ex vivo and in vitro studies. Experiments were designed to observe the response in additional scenarios by varying focused ultrasound conditions, emulsion concentrations, and surfactants. Most notably, changes in acoustic absorption were assessed with MR-ARFI. Phantoms were developed to have thermal, elastic, and relaxometry properties similar to those of ex vivo pig tissue. The phantoms were embedded with varying amounts of F8TAC18-PFOB emulsion or lecithin-PFOB emulsion, between about 0.0-0.3% v:w, in 0.05% v:w increments. MR-ARFI measurements were performed using a FLASH-ARFI-MRT sequence to obtain simultaneous displacement and temperature measurements. A Fabry-Perot hydrophone was utilized to observe the acoustic emissions. Susceptibility-weighted imaging and relaxometry mapping were performed to observe concentration-dependent effects. 19F diffusion-ordered spectroscopy NMR was used to measure the diffusion coefficient of perfluorocarbon droplets in a water emulsion. Increased displacement and temperature were observed with higher emulsion concentration. In semi-rigid MR-ARFI phantoms, a linear response was observed with low-duty cycle MR-ARFI sonications and a mono-exponential saturating response was observed with sustained sonications. The emulsifiers did not have a significant effect on acoustic absorption in semi-rigid gels. Stable cavitation might also contribute to enhanced heating.
Collapse
Affiliation(s)
- Ryan Holman
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Orane Lorton
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pauline C Guillemin
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Stéphane Desgranges
- Avignon Université, Equipe Systèmes Amphiphiles bioactifs et Formulations Eco-compatibles, Unité Propre de Recherche et d'Innovation (UPRI), Avignon, France
| | - Francesco Santini
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Davide Bernardo Preso
- Institute of Mechanical Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mohamed Farhat
- Institute of Mechanical Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Christiane Contino-Pépin
- Avignon Université, Equipe Systèmes Amphiphiles bioactifs et Formulations Eco-compatibles, Unité Propre de Recherche et d'Innovation (UPRI), Avignon, France
| | - Rares Salomir
- Image Guided Interventions Laboratory (GR-949), Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Radiology Department, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
48
|
Kim HC, Lee W, Kunes J, Yoon K, Lee JE, Foley L, Kowsari K, Yoo SS. Transcranial focused ultrasound modulates cortical and thalamic motor activity in awake sheep. Sci Rep 2021; 11:19274. [PMID: 34588588 PMCID: PMC8481295 DOI: 10.1038/s41598-021-98920-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 09/08/2021] [Indexed: 11/09/2022] Open
Abstract
Transcranial application of pulsed low-intensity focused ultrasound (FUS) modulates the excitability of region-specific brain areas, and anesthetic confounders on brain activity warrant the evaluation of the technique in awake animals. We examined the neuromodulatory effects of FUS in unanesthetized sheep by developing a custom-fit headgear capable of reproducibly placing an acoustic focus on the unilateral motor cortex (M1) and corresponding thalamic area. The efferent responses to sonication, based on the acoustic parameters previously identified in anesthetized sheep, were measured using electromyography (EMG) from both hind limbs across three experimental conditions: on-target sonication, off-target sonication, and without sonication. Excitatory sonication yielded greater amplitude of EMG signals obtained from the hind limb contralateral to sonication than that from the ipsilateral limb. Spurious appearance of motion-related EMG signals limited the amount of analyzed data (~ 10% selection of acquired data) during excitatory sonication, and the averaged EMG response rates elicited by the M1 and thalamic stimulations were 7.5 ± 1.4% and 6.7 ± 1.5%, respectively. Suppressive sonication, while sheep walked on the treadmill, temporarily reduced the EMG amplitude from the limb contralateral to sonication. No significant change was found in the EMG amplitudes during the off-target sonication. Behavioral observation throughout the study and histological analysis showed no sign of brain tissue damage caused by the acoustic stimulation. Marginal response rates observed during excitatory sonication call for technical refinement to reduce motion artifacts during EMG acquisitions as well as acoustic aberration correction schemes to improve spatial accuracy of sonication. Yet, our results indicate that low-intensity FUS modulated the excitability of regional brain tissues reversibly and safely in awake sheep, supporting its potential in theragnostic applications.
Collapse
Affiliation(s)
- Hyun-Chul Kim
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Wonhye Lee
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Jennifer Kunes
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Kyungho Yoon
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Ji Eun Lee
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Lori Foley
- Translational Discovery Laboratory, Brigham and Women's Hospital, Boston, MA, USA
| | - Kavin Kowsari
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Seung-Schik Yoo
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
49
|
Deng T, Zhang L, Li X, Zink JI, Wu HH. Responsive Nanoparticles to Enable a Focused Ultrasound-Stimulated Magnetic Resonance Imaging Spotlight. ACS NANO 2021; 15:14618-14630. [PMID: 34519214 DOI: 10.1021/acsnano.1c04339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Magnetic resonance imaging (MRI)-guided high-intensity focused ultrasound (HIFU) has been applied as a therapeutic tool in the clinic, and enhanced MRI contrast for depiction of target tissues will improve the precision and applicability of HIFU therapy. This work presents a "spotlight MRI" contrast enhancement technique, which combines four essential components: periodic HIFU stimulation, strong modulation of T1 caused by HIFU, rapid MRI signal collection, and spotlight MRI spectral signal processing. The T1 modulation is enabled by a HIFU-responsive nanomaterial based on mesoporous silica nanoparticles with Pluronic polymers (Poloxamers) and MRI contrast agents attached. With periodic HIFU stimulation in a precisely defined region containing the nanomaterial, strong periodic MRI T1-weighted signal changes are generated. Rapid MRI signal collection of the periodic signal changes is realized by a rapid dynamic 3D MRI technique, and spotlight MRI spectral signal processing creates modulation enhancement maps (MEM) that suppress background signal and spotlight the spatial location with nanomaterials experiencing HIFU stimulation. In particular, a framework is presented to analyze the trade-offs between different parameter choices for the signal processing method. The optimal parameter choices under a specific experimental setting achieved MRI contrast enhancement of more than 2 orders of magnitude at the HIFU focal point, compared to controls.
Collapse
Affiliation(s)
- Tian Deng
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- California Nano Systems Institute (CNSI), University of California, Los Angeles, California 90095, United States
| | - Le Zhang
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California 90095, United States
| | - Xinzhou Li
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| | - Jeffrey I Zink
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
- California Nano Systems Institute (CNSI), University of California, Los Angeles, California 90095, United States
| | - Holden H Wu
- California Nano Systems Institute (CNSI), University of California, Los Angeles, California 90095, United States
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
50
|
Zong S, Shen G, Mei CS. Proton resonance frequency-based thermometry for aqueous and adipose tissues. Med Phys 2021; 48:5651-5660. [PMID: 34468019 DOI: 10.1002/mp.15203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 08/08/2021] [Accepted: 08/21/2021] [Indexed: 11/09/2022] Open
Abstract
PURPOSE The proton resonance frequency (PRF)-based thermometry uses heating-induced phase variations to reconstruct magnetic resonance (MR) temperature maps. However, the measurements of the phase differences may be corrupted by the presence of fat due to its phase being insensitive to heat. The work aims to reconstruct the PRF-based temperature maps for tissues containing fat. METHODS This work proposes a PRF-based method that eliminates the fat's phase contribution by estimating the temperature-insensitive fat vector. A vector in a complex domain represents a given voxel's magnetization from an acquired, complex MR image. In this method, a circle was fit to a time series of vectors acquired from a heated region during a heating experiment. The circle center served as the fat vector, which was then subtracted from the acquired vectors, leaving only the temperature-sensitive vectors for thermal mapping. This work was verified with the gel phantoms of 10%, 15%, and 20% fat content and the ex vivo phantom of porcine abdomen tissue during water-bath heating. It was also tested with an ex vivo porcine tissue during focused ultrasound (FUS) heating. RESULTS A good agreement was found between the temperature measurements obtained from the proposed method and the optical fiber temperature probe in the verification experiments. In the gel phantoms, the linear regression provided a slope of 0.992 and an R2 of 0.994. The Bland-Altman analysis gave a bias of 0.49°C and a 95% confidence interval of ±1.60°C. In the ex vivo tissue, the results of the linear regression and Bland-Altman methods provided a slope of 0.979, an intercept of 0.353, an R2 of 0.947, and a 95% confidence interval of ±3.26°C with a bias of -0.14°C. In FUS tests, a temperature discrepancy of up to 28% was observed between the proposed and conventional PRF methods in ex vivo tissues containing fat. CONCLUSIONS The proposed PRF-based method can improve the accuracy of the temperature measurements in tissues with fat, such as breast, abdomen, prostate, and bone marrow.
Collapse
Affiliation(s)
- Shenyan Zong
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai
| | - Guofeng Shen
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai
| | | |
Collapse
|