1
|
Ding Y, Ruan X, Shu K, Xu W, Liu Y, Mo G, Xu J, Jian Y, Zhang J, Zhang L, Wang K, Hou JT, Shen J, Yan Z, Ye F, Zhu J, Dai L. Rational Design of Mono-Substituted Gd-DOTA as Highly Stable and Efficient MRI Contrast Agents for Hepatobiliary and Inflammation Imaging. J Med Chem 2024; 67:15476-15493. [PMID: 39190821 DOI: 10.1021/acs.jmedchem.4c01084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Hepatobiliary-specific magnetic resonance imaging contrast agents (MRI CAs) play a crucial role in the early diagnosis of hepatocellular carcinoma (HCC). However, only two acyclic CAs, Gd-BOPTA and Gd-EOB-DTPA, exhibit unfavorable kinetic inertness. Our study focused on the development of superior stable innovative macrocyclic CAs. By introducing a lipophilic benzyloxy group (OBn) into the H4DOTA ring (Gd-L1), we achieved significant enhancement in kinetic inertness. In vivo experiments in mice demonstrated that 40% of the dosage was distributed to the liver at 5 min, providing sustained hepatic enhancement for over 35 min. We also developed an MPO-responsive MRI CA (Gd-L3), which can participate in the "peroxidase cycle" as the substrate, generating oligomers with a 3.8-fold increase in relaxivity, and selectively enhance the lesion in an acute gout mouse model. Overall, our work represents a significant advancement in the field of hepatic and inflammatory MRI, offering promising avenues for early diagnosis and improved imaging outcomes.
Collapse
Affiliation(s)
- Yinghui Ding
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
- Postgraduate Training Base Alliance, Wenzhou Medical University, Wenzhou, Zhejiang 325001, China
| | - Xinzhong Ruan
- Department of Radiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Kun Shu
- Wenzhou Key Laboratory of the Structural and Functional Imaging, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Weiyuan Xu
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Yao Liu
- Sichuan Key Laboratory of Medical Imaging, School of Basic Medical Sciences and Forensic Medicine and Nanchong Key Laboratory of MRI Contrast Agent, North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Gengshen Mo
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Jiao Xu
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Yong Jian
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Jilai Zhang
- Postgraduate Training Base Alliance, Wenzhou Medical University, Wenzhou, Zhejiang 325001, China
| | - Lingfeng Zhang
- Wenzhou Key Laboratory of the Structural and Functional Imaging, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Keren Wang
- Wenzhou Key Laboratory of the Structural and Functional Imaging, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ji-Ting Hou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Zhihan Yan
- Wenzhou Key Laboratory of the Structural and Functional Imaging, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Fangfu Ye
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Jiang Zhu
- Sichuan Key Laboratory of Medical Imaging, School of Basic Medical Sciences and Forensic Medicine and Nanchong Key Laboratory of MRI Contrast Agent, North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Lixiong Dai
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
- Postgraduate Training Base Alliance, Wenzhou Medical University, Wenzhou, Zhejiang 325001, China
| |
Collapse
|
2
|
Khramova YV, Katrukha VA, Chebanenko VV, Kostyuk AI, Gorbunov NP, Panasenko OM, Sokolov AV, Bilan DS. Reactive Halogen Species: Role in Living Systems and Current Research Approaches. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S90-S111. [PMID: 38621746 DOI: 10.1134/s0006297924140062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 10/04/2023] [Indexed: 04/17/2024]
Abstract
Reactive halogen species (RHS) are highly reactive compounds that are normally required for regulation of immune response, inflammatory reactions, enzyme function, etc. At the same time, hyperproduction of highly reactive compounds leads to the development of various socially significant diseases - asthma, pulmonary hypertension, oncological and neurodegenerative diseases, retinopathy, and many others. The main sources of (pseudo)hypohalous acids are enzymes from the family of heme peroxidases - myeloperoxidase, lactoperoxidase, eosinophil peroxidase, and thyroid peroxidase. Main targets of these compounds are proteins and peptides, primarily methionine and cysteine residues. Due to the short lifetime, detection of RHS can be difficult. The most common approach is detection of myeloperoxidase, which is thought to reflect the amount of RHS produced, but these methods are indirect, and the results are often contradictory. The most promising approaches seem to be those that provide direct registration of highly reactive compounds themselves or products of their interaction with components of living cells, such as fluorescent dyes. However, even such methods have a number of limitations and can often be applied mainly for in vitro studies with cell culture. Detection of reactive halogen species in living organisms in real time is a particularly acute issue. The present review is devoted to RHS, their characteristics, chemical properties, peculiarities of interaction with components of living cells, and methods of their detection in living systems. Special attention is paid to the genetically encoded tools, which have been introduced recently and allow avoiding a number of difficulties when working with living systems.
Collapse
Affiliation(s)
- Yuliya V Khramova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Veronika A Katrukha
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Victoria V Chebanenko
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Alexander I Kostyuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | | | - Oleg M Panasenko
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Alexey V Sokolov
- Institute of Experimental Medicine, Saint-Petersburg, 197022, Russia.
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Dmitry S Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| |
Collapse
|
3
|
Nie Q, Li C, Wang Y, Hu Y, Pu W, Zhang Q, Cai J, Lin Y, Li G, Wang C, Li L, Dou Y, Zhang J. Pathologically triggered in situ aggregation of nanoparticles for inflammation-targeting amplification and therapeutic potentiation. Acta Pharm Sin B 2023; 13:390-409. [PMID: 36815041 PMCID: PMC9939322 DOI: 10.1016/j.apsb.2022.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/24/2022] [Accepted: 04/28/2022] [Indexed: 12/01/2022] Open
Abstract
Uncontrolled and persistent inflammation is closely related to numerous acute and chronic diseases. However, effective targeting delivery systems remain to be developed for precision therapy of inflammatory diseases. Herein we report a novel strategy for engineering inflammation-accumulation nanoparticles via phenolic functionalization. Different phenol-functionalized nanoparticles were first developed, which can undergo in situ aggregation upon triggering by the inflammatory/oxidative microenvironment. Phenolic compound-decorated poly (lactide-co-glycolide) nanoparticles, in particular tyramine (Tyr)-coated nanoparticles, showed significantly enhanced accumulation at inflammatory sites in mouse models of colitis, acute liver injury, and acute lung injury, mainly resulting from in situ cross-linking and tissue anchoring of nanoparticles triggered by local myeloperoxidase and reactive oxygen species. By combining a cyclodextrin-derived bioactive material with Tyr decoration, a multifunctional nanotherapy (TTN) was further developed, which displayed enhanced cellular uptake, anti-inflammatory activities, and inflammatory tissue accumulation, thereby affording amplified therapeutic effects in mice with colitis or acute liver injury. Moreover, TTN can serve as a bioactive and inflammation-targeting nanoplatform for site-specifically delivering a therapeutic peptide to the inflamed colon post oral administration, leading to considerably potentiated in vivo efficacies. Preliminary studies also revealed good safety of orally delivered TTN. Consequently, Tyr-based functionalization is promising for inflammation targeting amplification and therapeutic potentiation of nanotherapies.
Collapse
Affiliation(s)
- Qiang Nie
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chenwen Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yu Wang
- Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400030, China
| | - Yi Hu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wendan Pu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Qixiong Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jiajun Cai
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yongyao Lin
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Gang Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chenping Wang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Lanlan Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yin Dou
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China,State Key Lab of Trauma, Burn and Combined Injury, Institute of Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China,Corresponding author. Tel.: +86 23 68771637.
| |
Collapse
|
4
|
Li Y, Xia Q, Zhu C, Cao W, Xia Z, Liu X, Xiao B, Chen K, Liu Y, Zhong L, Tan B, Lei J, Zhu J. An activatable Mn(II) MRI probe for detecting peroxidase activity in vitro and in vivo. J Inorg Biochem 2022; 236:111979. [PMID: 36087435 DOI: 10.1016/j.jinorgbio.2022.111979] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 12/15/2022]
Abstract
Myeloperoxidase (MPO), a hallmark of the function and activation of innate immune cells, can act as a 'double-edged sword', contributing to clear infection as well as causing tissue oxidizing damage in various inflammatory diseases. In this study, an activatable Mn(II) chelate-based magnetic resonance imaging (MRI) contrast agent (CA), Mn-TyEDTA (TyEDTA = tyrosine derived ethylenediaminetetraacetic acid) structurally featuring a phenol group as the electron-donor, was developed to sense the activity of peroxidase in vitro and in vivo. Mn-TyEDTA demonstrated a peroxidase activity-dependent relaxivity in the presence of horseradish peroxidase (HRP)/H2O2 with more than a 2.6-fold increase in water proton relaxivity produced (HRP, 500 U; H2O2, 4.5 eq). A mechanism of peroxidase-mediated Mn(II) monomer radical polymerization was confirmed with those oligomers of Mn-TyEDTA such as dimer, trimer and tetramer were found in the LC-MS study. Dynamic MR imaging of normal mice revealed rapid blood clearance and mixed renal and hepatobiliary elimination of Mn-TyEDTA. Furthermore, compared to liver-specific and non-specific extracellular contrast agents (Mn-BnO-TyEDTA (BnO-TyEDTA = benzyl tyrosine-derived ethylenediaminetetraacetic acid) and Gd-DTPA (DTPA = diethylene triamine penta-acetic acid)), MRI on a monosodium urate (MSU) crystal-induced acute mice model of arthritis showed that inflamed tissues could be selectively enhanced by Mn-TyEDTA, suggesting that this peroxidase-activatable Mn(II) MRI probe could potentially be used for noninvasive detection of MPO activity in vivo.
Collapse
Affiliation(s)
- Yunhe Li
- Sichuan Key Laboratory of Medical Imaging, Department of Oncology, and Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Maoyuan Road 1, Nanchong City, Sichuan 637000, China; School of Pharmacy, North Sichuan Medical College, Fujiang Road 234, Nanchong City, Sichuan 637000, China
| | - Qian Xia
- Sichuan Key Laboratory of Medical Imaging, Department of Oncology, and Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Maoyuan Road 1, Nanchong City, Sichuan 637000, China
| | - Chunrong Zhu
- Sichuan Key Laboratory of Medical Imaging, Department of Oncology, and Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Maoyuan Road 1, Nanchong City, Sichuan 637000, China
| | - Weidong Cao
- Sichuan Key Laboratory of Medical Imaging, Department of Oncology, and Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Maoyuan Road 1, Nanchong City, Sichuan 637000, China; School of Pharmacy, North Sichuan Medical College, Fujiang Road 234, Nanchong City, Sichuan 637000, China
| | - Zhiyang Xia
- Sichuan Key Laboratory of Medical Imaging, Department of Oncology, and Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Maoyuan Road 1, Nanchong City, Sichuan 637000, China
| | - Xinxin Liu
- Sichuan Key Laboratory of Medical Imaging, Department of Oncology, and Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Maoyuan Road 1, Nanchong City, Sichuan 637000, China
| | - Bin Xiao
- Sichuan Key Laboratory of Medical Imaging, Department of Oncology, and Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Maoyuan Road 1, Nanchong City, Sichuan 637000, China
| | - Keyu Chen
- Sichuan Key Laboratory of Medical Imaging, Department of Oncology, and Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Maoyuan Road 1, Nanchong City, Sichuan 637000, China; School of Pharmacy, North Sichuan Medical College, Fujiang Road 234, Nanchong City, Sichuan 637000, China
| | - Yun Liu
- Sichuan Key Laboratory of Medical Imaging, Department of Oncology, and Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Maoyuan Road 1, Nanchong City, Sichuan 637000, China
| | - Lei Zhong
- Sichuan Key Laboratory of Medical Imaging, Department of Oncology, and Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Maoyuan Road 1, Nanchong City, Sichuan 637000, China
| | - Bangxian Tan
- Sichuan Key Laboratory of Medical Imaging, Department of Oncology, and Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Maoyuan Road 1, Nanchong City, Sichuan 637000, China
| | - Jun Lei
- School of Pharmacy, North Sichuan Medical College, Fujiang Road 234, Nanchong City, Sichuan 637000, China.
| | - Jiang Zhu
- Sichuan Key Laboratory of Medical Imaging, Department of Oncology, and Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Maoyuan Road 1, Nanchong City, Sichuan 637000, China; School of Pharmacy, North Sichuan Medical College, Fujiang Road 234, Nanchong City, Sichuan 637000, China.
| |
Collapse
|
5
|
Karbalaei S, Goldsmith CR. Recent advances in the preclinical development of responsive MRI contrast agents capable of detecting hydrogen peroxide. J Inorg Biochem 2022; 230:111763. [DOI: 10.1016/j.jinorgbio.2022.111763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 01/10/2023]
|
6
|
Bäuerle T, Gupta S, Zheng S, Seyler L, Leporati A, Marosfoi M, Maschauer S, Prante O, Caravan P, Bogdanov A. Multimodal Bone Metastasis-associated Epidermal Growth Factor Receptor Imaging in an Orthotopic Rat Model. Radiol Imaging Cancer 2021; 3:e200069. [PMID: 34170199 DOI: 10.1148/rycan.2021200069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Purpose To develop multimodality imaging techniques for measuring epidermal growth factor receptor (EGFR) as a therapy-relevant and metastasis-associated molecular marker in triple-negative mammary adenocarcinoma metastases. Materials and Methods An orthotopic bone metastasis EGFR-positive, triple-negative breast cancer (TNBC) model in rats was used for bioluminescence imaging, SPECT/CT, PET/CT, and MRI with quantitative analysis of transcripts (n = 22 rats). Receptor-specific MRI of EGFR expression in vivo was performed by acquiring spin-echo T1-weighted images after sequential administration of a pair of anti-EGFR antigen binding fragments, F(ab')2, conjugated to either horseradish peroxidase or glucose oxidase, which have complementing activities, as well as paramagnetic (gadolinium[III]-mono-5-hydroxytryptamide of 2,2',2''-(10-(2,6-dioxotetrahydro-2H-pyran-3-yl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid, or Gd-5HT-DOTAGA) or positron-emitting (gallium 68-5HT-DOTAGA) substrates for MRI and PET/CT imaging, respectively. EGFR expression was confirmed by quantitative reverse transcriptase polymerase chain reaction and immunohistochemical analyses to compare with image findings. Results After surgical intraarterial delivery of TNBC cells, rats developed tumors that diverged into either rapidly growing osteolytic or slow-growing nonosteolytic tumors. Both tumor types showed receptor-specific initial MRI signal enhancement (contrast-to-noise ratio) that was three to six times higher than that of normal bone marrow (29.4 vs 4.9; P < .01). Micro PET/CT imaging of EGFR expression demonstrated a high level of heterogeneity with regional uptake of the tracer, which corresponded to region-of-interest MRI signal intensity elevation (121.1 vs 93.3; P < .001). Analysis of metastases with corroboration of imaging results showed high levels of EGFR protein and messenger RNA, or mRNA, expression in the invasive tumor. Conclusion Convergence of multimodal molecular receptor imaging enabled comprehensive assessment of EGFR overexpression in an orthotopic model of TNBC metastasis. Keywords: Animal Studies, Molecular Imaging-Cancer, MR-Contrast Agent, Radionuclide Studies, Skeletal-Appendicular, Metastases Supplemental material is available for this article. © RSNA, 2021.
Collapse
Affiliation(s)
- Tobias Bäuerle
- From the Institute of Radiology, Friedrich-Alexander University of Erlangen-Nurnberg, Erlangen, Germany (T.B., L.S.); Laboratory of Molecular Imaging Probes, Department of Radiology (S.G., A.L., A.B.), and Advanced MRI Center and New England Center for Stroke Research, Department of Radiology (S.Z., M.M.), University of Massachusetts Medical School, 55 Lake Ave North, S6-434, Worcester, MA 01655; Department of Nuclear Medicine, Friedrich-Alexander University of Erlangen-Nurnberg, Germany (S.M., O.P.); A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Mass (P.C.); and A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation (A.B.)
| | - Suresh Gupta
- From the Institute of Radiology, Friedrich-Alexander University of Erlangen-Nurnberg, Erlangen, Germany (T.B., L.S.); Laboratory of Molecular Imaging Probes, Department of Radiology (S.G., A.L., A.B.), and Advanced MRI Center and New England Center for Stroke Research, Department of Radiology (S.Z., M.M.), University of Massachusetts Medical School, 55 Lake Ave North, S6-434, Worcester, MA 01655; Department of Nuclear Medicine, Friedrich-Alexander University of Erlangen-Nurnberg, Germany (S.M., O.P.); A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Mass (P.C.); and A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation (A.B.)
| | - Shaokuan Zheng
- From the Institute of Radiology, Friedrich-Alexander University of Erlangen-Nurnberg, Erlangen, Germany (T.B., L.S.); Laboratory of Molecular Imaging Probes, Department of Radiology (S.G., A.L., A.B.), and Advanced MRI Center and New England Center for Stroke Research, Department of Radiology (S.Z., M.M.), University of Massachusetts Medical School, 55 Lake Ave North, S6-434, Worcester, MA 01655; Department of Nuclear Medicine, Friedrich-Alexander University of Erlangen-Nurnberg, Germany (S.M., O.P.); A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Mass (P.C.); and A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation (A.B.)
| | - Lisa Seyler
- From the Institute of Radiology, Friedrich-Alexander University of Erlangen-Nurnberg, Erlangen, Germany (T.B., L.S.); Laboratory of Molecular Imaging Probes, Department of Radiology (S.G., A.L., A.B.), and Advanced MRI Center and New England Center for Stroke Research, Department of Radiology (S.Z., M.M.), University of Massachusetts Medical School, 55 Lake Ave North, S6-434, Worcester, MA 01655; Department of Nuclear Medicine, Friedrich-Alexander University of Erlangen-Nurnberg, Germany (S.M., O.P.); A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Mass (P.C.); and A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation (A.B.)
| | - Anita Leporati
- From the Institute of Radiology, Friedrich-Alexander University of Erlangen-Nurnberg, Erlangen, Germany (T.B., L.S.); Laboratory of Molecular Imaging Probes, Department of Radiology (S.G., A.L., A.B.), and Advanced MRI Center and New England Center for Stroke Research, Department of Radiology (S.Z., M.M.), University of Massachusetts Medical School, 55 Lake Ave North, S6-434, Worcester, MA 01655; Department of Nuclear Medicine, Friedrich-Alexander University of Erlangen-Nurnberg, Germany (S.M., O.P.); A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Mass (P.C.); and A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation (A.B.)
| | - Miklos Marosfoi
- From the Institute of Radiology, Friedrich-Alexander University of Erlangen-Nurnberg, Erlangen, Germany (T.B., L.S.); Laboratory of Molecular Imaging Probes, Department of Radiology (S.G., A.L., A.B.), and Advanced MRI Center and New England Center for Stroke Research, Department of Radiology (S.Z., M.M.), University of Massachusetts Medical School, 55 Lake Ave North, S6-434, Worcester, MA 01655; Department of Nuclear Medicine, Friedrich-Alexander University of Erlangen-Nurnberg, Germany (S.M., O.P.); A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Mass (P.C.); and A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation (A.B.)
| | - Simone Maschauer
- From the Institute of Radiology, Friedrich-Alexander University of Erlangen-Nurnberg, Erlangen, Germany (T.B., L.S.); Laboratory of Molecular Imaging Probes, Department of Radiology (S.G., A.L., A.B.), and Advanced MRI Center and New England Center for Stroke Research, Department of Radiology (S.Z., M.M.), University of Massachusetts Medical School, 55 Lake Ave North, S6-434, Worcester, MA 01655; Department of Nuclear Medicine, Friedrich-Alexander University of Erlangen-Nurnberg, Germany (S.M., O.P.); A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Mass (P.C.); and A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation (A.B.)
| | - Olaf Prante
- From the Institute of Radiology, Friedrich-Alexander University of Erlangen-Nurnberg, Erlangen, Germany (T.B., L.S.); Laboratory of Molecular Imaging Probes, Department of Radiology (S.G., A.L., A.B.), and Advanced MRI Center and New England Center for Stroke Research, Department of Radiology (S.Z., M.M.), University of Massachusetts Medical School, 55 Lake Ave North, S6-434, Worcester, MA 01655; Department of Nuclear Medicine, Friedrich-Alexander University of Erlangen-Nurnberg, Germany (S.M., O.P.); A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Mass (P.C.); and A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation (A.B.)
| | - Peter Caravan
- From the Institute of Radiology, Friedrich-Alexander University of Erlangen-Nurnberg, Erlangen, Germany (T.B., L.S.); Laboratory of Molecular Imaging Probes, Department of Radiology (S.G., A.L., A.B.), and Advanced MRI Center and New England Center for Stroke Research, Department of Radiology (S.Z., M.M.), University of Massachusetts Medical School, 55 Lake Ave North, S6-434, Worcester, MA 01655; Department of Nuclear Medicine, Friedrich-Alexander University of Erlangen-Nurnberg, Germany (S.M., O.P.); A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Mass (P.C.); and A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation (A.B.)
| | - Alexei Bogdanov
- From the Institute of Radiology, Friedrich-Alexander University of Erlangen-Nurnberg, Erlangen, Germany (T.B., L.S.); Laboratory of Molecular Imaging Probes, Department of Radiology (S.G., A.L., A.B.), and Advanced MRI Center and New England Center for Stroke Research, Department of Radiology (S.Z., M.M.), University of Massachusetts Medical School, 55 Lake Ave North, S6-434, Worcester, MA 01655; Department of Nuclear Medicine, Friedrich-Alexander University of Erlangen-Nurnberg, Germany (S.M., O.P.); A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Mass (P.C.); and A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation (A.B.)
| |
Collapse
|
7
|
Wang C, Cheng D, Jalali Motlagh N, Kuellenberg EG, Wojtkiewicz GR, Schmidt SP, Stocker R, Chen JW. Highly Efficient Activatable MRI Probe to Sense Myeloperoxidase Activity. J Med Chem 2021; 64:5874-5885. [PMID: 33945286 PMCID: PMC8564765 DOI: 10.1021/acs.jmedchem.1c00038] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Myeloperoxidase (MPO) is a key component of innate immunity but can damage tissues when secreted abnormally. We developed a new generation of a highly efficient MPO-activatable MRI probe (heMAMP) to report MPO activity. heMAMP has improved Gd stability compared to bis-5-HT-Gd-DTPA (MPO-Gd) and demonstrates no significant cytotoxicity. Importantly, heMAMP is more efficiently activated by MPO compared to MPO-Gd, 5HT-DOTA(Gd), and 5HT-DOTAGA-Gd. Molecular docking simulations revealed that heMAMP has increased rigidity via hydrogen bonding intramolecularly and improved binding affinity to the active site of MPO. In animals with subcutaneous inflammation, activated heMAMP showed a 2-3-fold increased contrast-to-noise ratio (CNR) compared to activated MPO-Gd and 4-10 times higher CNR compared to conventional DOTA-Gd. This increased efficacy was further confirmed in a model of unstable atherosclerotic plaque where heMAMP demonstrated a comparable signal increase and responsiveness to MPO inhibition at a 3-fold lower dosage compared to MPO-Gd, further underscoring heMAMP as a potential translational candidate.
Collapse
Affiliation(s)
- Cuihua Wang
- Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - David Cheng
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Negin Jalali Motlagh
- Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Enrico G Kuellenberg
- Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Gregory R Wojtkiewicz
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Stephen P Schmidt
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Roland Stocker
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
- Heart Research Institute, Newton, NSW 2042, Australia
| | - John W Chen
- Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| |
Collapse
|
8
|
Monteserín M, Larumbe S, Martínez AV, Burgui S, Francisco Martín L. Recent Advances in the Development of Magnetic Nanoparticles for Biomedical Applications. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:2705-2741. [PMID: 33653440 DOI: 10.1166/jnn.2021.19062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The unique properties of magnetic nanoparticles have led them to be considered materials with significant potential in the biomedical field. Nanometric size, high surface-area ratio, ability to function at molecular level, exceptional magnetic and physicochemical properties, and more importantly, the relatively easy tailoring of all these properties to the specific requirements of the different biomedical applications, are some of the key factors of their success. In this paper, we will provide an overview of the state of the art of different aspects of magnetic nanoparticles, specially focusing on their use in biomedicine. We will explore their magnetic properties, synthetic methods and surface modifications, as well as their most significative physicochemical properties and their impact on the in vivo behaviour of these particles. Furthermore, we will provide a background on different applications of magnetic nanoparticles in biomedicine, such as magnetic drug targeting, magnetic hyperthermia, imaging contrast agents or theranostics. Besides, current limitations and challenges of these materials, as well as their future prospects in the biomedical field will be discussed.
Collapse
Affiliation(s)
- Maria Monteserín
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| | - Silvia Larumbe
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| | - Alejandro V Martínez
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| | - Saioa Burgui
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| | - L Francisco Martín
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| |
Collapse
|
9
|
Magnetic Resonance Imaging Agents. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00037-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
10
|
Abstract
Molecular magnetic resonance (MR) imaging utilizes molecular probes to provide added biochemical or cellular information to what can already be achieved with anatomical and functional MR imaging. This review provides an overview of molecular MR and focuses specifically on molecular MR contrast agents that provide contrast by shortening the T1 time. We describe the requirements for a successful molecular MR contrast agent and the challenges for clinical translation. The review highlights work from the last 5 years and places an emphasis on new contrast agents that have been validated in multiple preclinical models. Applications of molecular MR include imaging of inflammation, fibrosis, fibrogenesis, thromboembolic disease, and cancers. Molecular MR is positioned to move beyond detection of disease to the quantitative staging of disease and measurement of treatment response.
Collapse
Affiliation(s)
| | | | - Peter Caravan
- The Institute for Innovation in Imaging, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| |
Collapse
|
11
|
Zhou IY, Montesi SB, Akam EA, Caravan P. Molecular Imaging of Fibrosis. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
12
|
ZHU HY, FANG C, ZHAO WO, WANG JY, LI YP. Synthesis and Characterization of Dual-function H2O2-Responsive Nanoparticles for Drug Delivery to Treat Atherosclerosis. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(20)60066-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Rodríguez-Rodríguez A, Shuvaev S, Rotile N, Jones CM, Probst CK, Dos Santos Ferreira D, Graham-O′Regan K, Boros E, Knipe RS, Griffith JW, Tager AM, Bogdanov A, Caravan P. Peroxidase Sensitive Amplifiable Probe for Molecular Magnetic Resonance Imaging of Pulmonary Inflammation. ACS Sens 2019; 4:2412-2419. [PMID: 31397156 DOI: 10.1021/acssensors.9b01010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
An amplifiable magnetic resonance imaging (MRI) probe that combines the stability of the macrocyclic Gd-DOTAGA core with a peroxidase-reactive 5-hydroxytryptamide (5-HT) moiety is reported. The incubation of the complex under enzymatic oxidative conditions led to a 1.7-fold increase in r1 at 1.4 T that was attributed to an oligomerization of the probe upon oxidation. This probe, Gd-5-HT-DOTAGA, provided specific detection of lung inflammation by MRI in bleomycin-injured mice.
Collapse
Affiliation(s)
- Aurora Rodríguez-Rodríguez
- The Institute for Innovation in Imaging, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Sergey Shuvaev
- The Institute for Innovation in Imaging, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Nicholas Rotile
- The Institute for Innovation in Imaging, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Chloe M. Jones
- The Institute for Innovation in Imaging, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Clemens K. Probst
- Division of Pulmonary and Critical Care Medicine and the Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Diego Dos Santos Ferreira
- The Institute for Innovation in Imaging, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Katherine Graham-O′Regan
- The Institute for Innovation in Imaging, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Eszter Boros
- The Institute for Innovation in Imaging, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Rachel S. Knipe
- Division of Pulmonary and Critical Care Medicine and the Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Jason W. Griffith
- Division of Pulmonary and Critical Care Medicine and the Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Andrew M. Tager
- Division of Pulmonary and Critical Care Medicine and the Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Alexei Bogdanov
- Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, United States
| | - Peter Caravan
- The Institute for Innovation in Imaging, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
14
|
Pinto SM, Tomé V, Calvete MJ, Castro MMC, Tóth É, Geraldes CF. Metal-based redox-responsive MRI contrast agents. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.03.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Lavin Plaza B, Theodoulou I, Rashid I, Hajhosseiny R, Phinikaridou A, Botnar RM. Molecular Imaging in Ischemic Heart Disease. CURRENT CARDIOVASCULAR IMAGING REPORTS 2019; 12:31. [PMID: 31281564 PMCID: PMC6557873 DOI: 10.1007/s12410-019-9500-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Purpose of Review The purpose of this paper is to review current and new modalities to image key biological processes in ischemic heart disease and after myocardial infarction non-invasively. Recent Findings New imaging targets have been developed to detect and quantify myocardial damage after ischemia. Although positron emission tomography (PET) has been leading the development of new probes in the past, continuous improvements of magnetic resonance imaging (MRI) together with the development of new novel MRI contrast agents opens new research avenues including the combination of both PET and MRI to obtain anatomic, functional, and molecular information simultaneously, which is not possible from a single imaging session. Summary This review summarizes the state of art of non-invasive molecular imaging of the myocardium during ischemia and after myocardial infarction using PET and MRI. We also describe the different contrast agents that have been developed to image the different phases of cardiac healing and the biological processes associated with each of those phases. Importantly, here we focus on imaging of inflammation as it is the key biological process that orchestrates clearance of dead cells, tissue remodeling, cardiac repair, and future outcome. We also focus on clinical translation of some of the novel contrast agents that have been tested in patients and discuss the need for larger, multi-center patient studies to fully validate the applicability of new imaging probes.
Collapse
Affiliation(s)
- Begoña Lavin Plaza
- 1School of Biomedical Engineering and Imaging Sciences, King's College London, 3rd Floor, Lambeth wing, St Thomas Hospital, London, SE1 7EH UK
| | - Iakovos Theodoulou
- 2Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Imran Rashid
- 1School of Biomedical Engineering and Imaging Sciences, King's College London, 3rd Floor, Lambeth wing, St Thomas Hospital, London, SE1 7EH UK
| | - Reza Hajhosseiny
- 1School of Biomedical Engineering and Imaging Sciences, King's College London, 3rd Floor, Lambeth wing, St Thomas Hospital, London, SE1 7EH UK
| | - Alkystis Phinikaridou
- 1School of Biomedical Engineering and Imaging Sciences, King's College London, 3rd Floor, Lambeth wing, St Thomas Hospital, London, SE1 7EH UK
| | - Rene M Botnar
- 1School of Biomedical Engineering and Imaging Sciences, King's College London, 3rd Floor, Lambeth wing, St Thomas Hospital, London, SE1 7EH UK.,3Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
16
|
High-resolution Imaging of Myeloperoxidase Activity Sensors in Human Cerebrovascular Disease. Sci Rep 2018; 8:7687. [PMID: 29769642 PMCID: PMC5956082 DOI: 10.1038/s41598-018-25804-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/26/2018] [Indexed: 01/23/2023] Open
Abstract
Progress in clinical development of magnetic resonance imaging (MRI) substrate-sensors of enzymatic activity has been slow partly due to the lack of human efficacy data. We report here a strategy that may serve as a shortcut from bench to bedside. We tested ultra high-resolution 7T MRI (µMRI) of human surgical histology sections in a 3-year IRB approved, HIPAA compliant study of surgically clipped brain aneurysms. µMRI was used for assessing the efficacy of MRI substrate-sensors that detect myeloperoxidase activity in inflammation. The efficacy of Gd-5HT-DOTAGA, a novel myeloperoxidase (MPO) imaging agent synthesized by using a highly stable gadolinium (III) chelate was tested both in tissue-like phantoms and in human samples. After treating histology sections with paramagnetic MPO substrate-sensors we observed relaxation time shortening and MPO activity-dependent MR signal enhancement. An increase of normalized MR signal generated by ultra-short echo time MR sequences was corroborated by MPO activity visualization by using a fluorescent MPO substrate. The results of µMRI of MPO activity associated with aneurysmal pathology and immunohistochemistry demonstrated active involvement of neutrophils and neutrophil NETs as a result of pro-inflammatory signalling in the vascular wall and in the perivascular space of brain aneurysms.
Collapse
|
17
|
Gauberti M, Fournier AP, Docagne F, Vivien D, Martinez de Lizarrondo S. Molecular Magnetic Resonance Imaging of Endothelial Activation in the Central Nervous System. Theranostics 2018; 8:1195-1212. [PMID: 29507614 PMCID: PMC5835930 DOI: 10.7150/thno.22662] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 01/12/2018] [Indexed: 01/01/2023] Open
Abstract
Endothelial cells of the central nervous system over-express surface proteins during neurological disorders, either as a cause, or a consequence, of the disease. Since the cerebral vasculature is easily accessible by large contrast-carrying particles, it constitutes a target of choice for molecular magnetic resonance imaging (MRI). In this review, we highlight the most recent advances in molecular MRI of brain endothelial activation and focus on the development of micro-sized particles of iron oxide (MPIO) targeting adhesion molecules including intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), P-Selectin and E-Selectin. We also discuss the perspectives and challenges for the clinical application of this technology in neurovascular disorders (ischemic stroke, intracranial hemorrhage, subarachnoid hemorrhage, diabetes mellitus), neuroinflammatory disorders (multiple sclerosis, brain infectious diseases, sepsis), neurodegenerative disorders (Alzheimer's disease, vascular dementia, aging) and brain cancers (primitive neoplasms, metastasis).
Collapse
Affiliation(s)
- Maxime Gauberti
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging for Neurological Disorders (PhIND), Cyceron, 14000 Caen, France
- CHU Caen, Department of diagnostic imaging and interventional radiology, CHU de Caen Côte de Nacre, Caen, France
| | - Antoine P. Fournier
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging for Neurological Disorders (PhIND), Cyceron, 14000 Caen, France
| | - Fabian Docagne
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging for Neurological Disorders (PhIND), Cyceron, 14000 Caen, France
| | - Denis Vivien
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging for Neurological Disorders (PhIND), Cyceron, 14000 Caen, France
- CHU Caen, Clinical Research Department, CHU de Caen Côte de Nacre, Caen, France
| | - Sara Martinez de Lizarrondo
- Normandie Univ, UNICAEN, INSERM, INSERM UMR-S U1237, Physiopathology and Imaging for Neurological Disorders (PhIND), Cyceron, 14000 Caen, France
| |
Collapse
|
18
|
Molecular Imaging of the Transplanted Heart: A Mechanistic Approach to Graft Survival. CURRENT CARDIOVASCULAR IMAGING REPORTS 2017. [DOI: 10.1007/s12410-017-9422-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
19
|
Lacerda S, Tóth É. Lanthanide Complexes in Molecular Magnetic Resonance Imaging and Theranostics. ChemMedChem 2017; 12:883-894. [DOI: 10.1002/cmdc.201700210] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/03/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Sara Lacerda
- Centre de Biophysique Moléculaire, CNRS UPR4301; Université d'Orléans; rue Charles Sadron 45071 Orléans France
| | - Éva Tóth
- Centre de Biophysique Moléculaire, CNRS UPR4301; Université d'Orléans; rue Charles Sadron 45071 Orléans France
| |
Collapse
|
20
|
Yu M, Ward MB, Franke A, Ambrose SL, Whaley ZL, Bradford TM, Gorden JD, Beyers RJ, Cattley RC, Ivanović-Burmazović I, Schwartz DD, Goldsmith CR. Adding a Second Quinol to a Redox-Responsive MRI Contrast Agent Improves Its Relaxivity Response to H2O2. Inorg Chem 2017; 56:2812-2826. [DOI: 10.1021/acs.inorgchem.6b02964] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Meng Yu
- Department of Chemistry
and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Meghan B. Ward
- Department of Chemistry
and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Alicja Franke
- Department of Chemistry and Pharmacy, University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Stephen L. Ambrose
- Department of Chemistry
and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Zachary L. Whaley
- Department of Chemistry
and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Thomas Miller Bradford
- Department of Chemistry
and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - John D. Gorden
- Department of Chemistry
and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Ronald J. Beyers
- Auburn University Magnetic Resonance Imaging Research Center, Auburn, Alabama 36849, United States
| | - Russell C. Cattley
- Department
of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama 36849, United States
| | | | - Dean D. Schwartz
- Department of Anatomy, Physiology, and
Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama 36849, United States
| | - Christian R. Goldsmith
- Department of Chemistry
and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
21
|
Ray RS, Katyal A. Myeloperoxidase: Bridging the gap in neurodegeneration. Neurosci Biobehav Rev 2016; 68:611-620. [PMID: 27343997 DOI: 10.1016/j.neubiorev.2016.06.031] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 10/21/2022]
Abstract
Neurodegenerative conditions present a group of complex disease pathologies mostly due to unknown aetiology resulting in neuronal death and permanent neurological disability. Any undesirable stress to the brain, disrupts homeostatic balance, through a remarkable convergence of pathophysiological changes and immune dysregulation. The crosstalk between inflammatory and oxidative mechanisms results in the release of neurotoxic mediators apparently spearheaded by myeloperoxidase derived from activated microglia, astrocytes, neurons as well as peripheral inflammatory cells. These isolated entities combinedly have the potential to flare up and contribute significantly to neuropathology and disease progression. Recent, clinicopathological evidence support the association of myeloperoxidase and its cytotoxic product, hypochlorous acid in a plethora of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Amyotrophic lateral sclerosis, Multiple sclerosis, Stroke, Epilepsy etc. But the biochemical and mechanistic insights into myeloperoxidase mediated neuroinflammation and neuronal death is still an uncharted territory. The current review outlines the emerging recognition of myeloperoxidase in neurodegeneration, which may offer novel therapeutic and diagnostic targets for neurodegenerative disorders.
Collapse
Affiliation(s)
- R S Ray
- Dr. B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi, North Campus, Delhi 110 007, India.
| | - Anju Katyal
- Dr. B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi, North Campus, Delhi 110 007, India.
| |
Collapse
|
22
|
Huang J, Milton A, Arnold RD, Huang H, Smith F, Panizzi JR, Panizzi P. Methods for measuring myeloperoxidase activity toward assessing inhibitor efficacy in living systems. J Leukoc Biol 2016; 99:541-8. [PMID: 26884610 DOI: 10.1189/jlb.3ru0615-256r] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 01/11/2016] [Indexed: 12/23/2022] Open
Abstract
Myeloperoxidase aids in clearance of microbes by generation of peroxidase-mediated oxidants that kill leukocyte-engulfed pathogens. In this review, we will examine 1) strategies for in vitro evaluation of myeloperoxidase function and its inhibition, 2) ways to monitor generation of certain oxidant species during inflammation, and 3) how these methods can be used to approximate the total polymorphonuclear neutrophil chemotaxis following insult. Several optical imaging probes are designed to target reactive oxygen and nitrogen species during polymorphonuclear neutrophil inflammatory burst following injury. Here, we review the following 1) the broad effect of myeloperoxidase on normal physiology, 2) the difference between myeloperoxidase and other peroxidases, 3) the current optical probes available for use as surrogates for direct measures of myeloperoxidase-derived oxidants, and 4) the range of preclinical options for imaging myeloperoxidase accumulation at sites of inflammation in mice. We also stress the advantages and drawbacks of each of these methods, the pharmacokinetic considerations that may limit probe use to strictly cell cultures for some reactive oxygen and nitrogen species, rather than in vivo utility as indicators of myeloperoxidase function. Taken together, our review should shed light on the fundamental rational behind these techniques for measuring myeloperoxidase activity and polymorphonuclear neutrophil response after injury toward developing safe myeloperoxidase inhibitors as potential therapy for chronic obstructive pulmonary disease and rheumatoid arthritis.
Collapse
Affiliation(s)
- Jiansheng Huang
- *Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Amber Milton
- *Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Robert D Arnold
- *Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Hui Huang
- *Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Forrest Smith
- *Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Jennifer R Panizzi
- *Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Peter Panizzi
- *Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
23
|
Molecular Magnetic Resonance Imaging Probes Based on Ln3+ Complexes. ADVANCES IN INORGANIC CHEMISTRY 2016. [DOI: 10.1016/bs.adioch.2015.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Kalogiannis M, Delikatny EJ, Jeitner TM. Serotonin as a putative scavenger of hypohalous acid in the brain. Biochim Biophys Acta Mol Basis Dis 2015; 1862:651-661. [PMID: 26699077 DOI: 10.1016/j.bbadis.2015.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 12/04/2015] [Accepted: 12/11/2015] [Indexed: 12/31/2022]
Abstract
Neurodegenerative disorders represent the culmination of numerous insults including oxidative stress. The long etiology of most of these disorders suggests that lessening the effects of one or more of the insults could significantly delay disease onset. Antioxidants have been tested as possible therapeutics for neurodegenerative disorders, but with little success. Here we report that serotonin acts as a scavenger of hypochlorous acid (HOCl) in the brain. Serotonin was shown to prevent the oxidation of 2-thio-5-nitrobenzoate by HOCl in a biphasic manner. The first phase was a partial scavenging that occurred at concentrations of serotonin that exceeded those of HOCl. (1)H-NMR studies indicated that HOCl chlorinates both the aryl and akyl nitrogen atoms of serotonin. Thus, the oxidation of 2-thio-5-nitrobenzoate that occurred during the first phase of scavenging is likely due to the formation of serotonergic chloramines. A second phase of scavenging occurred at concentrations of HOCl that exceeded those of serotonin. Under these conditions, the chlorinated serotonin polymerized and formed inert aggregates. Serotonin was further shown to prevent the loss of cells and cellular α-ketoglutarate dehydrogenase complex activity caused by HOCl. Extracellular concentrations of serotonin in the brain can be elevated with selective serotonin reuptake inhibitors and suggests that such compounds could be used to increase the cerebral antioxidant capacity. Acute administration of selective serotonin reuptake inhibitors to mice treated with endotoxin partially mitigated sickness behavior and protein chlorination in the brain. These observations suggest that serotonin may act to suppress chlorinative stress in the brain.
Collapse
Affiliation(s)
- Mike Kalogiannis
- Department of Neurosciences, Winthrop University Hospital, 222 Station Plaza, Mineola, NY 11501, USA.
| | - E James Delikatny
- Department of Radiology, University of Pennsylvania, 317 Anatomy Chemistry Building, 3620 Hamilton Walk, Pennsylvania, PA 19104, USA.
| | - Thomas M Jeitner
- Department of Neurosciences, Winthrop University Hospital, 222 Station Plaza, Mineola, NY 11501, USA; Department of Biochemistry and Molecular Biology, New York Medical College, Basic Sciences, 15 Dana Road, Valhalla, NY 10595, USA.
| |
Collapse
|
25
|
Gounis MJ, van der Marel K, Marosfoi M, Mazzanti ML, Clarençon F, Chueh JY, Puri AS, Bogdanov AA. Imaging Inflammation in Cerebrovascular Disease. Stroke 2015; 46:2991-7. [PMID: 26351362 DOI: 10.1161/strokeaha.115.008229] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/07/2015] [Indexed: 02/01/2023]
Abstract
Imaging inflammation in large intracranial artery pathology may play an important role in the diagnosis of and risk stratification for a variety of cerebrovascular diseases. Looking beyond the lumen has already generated widespread excitement in the stroke community, and the potential to unveil molecular processes in the vessel wall is a natural evolution to develop a more comprehensive understanding of the pathogenesis of diseases, such as ICAD and brain aneurysms.
Collapse
Affiliation(s)
- Matthew J Gounis
- From the New England Center for Stroke Research (M.J.G., K.v.d.M., M.M., F.C., J.-Y.C., A.S.P.) and Laboratory of Molecular Imaging Probes (M.L.M., A.A.B.), Department of Radiology, University of Massachusetts Medical School, Worcester.
| | - Kajo van der Marel
- From the New England Center for Stroke Research (M.J.G., K.v.d.M., M.M., F.C., J.-Y.C., A.S.P.) and Laboratory of Molecular Imaging Probes (M.L.M., A.A.B.), Department of Radiology, University of Massachusetts Medical School, Worcester
| | - Miklos Marosfoi
- From the New England Center for Stroke Research (M.J.G., K.v.d.M., M.M., F.C., J.-Y.C., A.S.P.) and Laboratory of Molecular Imaging Probes (M.L.M., A.A.B.), Department of Radiology, University of Massachusetts Medical School, Worcester
| | - Mary L Mazzanti
- From the New England Center for Stroke Research (M.J.G., K.v.d.M., M.M., F.C., J.-Y.C., A.S.P.) and Laboratory of Molecular Imaging Probes (M.L.M., A.A.B.), Department of Radiology, University of Massachusetts Medical School, Worcester
| | - Frédéric Clarençon
- From the New England Center for Stroke Research (M.J.G., K.v.d.M., M.M., F.C., J.-Y.C., A.S.P.) and Laboratory of Molecular Imaging Probes (M.L.M., A.A.B.), Department of Radiology, University of Massachusetts Medical School, Worcester
| | - Ju-Yu Chueh
- From the New England Center for Stroke Research (M.J.G., K.v.d.M., M.M., F.C., J.-Y.C., A.S.P.) and Laboratory of Molecular Imaging Probes (M.L.M., A.A.B.), Department of Radiology, University of Massachusetts Medical School, Worcester
| | - Ajit S Puri
- From the New England Center for Stroke Research (M.J.G., K.v.d.M., M.M., F.C., J.-Y.C., A.S.P.) and Laboratory of Molecular Imaging Probes (M.L.M., A.A.B.), Department of Radiology, University of Massachusetts Medical School, Worcester
| | - Alexei A Bogdanov
- From the New England Center for Stroke Research (M.J.G., K.v.d.M., M.M., F.C., J.-Y.C., A.S.P.) and Laboratory of Molecular Imaging Probes (M.L.M., A.A.B.), Department of Radiology, University of Massachusetts Medical School, Worcester
| |
Collapse
|
26
|
Bakermans AJ, Abdurrachim D, Moonen RPM, Motaal AG, Prompers JJ, Strijkers GJ, Vandoorne K, Nicolay K. Small animal cardiovascular MR imaging and spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 88-89:1-47. [PMID: 26282195 DOI: 10.1016/j.pnmrs.2015.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/09/2015] [Accepted: 03/09/2015] [Indexed: 06/04/2023]
Abstract
The use of MR imaging and spectroscopy for studying cardiovascular disease processes in small animals has increased tremendously over the past decade. This is the result of the remarkable advances in MR technologies and the increased availability of genetically modified mice. MR techniques provide a window on the entire timeline of cardiovascular disease development, ranging from subtle early changes in myocardial metabolism that often mark disease onset to severe myocardial dysfunction associated with end-stage heart failure. MR imaging and spectroscopy techniques play an important role in basic cardiovascular research and in cardiovascular disease diagnosis and therapy follow-up. This is due to the broad range of functional, structural and metabolic parameters that can be quantified by MR under in vivo conditions non-invasively. This review describes the spectrum of MR techniques that are employed in small animal cardiovascular disease research and how the technological challenges resulting from the small dimensions of heart and blood vessels as well as high heart and respiratory rates, particularly in mice, are tackled.
Collapse
Affiliation(s)
- Adrianus J Bakermans
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Desiree Abdurrachim
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Rik P M Moonen
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Abdallah G Motaal
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeanine J Prompers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Gustav J Strijkers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Katrien Vandoorne
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Klaas Nicolay
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
27
|
Zhang P, Cheetham AG, Lock LL, Li Y, Cui H. Activatable nanoprobes for biomolecular detection. Curr Opin Biotechnol 2015; 34:171-9. [DOI: 10.1016/j.copbio.2015.01.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/26/2015] [Indexed: 12/21/2022]
|
28
|
Burke HM, Gunnlaugsson T, Scanlan EM. Recent advances in the development of synthetic chemical probes for glycosidase enzymes. Chem Commun (Camb) 2015; 51:10576-88. [PMID: 26051717 DOI: 10.1039/c5cc02793d] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The emergence of synthetic glycoconjugates as chemical probes for the detection of glycosidase enzymes has resulted in the development of a range of useful chemical tools with applications in glycobiology, biotechnology, medical and industrial research. Critical to the function of these probes is the preparation of substrates containing a glycosidic linkage that when activated by a specific enzyme or group of enzymes, irreversibly releases a reporter molecule that can be detected. Starting from the earliest examples of colourimetric probes, increasingly sensitive and sophisticated substrates have been reported. In this review we present an overview of the recent advances in this field, covering an array of strategies including chromogenic and fluorogenic substrates, lanthanide complexes, gels and nanoparticles. The applications of these substrates for the detection of various glycosidases and the scope and limitations for each approach are discussed.
Collapse
Affiliation(s)
- Helen M Burke
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College, Pearse St, Dublin 2, Ireland.
| | | | | |
Collapse
|
29
|
Barzegar Amiri Olia M, Schiesser CH, Taylor MK. New reagents for detecting free radicals and oxidative stress. Org Biomol Chem 2015; 12:6757-66. [PMID: 25053503 DOI: 10.1039/c4ob01172d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Free radicals and oxidative stress play important roles in the deterioration of materials, and free radicals are important intermediates in many biological processes. The ability to detect these reactive species is a key step on the road to their understanding and ultimate control. This short review highlights recent progress in the development of reagents for the detection of free radicals and reactive oxygen species with broad application to materials science as well as biology.
Collapse
|
30
|
De León-Rodríguez LM, Martins AF, Pinho MC, Rofsky NM, Sherry AD. Basic MR relaxation mechanisms and contrast agent design. J Magn Reson Imaging 2015; 42:545-65. [PMID: 25975847 DOI: 10.1002/jmri.24787] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/11/2014] [Indexed: 12/22/2022] Open
Abstract
The diagnostic capabilities of magnetic resonance imaging (MRI) have undergone continuous and substantial evolution by virtue of hardware and software innovations and the development and implementation of exogenous contrast media. Thirty years since the first MRI contrast agent was approved for clinical use, a reliance on MR contrast media persists, largely to improve image quality with higher contrast resolution and to provide additional functional characterization of normal and abnormal tissues. Further development of MR contrast media is an important component in the quest for continued augmentation of diagnostic capabilities. In this review we detail the many important considerations when pursuing the design and use of MR contrast media. We offer a perspective on the importance of chemical stability, particularly kinetic stability, and how this influences one's thinking about the safety of metal-ligand-based contrast agents. We discuss the mechanisms involved in MR relaxation in the context of probe design strategies. A brief description of currently available contrast agents is accompanied by an in-depth discussion that highlights promising MRI contrast agents in the development of future clinical and research applications. Our intention is to give a diverse audience an improved understanding of the factors involved in developing new types of safe and highly efficient MR contrast agents and, at the same time, provide an appreciation of the insights into physiology and disease that newer types of responsive agents can provide.
Collapse
Affiliation(s)
| | - André F Martins
- Department of Chemistry, University of Texas at Dallas, Richardson, Texas, USA
| | - Marco C Pinho
- Department of Radiology and the Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Neil M Rofsky
- Department of Radiology and the Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - A Dean Sherry
- Department of Chemistry, University of Texas at Dallas, Richardson, Texas, USA.,Department of Radiology and the Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
31
|
Srivastava AK, Kadayakkara DK, Bar-Shir A, Gilad AA, McMahon MT, Bulte JWM. Advances in using MRI probes and sensors for in vivo cell tracking as applied to regenerative medicine. Dis Model Mech 2015; 8:323-36. [PMID: 26035841 PMCID: PMC4381332 DOI: 10.1242/dmm.018499] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The field of molecular and cellular imaging allows molecules and cells to be visualized in vivo non-invasively. It has uses not only as a research tool but in clinical settings as well, for example in monitoring cell-based regenerative therapies, in which cells are transplanted to replace degenerating or damaged tissues, or to restore a physiological function. The success of such cell-based therapies depends on several critical issues, including the route and accuracy of cell transplantation, the fate of cells after transplantation, and the interaction of engrafted cells with the host microenvironment. To assess these issues, it is necessary to monitor transplanted cells non-invasively in real-time. Magnetic resonance imaging (MRI) is a tool uniquely suited to this task, given its ability to image deep inside tissue with high temporal resolution and sensitivity. Extraordinary efforts have recently been made to improve cellular MRI as applied to regenerative medicine, by developing more advanced contrast agents for use as probes and sensors. These advances enable the non-invasive monitoring of cell fate and, more recently, that of the different cellular functions of living cells, such as their enzymatic activity and gene expression, as well as their time point of cell death. We present here a review of recent advancements in the development of these probes and sensors, and of their functioning, applications and limitations.
Collapse
Affiliation(s)
- Amit K Srivastava
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Deepak K Kadayakkara
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Amnon Bar-Shir
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Assaf A Gilad
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Michael T McMahon
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Jeff W M Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA. Department of Chemical & Biomolecular Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
32
|
Gounis MJ, van der Bom IMJ, Wakhloo AK, Zheng S, Chueh JY, Kühn AL, Bogdanov AA. MR imaging of myeloperoxidase activity in a model of the inflamed aneurysm wall. AJNR Am J Neuroradiol 2015; 36:146-52. [PMID: 25273534 DOI: 10.3174/ajnr.a4135] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Although myeloperoxidase activity in vivo can be visualized by using noninvasive imaging, successful clinical translation requires further optimization of the imaging approach. We report a motion-sensitized driven-equilibrium MR imaging approach for the detection of a myeloperoxidase activity-specific gadolinium-containing imaging agent in experimental aneurysm models, which compensates for irregular blood flow, enabling vascular wall imaging in the aneurysm. MATERIALS AND METHODS A phantom was built from rotational angiography of a rabbit elastase aneurysm model and was connected to a cardiac pulse duplicator mimicking rabbit-specific flow conditions. A T1-weighted turbo spin-echo-based motion-sensitized driven-equilibrium pulse sequence was optimized in vitro, including the addition of fat suppression and the selection of the velocity-encoding gradient parameter. The optimized sequence was applied in vivo to rabbit aneurysm models with and without inflammation in the aneurysmal wall. Under each condition, the aneurysms were imaged before and after intravenous administration of the imaging agent. The signal-to-noise ratio of each MR imaging section through the aneurysm was calculated. RESULTS The motion-sensitized driven-equilibrium sequence was optimized to reduce flow signal, enabling detection of the myeloperoxidase imaging agent in the phantom. The optimized imaging protocol in the rabbit model of saccular aneurysms revealed a significant increase in the change of SNR from pre- to post-contrast MR imaging in the inflamed aneurysms compared with naïve aneurysms and the adjacent carotid artery (P < .0001). CONCLUSIONS A diagnostic MR imaging protocol was optimized for molecular imaging of a myeloperoxidase-specific molecular imaging agent in an animal model of inflamed brain aneurysms.
Collapse
Affiliation(s)
- M J Gounis
- From the Department of Radiology (M.J.G., I.M.J.v.d.B., A.K.W., S.Z., J.-Y.C., A.L.K., A.A.B.), New England Center for Stroke Research
| | - I M J van der Bom
- From the Department of Radiology (M.J.G., I.M.J.v.d.B., A.K.W., S.Z., J.-Y.C., A.L.K., A.A.B.), New England Center for Stroke Research
| | - A K Wakhloo
- From the Department of Radiology (M.J.G., I.M.J.v.d.B., A.K.W., S.Z., J.-Y.C., A.L.K., A.A.B.), New England Center for Stroke Research Departments of Neurosurgery and Neurology (A.K.W.)
| | - S Zheng
- From the Department of Radiology (M.J.G., I.M.J.v.d.B., A.K.W., S.Z., J.-Y.C., A.L.K., A.A.B.), New England Center for Stroke Research
| | - J-Y Chueh
- From the Department of Radiology (M.J.G., I.M.J.v.d.B., A.K.W., S.Z., J.-Y.C., A.L.K., A.A.B.), New England Center for Stroke Research
| | - A L Kühn
- From the Department of Radiology (M.J.G., I.M.J.v.d.B., A.K.W., S.Z., J.-Y.C., A.L.K., A.A.B.), New England Center for Stroke Research
| | - A A Bogdanov
- From the Department of Radiology (M.J.G., I.M.J.v.d.B., A.K.W., S.Z., J.-Y.C., A.L.K., A.A.B.), New England Center for Stroke Research Radiology (A.A.B.), Laboratory of Molecular Imaging Probes, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
33
|
Gauberti M, Montagne A, Quenault A, Vivien D. Molecular magnetic resonance imaging of brain-immune interactions. Front Cell Neurosci 2014; 8:389. [PMID: 25505871 PMCID: PMC4245913 DOI: 10.3389/fncel.2014.00389] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 10/31/2014] [Indexed: 01/09/2023] Open
Abstract
Although the blood-brain barrier (BBB) was thought to protect the brain from the effects of the immune system, immune cells can nevertheless migrate from the blood to the brain, either as a cause or as a consequence of central nervous system (CNS) diseases, thus contributing to their evolution and outcome. Accordingly, as the interface between the CNS and the peripheral immune system, the BBB is critical during neuroinflammatory processes. In particular, endothelial cells are involved in the brain response to systemic or local inflammatory stimuli by regulating the cellular movement between the circulation and the brain parenchyma. While neuropathological conditions differ in etiology and in the way in which the inflammatory response is mounted and resolved, cellular mechanisms of neuroinflammation are probably similar. Accordingly, neuroinflammation is a hallmark and a decisive player of many CNS diseases. Thus, molecular magnetic resonance imaging (MRI) of inflammatory processes is a central theme of research in several neurological disorders focusing on a set of molecules expressed by endothelial cells, such as adhesion molecules (VCAM-1, ICAM-1, P-selectin, E-selectin, …), which emerge as therapeutic targets and biomarkers for neurological diseases. In this review, we will present the most recent advances in the field of preclinical molecular MRI. Moreover, we will discuss the possible translation of molecular MRI to the clinical setting with a particular emphasis on myeloperoxidase imaging, autologous cell tracking, and targeted iron oxide particles (USPIO, MPIO).
Collapse
Affiliation(s)
- Maxime Gauberti
- Inserm, Inserm UMR-S U919, Serine Proteases and Pathophysiology of the Neurovascular Unit, Université de Caen Basse-Normandie - GIP Cyceron Caen, France
| | - Axel Montagne
- Inserm, Inserm UMR-S U919, Serine Proteases and Pathophysiology of the Neurovascular Unit, Université de Caen Basse-Normandie - GIP Cyceron Caen, France
| | - Aurélien Quenault
- Inserm, Inserm UMR-S U919, Serine Proteases and Pathophysiology of the Neurovascular Unit, Université de Caen Basse-Normandie - GIP Cyceron Caen, France
| | - Denis Vivien
- Inserm, Inserm UMR-S U919, Serine Proteases and Pathophysiology of the Neurovascular Unit, Université de Caen Basse-Normandie - GIP Cyceron Caen, France
| |
Collapse
|
34
|
Yu M, Ambrose SL, Whaley ZL, Fan S, Gorden JD, Beyers RJ, Schwartz DD, Goldsmith CR. A Mononuclear Manganese(II) Complex Demonstrates a Strategy To Simultaneously Image and Treat Oxidative Stress. J Am Chem Soc 2014; 136:12836-9. [DOI: 10.1021/ja507034d] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Meng Yu
- Department of Chemistry and Biochemistry, ‡Magnetic Resonance Imaging Research
Center, and §Department of Anatomy, Physiology, and Pharmacology, College of Veterinary
Medicine, Auburn University, Auburn, Alabama 36849, United States
| | - Stephen L. Ambrose
- Department of Chemistry and Biochemistry, ‡Magnetic Resonance Imaging Research
Center, and §Department of Anatomy, Physiology, and Pharmacology, College of Veterinary
Medicine, Auburn University, Auburn, Alabama 36849, United States
| | - Zachary L. Whaley
- Department of Chemistry and Biochemistry, ‡Magnetic Resonance Imaging Research
Center, and §Department of Anatomy, Physiology, and Pharmacology, College of Veterinary
Medicine, Auburn University, Auburn, Alabama 36849, United States
| | - Sanjun Fan
- Department of Chemistry and Biochemistry, ‡Magnetic Resonance Imaging Research
Center, and §Department of Anatomy, Physiology, and Pharmacology, College of Veterinary
Medicine, Auburn University, Auburn, Alabama 36849, United States
| | - John D. Gorden
- Department of Chemistry and Biochemistry, ‡Magnetic Resonance Imaging Research
Center, and §Department of Anatomy, Physiology, and Pharmacology, College of Veterinary
Medicine, Auburn University, Auburn, Alabama 36849, United States
| | - Ronald J. Beyers
- Department of Chemistry and Biochemistry, ‡Magnetic Resonance Imaging Research
Center, and §Department of Anatomy, Physiology, and Pharmacology, College of Veterinary
Medicine, Auburn University, Auburn, Alabama 36849, United States
| | - Dean D. Schwartz
- Department of Chemistry and Biochemistry, ‡Magnetic Resonance Imaging Research
Center, and §Department of Anatomy, Physiology, and Pharmacology, College of Veterinary
Medicine, Auburn University, Auburn, Alabama 36849, United States
| | - Christian R. Goldsmith
- Department of Chemistry and Biochemistry, ‡Magnetic Resonance Imaging Research
Center, and §Department of Anatomy, Physiology, and Pharmacology, College of Veterinary
Medicine, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
35
|
Bonnet CS, Caillé F, Pallier A, Morfin JF, Petoud S, Suzenet F, Tóth É. Mechanistic studies of Gd3+-based MRI contrast agents for Zn2+ detection: towards rational design. Chemistry 2014; 20:10959-69. [PMID: 25116889 DOI: 10.1002/chem.201403043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Indexed: 12/28/2022]
Abstract
A series of novel pyridine-based Gd(3+) complexes have been prepared and studied as potential MRI contrast agents for Zn(2+) detection. By independent assessment of molecular parameters affecting relaxivity, we could interpret the relaxivity changes observed upon Zn(2+) binding in terms of variations of the rotational motion.
Collapse
Affiliation(s)
- Célia S Bonnet
- Centre de Biophysique Moléculaire, CNRS, Rue Charles Sadron, 45071 Orléans (France).
| | | | | | | | | | | | | |
Collapse
|
36
|
Hingorani DV, Yoo B, Bernstein AS, Pagel MD. Detecting enzyme activities with exogenous MRI contrast agents. Chemistry 2014; 20:9840-50. [PMID: 24990812 PMCID: PMC4117811 DOI: 10.1002/chem.201402474] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review focuses on exogenous magnetic resonance imaging (MRI) contrast agents that are responsive to enzyme activity. Enzymes can catalyze a change in water access, rotational tumbling time, the proximity of a (19)F-labeled ligand, the aggregation state, the proton chemical-exchange rate between the agent and water, or the chemical shift of (19)F, (31)P, (13)C or a labile (1)H of an agent, all of which can be used to detect enzyme activity. The variety of agents attests to the creativity in developing enzyme-responsive MRI contrast agents.
Collapse
Affiliation(s)
- Dina V. Hingorani
- Department of Chemistry and Biochemisty University of Arizona 1515 N. Campbell Ave. Tucson, AZ, USA Fax: (520)-626-0194
| | - Byunghee Yoo
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Adam S. Bernstein
- Department of Biomedical Engineering University of Arizona 1515 N. Campbell Ave. Tucson, AZ, USA
| | - Mark D. Pagel
- Department of Chemistry and Biochemisty University of Arizona 1515 N. Campbell Ave. Tucson, AZ, USA Fax: (520)-626-0194
| |
Collapse
|
37
|
Millon A, Canet-Soulas E, Boussel L, Fayad Z, Douek P. Animal models of atherosclerosis and magnetic resonance imaging for monitoring plaque progression. Vascular 2014; 22:221-37. [DOI: 10.1177/1708538113478758] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Atherosclerosis, the main cause of heart attack and stroke, is the leading cause of death in most modern countries. Preventing clinical events depends on a better understanding of the mechanism of atherosclerotic plaque destabilization. Our knowledge on the characteristics of vulnerable plaques in humans has grown past decades. Histological studies have provided a precise definition of high-risk lesions and novel imaging methods for human atherosclerotic plaque characterization have made significant progress. However the pathological mechanisms leading from stable lesions to the formation of vulnerable plaques remain uncertain and the related clinical events are unpredictable. An animal model mimicking human plaque destablization is required as well as an in vivo imaging method to assess and monitor atherosclerosis progression. Magnetic resonance imaging (MRI) is increasingly used for in vivo assessment of atherosclerotic plaques in the human carotids. MRI provides well-characterized morphological and functional features of human atherosclerotic plaque which can be also assessed in animal models. This review summarizes the most common species used as animal models for experimental atherosclerosis, the techniques to induce atherosclerosis and to obtain vulnerable plaques, together with the role of MRI for monitoring atherosclerotic plaques in animals.
Collapse
Affiliation(s)
- Antoine Millon
- Department of Vascular Surgery, University Hospital of Lyon, 69000 Lyon, France
- CREATIS, UMR CNRS 5515, INSERM U630, Lyon University, 69000 Lyon, France
| | | | - Loic Boussel
- CREATIS, UMR CNRS 5515, INSERM U630, Lyon University, 69000 Lyon, France
- Department of Radiology, Hôpital Cardiovasculaire et Pneumologique, Louis Pradel, 69000 Lyon, France
| | - Zahi Fayad
- Translational and Molecular Imaging Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Philippe Douek
- CREATIS, UMR CNRS 5515, INSERM U630, Lyon University, 69000 Lyon, France
- Department of Radiology, Hôpital Cardiovasculaire et Pneumologique, Louis Pradel, 69000 Lyon, France
| |
Collapse
|
38
|
Affiliation(s)
- Marie C. Heffern
- Department of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, Evanston, Illinois 60208-3113
| | - Lauren M. Matosziuk
- Department of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, Evanston, Illinois 60208-3113
| | - Thomas J. Meade
- Department of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, Evanston, Illinois 60208-3113
| |
Collapse
|
39
|
Gounis MJ, Vedantham S, Weaver JP, Puri AS, Brooks CS, Wakhloo AK, Bogdanov AA. Myeloperoxidase in human intracranial aneurysms: preliminary evidence. Stroke 2014; 45:1474-7. [PMID: 24713525 DOI: 10.1161/strokeaha.114.004956] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Noninvasive imaging identifying a predictive biomarker of the bleeding risk of unruptured intracranial aneurysms (UIAs) is needed. We investigated a potential biomarker of UIA instability, myeloperoxidase, in human aneurysm tissue. METHODS Human brain aneurysms were harvested after clipping and were histologically and biochemically evaluated for the presence of myeloperoxidase. Of the tissue collected, 3 were from ruptured aneurysms and 20 were from UIAs. For each UIA, its 5-year aneurysm rupture risk was determined using the Population, Hypertension, Age, Size of Aneurysm, Earlier Subarachnoid Hemorrhage From Another Aneurysm and Site of Aneurysm (PHASES) model. RESULTS All ruptured aneurysms were myeloperoxidase positive. Of the UIAs, half were myeloperoxidase positive. The median 5-year aneurysm rupture risk was higher for myeloperoxidase-positive UIA (2.28%) than myeloperoxidase-negative UIA (0.69%), and the distributions were statistically different (P<0.005, Wilcoxon-Mann-Whitney test). The likelihood for myeloperoxidase-positive UIA was significantly associated (P=0.031) with aneurysm rupture risk (odds ratio, 4.79; 95% confidence limits, 1.15-19.96). CONCLUSIONS Myeloperoxidase is associated with PHASES estimated risk of aneurysm rupture and may potentially be used as an imaging biomarker of aneurysm instability.
Collapse
Affiliation(s)
- Matthew J Gounis
- From the Departments of Radiology (M.J.G., S.V., A.S.P., C.S.B., A.K.W., A.A.B.) and Neurosurgery (J.P.W., A.S.P., A.K.W.), University of Massachusetts, Worcester
| | | | | | | | | | | | | |
Collapse
|
40
|
Tsitovich PB, Burns PJ, McKay AM, Morrow JR. Redox-activated MRI contrast agents based on lanthanide and transition metal ions. J Inorg Biochem 2014; 133:143-54. [DOI: 10.1016/j.jinorgbio.2014.01.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 01/14/2014] [Accepted: 01/14/2014] [Indexed: 12/17/2022]
|
41
|
Molecular imaging of macrophage enzyme activity in cardiac inflammation. CURRENT CARDIOVASCULAR IMAGING REPORTS 2014; 7:9258. [PMID: 24729833 DOI: 10.1007/s12410-014-9258-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Molecular imaging is highly advantageous as various insidious inflammatory events can be imaged in a serial and quantitative fashion. Combined with the conventional imaging modalities like computed tomography (CT), magnetic resonance (MR) and nuclear imaging, it helps us resolve the extent of ongoing pathology, quantify inflammation and predict outcome. Macrophages are increasingly gaining importance as an imaging biomarker in inflammatory cardiovascular diseases. Macrophages, recruited to the site of injury, internalize necrotic or foreign material. Along with phagocytosis, activated macrophages release proteolytic enzymes like matrix metalloproteinases (MMPs) and cathepsins into the extracellular environment. Pro-inflammatory monocytes and macrophages also induce tissue oxidative damage through the inflammatory enzyme myeloperoxidase (MPO). In this review we will highlight recent advances in molecular macrophage imaging. Particular stress will be given to macrophage functional and enzymatic activity imaging which targets phagocytosis, proteolysis and myeloperoxidase activity imaging.
Collapse
|
42
|
Wildgruber M, Swirski FK, Zernecke A. Molecular imaging of inflammation in atherosclerosis. Am J Cancer Res 2013; 3:865-84. [PMID: 24312156 PMCID: PMC3841337 DOI: 10.7150/thno.5771] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 04/29/2013] [Indexed: 01/13/2023] Open
Abstract
Acute rupture of vulnerable plaques frequently leads to myocardial infarction and stroke. Within the last decades, several cellular and molecular players have been identified that promote atherosclerotic lesion formation, maturation and plaque rupture. It is now widely recognized that inflammation of the vessel wall and distinct leukocyte subsets are involved throughout all phases of atherosclerotic lesion development. The mechanisms that render a stable plaque unstable and prone to rupture, however, remain unknown and the identification of the vulnerable plaque remains a major challenge in cardiovascular medicine. Imaging technologies used in the clinic offer minimal information about the underlying biology and potential risk for rupture. New imaging technologies are therefore being developed, and in the preclinical setting have enabled new and dynamic insights into the vessel wall for a better understanding of this complex disease. Molecular imaging has the potential to track biological processes, such as the activity of cellular and molecular biomarkers in vivo and over time. Similarly, novel imaging technologies specifically detect effects of therapies that aim to stabilize vulnerable plaques and silence vascular inflammation. Here we will review the potential of established and new molecular imaging technologies in the setting of atherosclerosis, and discuss the cumbersome steps required for translating molecular imaging approaches into the clinic.
Collapse
|
43
|
Cao CY, Shen YY, Wang JD, Li L, Liang GL. Controlled intracellular self-assembly of gadolinium nanoparticles as smart molecular MR contrast agents. Sci Rep 2013; 3:1024. [PMID: 23289066 PMCID: PMC3535584 DOI: 10.1038/srep01024] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 12/04/2012] [Indexed: 11/30/2022] Open
Abstract
Herein we developed a new “smart” Gd-based MR contrast agent (i.e., 1) which is susceptive to furin, a protease overexpressed in tumor. Under the action of furin, 1 condenses to form dimers (1-Ds) and the latter self-assemble into gadolinium nanparticles (Gd-NPs). Relaxivity of 1-D is more than 2 folds of those of 1 and magnevist at 1.5 T, and 1.4 folds of that of 1 at 3 T. Intracellular condensation of 1 in furin-overexpressed MDA-MB-468 cells was proven with direct two-photon laser microscopy (TPLM) fluorescence imaging of the cells incubated with the europium analog of 1 (i.e., 2). Intracellular Gd-NPs of 1 were uncovered and characterized for the first time. MRI of MDA-MB-468 tumors showed that 1 has enhanced MR contrast within the tumors than that of its scrambled control 1-Scr.
Collapse
Affiliation(s)
- Chun-Yan Cao
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | | | | | | | | |
Collapse
|
44
|
Abstract
Magnetic resonance imaging (MRI) is a key imaging modality in cancer diagnostics and therapy monitoring. MRI-based tumor detection and characterization is commonly achieved by exploiting the compositional, metabolic, cellular, and vascular differences between malignant and healthy tissue. Contrast agents are frequently applied to enhance this contrast. The last decade has witnessed an increasing interest in novel multifunctional MRI probes. These multifunctional constructs, often of nanoparticle design, allow the incorporation of multiple imaging agents for complementary imaging modalities as well as anti-cancer drugs for therapeutic purposes. The composition, size, and surface properties of such constructs can be tailored as to improve biodistribution and ensure optimal delivery to the tumor microenvironment by passive or targeted mechanisms. Multifunctional MRI probes hold great promise to facilitate more specific tumor diagnosis, patient-specific treatment planning, the monitoring of local drug delivery, and the early evaluation of therapy. This chapter reviews the state-of-the-art and new developments in the application of multifunctional MRI probes in oncology.
Collapse
Affiliation(s)
- Ewelina Kluza
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | | | | |
Collapse
|
45
|
Gadolinium-Based Contrast Agents for Vessel Wall Magnetic Resonance Imaging (MRI) of Atherosclerosis. CURRENT CARDIOVASCULAR IMAGING REPORTS 2012; 6:11-24. [PMID: 23539505 DOI: 10.1007/s12410-012-9177-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cardiovascular disease due to atherosclerosis is the number one killer in the Western world, and threatens to become the major cause of morbidity and mortality worldwide. It is therefore paramount to develop non-invasive methods for the detection of high-risk, asymptomatic individuals before the onset of clinical symptoms or events. In the recent past, great strides have been made in the understanding of the pathological mechanisms involved in the atherosclerotic cascade down to the molecular details. This has allowed the development of contrast agents that can aid in the in vivo characterization of these processes. Gadolinium chelates are among the contrast media most commonly used in MR imaging. Originally used for MR angiography for the detection and quantification of vascular stenosis, more recently they have been applied to improve characterization of atherosclerotic plaques. In this manuscript, we will briefly review gadolinium-chelates (Gd) based contrast agents for non-invasive MR imaging of atherosclerosis. We will first describe Gd-based non-targeted FDA approved agents, used routinely in clinical practice for the evaluation of neovascularization in other diseases. Secondly, we will describe non-specific and specific targeted contrast agents, which have great potential for dissecting specific biological processes in the atherosclerotic cascade. Lastly, we will briefly compare Gd-based agents to others commonly used in MRI and to other imaging modalities.
Collapse
|
46
|
Shazeeb MS, Xie Y, Gupta S, Bogdanov AA. A Novel Paramagnetic Substrate for Detecting Myeloperoxidase Activity in Vivo. Mol Imaging 2012. [DOI: 10.2310/7290.2012.00006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Mohammed S. Shazeeb
- From the Laboratory of Molecular Imaging Probes, Department of Radiology, and Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA
| | - Yang Xie
- From the Laboratory of Molecular Imaging Probes, Department of Radiology, and Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA
| | - Suresh Gupta
- From the Laboratory of Molecular Imaging Probes, Department of Radiology, and Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA
| | - Alexei A. Bogdanov
- From the Laboratory of Molecular Imaging Probes, Department of Radiology, and Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
47
|
Yu M, Beyers RJ, Gorden JD, Cross JN, Goldsmith CR. A Magnetic Resonance Imaging Contrast Agent Capable of Detecting Hydrogen Peroxide. Inorg Chem 2012; 51:9153-5. [DOI: 10.1021/ic3012603] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Meng Yu
- Department of Chemistry
and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Ronald J. Beyers
- Auburn University Magnetic Resonance Imaging Research Center, Auburn,
Alabama 36849, United States
| | - John D. Gorden
- Department of Chemistry
and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Justin N. Cross
- Department of Chemistry
and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Christian R. Goldsmith
- Department of Chemistry
and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
48
|
Dorward DA, Lucas CD, Rossi AG, Haslett C, Dhaliwal K. Imaging inflammation: molecular strategies to visualize key components of the inflammatory cascade, from initiation to resolution. Pharmacol Ther 2012; 135:182-99. [PMID: 22627270 DOI: 10.1016/j.pharmthera.2012.05.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 05/07/2012] [Indexed: 12/19/2022]
Abstract
Dysregulation of inflammation is central to the pathogenesis of innumerable human diseases. Understanding and tracking the critical events in inflammation are crucial for disease monitoring and pharmacological drug discovery and development. Recent progress in molecular imaging has provided novel insights into spatial associations, molecular events and temporal sequelae in the inflammatory process. While remaining a burgeoning field in pre-clinical research, increasing application in man affords researchers the opportunity to study disease pathogenesis in humans in situ thereby revolutionizing conventional understanding of pathophysiology and potential therapeutic targets. This review provides a description of commonly used molecular imaging modalities, including optical, radionuclide and magnetic resonance imaging, and details key advances and translational opportunities in imaging inflammation from initiation to resolution.
Collapse
Affiliation(s)
- D A Dorward
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
| | | | | | | | | |
Collapse
|
49
|
Gianolio E, Stefania R, Di Gregorio E, Aime S. MRI Paramagnetic Probes for Cellular Labeling. Eur J Inorg Chem 2012. [DOI: 10.1002/ejic.201101399] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
50
|
Bonnet CS, Tóth É. Magnetic Resonance Imaging Contrast Agents. Supramol Chem 2012. [DOI: 10.1002/9780470661345.smc104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|