1
|
Shin SH, Tang Q, Carl M, Athertya JS, Suprana A, Ma Y. Spectrally selective and interleaved water imaging and fat imaging (siWIFI). Magn Reson Med 2025; 93:1556-1567. [PMID: 39533797 PMCID: PMC11785484 DOI: 10.1002/mrm.30366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/25/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE To develop a novel imaging sequence that independently acquires water and fat images while being inherently insensitive to motion. METHODS The new sequence, termed spectrally selective and interleaved water imaging and fat imaging (siWIFI), uses a narrow bandwidth RF pulse for selective excitation of water and fat separately. The interleaved acquisition method ensures that the obtained water and fat images are inherently coregistered. A radial sampling strategy further reduces motion-induced artifacts. Phantoms with lipid concentrations ranging from 0% to 50% were scanned to measure fat fraction. Moreover, healthy volunteers were scanned to assess the in vivo feasibility of fat fraction measurement at the hip, knee, and liver. In vivo fat fraction measurements were compared with those from vendor-provided iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) scans. Furthermore, a magnetization transfer (MT) preparation module was incorporated to demonstrate the feasibility of simultaneous measurement of fat fraction and MT ratio utilizing the siWIFI framework. RESULTS The phantom fat fractions measured by siWIFI showed excellent correlation with lipid concentrations (R2 = 0.9995, p < 0.0001). In vivo studies demonstrated that the fat fractions obtained from siWIFI were comparable to those from IDEAL. Additionally, siWIFI demonstrates reduced motion artifacts from pulsatile flow in knee imaging compared to IDEAL scans and exhibits less sensitivity to respiratory motion in liver imaging compared to IDEAL scans without breath-hold. The knee imaging study demonstrated that MT-prepared siWIFI is capable of generating fat fraction and MT ratio maps simultaneously. CONCLUSION The proposed siWIFI sequence allows selective water-fat imaging and quantification with reduced motion artifacts.
Collapse
Affiliation(s)
- Soo Hyun Shin
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Qingbo Tang
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
- Research Service, VA San Diego Healthcare System, La Jolla, CA, USA
| | | | - Jiyo S. Athertya
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Arya Suprana
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
- Shu Chein-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Yajun Ma
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
2
|
Dong Y, Atkinson D, Koolstra K, van Osch MJP, Börnert P. Chemical shift-encoded multishot EPI for navigator-free prostate DWI. Magn Reson Med 2025; 93:1059-1076. [PMID: 39402739 DOI: 10.1002/mrm.30334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/12/2024] [Accepted: 09/22/2024] [Indexed: 12/29/2024]
Abstract
PURPOSE DWI is an important contrast for prostate MRI to enable early and accurate detection of cancer. This study introduces a Dixon 3-shot-EPI protocol with structured low-rank reconstruction for navigator-free DWI. The aim is to overcome the limitations of single-shot EPI (ssh-EPI), such as geometric distortions and fat signal interference, while addressing the motion-induced phase variations of multishot EPI and simultaneously allowing water/fat separation. METHODS DWI data were acquired from 7 healthy volunteers using both Dixon 3-shot EPI and standard fat-suppressed ssh-EPI with similar scan times for comparison. Two readers evaluated image quality using a 5-point Likert scale regarding different aspects. The ADC values were quantitatively compared between protocols. To show feasibility in a clinical setting, the protocol was applied to two patients. RESULTS From the reader scores, Dixon 3-shot EPI significantly reduced geometric distortion compared with ssh-EPI (p < 0.01), with no significant differences in edge definition, SNR, or overall image quality. There was no significant difference in ADC values between the two protocols. However, the Dixon multishot-EPI protocol offered advantages such as self-referenced B0 map-driven distortion correction, greater flexibility in imaging parameters, and superior fat suppression. In the patient data, the lesion could be clearly identified in both protocols and on the associated ADC maps. CONCLUSION The proposed Dixon 3-shot-EPI protocol shows promise as an alternative to ssh-EPI for prostate DWI, providing reduced geometric distortions and improved fat suppression. It addresses common DWI issues based on EPI and enhances scanning flexibility, indicating potential for optimized imaging.
Collapse
Affiliation(s)
- Yiming Dong
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - David Atkinson
- Center for Medical Imaging, University College London, London, UK
| | | | - Matthias J P van Osch
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Börnert
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Philips Research Hamburg, Hamburg, Germany
| |
Collapse
|
3
|
Hagio T, Galons JP, Roe D, Marron MT, Thomson C, Thompson P, Stopeck AT, Bilgin A, Altbach MI, Chiang JTA. Concurrent water T 2 and fat fraction mapping of the breast using the radial gradient and spin echo (RADGRASE) pulse sequence. Magn Reson Imaging 2025; 118:110355. [PMID: 39921152 DOI: 10.1016/j.mri.2025.110355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
This work describes and evaluates an efficient radial gradient- and spin-echo (RADGRASE) pulse sequence and reconstruction algorithm for concurrent measurement of proton-density weighted fat fraction (FF) and water component T2 (T2w) within breast tissues. The ability to estimate T2w in breast tissues, where fat can be highly abundant, is demonstrated using oil/gel phantoms across a wide range of FF values (0.1-0.7). Successful T2w mapping of breast tissues is also demonstrated in vivo by comparison with fat suppressed T2 values. The sensitivity of RADGRASE to detect changes in the breast was assessed by tracking T2w in 3 healthy volunteers through their menstrual cycle, demonstrating T2w values in the late luteal phase to be 18-29 ms higher than in the follicular phase. The technique is also applied to a cohort of 68 patients taking tamoxifen for breast cancer risk reduction, where significant positive correlation between the FF parameter Frac50 and T2w (p = 0.035) was observed in premenopausal subjects (n = 20). Our findings demonstrate the ability and efficacy of RADGRASE for simultaneously mapping FF and T2w within breast tissues, and the potential utility of the technique in studying breast tissue changes in clinical applications.
Collapse
Affiliation(s)
- Tomoe Hagio
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA.
| | | | - Denise Roe
- Epidemiology and Biostatistics Department, The University of Arizona, Tucson, AZ 85724, USA.
| | - Marylin T Marron
- Department of Medicine, The University of Arizona, Tucson, AZ 85724, USA..
| | - Cynthia Thomson
- Health Promotion Sciences Department, The University of Arizona, Tucson, AZ 85724, USA.
| | - Patricia Thompson
- Department of Cell and Molecular Medicine, The University of Arizona, Tucson, AZ 85724, USA.
| | - Alison T Stopeck
- Department of Medicine, The University of Arizona, Tucson, AZ 85724, USA..
| | - Ali Bilgin
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA; Department of Medical Imaging, The University of Arizona, Tucson, AZ 85724, USA.
| | - Maria I Altbach
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA; Department of Medical Imaging, The University of Arizona, Tucson, AZ 85724, USA.
| | | |
Collapse
|
4
|
Echols JT, Wang S, Patel AR, Hogwood AC, Abbate A, Epstein FH. Fatty acid composition MRI of epicardial adipose tissue: Methods and detection of proinflammatory biomarkers in ST-segment elevation myocardial infarction patients. Magn Reson Med 2025; 93:519-535. [PMID: 39323040 PMCID: PMC11604849 DOI: 10.1002/mrm.30285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/27/2024] [Accepted: 08/20/2024] [Indexed: 09/27/2024]
Abstract
PURPOSE To develop a method for quantifying the fatty acid composition (FAC) of human epicardial adipose tissue (EAT) using accelerated MRI and identify its potential for detecting proinflammatory biomarkers in patients with ST-segment elevation myocardial infarction (STEMI). METHODS A multi-echo radial gradient-echo sequence was developed for accelerated imaging during a breath hold using a locally low-rank denoising technique to reconstruct undersampled images. FAC mapping was achieved by fitting the multi-echo images to a multi-resonance complex signal model based on triglyceride characterization. Validation of the method was assessed using a phantom comprised of multiple oils. In vivo imaging was performed in STEMI patients (n = 21; 14 males/seven females). FAC was quantified in EAT, subcutaneous AT, and abdominal visceral AT. RESULTS Phantom validation demonstrated strong correlations (r > 0.97) and statistical significance (p < 0.0001) between measured and reference proton density fat fraction and FAC values. In vivo imaging of STEMI patients revealed a distinct EAT FAC profile compared to subcutaneous AT and abdominal visceral AT. EAT FAC parameters had significant correlations with left ventricular (LV) end-diastolic volume index (p < 0.05), LV end-systolic volume index (p < 0.05), and LV mass index (p < 0.05). CONCLUSIONS Accelerated MRI enabled accurate quantification of human EAT FAC. The relationships between the EAT FAC profile and LV structure and function in STEMI patients suggest the potential of EAT FAC MRI as a biomarker for adipose tissue quality and inflammatory status in cardiovascular disease.
Collapse
Affiliation(s)
- John T. Echols
- Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Shuo Wang
- Division of Cardiovascular MedicineUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Amit R. Patel
- Division of Cardiovascular MedicineUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Austin C. Hogwood
- Robert M. Berne Cardiovascular Research CenterUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Antonio Abbate
- Division of Cardiovascular MedicineUniversity of VirginiaCharlottesvilleVirginiaUSA
- Robert M. Berne Cardiovascular Research CenterUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Frederick H. Epstein
- Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginiaUSA
- Robert M. Berne Cardiovascular Research CenterUniversity of VirginiaCharlottesvilleVirginiaUSA
- RadiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
5
|
Pilgrim‐Morris JH, Collier GJ, Takigawa M, Strickland S, Thompson R, Norquay G, Stewart NJ, Wild JM. Mapping the amplitude and phase of dissolved 129Xe red blood cell signal oscillations with keyhole spectroscopic lung imaging. Magn Reson Med 2025; 93:584-596. [PMID: 39423219 PMCID: PMC11604899 DOI: 10.1002/mrm.30296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/11/2024] [Accepted: 08/28/2024] [Indexed: 10/21/2024]
Abstract
PURPOSE To assess the regional amplitude and phase of dissolved 129Xe red blood cell (RBC) signal oscillations in the lung vasculature with keyhole spectroscopic imaging and to compare with previous methodology, which does not account for oscillation phase. METHODS 129Xe gas transfer was measured with a four-echo 3D radial spectroscopic imaging sequence. Keyhole reconstruction-based RBC signal oscillation amplitude mapping was applied retrospectively to data acquired from 28 healthy volunteers, 4 chronic thromboembolic pulmonary hypertension (CTEPH) patients, and 5 patients who were hospitalized due to COVID-19 pneumonia and had residual lung abnormalities. Using a sliding window keyhole reconstruction, maps of RBC oscillation amplitude were corrected for regional phase difference. Repeatability of the phase-adjusted oscillation amplitude was assessed in 8 healthy volunteers across three scans. RESULTS With sliding window keyhole reconstruction, regional phase differences were observed in the RBC signal oscillations: mean phase = (0.27 ± 0.19) rad in healthy volunteers, (0.24 ± 0.13) rad in CTEPH patients, and (0.33 ± 0.19) rad in patients with post-COVID-19 residual lung abnormality. The oscillation amplitude and phase maps were more heterogeneous (i.e., they showed increased coefficient of variation) for the CTEPH patients. The RBC oscillation amplitude was repeatable, and the mean three-scan coefficient of variation was smaller when the phase adjustment was made (0.07 ± 0.04 compared with 0.16 ± 0.05). CONCLUSION Sliding window keyhole reconstruction of radial dissolved 129Xe imaging reveals regional phase differences in the RBC oscillations, which are not captured when performing two phase keyhole reconstruction. This regional phase information may reflect the hemodynamic effect of the cardiac pulse wave in the pulmonary microvasculature.
Collapse
Affiliation(s)
- Jemima H. Pilgrim‐Morris
- POLARIS, Section of Medical Imaging and Technologies, Division of Clinical Medicine, School of Medicine and Population HealthUniversity of Sheffield
SheffieldUK
- Insigneo InstituteUniversity of SheffieldSheffieldUK
| | - Guilhem J. Collier
- POLARIS, Section of Medical Imaging and Technologies, Division of Clinical Medicine, School of Medicine and Population HealthUniversity of Sheffield
SheffieldUK
- Insigneo InstituteUniversity of SheffieldSheffieldUK
| | - Mika Takigawa
- POLARIS, Section of Medical Imaging and Technologies, Division of Clinical Medicine, School of Medicine and Population HealthUniversity of Sheffield
SheffieldUK
| | - Scarlett Strickland
- Biomedical Research CentreUniversity of SheffieldSheffieldUK
- Sheffield Teaching HospitalsSheffieldUK
| | - Roger Thompson
- POLARIS, Section of Medical Imaging and Technologies, Division of Clinical Medicine, School of Medicine and Population HealthUniversity of Sheffield
SheffieldUK
- Sheffield Teaching HospitalsSheffieldUK
| | - Graham Norquay
- POLARIS, Section of Medical Imaging and Technologies, Division of Clinical Medicine, School of Medicine and Population HealthUniversity of Sheffield
SheffieldUK
- Insigneo InstituteUniversity of SheffieldSheffieldUK
| | - Neil J. Stewart
- POLARIS, Section of Medical Imaging and Technologies, Division of Clinical Medicine, School of Medicine and Population HealthUniversity of Sheffield
SheffieldUK
- Insigneo InstituteUniversity of SheffieldSheffieldUK
| | - Jim M. Wild
- POLARIS, Section of Medical Imaging and Technologies, Division of Clinical Medicine, School of Medicine and Population HealthUniversity of Sheffield
SheffieldUK
- Insigneo InstituteUniversity of SheffieldSheffieldUK
| |
Collapse
|
6
|
Zhai L, Li F, Luo B, Wang Q, Wu H, Zhao Y, Yuan G, Zhang J. Fat-suppression T2 relaxation time and water fraction predict response to intravenous glucocorticoid therapy for thyroid-associated ophthalmopathy. Eur Radiol 2025; 35:957-967. [PMID: 39093414 DOI: 10.1007/s00330-024-10868-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/13/2024] [Accepted: 06/10/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVE To investigate the value of fat-suppression (FS) T2 relaxation time (T2RT) derived from FS T2 mapping and water fraction (WF) derived from T2 IDEAL to predict the treatment response to intravenous glucocorticoids (IVGC) in patients with thyroid-associated ophthalmopathy (TAO) based on texture analysis. MATERIALS AND METHODS In this study, 89 patients clinically diagnosed with active and moderate-to-severe TAO were enroled (responsive group, 48 patients; unresponsive group, 41 patients). The baseline clinical characteristics and texture features were compared between the two groups. Multivariate analysis was performed to identify the independent predictors of treatment response to IVGC. ROC analysis and the DeLong test were used to assess and compare the predictive performance of different models. RESULTS The responsive group exhibited significantly shorter disease duration and higher 90th percentile of FS T2RT and kurtosis of WF in the extraocular muscle (EOM) and 95th percentile of WF in the orbital fat (OF) than the unresponsive group. Model 2 (disease duration + WF; AUC, 0.816) and model 3 (disease duration + FS T2RT + WF; AUC, 0.823) demonstrated superior predictive efficacy compared to model 1 (disease duration + FS T2RT; AUC, 0.756), while there was no significant difference between models 2 and 3. CONCLUSIONS The orbital tissues of responders exhibited more oedema and heterogeneity. Furthermore, OF is as valuable as EOM for assessing the therapeutic efficacy of IVGC. Finally, WF derived from T2 IDEAL processed by texture analysis can provide valuable information for predicting the treatment response to IVGC in patients with active and moderate-to-severe TAO. CLINICAL RELEVANCE STATEMENT The texture features of FS T2RT and WF are different between responders and non-responders, which can be the predictive tool for treatment response to IVGC. KEY POINTS Texture analysis can be used for predicting response to IVGC in TAO patients. TAO patients responsive to IVGC show more oedema and heterogeneity in the orbital tissues. WF from T2 IDEAL is a tool to predict the therapeutic response of TAO.
Collapse
Affiliation(s)
- Linhan Zhai
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Feng Li
- Department of Radiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Ban Luo
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiuxia Wang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongyu Wu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yali Zhao
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Gang Yuan
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
7
|
Wodtke P, Grashei M, Schilling F. Quo Vadis Hyperpolarized 13C MRI? Z Med Phys 2025; 35:8-32. [PMID: 38160135 DOI: 10.1016/j.zemedi.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 01/03/2024]
Abstract
Over the last two decades, hyperpolarized 13C MRI has gained significance in both preclinical and clinical studies, hereby relying on technologies like PHIP-SAH (ParaHydrogen-Induced Polarization-Side Arm Hydrogenation), SABRE (Signal Amplification by Reversible Exchange), and dDNP (dissolution Dynamic Nuclear Polarization), with dDNP being applied in humans. A clinical dDNP polarizer has enabled studies across 24 sites, despite challenges like high cost and slow polarization. Parahydrogen-based techniques like SABRE and PHIP offer faster, more cost-efficient alternatives but require molecule-specific optimization. The focus has been on imaging metabolism of hyperpolarized probes, which requires long T1, high polarization and rapid contrast generation. Efforts to establish novel probes, improve acquisition techniques and enhance data analysis methods including artificial intelligence are ongoing. Potential clinical value of hyperpolarized 13C MRI was demonstrated primarily for treatment response assessment in oncology, but also in cardiology, nephrology, hepatology and CNS characterization. In this review on biomedical hyperpolarized 13C MRI, we summarize important and recent advances in polarization techniques, probe development, acquisition and analysis methods as well as clinical trials. Starting from those we try to sketch a trajectory where the field of biomedical hyperpolarized 13C MRI might go.
Collapse
Affiliation(s)
- Pascal Wodtke
- Department of Nuclear Medicine, TUM School of Medicine and Health, Klinikum rechts der Isar of Technical University of Munich, 81675 Munich, Germany; Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, United Kingdom; Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge UK
| | - Martin Grashei
- Department of Nuclear Medicine, TUM School of Medicine and Health, Klinikum rechts der Isar of Technical University of Munich, 81675 Munich, Germany
| | - Franz Schilling
- Department of Nuclear Medicine, TUM School of Medicine and Health, Klinikum rechts der Isar of Technical University of Munich, 81675 Munich, Germany; Munich Institute of Biomedical Engineering, Technical University of Munich, 85748 Garching, Germany; German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany.
| |
Collapse
|
8
|
Panc K, Gundogdu H, Sekmen S, Basaran M, Gurun E. Liver and pancreatic fat fractions as predictors of disease severity in acute pancreatitis: an MRI IDEAL-IQ study. Abdom Radiol (NY) 2025:10.1007/s00261-025-04809-y. [PMID: 39883165 DOI: 10.1007/s00261-025-04809-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/06/2025] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
PURPOSE Metabolic dysfunction-associated steatotic liver disease (MASLD) and non-alcoholic fatty pancreatic disease (NAFPD) are metabolic diseases with rising incidence. Fatty infiltration may lead to dysfunction of the liver and pancreatic tissues. This study aims to quantify liver and pancreatic fat fractions and examine their correlation with disease severity in acute pancreatitis patients. METHODS The severity of acute pancreatitis was assessed using the revised Atlanta classification (RAC), computed tomography severity index (CTSI), and modified CTSI (mCTSI). Proton density fat fraction (PDFF) levels of the liver and pancreas were measured via IDEAL MRI. Patients were categorized into biliary and non-biliary pancreatitis groups. Correlations between PDFF levels and the RAC, CTSI, and mCTSI scores were analyzed. RESULTS A total of 127 patients were included, with MASLD present in 40.9% and NAFPD in 30%. Liver PDFF values were significantly higher in non-biliary pancreatitis (p = 0.040). Patients with MASLD exhibited higher CTSI and mCTSI scores (p = 0.009, p = 0.033, respectively). No significant differences were observed in severity scales between patients with and without NAFPD. Liver PDFF was positively correlated with CTSI and mCTSI scores in biliary pancreatitis. ROC analysis identified a liver PDFF > 3.9% (p = 0.002) and pancreatic corpus PDFF > 12.1% (0.028) as diagnostic markers for severe pancreatitis. In addition, a liver PDFF < 4.5% (p = 0.042) was an indicator for biliary pancreatitis. CONCLUSION MASLD is associated with increased severity in acute pancreatitis. IDEAL MRI-derived PDFF levels of the liver and pancreas show potential in predicting severe acute pancreatitis and distinguishing between biliary and non-biliary etiologies.
Collapse
Affiliation(s)
- Kemal Panc
- Karakoçan State Hospital, Elazığ, Turkey
| | | | | | | | | |
Collapse
|
9
|
Kim K, Kim KI, Lee JW, Jeong YJ. Unlocking the Potential of Chest MRI: Strategies for Establishing a Successful Practice. JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY 2025; 86:83-104. [PMID: 39958489 PMCID: PMC11822286 DOI: 10.3348/jksr.2024.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 02/18/2025]
Abstract
Chest MRI is a valuable tool for assessing chest structures, particularly when CT produces inconclusive results. MRI provides exceptional soft-tissue resolution and enables the determination of lesion location, size, and invasion into neighboring structures. Its applications span various clinical scenarios, including the differentiation of non-tumorous and tumorous conditions in the mediastinum or pleura, planning of surgical interventions and treatments for such tumors, evaluation of post-treatment recurrence, staging of lung cancer, and diagnosis of progressive massive fibrosis. Despite the technical hurdles posed by cardiac and respiratory motion, advancements in sequence and scan techniques have enabled high-quality chest MRI examinations to be conducted across diverse clinical settings. This pictorial essay aims to offer comprehensive resources and strategies for radiologists to integrate chest MRI into clinical practice and to overcome its present challenges.
Collapse
|
10
|
Li J, Villar-Calle P, Chiu C, Reza M, Narula N, Li C, Zhang J, Nguyen TD, Wang Y, Zhang RS, Kim J, Weinsaft JW, Spincemaille P. Spiral cardiac quantitative susceptibility mapping for differential cardiac chamber oxygenation-Initial validation in relation to invasive blood sampling. Magn Reson Med 2024. [PMID: 39641910 DOI: 10.1002/mrm.30393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/18/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE To develop a breath-hold cardiac quantitative susceptibility mapping (QSM) sequence for noninvasive measurement of differential cardiac chamber blood oxygen saturation (ΔSO2). METHODS A non-gated three-dimensional stack-of-spirals QSM sequence was implemented to continuously sample the data throughout the cardiac cycle. Measurements of ΔSO2 between the right and left heart chamber obtained by the proposed sequence and a previously validated navigator Cartesian QSM sequence were compared in three cohorts consisting of healthy volunteers, coronavirus disease 2019 survivors, and patients with pulmonary hypertension. In the pulmonary-hypertension cohort, Bland-Altman plots were used to assess the agreement of ΔSO2 values obtained by QSM and those obtained by invasive right heart catheterization (RHC). RESULTS Compared with navigator QSM (average acquisition time 419 ± 158 s), spiral QSM reduced the scan time on average by over 20-fold to a 20-s breath-hold. In all three cohorts, spiral QSM and navigator QSM yielded similar ΔSO2. Among healthy volunteers and coronavirus disease 2019 survivors, ΔSO2 was 17.41 ± 4.35% versus 17.67 ± 4.09% for spiral and navigator QSM, respectively. In pulmonary-hypertension patients, spiral QSM showed a slightly smaller ΔSO2 bias and narrower 95% limits of agreement than that obtained by navigator QSM (1.09% ± 6.47% vs. 2.79% ± 6.99%) when compared with right heart catheterization. CONCLUSION Breath-hold three-dimensional spiral cardiac QSM for measuring differential cardiac chamber blood oxygenation is feasible and provides values in good agreement with navigator cardiac QSM and with reference right heart catheterization.
Collapse
Affiliation(s)
- Jiahao Li
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | | | - Caitlin Chiu
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Mahniz Reza
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Nupoor Narula
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Chao Li
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, USA
| | - Jinwei Zhang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Thanh D Nguyen
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Yi Wang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Robert S Zhang
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Jiwon Kim
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | | | | |
Collapse
|
11
|
Alvarado-Miranda M, Solano A, Marsico S, Núñez-Robainas A, Cumpli-Gargallo MC, Sáinz M, Maiques JM, Barreiro E. Clinical Implications of Functional Imaging in the Assessment of Bronchiectasis-Associated Sarcopenia. Arch Bronconeumol 2024:S0300-2896(24)00453-8. [PMID: 39706732 DOI: 10.1016/j.arbres.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024]
Abstract
INTRODUCTION Bronchiectasis is a complex lung disease with poorly studied systemic manifestations. Patients with bronchiectasis-associated sarcopenia exhibit a specific differential profile of functional muscle phenotype (vastus lateralis, VL), which may be analyzed using imaging (ultrasound and magnetic resonance imaging, MRI). METHODS Ultrasound and MRI were used to explore functional imaging parameters in quadriceps of 20 patients with stable bronchiectasis and 10 healthy controls. In muscle specimens (open biopsy procedures), muscle phenotype (fiber morphometry and structural abnormalities, immunohistochemistry) was also evaluated. Patients and controls were clinically and functionally evaluated. RESULTS In muscles of patients compared to controls, a significant decline in body composition parameters (BMI and FFMI), muscle function (upper and lower limbs), lung function, and exercise capacity was detected, ultrasonography revealed decreased muscle thickness and area, while MRI demonstrated increased fat infiltration, which positively correlated with the bronchiectasis severity scores. Structural parameters (proportions of hybrid fibers, internal nuclei, abnormal fibers, and apoptotic nuclei) were significantly greater in the VL of patients than in controls and inversely correlated with quadriceps muscle function and exercise capacity in the former. CONCLUSIONS In patients with stable mild-to-moderate bronchiectasis, sarcopenia was clinically evidenced through the significant reduction in muscle mass and upper and lower limb muscle function. Non-invasive ultrasound and MRI techniques showed that features of muscle quality architecture and fat infiltration are hallmarks of bronchiectasis-associated sarcopenia. Functional radiological tools should be implemented in clinical settings to early diagnose and monitor sarcopenia in these patients.
Collapse
Affiliation(s)
- Mariela Alvarado-Miranda
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Dr. Aiguader, 88, E-08003 Barcelona, Spain; Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Monforte de Lemos, 5, E-28029 Madrid, Spain; Pulmonology Department, Hospital Universitari Mutua Terrassa, Barcelona, Spain
| | - Alberto Solano
- Radiology Department, Imatge Mèdica Intercentres-Parc de Salut Mar, Hospital del Mar, Barcelona, Spain
| | - Salvatore Marsico
- Radiology Department, Imatge Mèdica Intercentres-Parc de Salut Mar, Hospital del Mar, Barcelona, Spain
| | - Adriana Núñez-Robainas
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Dr. Aiguader, 88, E-08003 Barcelona, Spain; Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Monforte de Lemos, 5, E-28029 Madrid, Spain
| | - Maria Cinta Cumpli-Gargallo
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Dr. Aiguader, 88, E-08003 Barcelona, Spain
| | - Marina Sáinz
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Dr. Aiguader, 88, E-08003 Barcelona, Spain
| | - José María Maiques
- Radiology Department, Imatge Mèdica Intercentres-Parc de Salut Mar, Hospital del Mar, Barcelona, Spain
| | - Esther Barreiro
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Dr. Aiguader, 88, E-08003 Barcelona, Spain; Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Monforte de Lemos, 5, E-28029 Madrid, Spain.
| |
Collapse
|
12
|
Tkotz K, Zeiger P, Hanspach J, Mathy CS, Laun FB, Uder M, Nagel AM, Gast LV. Parameter optimization for proton density fat fraction quantification in skeletal muscle tissue at 7 T. MAGMA (NEW YORK, N.Y.) 2024; 37:969-981. [PMID: 39105951 PMCID: PMC11582128 DOI: 10.1007/s10334-024-01195-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024]
Abstract
OBJECTIVE To establish an image acquisition and post-processing workflow for the determination of the proton density fat fraction (PDFF) in calf muscle tissue at 7 T. MATERIALS AND METHODS Echo times (TEs) of the applied vendor-provided multi-echo gradient echo sequence were optimized based on simulations of the effective number of signal averages (NSA*). The resulting parameters were validated by measurements in phantom and in healthy calf muscle tissue (n = 12). Additionally, methods to reduce phase errors arising at 7 T were evaluated. Finally, PDFF values measured at 7 T in calf muscle tissue of healthy subjects (n = 9) and patients with fatty replacement of muscle tissue (n = 3) were compared to 3 T results. RESULTS Simulations, phantom and in vivo measurements showed the importance of using optimized TEs for the fat-water separation at 7 T. Fat-water swaps could be mitigated using a phase demodulation with an additional B0 map, or by shifting the TEs to longer values. Muscular PDFF values measured at 7 T were comparable to measurements at 3 T in both healthy subjects and patients with increased fatty replacement. CONCLUSION PDFF determination in calf muscle tissue is feasible at 7 T using a chemical shift-based approach with optimized acquisition and post-processing parameters.
Collapse
Affiliation(s)
- Katharina Tkotz
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Paula Zeiger
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jannis Hanspach
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Claudius S Mathy
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Frederik B Laun
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Division of Medical Physics in Radiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Lena V Gast
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
13
|
Zhou X, Daniel BL, Hargreaves BA, Lee PK. Distortion-free water-fat separated diffusion-weighted imaging using spatiotemporal joint reconstruction. Magn Reson Med 2024; 92:2343-2357. [PMID: 39051729 DOI: 10.1002/mrm.30221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/03/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024]
Abstract
PURPOSE Diffusion-weighted imaging (DWI) suffers from geometric distortion and chemical shift artifacts due to the commonly used Echo Planar Imaging (EPI) trajectory. Even with fat suppression in DWI, severe B0 and B1 variations can result in residual fat, which becomes both a source of image artifacts and a confounding factor in diffusion-weighted contrast in distinguishing benign and malignant tissues. This work presents a method for acquiring distortion-free diffusion-weighted images using spatiotemporal acquisition and joint reconstruction. Water-fat separation is performed by chemical-shift encoding. METHODS Spatiotemporal acquisition is employed to obtain distortion-free images at a series of echo times. Chemical-shift encoding is used for water-fat separation. Reconstruction and separation are performed jointly in the spat-spectral domain. To address the shot-to-shot motion-induced phase in DWI, an Fast Spin Echo (FSE)-based phase navigator is incorporated into the sequence to obtain distortion-free phase information. The proposed method was validated in phantoms and in vivo for the brain, head and neck, and breast. RESULTS The proposed method enables the acquisition of distortion-free diffusion-weighted images in the presence of B0 field inhomogenieties commonly observed in the body. Water and fat components are separated with no obvious spectral leakage artifacts. The estimated Apparent Diffusion Coefficient (ADC) is comparable to that of multishot DW-EPI. CONCLUSION Distortion-free, water-fat separated diffusion-weighted images in body can be obtained through the utilization of spatiotemporal acquisition and joint reconstruction methods.
Collapse
Affiliation(s)
- Xuetong Zhou
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Bruce L Daniel
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Brian A Hargreaves
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Philip K Lee
- Department of Radiology, Stanford University, Stanford, California, USA
| |
Collapse
|
14
|
Chen M, Xing J, Guo L. MRI-based Deep Learning Models for Preoperative Breast Volume and Density Assessment Assisting Breast Reconstruction. Aesthetic Plast Surg 2024; 48:4994-5006. [PMID: 38806828 DOI: 10.1007/s00266-024-04074-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/09/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND The volume of the implant is the most critical element of breast reconstruction, so it is necessary to accurately assess the preoperative volume of the healthy and affected breasts and select the appropriate implant for placement. Accurate and automated methods for quantitative assessment of breast volume can optimize breast reconstruction surgery and assist physicians in clinical decision making. The aim of this study was to develop an artificial intelligence model for automated segmentation of the breast and measurement of volume. MATERIAL AND METHODS A total of 249 subjects undergoing breast reconstruction surgery were enrolled in this study. Subjects underwent preoperative breast MRI, and the breast region manually outlined by the imaging physician served as the gold standard for volume measurement by the automated segmentation model. In this study, we developed three automated algorithms for automatic segmentation of breast regions, including a simple alignment model, an alignment dynamic encoding model, and a deep learning model. The volumetric agreement between the three automated segmentation algorithms and the breast regions manually segmented by imaging physicians was evaluated by calculating the mean square error (MSE) and intragroup correlation coefficient (ICC), and the reproducibility of the automated segmentation of the breast regions was assessed by the test-retest step. RESULTS The three breast automated segmentation models developed in this study (simple registration model, dynamic programming model, and deep learning model) showed strong ICC with manual segmentation of the breast region, with MSEs of 1.124, 0.693, and 0.781, and ICCs of 0.975 (95% CI, 0.869-0.991), 0.986 (95% CI, 0.967-0.996), and 0.983 (95% CI, 0.961-0.992), respectively. Regarding the test-retest results of breast volume, the dynamic programming model performed the best with an MSE of 0.370 and an ICC of 0.993 (95% CI, 0.982-0.997), followed by the deep learning algorithm with an MSE of 0.741 and an ICC of 0.983 (95% CI, 0.956-0.993), and the simple registration algorithm with an MSE of 0.763 and an ICC of 0.982 (95% CI, 0.949-0.993). The reproducibility of the breast region segmented by the three automated algorithms was higher than that of manual segmentation by different radiologists. CONCLUSION The three automated breast segmentation algorithms developed in this study generate accurate and reliable breast regions, enable highly reproducible breast region segmentation and automated volume measurements, and provide a valuable tool for surgical selection of appropriate prostheses. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Muzi Chen
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jiahua Xing
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan District, Beijing, 100144, China
| | - Lingli Guo
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
15
|
Froeling M, Heskamp L. The effect of fat model variation on muscle fat fraction quantification in a cross-sectional cohort. NMR IN BIOMEDICINE 2024; 37:e5217. [PMID: 39077882 DOI: 10.1002/nbm.5217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/31/2024]
Abstract
Spectroscopic imaging, rooted in Dixon's two-echo spin sequence to distinguish water and fat, has evolved significantly in acquisition and processing. Yet precise fat quantification remains a persistent challenge in ongoing research. With adequate phase characterization and correction, the fat composition models will impact measurements of fatty tissue. However, the effect of the used fat model in low-fat regions such as healthy muscle is unknown. In this study, we investigate the effect of assumed fat composition, in terms of chain length and double bond count, on fat fraction quantification in healthy muscle, while addressing phase and relaxometry confounders. For this purpose, we acquired bilateral thigh datasets from 38 healthy volunteers. Fat fractions were estimated using the IDEAL algorithm employing three different fat models fitted with and without the initial phase constrained. After data processing and model fitting, we used a convolutional neural net to automatically segment all thigh muscles and subcutaneous fat to evaluate the fitted parameters. The fat composition was compared with those reported in the literature. Overall, all the observed estimated fat composition values fall within the range of previously reported fatty acid composition based on gas chromatography measurements. All methods and models revealed different estimates of the muscle fat fractions in various evaluated muscle groups. Lateral differences changed from 0.5% to 5.3% in the hamstring muscle groups depending on the chosen method. The lowest observed left-right differences in each muscle group were all for the fat model estimating the number of double bonds with the initial phase unconstrained. With this model, the left-right differences were 0.64% ± 0.31%, 0.50% ± 0.27%, and 0.50% ± 0.40% for the quadriceps, hamstrings, and adductors muscle groups, respectively. Our findings suggest that a fat model estimating double bond numbers while allowing separate phases for each chemical species, given some assumptions, yields the best fat fraction estimate for our dataset.
Collapse
Affiliation(s)
- Martijn Froeling
- Center for Image Sciences, Precision Imaging Group, Division Imaging & Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Linda Heskamp
- Center for Image Sciences, Precision Imaging Group, Division Imaging & Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
16
|
Güttsches A, Forsting J, Kneifel M, Rehmann R, De Lorenzo A, Enax‐Krumova E, Froeling M, Vorgerd M, Schlaffke L. Pre- and post-skeletal muscle biopsy quantitative magnetic resonance imaging reveals correlations with histopathological findings. Eur J Neurol 2024; 31:e16479. [PMID: 39283047 PMCID: PMC11555129 DOI: 10.1111/ene.16479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/31/2024] [Accepted: 08/28/2024] [Indexed: 11/13/2024]
Abstract
BACKGROUND AND PURPOSE Quantitative muscle magnetic resonance imaging (MRI) is a promising non-invasive method in the diagnostic workup as well as follow-up of neuromuscular disorders. The aim of this study was to correlate quantitative MRI (qMRI) parameters to histopathological changes in skeletal muscle tissue and thus to verify the data from our pilot study. METHODS Twenty-six patients (eight females, 46.4 ± 15.1 years) were examined within 72 h before and within 24 h after a skeletal muscle biopsy using quantitative muscle MRI. Post-biopsy MRI was employed to pinpoint the exact localization of the biopsy. qMRI parameters including fat fraction, water T2 relaxation time and diffusion metrics including fractional anisotropy, mean diffusivity, axial diffusivity and radial diffusivity were extracted from the localization of the biopsy and correlated with histopathological findings. Additionally, three different segmentation masks were applied to the qMRI dataset, to evaluate whether the whole muscle represents the exact biopsy location. RESULTS Fat fraction and water T2 relaxation time in qMRI correlated significantly with the fat fraction in the muscle biopsy and histopathological inflammatory markers. Fractional anisotropy correlated with the quantity of type 2 fibres, whilst mean diffusivity correlated with p62. No differences were found using different segmentation masks in qMRI. CONCLUSIONS In this follow-up study, the results from our previous study were verified regarding the correlation of qMRI parameters with histopathological features in muscle biopsies, indicating that qMRI serves as a suitable non-invasive method in the follow-up of patients with neuromuscular disorders. If post-biopsy MRI is not available, whole muscle volume can be used for histopathological correlations.
Collapse
Affiliation(s)
- Anne‐Katrin Güttsches
- Department of NeurologyBG‐University Hospital Bergmannsheil, Ruhr‐University BochumBochumGermany
- Department of Neurology, Heimer Institute for Muscle ResearchBG‐University Hospital BergmannsheilBochumGermany
| | - Johannes Forsting
- Department of NeurologyBG‐University Hospital Bergmannsheil, Ruhr‐University BochumBochumGermany
| | - Moritz Kneifel
- Department of NeurologyBG‐University Hospital Bergmannsheil, Ruhr‐University BochumBochumGermany
- Department of Neurology, Heimer Institute for Muscle ResearchBG‐University Hospital BergmannsheilBochumGermany
| | - Robert Rehmann
- Department of NeurologyBG‐University Hospital Bergmannsheil, Ruhr‐University BochumBochumGermany
| | - Alice De Lorenzo
- Department of NeurologyBG‐University Hospital Bergmannsheil, Ruhr‐University BochumBochumGermany
| | - Elena Enax‐Krumova
- Department of NeurologyBG‐University Hospital Bergmannsheil, Ruhr‐University BochumBochumGermany
| | - Martijn Froeling
- Department of RadiologyUniversity Medical Centre UtrechtUtrechtNetherlands
| | - Matthias Vorgerd
- Department of NeurologyBG‐University Hospital Bergmannsheil, Ruhr‐University BochumBochumGermany
- Department of Neurology, Heimer Institute for Muscle ResearchBG‐University Hospital BergmannsheilBochumGermany
| | - Lara Schlaffke
- Department of NeurologyBG‐University Hospital Bergmannsheil, Ruhr‐University BochumBochumGermany
| |
Collapse
|
17
|
Forsting J, Rehmann R, Rohm M, Kocabas A, De Lorenzo A, Güttsches AK, Vorgerd M, Froeling M, Schlaffke L. Prospective longitudinal cohort study of quantitative muscle magnetic resonance imaging in a healthy control population. NMR IN BIOMEDICINE 2024; 37:e5214. [PMID: 38982853 DOI: 10.1002/nbm.5214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 07/11/2024]
Abstract
Quantitative muscle magnetic resonance imaging (qMRI) is a valuable methodology for assessing muscular injuries and neuromuscular disorders. Notably, muscle diffusion tensor imaging (DTI) gives insights into muscle microstructural and macrostructural characteristics. However, the long-term reproducibility and robustness of these measurements remain relatively unexplored. The purpose of this prospective longitudinal cohort study was to assess the long-term robustness and range of variation of qMRI parameters, especially DTI metrics, in the lower extremity muscles of healthy controls under real-life conditions. Twelve volunteers (seven females, age 44.1 ± 12.1 years, body mass index 23.3 ± 2.0 kg/m2) underwent five leg muscle MRI sessions every 20 ± 4 weeks over a total period of 1.5 years. A multiecho gradient-echo Dixon-based sequence, a multiecho spin-echo T2-mapping sequence, and a spin-echo echo planar imaging diffusion-weighted sequence were acquired bilaterally with a Philips 3-T Achieva MR System using a 16-channel torso coil. Fifteen leg muscles were segmented in both lower extremities. qMRI parameters, including fat fraction (FF), water T2 relaxation time, and the diffusion metrics fractional anisotropy (FA) and mean diffusivity (MD), were evaluated. Coefficients of variance (wsCV) and intraclass correlation coefficients (ICCs) were calculated to assess the reproducibility of qMRI parameters. The standard error of measurement (SEM) and the minimal detectable change (MDC) were calculated to determine the range of variation. All tests were applied to all muscles and, subsequently, to each muscle separately. wsCV showed good reproducibility (≤ 10%) for all qMRI parameters in all muscles. The ICCs revealed excellent agreement between time points (FF = 0.980, water T2 = 0.941, FA = 0.952, MD = 0.948). Random measurement errors assessed by SEM and the MDC were low (< 12%). In conclusion, in this study, we showed that qMRI parameters in healthy volunteers living normal lives are stable over 18 months, thereby defining a benchmark for the expected range of variation over time.
Collapse
Affiliation(s)
- Johannes Forsting
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Robert Rehmann
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Department of Neurology, Klinikum Dortmund, University Witten-Herdecke, Dortmund, Germany
| | - Marlena Rohm
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| | - Abdulhadi Kocabas
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Alice De Lorenzo
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Anne-Katrin Güttsches
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Matthias Vorgerd
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| | - Martijn Froeling
- Department of Radiology, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Lara Schlaffke
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
18
|
Bickelhaupt S, Laun FB, Uder M, Ohlmeyer S. Lesion-mimicking DIXON swap artifact in contrast-enhanced subtraction breast MRI. Radiol Case Rep 2024; 19:4921-4924. [PMID: 39247476 PMCID: PMC11378095 DOI: 10.1016/j.radcr.2024.07.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 09/10/2024] Open
Abstract
Breast cancer is the most common cancer in women; approximately 1 in 8 women is diagnosed with breast cancer in their lifetime. Some women are at significantly higher risk of developing breast cancer, including women carrying mutations in the BRCA1/2, TP53, or other genes and women with other risk factors. Women with a high lifetime risk for breast cancer are frequently offered annual breast magnetic resonance imaging (MRI) examinations for early breast cancer detection. Breast MRI is commonly performed using a multiparametric imaging protocol, including dynamic contrast-enhanced T1-weighted acquisitions. The dynamic contrast-enhanced T1-weighted acquisitions are frequently transformed into subtraction series, allowing the focused visualization of areas with high signal intensity and masses associated with elevated contrast agent uptake, which are among the hallmarks of suspicious findings. Here, we report a case in which a suspicious lesion-mimicking swap artifact occurred using a T1-weighted contrast-enhanced DIXON acquisition technique in a high-risk breast cancer screening MRI examination.
Collapse
Affiliation(s)
- Sebastian Bickelhaupt
- Institute of Radiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Frederik Bernd Laun
- Institute of Radiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sabine Ohlmeyer
- Institute of Radiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
19
|
Baal JD, Yoon D, Patel RP, Chin CT, Shah VN. Advanced Imaging of the Peripheral Nerves, From the AJR "How We Do It" Special Series. AJR Am J Roentgenol 2024; 223:e2430826. [PMID: 38353448 PMCID: PMC11855510 DOI: 10.2214/ajr.24.30826] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Advanced imaging of peripheral nerves is occupying an increasingly important role in the diagnostic workup of peripheral nerve disorders. Advances in MR neurography (MRN) and high-resolution ultrasound have addressed historical challenges in peripheral nerve imaging related to nerves' small size and nonlinear course and difficult differentiation from surrounding tissues. Modern MRN depicts neuromuscular anatomy with exquisite contrast resolution, and MRN has become the workhorse imaging modality for peripheral nerve evaluation. MRN protocols vary across institutions and are adjusted in individual patients, although they commonly include nerve-selective sequences and diffusion-tensor imaging tractography. Ultrasound offers a dynamic real-time high-resolution assessment of peripheral nerves and is widely accessible and less costly than MRN. Ultrasound has greater ability to examine peripheral nerves at the fascicular level and provides complementary information to MRN. However, ultrasound of peripheral nerves requires substantial skill and experience and is operator-dependent. The two modalities have distinct advantages and disadvantages, and the selection between these depends on the clinical context. This article provides an overview of advanced imaging techniques used for evaluation of peripheral nerves, with attention to MRN and high-resolution ultrasound. We draw on our institutional experience in performing both modalities to highlight technical considerations for optimizing examinations.
Collapse
Affiliation(s)
- Joe D. Baal
- University of California San Francisco, Department of Radiology & Biomedical Imaging
| | - Daehyun Yoon
- University of California San Francisco, Department of Radiology & Biomedical Imaging
| | - Rina P. Patel
- University of California San Francisco, Department of Radiology & Biomedical Imaging
| | - Cynthia T. Chin
- University of California San Francisco, Department of Radiology & Biomedical Imaging
| | - Vinil N. Shah
- University of California San Francisco, Department of Radiology & Biomedical Imaging
| |
Collapse
|
20
|
Forsting J, Wächter M, Froeling M, Rohm M, Güttsches AK, De Lorenzo A, Südkamp N, Kocabas A, Vorgerd M, Enax-Krumova E, Rehmann R, Schlaffke L. Quantitative muscle magnetic resonance imaging in limb-girdle muscular dystrophy type R1 (LGMDR1): A prospective longitudinal cohort study. NMR IN BIOMEDICINE 2024; 37:e5172. [PMID: 38794994 DOI: 10.1002/nbm.5172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 05/27/2024]
Abstract
Limb-girdle muscular dystrophy (LGMD) type R1 (LGMDR1) is the most common subtype of LGMD in Europe. Prospective longitudinal data, including clinical assessments and new biomarkers such as quantitative magnetic resonance imaging (qMRI), are needed to evaluate the natural course of the disease and therapeutic options. We evaluated eight thigh and seven leg muscles of 13 LGMDR1 patients (seven females, mean age 36.7 years, body mass index 23.9 kg/m2) and 13 healthy age- and gender-matched controls in a prospective longitudinal design over 1 year. Clinical assessment included testing for muscle strength with quick motor function measure (QMFM), gait analysis and patient questionnaires (neuromuscular symptom score, activity limitation [ACTIVLIM]). MRI scans were performed on a 3-T MRI scanner, including a Dixon-based sequence, T2 mapping and diffusion tensor imaging. The qMRI values of fat fraction (FF), water T2 relaxation time (T2), fractional anisotropy, mean diffusivity, axial diffusivity and radial diffusivity were analysed. Within the clinical outcome measures, significant deterioration between baseline and follow-up was found for ACTIVLIM (p = 0.029), QMFM (p = 0.012). Analysis of qMRI parameters of the patient group revealed differences between time points for both FF and T2 when analysing all muscles (FF: p < 0.001; T2: p = 0.016). The highest increase of fat replacement was found in muscles with an FF of between 10% and 50% at baseline. T2 in muscles with low-fat replacement increased significantly. No significant differences were found for the diffusion metrics. Significant correlations between qMRI metrics and clinical assessments were found at baseline and follow-up, while only T2 changes in thigh muscles correlated with changes in ACTIVLIM over time (ρ = -0.621, p < 0.05). Clinical assessments can show deterioration of the general condition of LGMDR1 patients. qMRI measures can give additional information about underlying pathophysiology. Further research is needed to establish qMRI outcome measures for clinical trials.
Collapse
Affiliation(s)
- Johannes Forsting
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Marian Wächter
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Martijn Froeling
- Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Marlena Rohm
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| | - Anne-Katrin Güttsches
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| | - Alice De Lorenzo
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Nicolina Südkamp
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Abdulhadi Kocabas
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Matthias Vorgerd
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| | - Elena Enax-Krumova
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Robert Rehmann
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Department of Neurology, Klinikum Dortmund, University Witten-Herdecke, Dortmund, Germany
| | - Lara Schlaffke
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| |
Collapse
|
21
|
Monroe KS, Schiehser DM, Parr AW, Simmons AN, Hays Weeks CC, Bailey BA, Shahidi B. Biological markers of brain network connectivity and pain sensitivity distinguish low coping from high coping Veterans with persistent post-traumatic headache. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.16.24313761. [PMID: 39371153 PMCID: PMC11451760 DOI: 10.1101/2024.09.16.24313761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Headache is the most common type of pain following mild traumatic brain injury. Roughly half of those with persistent post-traumatic headache (PPTH) also report neck pain which is associated with greater severity and functional impact of headache. This observational cohort study aimed to identify biological phenotypes to help inform mechanism-based approaches in the management of PPTH with and without concomitant neck pain. Thirty-three military Veterans (mean (SD) = 37±16 years, 29 males) with PPTH completed a clinical assessment, quantitative sensory testing, and magnetic resonance imaging of the brain and cervical spine. Multidimensional phenotyping was performed using a Random Forest analysis and Partitioning Around Medoids (PAM) clustering of input features from three biologic domains: 1) resting state functional connectivity (rsFC) of the periaqueductal gray (PAG), 2) quality and size of cervical muscles, and 3) mechanical pain sensitivity and central modulation of pain. Two subgroups were distinguished by biological features that included forehead pressure pain threshold and rsFC between the PAG and selected nodes within the default mode, salience, and sensorimotor networks. Compared to the High Pain Coping group, the Low Pain Coping group exhibited higher pain-related anxiety (p=0.009), higher pain catastrophizing (p=0.004), lower pain self-efficacy (p=0.010), and greater headache-related disability (p=0.012). Findings suggest that greater functional connectivity of pain modulation networks involving the PAG combined with impairments in craniofacial pain sensitivity, but not cervical muscle health, distinguish a clinically important subgroup of individuals with PPTH who are less able to cope with pain and more severely impacted by headache.
Collapse
Affiliation(s)
- Katrina S Monroe
- School of Physical Therapy, College of Health and Human Services, San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA
| | - Dawn M Schiehser
- VA San Diego Healthcare System, 3350 La Jolla Village Dr, San Diego, CA 92161; Professor, School of Medicine, Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., San Diego, CA 92093, USA
| | - Aaron W Parr
- Joint Doctoral Program in Public Health, San Diego State University/University of California San Diego, 9500 Gilman Dr. MC0863 La Jolla, CA 92093, USA
| | - Alan N Simmons
- University of California San Diego, Research Health Scientist, Center of Excellence in Stress and Mental Health, VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| | - Chelsea C Hays Weeks
- University of California San Diego; VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| | - Barbara A Bailey
- Department of Mathematics and Statistics, College of Sciences, San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA
| | - Bahar Shahidi
- Department of Orthopaedic Surgery, University of California San Diego, 9500 Gilman Dr. MC0863 La Jolla, CA 92093, USA
| |
Collapse
|
22
|
Shinozaki A, Sanchez-Heredia JD, Andersen MP, Redda M, Dang DA, Hansen ESS, Schulte RF, Laustsen C, Tyler DJ, Grist JT. Enabling SENSE accelerated 2D CSI for hyperpolarized carbon-13 imaging. Sci Rep 2024; 14:20591. [PMID: 39231982 PMCID: PMC11375102 DOI: 10.1038/s41598-024-70892-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024] Open
Abstract
As hyperpolarized (HP) carbon-13 (13C) metabolic imaging is clinically translated, there is a need for easy-to-implement, fast, and robust imaging techniques. However, achieving high temporal resolution without decreasing spatial and/or spectral resolution, whilst maintaining the usability of the imaging sequence is challenging. Therefore, this study looked to accelerate HP 13C MRI by combining a well-established and robust sequence called two-dimensional Chemical Shift Imaging (2D CSI) with prospective under sampling and SENSitivity Encoding (SENSE) reconstruction. Due to the low natural abundance of 13C, the sensitivity maps cannot be pre-acquired for the reconstruction. As such, the implementation of sodium (23Na) sensitivity maps for SENSE reconstructed 13C CSI was demonstrated in a phantom and in vivo in the pig kidney. Results showed that SENSE reconstruction using 23Na sensitivity maps corrected aliased images with a four-fold acceleration. With high temporal resolution, the kidney spectra produced a detailed metabolic arrival and decay curve, useful for further metabolite kinetic modelling or denoising. Metabolic ratio maps were produced in three pigs demonstrating the technique's ability for repeat metabolic measurements. In cases with unknown metabolite spectra or limited HP MRI specialist knowledge, this robust acceleration method ensures comprehensive capture of metabolic signals, mitigating the risk of missing spectral data.
Collapse
Affiliation(s)
- Ayaka Shinozaki
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | | | | | - Mohsen Redda
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Duy A Dang
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Esben S S Hansen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | | | - Damian J Tyler
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | - James T Grist
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK.
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK.
- Department of Radiology, Oxford University Hospitals, Oxford, UK.
| |
Collapse
|
23
|
Roach KE, Bird AL, Pedoia V, Majumdar S, Souza RB. Automated evaluation of hip abductor muscle quality and size in hip osteoarthritis: Localized muscle regions are strongly associated with overall muscle quality. Magn Reson Imaging 2024; 111:237-245. [PMID: 38636675 DOI: 10.1016/j.mri.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 04/01/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Limited information exists regarding abductor muscle quality variation across its length and which locations are most representative of overall muscle quality. This is exacerbated by time-intensive processes for manual muscle segmentation, which limits feasibility of large cohort analyses. The purpose of this study was to develop an automated and localized analysis pipeline that accurately estimates hip abductor muscle quality and size in individuals with mild-to-moderate hip osteoarthritis (OA) and identifies regions of each muscle which provide best estimates of overall muscle quality. Forty-four participants (age 52.7 ± 16.1 years, BMI 23.7 ± 3.4 kg/m2, 14 males) with and without mild-to-moderate radiographic hip OA were recruited for this study. Unilateral hip magnetic resonance (MR) images were acquired on a 3.0 T MR scanner and included axial T1-weighted fast spin echo and 3D axial Iterative Decomposition of water and fat with Echo Asymmetry and Least-squares estimation (IDEAL-IQ) spoiled gradient-recalled echo (SPGR) with multi-peak fat spectrum modeling and single T2* correction. A three dimensional (3D) V-Net convolutional neural network was trained to automatically segment the gluteus medius (GMED), gluteus minimus (GMIN), and tensor fascia lata (TFL) on axial IDEAL-IQ. Agreement between manual and automatic segmentation and associations between axial fat fraction (FF) estimated from IDEAL-IQ and overall muscle FF were evaluated. Dice scores for automatic segmentation were 0.94, 0.87, and 0.91 for GMED, GMIN, and TFL, respectively. GMED, GMIN, and TFL volumetric and FF measures were strongly correlated (r: 0.92-0.99) between automatic and manual segmentations, where all values fell within the 95% limits of agreement of [-9.79 cm3, 17.43 cm3] and [-1.99%, 2.89%], respectively. Axial FF was significantly associated with overall FF with the strongest correlations at 50%, 50%, and 65% the length of the GMED, GMIN, and TFL muscles, respectively (r: 0.93-0.97). An automated and localized analysis can provide efficient and accurate estimates of hip abductor muscle quality and size across muscle length. Specific regions of the muscle may be used to estimate overall muscle quality in an abbreviated evaluation of muscle quality.
Collapse
Affiliation(s)
- Koren E Roach
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, 185 Berry Street, Suite 190, Lobby 6, San Francisco, CA 94107, USA; Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Foothills Medical Centre, 1403-29th Street NW, Calgary, AB T2N 2T9, Canada.
| | - Alyssa L Bird
- Department of Physical Therapy and Rehabilitation Science, University of California - San Francisco, 1500 Owens Street, Suite 400, San Francisco, CA 94158, USA.
| | - Valentina Pedoia
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, 185 Berry Street, Suite 190, Lobby 6, San Francisco, CA 94107, USA.
| | - Sharmila Majumdar
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, 185 Berry Street, Suite 190, Lobby 6, San Francisco, CA 94107, USA.
| | - Richard B Souza
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, 185 Berry Street, Suite 190, Lobby 6, San Francisco, CA 94107, USA; Department of Physical Therapy and Rehabilitation Science, University of California - San Francisco, 1500 Owens Street, Suite 400, San Francisco, CA 94158, USA.
| |
Collapse
|
24
|
Zhang H, Lu T, Liu Y, Jiang M, Wang Y, Song X, Fan X, Zhou H. Application of Quantitative MRI in Thyroid Eye Disease: Imaging Techniques and Clinical Practices. J Magn Reson Imaging 2024; 60:827-847. [PMID: 37974477 DOI: 10.1002/jmri.29114] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023] Open
Abstract
Thyroid eye disease (TED) is a complex autoimmune disorder that impairs various orbital structures, leading to cosmetic damage and vision loss. Magnetic resonance imaging (MRI) is a fundamental diagnostic tool utilized in clinical settings of TED, for its accurate demonstration of orbital lesions and indication of disease conditions. The application of quantitative MRI has brought a new prospect to the management and research of TED, offering more detailed information on morphological and functional changes in the orbit. Therefore, many researchers concentrated on the implementation of different quantitative MRI techniques on TED for the exploration of clinical practices. Despite the abundance of studies utilizing quantitative MRI in TED, there remain considerable barriers and disputes on the best exploitation of this tool. This could possibly be attributed to the complexity of TED and the fast development of MRI techniques. It is necessary that clinical and radiological aspects of quantitative MRI in TED be better integrated into comprehensive insights. Hence, this review traces back 30 years of publications regarding quantitative MRI utilized in TED and elucidates this promising application in the facets of imaging techniques and clinical practices. We believe that a deeper understanding of the application of quantitative MRI in TED will enhance the efficacy of the multidisciplinary management of TED. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Haiyang Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Ting Lu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yuting Liu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Mengda Jiang
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yishi Wang
- MR Collaboration, Siemens Healthineers Ltd., Beijing, China
| | - Xuefei Song
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Huifang Zhou
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
25
|
Wu HY, Luo B, Yuan G, Wang QX, Liu P, Zhao YL, Zhai LH, Lv WZ, Zhang J, Chen L. A Prediction Model for Detecting Dysthyroid Optic Neuropathy Based on Clinical Factors and Imaging Markers of the Optic Nerve and Cerebrospinal Fluid in the Optic Nerve Sheath. Curr Med Sci 2024; 44:827-832. [PMID: 39096474 DOI: 10.1007/s11596-024-2890-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/30/2024] [Indexed: 08/05/2024]
Abstract
OBJECTIVE This study aimed to develop and test a model for predicting dysthyroid optic neuropathy (DON) based on clinical factors and imaging markers of the optic nerve and cerebrospinal fluid (CSF) in the optic nerve sheath. METHODS This retrospective study included patients with thyroid-associated ophthalmopathy (TAO) without DON and patients with TAO accompanied by DON at our hospital. The imaging markers of the optic nerve and CSF in the optic nerve sheath were measured on the water-fat images of each patient and, together with clinical factors, were screened by Least absolute shrinkage and selection operator. Subsequently, we constructed a prediction model using multivariate logistic regression. The accuracy of the model was verified using receiver operating characteristic curve analysis. RESULTS In total, 80 orbits from 44 DON patients and 90 orbits from 45 TAO patients were included in our study. Two variables (optic nerve subarachnoid space and the volume of the CSF in the optic nerve sheath) were found to be independent predictive factors and were included in the prediction model. In the development cohort, the mean area under the curve (AUC) was 0.994, with a sensitivity of 0.944, specificity of 0.967, and accuracy of 0.901. Moreover, in the validation cohort, the AUC was 0.960, the sensitivity was 0.889, the specificity was 0.893, and the accuracy was 0.890. CONCLUSIONS A combined model was developed using imaging data of the optic nerve and CSF in the optic nerve sheath, serving as a noninvasive potential tool to predict DON.
Collapse
Affiliation(s)
- Hong-Yu Wu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ban Luo
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gang Yuan
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qiu-Xia Wang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ping Liu
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Ya-Li Zhao
- Department of Radiology, Sir Run Run Shaw Hospital Affiliated with the School of Medicine of Zhejiang University, Hangzhou, 310000, China
| | - Lin-Han Zhai
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wen-Zhi Lv
- Department of Artificial Intelligence, Julei Technology Company, Wuhan, 430030, China
| | - Jing Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lang Chen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
26
|
Aigner CS, Dietrich-Conzelmann S, Lutz M, Krüger F, Schmitter S. Tailored and universal parallel transmit broadband pulses for homogeneous 3D excitation of the human heart at 7T. Magn Reson Med 2024; 92:730-740. [PMID: 38440957 DOI: 10.1002/mrm.30072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/31/2024] [Accepted: 02/13/2024] [Indexed: 03/06/2024]
Abstract
PURPOSE To research and evaluate the performance of broadband tailored kT-point pulses (TP) and universal pulses (UP) for homogeneous excitation of the human heart at 7T. METHODS Relative 3DB 1 + $$ {\mathrm{B}}_1^{+} $$ -maps of the thorax were acquired from 29 healthy volunteers. TP and UP were designed using the small-tip-angle approximation for a different composition of up to seven resonance frequencies. TP were computed for each of the 29B 1 + $$ {\mathrm{B}}_1^{+} $$ -maps, and UPs were calculated using 22B 1 + $$ {\mathrm{B}}_1^{+} $$ -maps and tested in seven testcases. The performance of the pulses was analyzed using the coefficient of variation (CV) in the 3D heart volumes. The 3D gradient-echo (GRE) scans were acquired for the seven testcases to qualitatively validate theB 1 + $$ {\mathrm{B}}_1^{+} $$ -predictions. RESULTS Single- and double-frequency optimized pulses achieved homogeneity in flip angle (FA) for the frequencies they were optimized for, while the broadband pulses achieved uniformity in FA across a 1300 Hz frequency range. CONCLUSION Broadband TP and UP can be used for homogeneous excitation of the heart volume across a 1300 Hz frequency range, including the water and the main six fat peaks, or with longer pulse durations and higher FAs for a smaller transmit bandwidth. Moreover, despite large inter-volunteer variations, broadband UP can be used for calibration-free 3D heart FA homogenization in time-critical situations.
Collapse
Affiliation(s)
| | | | - Max Lutz
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Felix Krüger
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
- University of Minnesota, Center for Magnetic Resonance Research, Minneapolis, Minnesota, USA
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
27
|
Lawless M, Byrns K, Bednarz BP, Meudt J, Shanmuganayagam D, Shah J, McMillan A, Li K, Pirasteh A, Miller J. Feasibility of identifying proliferative active bone marrow with fat fraction MRI and multi-energy CT. Phys Med Biol 2024; 69:135007. [PMID: 38876111 DOI: 10.1088/1361-6560/ad58a0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/14/2024] [Indexed: 06/16/2024]
Abstract
Objective.Active bone marrow (ABM) can serve as both an organ at risk and a target in external beam radiotherapy.18F-fluorothymidine (FLT) PET is the current gold standard for identifying proliferative ABM but it is not approved for human use, and PET scanners are not always available to radiotherapy clinics. Identifying ABM through other, more accessible imaging modalities will allow more patients to receive treatment specific to their ABM distribution. Multi-energy CT (MECT) and fat-fraction MRI (FFMRI) show promise in their ability to characterize bone marrow adiposity, but these methods require validation for identifying proliferative ABM.Approach.Six swine subjects were imaged using FFMRI, fast-kVp switching (FKS) MECT and sequential-scanning (SS) MECT to identify ABM volumes relative to FLT PET-derived ABM volumes. ABM was contoured on FLT PET images as the region within the bone marrow with a SUV above the mean. Bone marrow was then contoured on the FFMRI and MECT images, and thresholds were applied within these contours to determine which threshold produced the best agreement with the FLT PET determined ABM contour. Agreement between contours was measured using the Dice similarity coefficient (DSC).Main results.FFMRI produced the best estimate of the PET ABM contour. Compared to FLT PET ABM volumes, the FFMRI, SS MECT and FKS MECT ABM contours produced average peak DSC of 0.722 ± 0.080, 0.619 ± 0.070, and 0.464 ± 0.080, respectively. The ABM volume was overestimated by 40.51%, 97.63%, and 140.13% by FFMRI, SS MECT and FKS MECT, respectively.Significance.This study explored the ability of FFMRI and MECT to identify the proliferative relative to ABM defined by FLT PET. Of the methods investigated, FFMRI emerged as the most accurate approximation to FLT PET-derived active marrow contour, demonstrating superior performance by both DSC and volume comparison metrics. Both FFMRI and SS MECT show promise for providing patient-specific ABM treatments.
Collapse
Affiliation(s)
- M Lawless
- Department of Human Oncology, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI 53792, United States of America
| | - K Byrns
- St. Lukes Radiation Oncology Associates, 915 E 1st St, Duluth, MN 55805, United States of America
| | - B P Bednarz
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI 53705, United States of America
| | - J Meudt
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1675 Observatory Drive, Madison, WI 53706, United States of America
| | - D Shanmuganayagam
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1675 Observatory Drive, Madison, WI 53706, United States of America
| | - J Shah
- Siemens Healthineers, 221 Gregson Dr, Cary, NC 27511, United States of America
| | - A McMillan
- Department of Radiology, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI 53792, United States of America
| | - K Li
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI 53705, United States of America
| | - A Pirasteh
- Department of Radiology, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI 53792, United States of America
| | - J Miller
- Department of Human Oncology, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI 53792, United States of America
| |
Collapse
|
28
|
Samsonov AA, Yarnykh VL. Accurate actual flip angle imaging (AFI) in the presence of fat. Magn Reson Med 2024; 91:2345-2357. [PMID: 38193249 PMCID: PMC10997465 DOI: 10.1002/mrm.30000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024]
Abstract
PURPOSE To investigate the effect of incomplete fat spoiling on the accuracy of B1 mapping with actual flip angle imaging (AFI) and to propose a method to minimize the errors using the chemical shift properties of fat. THEORY AND METHODS Diffusion-based dephasing is the main spoiling mechanism exploited in AFI. However, a very low diffusion in fat may make the spoiling insufficient, leading to ghosts in the B1 maps. As the errors retain the chemical-shift signature of fat, their impact can be minimized using chemical-shift-based fat signal removal from AFI acquisition modified to include multi-echo readout. The source of the errors and the proposed correction were studied in simulations and phantom and in-vivo imaging experiments. RESULTS Our results support that AFI artifacts are caused by the incomplete fat spoiling present in clinically attractive short TR acquisition regimes. The correction eliminated the ghosting and significantly improved the B1 mapping accuracy as well as the accuracy of R1 mapping performed with AFI-derived B1 maps. CONCLUSIONS The incomplete fat signal spoiling may be a source of AFI B1 mapping errors, especially in subjects with high fat content. Achieving complete fat spoiling requires longer TR, which is undesirable in clinical applications. The proposed approach based on fat signal removal can reduce errors without significant prolongation of the AFI pulse sequence. We propose that, when attaining complete fat spoiling is not feasible, AFI mapping should be performed in a multi-echo regime with appropriate fat separation or suppression to minimize these errors.
Collapse
Affiliation(s)
- Alexey A Samsonov
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Vasily L Yarnykh
- Department of Radiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
29
|
Philippi CL, Weible E, Ehlers A, Walsh EC, Hoks RM, Birn RM, Abercrombie HC. Effects of cortisol administration on heart rate variability and functional connectivity across women with different depression histories. Behav Brain Res 2024; 463:114923. [PMID: 38408523 PMCID: PMC10942667 DOI: 10.1016/j.bbr.2024.114923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Abnormalities within the hypothalamic-pituitary-adrenal (HPA) axis and autonomic nervous system have been implicated in depression. Studies have reported glucocorticoid insensitivity and reduced heart rate variability (HRV) in depressive disorders. However, little is known about the effects of cortisol on HRV and resting-state functional connectivity (rsFC) of the central autonomic network (CAN) in depression. We collected resting-state fMRI and cardiac data for women with different depression histories (n = 61) after administration of cortisol and placebo using a double-blind crossover design. We computed rsFC for R-amygdala and L-amygdala seeds and assessed the change in HRV after cortisol (cortisol-placebo). Analyses examined the effects of acute cortisol administration on HRV and rsFC of the R-amygdala and L-amygdala. There was a significant interaction between HRV and treatment for rsFC between the amygdala and CAN regions. We found lower rsFC between the L-amygdala and putamen for those with a greater decrease in HRV after cortisol. There was also reduced rsFC between the R-amygdala and dorsomedial prefrontal cortex, putamen, middle cingulate cortex, insula, and cerebellum in those with lower HRV after cortisol. These results remained significant after adjusting for depression symptoms, age, and race. Our findings suggest that the effect of cortisol on CAN connectivity is related to its effects on HRV. Overall, these results could inform transdiagnostic interventions targeting HRV and the stress response systems across clinical and non-clinical populations.
Collapse
Affiliation(s)
- Carissa L Philippi
- Department of Psychological Sciences, University of Missouri-St. Louis, 1 University Blvd, St. Louis, MO 63121, USA.
| | - Emily Weible
- Department of Psychological Sciences, University of Missouri-St. Louis, 1 University Blvd, St. Louis, MO 63121, USA
| | - Alissa Ehlers
- Department of Psychiatry, University of Wisconsin-Madison, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI 53719, USA
| | - Erin C Walsh
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, CB# 7167, Chapel Hill, NC 27599, USA
| | - Roxanne M Hoks
- Department of Psychiatry, University of Wisconsin-Madison, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI 53719, USA; Center for Healthy Minds, University of Wisconsin-Madison., 625 W. Washington Ave, Madison, WI 53703, USA
| | - Rasmus M Birn
- Department of Psychiatry, University of Wisconsin-Madison, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI 53719, USA
| | - Heather C Abercrombie
- Department of Psychiatry, University of Wisconsin-Madison, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI 53719, USA; Center for Healthy Minds, University of Wisconsin-Madison., 625 W. Washington Ave, Madison, WI 53703, USA
| |
Collapse
|
30
|
Sijtsema ND, Lauwers I, Verduijn GM, Hoogeman MS, Poot DH, Hernandez-Tamames JA, van der Lugt A, Capala ME, Petit SF. Relating pre-treatment non-Gaussian intravoxel incoherent motion diffusion-weighted imaging to human papillomavirus status and response in oropharyngeal carcinoma. Phys Imaging Radiat Oncol 2024; 30:100574. [PMID: 38633282 PMCID: PMC11021835 DOI: 10.1016/j.phro.2024.100574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
Background and purpose Diffusion-weighted imaging (DWI) is a promising technique for response assessment in head-and-neck cancer. Recently, we optimized Non-Gaussian Intravoxel Incoherent Motion Imaging (NG-IVIM), an extension of the conventional apparent diffusion coefficient (ADC) model, for the head and neck. In the current study, we describe the first application in a group of patients with human papillomavirus (HPV)-positive and HPV-negative oropharyngeal squamous cell carcinoma. The aim of this study was to relate ADC and NG-IVIM DWI parameters to HPV status and clinical treatment response. Materials and methods Thirty-six patients (18 HPV-positive, 18 HPV-negative) were prospectively included. Presence of progressive disease was scored within one year. The mean pre-treatment ADC and NG-IVIM parameters in the gross tumor volume were compared between HPV-positive and HPV-negative patients. In HPV-negative patients, ADC and NG-IVIM parameters were compared between patients with and without progressive disease. Results ADC, the NG-IVIM diffusion coefficient D, and perfusion fraction f were significantly higher, while pseudo-diffusion coefficient D* and kurtosis K were significantly lower in the HPV-negative compared to HPV-positive patients. In the HPV-negative group, a significantly lower D was found for patients with progressive disease compared to complete responders. No relation with ADC was observed. Conclusion The results of our single-center study suggest that ADC is related to HPV status, but not an independent response predictor. The NG-IVIM parameter D, however, was independently associated to response in the HPV-negative group. Noteworthy in the opposite direction as previously thought based on ADC.
Collapse
Affiliation(s)
- Nienke D. Sijtsema
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Iris Lauwers
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Gerda M. Verduijn
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Mischa S. Hoogeman
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Medical Physics and Informatics, HollandPTC, Delft, the Netherlands
| | - Dirk H.J. Poot
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Juan A. Hernandez-Tamames
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Aad van der Lugt
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Marta E. Capala
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Steven F. Petit
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
31
|
Li J, Wang Y, Zhang X, Wu M, Wang M, Zhang R, Wu T, Zhang P, Zhao J. Diffusion tensor imaging combined with chemical shift-encoded sequence to quantify the adaptive changes of calf muscles in amateur marathoners. Eur J Radiol 2024; 175:111449. [PMID: 38604093 DOI: 10.1016/j.ejrad.2024.111449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024]
Abstract
PURPOSE Calf muscles play an important role in marathon race, and the incidence of injury is high in this process. This study prospectively quantified diffusion tensor metrics, muscle fat fraction (MFF) and cross-sectional area (CSA) of calf muscles induced by endurance exercise in amateur marathoners, and the potential mechanisms underlying the changes in these parameters were analyzed. METHOD In this prospective study, 35 marathoners (27 males, 8 females; mean age (standard deviation, SD), 38.92 (4.83) years) and 26 controls (18 males, 8 females; mean age (SD), 38.35 (6.75) years) underwent magnetic resonance imaging (MRI) from September 2022 to March 2023. The diffusion tensor eigenvalues (λ1, λ2, λ3), radial diffusivity (RD), fractional anisotropy (FA), MFF and CSA of calf muscles were compared between marathoners and controls. A binary logistic regression model with gender correction was performed analyze the relationship between marathon exercise and DTI parameters, CSA and MFF of calf muscles. RESULTS Interobserver agreement was good (κ = 0.71). The results of binary logistic regression model with gender correction showed that the regression coefficients of FA values in anterior group of calf (AC), soleus (SOL), medial gastrocnemius (MG) and lateral gastrocnemius (LG) were negative, and the odds ratios (OR) were 0.33, 0.45, 0.35, 0.05, respectively (P < 0.05). The OR of RD in SOL and λ2 in external group of calf (EC) were relatively higher, 3.74 and 3.26, respectively (P < 0.05). CSA was greater in SOL of marathoners, with an OR value of 1.00(P < 0.05). The MFF in AC and LG was lower in marathoners and OR of two indexes were -0.69 and -0.59, respectively (P < 0.05). CONCLUSIONS Diffusion tensor imaging (DTI) combined with chemical shift-encoded sequence can noninvasively detect and quantify the adaptive changes of calf muscle morphology, microstructure and tissue composition induced by long-term running training in amateur marathoners.
Collapse
Affiliation(s)
- Junfei Li
- Department of CT/MR, Hebei Medical University Third Hospital, No. 139, Ziqiang Street, Qiaoxi District, Shijiazhuang 050051, China.
| | - Yijing Wang
- Department of Radiology, Hebei General Hospital, No. 348, Heping Street, Xinhua District, Shijiazhuang 050051, China.
| | - Xuesong Zhang
- Department of CT/MR, Hebei Medical University Third Hospital, No. 139, Ziqiang Street, Qiaoxi District, Shijiazhuang 050051, China.
| | - Mengfei Wu
- Department of CT/MR, Hebei Medical University Third Hospital, No. 139, Ziqiang Street, Qiaoxi District, Shijiazhuang 050051, China.
| | - Ming Wang
- Department of CT/MR, Hebei Medical University Third Hospital, No. 139, Ziqiang Street, Qiaoxi District, Shijiazhuang 050051, China.
| | - Ranxu Zhang
- Department of CT/MR, Hebei Medical University Third Hospital, No. 139, Ziqiang Street, Qiaoxi District, Shijiazhuang 050051, China.
| | - Tao Wu
- GE Healthcare, Beijing, China.
| | - Ping Zhang
- Department of CT/MR, Hebei Medical University Third Hospital, No. 139, Ziqiang Street, Qiaoxi District, Shijiazhuang 050051, China.
| | - Jian Zhao
- Department of CT/MR, Hebei Medical University Third Hospital, No. 139, Ziqiang Street, Qiaoxi District, Shijiazhuang 050051, China.
| |
Collapse
|
32
|
Schlaffke L, Rehmann R, Güttsches AK, Vorgerd M, Meyer-Frießem CH, Dinse HR, Enax-Krumova E, Froeling M, Forsting J. Evaluation of Neuromuscular Diseases and Complaints by Quantitative Muscle MRI. J Clin Med 2024; 13:1958. [PMID: 38610723 PMCID: PMC11012431 DOI: 10.3390/jcm13071958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Background: Quantitative muscle MRI (qMRI) is a promising tool for evaluating and monitoring neuromuscular disorders (NMD). However, the application of different imaging protocols and processing pipelines restricts comparison between patient cohorts and disorders. In this qMRI study, we aim to compare dystrophic (limb-girdle muscular dystrophy), inflammatory (inclusion body myositis), and metabolic myopathy (Pompe disease) as well as patients with post-COVID-19 conditions suffering from myalgia to healthy controls. Methods: Ten subjects of each group underwent a 3T lower extremity muscle MRI, including a multi-echo, gradient-echo, Dixon-based sequence, a multi-echo, spin-echo (MESE) T2 mapping sequence, and a spin-echo EPI diffusion-weighted sequence. Furthermore, the following clinical assessments were performed: Quick Motor Function Measure, patient questionnaires for daily life activities, and 6-min walking distance. Results: Different involvement patterns of conspicuous qMRI parameters for different NMDs were observed. qMRI metrics correlated significantly with clinical assessments. Conclusions: qMRI metrics are suitable for evaluating patients with NMD since they show differences in muscular involvement in different NMDs and correlate with clinical assessments. Still, standardisation of acquisition and processing is needed for broad clinical use.
Collapse
Affiliation(s)
- Lara Schlaffke
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr University Bochum, 44789 Bochum, Germany
| | - Robert Rehmann
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr University Bochum, 44789 Bochum, Germany
- Department of Neurology, Klinikum Dortmund, University Witten-Herdecke, 44137 Dortmund, Germany
| | - Anne-Katrin Güttsches
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr University Bochum, 44789 Bochum, Germany
| | - Matthias Vorgerd
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr University Bochum, 44789 Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, 44789 Bochum, Germany
| | - Christine H. Meyer-Frießem
- Department of Anaesthesiology, Intensive Care and Pain Management, St. Marien Hospital, 44534 Lünen, Germany
- Department of Anaesthesiology, Intensive Care Medicine and Pain Management, BG-University Hospital Bergmannsheil, Faculty of Medicine, Ruhr University Bochum, 44789 Bochum, Germany
| | - Hubert R. Dinse
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr University Bochum, 44789 Bochum, Germany
| | - Elena Enax-Krumova
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr University Bochum, 44789 Bochum, Germany
| | - Martijn Froeling
- Department of Radiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Johannes Forsting
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr University Bochum, 44789 Bochum, Germany
| |
Collapse
|
33
|
Roda GF, Awad ME, Melton DH, Christiansen CL, Stoneback JW, Gaffney BMM. The Amputated Limb Gluteus Medius is Biomechanically Disadvantaged in Patients with Unilateral Transfemoral Amputation. Ann Biomed Eng 2024; 52:565-574. [PMID: 37946055 PMCID: PMC10922424 DOI: 10.1007/s10439-023-03400-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
Patients with transfemoral amputation (TFA) are at an increased risk of secondary musculoskeleteal comorbidities, primarily due to asymmetric joint loading. Amputated limb muscle weakness is also prevalent in the TFA population, yet all factors that contribute to muscle strength and thus joint loading are not well understood. Our objective was to bilaterally compare gluteus medius (GMED) muscle factors (volume, fatty infiltration, moment arm) that all contribute to joint loading in patients with TFA. Quantitative magnetic resonance (MR) images of the hip were collected from eight participants with unilateral TFA (2M/6F; age: 47.3 ± 14.7 y/o; BMI: 25.4 ± 5.3 kg/m2; time since amputation: 20.6 ± 15.0 years) and used to calculate normalized GMED muscle volume and fatty infiltration. Six participants participated in an instrumented gait analysis session that collected whole-body kinematics during overground walking. Subject-specific musculoskeletal models were used to calculate bilateral GMED (anterior, middle, posterior) moment arms and frontal plane hip joint angles across three gait cycles. Differences in volume, fatty infiltration, hip adduction-abduction angle, and peak moment arms were compared between limbs using paired Cohen's d effect sizes. Volume was smaller by 36.3 ± 18.8% (d = 1.7) and fatty infiltration was greater by 6.4 ± 7.8% (d = 0.8) in the amputated limb GMED compared to the intact limb. The amputated limb GMED abduction moment arms were smaller compared to the intact limb for both overground walking (anterior: d = 0.9; middle: d = 0.1.2) and during normal range of motion (anterior: d = 0.8; middle: d = 0.8) while bilateral hip adduction-abduction angles were similar during overground walking (d = 0.5). These results indicate that in patients with TFA, the amputated limb GMED is biomechanically disadvantaged compared to the intact limb, which may contribute to the etiology of secondary comorbidities. This population might benefit from movement retraining to lengthen the amputated limb GMED abduction moment arm during gait.
Collapse
Affiliation(s)
- Galen F Roda
- Department of Mechanical Engineering, University of Colorado Denver, Denver, CO, USA
| | - Mohamed E Awad
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Osseointegration Research Consortium, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Danielle H Melton
- University of Colorado Osseointegration Research Consortium, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Cory L Christiansen
- University of Colorado Osseointegration Research Consortium, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- VA Eastern Colorado Health Care System, Aurora, CO, USA
| | - Jason W Stoneback
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Osseointegration Research Consortium, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brecca M M Gaffney
- Department of Mechanical Engineering, University of Colorado Denver, Denver, CO, USA.
- University of Colorado Osseointegration Research Consortium, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Center for Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
34
|
Ito K, Ohgi K, Kimura K, Ishitaki K, Yamashita A, Yokote H, Tsukuda S, Matsushita K, Naraoka Y, Fujioka A, Ono T. Kidney R2* Mapping for Noninvasive Evaluation of Iron Overload in Paroxysmal Nocturnal Hemoglobinuria. Magn Reson Med Sci 2024:mp.2023-0114. [PMID: 38369335 DOI: 10.2463/mrms.mp.2023-0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024] Open
Abstract
PURPOSE The kidney iron deposition can cause kidney damage and renal insufficiency in paroxysmal nocturnal hemoglobinuria (PNH) patients. Assessment of iron deposition in the kidney is essential for the early diagnosis of renal damage in PNH patients. The purpose of this study was to evaluate kidney R2* (T2* reciprocals) values in PNH patients using the iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL-IQ). METHODS Two radiologists measured the R2* values of the renal cortex in 14 PNH patients and 13 healthy volunteers using IDEAL-IQ. Lactate dehydrogenase (LDH), a reliable marker of intravascular hemolysis, was also measured in all participants. RESULTS The kidney R2* values were significantly higher in PNH patients compared with those in healthy volunteers (P < 0.001). High inter-operator reproducibility of the measurements was also acquired using IDEAL-IQ. LDH levels were also significantly higher in PNH patients compared with those in healthy volunteers (P < 0.001). Kidney R2* values strongly correlated with LDH levels in PNH patients. CONCLUSION IDEAL-IQ has a possibility of becoming a useful method for the noninvasive evaluation of renal iron overload in PNH patients.
Collapse
Affiliation(s)
- Koichi Ito
- Department of Radiology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Kazuyuki Ohgi
- Department of Radiology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Koichiro Kimura
- Department of Radiology, Japanese Red Cross Medical Center, Tokyo, Japan
- Department of Diagnostic Radiology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koichi Ishitaki
- Department of Radiology, Japanese Red Cross Medical Center, Tokyo, Japan
- Department of Diagnostic Radiology, Shin-Yurigaoka General Hospital, Kanagawa, Kawasaki, Japan
| | - Akiyoshi Yamashita
- Department of Radiology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Hiroyuki Yokote
- Department of Radiology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Shunji Tsukuda
- Department of Radiology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Ko Matsushita
- Department of Radiology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Yuko Naraoka
- Department of Radiology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Amon Fujioka
- Department of Radiology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Tatsuki Ono
- Department of Radiology, Japanese Red Cross Medical Center, Tokyo, Japan
| |
Collapse
|
35
|
Tkotz K, Liebert A, Gast LV, Zeiger P, Uder M, Zaiss M, Nagel AM. Multi-echo-based fat artifact correction for CEST MRI at 7 T. Magn Reson Med 2024; 91:481-496. [PMID: 37753844 DOI: 10.1002/mrm.29863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 07/28/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023]
Abstract
PURPOSE CEST MRI is influenced by fat signal, which can reduce the apparent CEST contrast or lead to pseudo-CEST effects. Our goal was to develop a fat artifact correction based on multi-echo fat-water separation that functions stably for 7 T knee MRI data. METHODS Our proposed algorithm utilizes the full complex data and a phase demodulation with an off-resonance map estimation based on the Z-spectra prior to fat-water separation to achieve stable fat artifact correction. Our method was validated and compared to multi-echo-based methods originally proposed for 3 T by Bloch-McConnell simulations and phantom measurements. Moreover, the method was applied to in vivo 7 T knee MRI examinations and compared to Gaussian fat saturation and a published single-echo Z-spectrum-based fat artifact correction method. RESULTS Phase demodulation prior to fat-water separation reduced the occurrence of fat-water swaps. Utilizing the complex signal data led to more stable correction results than working with magnitude data, as was proposed for 3 T. Our approach reduced pseudo-nuclear Overhauser effects compared to the other correction methods. Thus, the mean asymmetry contrast at 3.5 ppm in cartilage over five volunteers increased from -9.2% (uncorrected) and -10.6% (Z-spectrum-based) to -1.5%. Results showed higher spatial stability than with the fat saturation pulse. CONCLUSION Our work demonstrates the feasibility of multi-echo-based fat-water separation with an adaptive fat model for fat artifact correction for CEST MRI at 7 T. Our approach provided better fat artifact correction throughout the entire spectrum and image than the fat saturation pulse or Z-spectrum-based correction method for both phantom and knee imaging results.
Collapse
Affiliation(s)
- Katharina Tkotz
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andrzej Liebert
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Lena V Gast
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Paula Zeiger
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Moritz Zaiss
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
36
|
Pagkali A, Makris A, Brofidi K, Agouridis AP, Filippatos TD. Pathophysiological Mechanisms and Clinical Associations of Non-Alcoholic Fatty Pancreas Disease. Diabetes Metab Syndr Obes 2024; 17:283-294. [PMID: 38283640 PMCID: PMC10813232 DOI: 10.2147/dmso.s397643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024] Open
Abstract
Non-Alcoholic Fatty Pancreas disease (NAFPD), characterized by fat accumulation in pancreatic tissue, is an emerging clinical entity. However, the clinical associations, the underlying molecular drivers, and the pathophysiological mechanisms of NAFPD have not yet been characterized in detail. The NAFPD spectrum not only includes infiltration and accumulation of fat within and between pancreatic cells but also involves several inflammatory processes, dysregulation of physiological metabolic pathways, and hormonal defects. A deeper understanding of the underlying molecular mechanisms is key to correlate NAFPD with clinical entities including non-alcoholic fatty liver disease, metabolic syndrome, diabetes mellitus, atherosclerosis, as well as pancreatic cancer and pancreatitis. The aim of this review is to examine the pathophysiological mechanisms of NAFPD and to assess the possible causative/predictive risk factors of NAFPD-related clinical syndromes.
Collapse
Affiliation(s)
- Antonia Pagkali
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios Makris
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Kalliopi Brofidi
- Department of Internal Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Aris P Agouridis
- School of Medicine, European University Cyprus, Nicosia, Cyprus
- Department of Internal Medicine, German Oncology Center, Limassol, Cyprus
| | | |
Collapse
|
37
|
Autry AW, Vaziri S, Gordon JW, Chen HY, Kim Y, Dang D, LaFontaine M, Noeske R, Bok R, Villanueva-Meyer JE, Clarke JL, Oberheim Bush NA, Chang SM, Xu D, Lupo JM, Larson PEZ, Vigneron DB, Li Y. Advanced Hyperpolarized 13C Metabolic Imaging Protocol for Patients with Gliomas: A Comprehensive Multimodal MRI Approach. Cancers (Basel) 2024; 16:354. [PMID: 38254844 PMCID: PMC10814348 DOI: 10.3390/cancers16020354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
This study aimed to implement a multimodal 1H/HP-13C imaging protocol to augment the serial monitoring of patients with glioma, while simultaneously pursuing methods for improving the robustness of HP-13C metabolic data. A total of 100 1H/HP [1-13C]-pyruvate MR examinations (104 HP-13C datasets) were acquired from 42 patients according to the comprehensive multimodal glioma imaging protocol. Serial data coverage, accuracy of frequency reference, and acquisition delay were evaluated using a mixed-effects model to account for multiple exams per patient. Serial atlas-based HP-13C MRI demonstrated consistency in volumetric coverage measured by inter-exam dice coefficients (0.977 ± 0.008, mean ± SD; four patients/11 exams). The atlas-derived prescription provided significantly improved data quality compared to manually prescribed acquisitions (n = 26/78; p = 0.04). The water-based method for referencing [1-13C]-pyruvate center frequency significantly reduced off-resonance excitation relative to the coil-embedded [13C]-urea phantom (4.1 ± 3.7 Hz vs. 9.9 ± 10.7 Hz; p = 0.0007). Significantly improved capture of tracer inflow was achieved with the 2-s versus 5-s HP-13C MRI acquisition delay (p = 0.007). This study demonstrated the implementation of a comprehensive multimodal 1H/HP-13C MR protocol emphasizing the monitoring of steady-state/dynamic metabolism in patients with glioma.
Collapse
Affiliation(s)
- Adam W. Autry
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| | - Sana Vaziri
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jeremy W. Gordon
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| | - Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| | - Yaewon Kim
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| | - Duy Dang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| | - Marisa LaFontaine
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| | | | - Robert Bok
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| | - Javier E. Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jennifer L. Clarke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Nancy Ann Oberheim Bush
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Susan M. Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| | - Janine M. Lupo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| | - Peder E. Z. Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| | - Daniel B. Vigneron
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Yan Li
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
38
|
Weedall AD, Dallaway A, Hattersley J, Diokno M, Hutchinson CE, Wilson AJ, Wayte SC. Changes in lumbar muscle diffusion tensor indices with age. BJR Open 2024; 6:tzae002. [PMID: 38371493 PMCID: PMC10873271 DOI: 10.1093/bjro/tzae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/10/2024] [Indexed: 02/20/2024] Open
Abstract
Objective To investigate differences in diffusion tensor imaging (DTI) parameters and proton density fat fraction (PDFF) in the spinal muscles of younger and older adult males. Methods Twelve younger (19-30 years) and 12 older (61-81years) healthy, physically active male participants underwent T1W, T2W, Dixon and DTI of the lumbar spine. The eigenvalues (λ1, λ2, and λ3), fractional anisotropy (FA), and mean diffusivity (MD) from the DTI together with the PDFF were determined in the multifidus, medial and lateral erector spinae (ESmed, ESlat), and quadratus lumborum (QL) muscles. A two-way ANOVA was used to investigate differences with age and muscle and t-tests for differences in individual muscles with age. Results The ANOVA gave significant differences with age for all DTI parameters and the PDFF (P < .01) and with muscle (P < .01) for all DTI parameters except for λ1 and for the PDFF. The mean of the eigenvalues and MD were lower and the FA higher in the older age group with differences reaching statistical significance for all DTI measures for ESlat and QL (P < .01) but only in ESmed for λ3 and MD (P < .05). Conclusions Differences in DTI parameters of muscle with age result from changes in both in the intra- and extra-cellular space and cannot be uniquely explained in terms of fibre length and diameter. Advances in knowledge Previous studies looking at age have used small groups with uneven age spacing. Our study uses two well defined and separated age groups.
Collapse
Affiliation(s)
- Andrew D Weedall
- Radiology Physics, Department of Clinical Physics and Bioengineering, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, United Kingdom
| | - Alexander Dallaway
- Centre for Physical Activity, Sport and Exercise Sciences, Coventry University, Coventry, CV1 5FB, United Kingdom
- Present Address: Faculty of Education, Health and Wellbeing, School of Health and Society, University of Wolverhampton, Wolverhampton, WV1 1LY, United Kingdom
| | - John Hattersley
- Human Metabolic Research Unit, Department of Research and Development, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, United Kingdom
- School of Engineering, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Michael Diokno
- Radiology Department, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, United Kingdom
| | - Charles E Hutchinson
- Radiology Department, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, United Kingdom
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Adrian J Wilson
- Human Metabolic Research Unit, Department of Research and Development, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, United Kingdom
- Department of Physics, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Sarah C Wayte
- Radiology Physics, Department of Clinical Physics and Bioengineering, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, United Kingdom
| |
Collapse
|
39
|
Schlaffke L, Rehmann R, Froeling M, Güttsches AK, Vorgerd M, Enax-Krumova E, Forsting J. Quantitative muscle MRI in sporadic inclusion body myositis (sIBM): A prospective cohort study. J Neuromuscul Dis 2024; 11:997-1009. [PMID: 39031378 PMCID: PMC11380292 DOI: 10.3233/jnd-240053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Background Sporadic inclusion body myositis (sIBM) is the predominant idiopathic inflammatory myopathy (IIM) in older people. Limitations of classical clinical assessments have been discussed as possible explanations for failed clinical trials, underlining the need for more sensitive outcome measures. Quantitative muscle MRI (qMRI) is a promising candidate for evaluating and monitoring sIBM. Objective Longitudinal assessment of qMRI in sIBM patients. Methods We evaluated fifteen lower extremity muscles of 12 sIBM patients (5 females, mean age 69.6, BMI 27.8) and 12 healthy age- and gender-matched controls. Seven patients and matched controls underwent a follow-up evaluation after one year. Clinical assessment included testing for muscle strength with Quick Motor Function Measure (QMFM), IBM functional rating scale (IBM-FRS), and gait analysis (6-minute walking distance). 3T-MRI scans of the lower extremities were performed, including a Dixon-based sequence, T2 mapping and Diffusion Tensor Imaging. The qMRI-values fat-fraction (FF), water T2 relaxation time (wT2), fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (λ1), and radial diffusivity (RD) were analysed. Results Compared to healthy controls, significant differences for all qMRI parameters averaged over all muscles were found in sIBM using a MANOVA (p < 0.001). In low-fat muscles (FF < 10%), a significant increase of wT2 and FA with an accompanying decrease of MD, λ1, and RD was observed (p≤0.020). The highest correlation with clinical assessments was found for wT2 values in thigh muscles (r≤-0.634). Significant changes of FF (+3.0%), wT2 (+0.6 ms), MD (-0.04 10-3mm2/s), λ1 (-0.05 10-3mm2/s), and RD (-0.03 10-3mm2/s) were observed in the longitudinal evaluation of sIBM patients (p≤0.001). FA showed no significant change (p = 0.242). Conclusion qMRI metrics correlate with clinical findings and can reflect different ongoing pathophysiological mechanisms. While wT2 is an emerging marker of disease activity, the role of diffusion metrics, possibly reflecting changes in fibre size and intracellular deposits, remains subject to further investigations.
Collapse
Affiliation(s)
- Lara Schlaffke
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Robert Rehmann
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Department of Neurology, Klinikum Dortmund, University Witten-Herdecke, Dortmund, Germany
| | - Martijn Froeling
- Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Anne-Katrin Güttsches
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Matthias Vorgerd
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil, Bochum, Germany
| | - Elena Enax-Krumova
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Johannes Forsting
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
40
|
Rohm M, Russo G, Helluy X, Froeling M, Umathum V, Südkamp N, Manahan-Vaughan D, Rehmann R, Forsting J, Jacobsen F, Roos A, Shin Y, Schänzer A, Vorgerd M, Schlaffke L. Muscle diffusion MRI reveals autophagic buildup in a mouse model for Pompe disease. Sci Rep 2023; 13:22822. [PMID: 38129558 PMCID: PMC10739793 DOI: 10.1038/s41598-023-49971-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Quantitative muscle MRI is increasingly important in the non-invasive evaluation of neuromuscular disorders and their progression. Underlying histopathotological alterations, leading to changes in qMRI parameters are incompletely unraveled. Early microstructural differences of unknown origin reflected by Diffusion MRI in non-fat infiltrated muscles were detected in Pompe patients. This study employed a longitudinal approach with a Pompe disease mouse model to investigate the histopathological basis of these changes. Monthly scans of Pompe (Gaa6neo/6neo) and wildtype mice (age 1-8 months) were conducted using diffusion MRI, T2-mapping, and Dixon-based water-fat imaging on a 7 T scanner. Immunofluorescence studies on quadriceps muscles were analyzed for lysosomal accumulations and autophagic buildup and correlated with MRI outcome measures. Fat fraction and water-T2 did not differ between groups and remained stable over time. In Pompe mice, fractional anisotropy increased, while mean diffusivity (MD) and radial diffusivity (RD) decreased in all observed muscles. Autophagic marker and muscle fibre diameter revealed significant negative correlations with reduced RD and MD, while lysosomal marker did not show any change or correlation. Using qMRI, we showed diffusion changes in muscles of presymptomatic Pompe mice without fat-infiltrated muscles and correlated them to autophagic markers and fibre diameter, indicating diffusion MRI reveals autophagic buildup.
Collapse
Affiliation(s)
- Marlena Rohm
- Department of Neurology, Berufsgenossenschaftliches-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil gGmbH, 44789, Bochum, Germany
| | - Gabriele Russo
- Department of Neurophysiology, Medical Faculty, Ruhr-University Bochum, 44801, Bochum, Germany
| | - Xavier Helluy
- Department of Neurophysiology, Medical Faculty, Ruhr-University Bochum, 44801, Bochum, Germany
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, 44801, Bochum, Germany
| | - Martijn Froeling
- Department of Radiology, University Medical Centre Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Vincent Umathum
- Institute of Neuropathology, Justus Liebig University, 35390, Giessen, Germany
- Institute of Pathology and Molecular Pathology, Bundeswehrkrankenhaus Ulm, 89081, Ulm, Germany
| | - Nicolina Südkamp
- Department of Neurology, Berufsgenossenschaftliches-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil gGmbH, 44789, Bochum, Germany
| | - Denise Manahan-Vaughan
- Department of Neurophysiology, Medical Faculty, Ruhr-University Bochum, 44801, Bochum, Germany
| | - Robert Rehmann
- Department of Neurology, Berufsgenossenschaftliches-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Johannes Forsting
- Department of Neurology, Berufsgenossenschaftliches-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Frank Jacobsen
- Department of Neurology, Berufsgenossenschaftliches-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil gGmbH, 44789, Bochum, Germany
| | - Andreas Roos
- Department of Neurology, Berufsgenossenschaftliches-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil gGmbH, 44789, Bochum, Germany
- Department of Neuropediatrics, University Hospital Essen, Duisburg-Essen University, 47057, Essen, Germany
| | - Yoon Shin
- Molecular Genetic and Metabolism Laboratory, 80333, Munic, Germany
- University Children's Hospital, 80333, Munich, Germany
| | - Anne Schänzer
- Institute of Neuropathology, Justus Liebig University, 35390, Giessen, Germany
| | - Matthias Vorgerd
- Department of Neurology, Berufsgenossenschaftliches-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil gGmbH, 44789, Bochum, Germany
| | - Lara Schlaffke
- Department of Neurology, Berufsgenossenschaftliches-University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany.
- Heimer Institute for Muscle Research, BG-University Hospital Bergmannsheil gGmbH, 44789, Bochum, Germany.
| |
Collapse
|
41
|
Montrazi ET, Sasson K, Agemy L, Peters DC, Brenner O, Scherz A, Frydman L. High-sensitivity deuterium metabolic MRI differentiates acute pancreatitis from pancreatic cancers in murine models. Sci Rep 2023; 13:19998. [PMID: 37968574 PMCID: PMC10652017 DOI: 10.1038/s41598-023-47301-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/11/2023] [Indexed: 11/17/2023] Open
Abstract
Deuterium metabolic imaging (DMI) is a promising tool for investigating a tumor's biology, and eventually contribute in cancer diagnosis and prognosis. In DMI, [6,6'-2H2]-glucose is taken up and metabolized by different tissues, resulting in the formation of HDO but also in an enhanced formation of [3,3'-2H2]-lactate at the tumor site as a result of the Warburg effect. Recent studies have shown DMI's suitability to highlight pancreatic cancer in murine models by [3,3'-2H2]-lactate formation; an important question is whether DMI can also differentiate between these tumors and pancreatitis. This differentiation is critical, as these two diseases are hard to distinguish today radiologically, but have very different prognoses requiring distinctive treatments. Recent studies have shown the limitations that hyperpolarized MRI faces when trying to distinguish these pancreatic diseases by monitoring the [1-13C1]-pyruvate→[1-13C1]-lactate conversion. In this work, we explore DMI's capability to achieve such differentiation. Initial tests used a multi-echo (ME) SSFP sequence, to identify any metabolic differences between tumor and acute pancreatitis models that had been previously elicited very similar [1-13C1]-pyruvate→[1-13C1]-lactate conversion rates. Although ME-SSFP provides approximately 5 times greater signal-to-noise ratio (SNR) than the standard chemical shift imaging (CSI) experiment used in DMI, no lactate signal was observed in the pancreatitis model. To enhance lactate sensitivity further, we developed a new, weighted-average, CSI-SSFP approach for DMI. Weighted-average CSI-SSFP improved DMI's SNR by another factor of 4 over ME-SSFP-a sensitivity enhancement that sufficed to evidence natural abundance 2H fat in abdominal images, something that had escaped the previous approaches even at ultrahigh (15.2 T) MRI fields. Despite these efforts to enhance DMI's sensitivity, no lactate signal could be detected in acute pancreatitis models (n = 10; [3,3'-2H2]-lactate limit of detection < 100 µM; 15.2 T). This leads to the conclusion that pancreatic tumors and acute pancreatitis may be clearly distinguished by DMI, based on their different abilities to generate deuterated lactate.
Collapse
Affiliation(s)
- Elton T Montrazi
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Keren Sasson
- Department of Plant and Environmental Science, Weizmann Institute of Science, Rehovot, Israel
| | - Lilach Agemy
- Department of Plant and Environmental Science, Weizmann Institute of Science, Rehovot, Israel
| | - Dana C Peters
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, USA
| | - Ori Brenner
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Avigdor Scherz
- Department of Plant and Environmental Science, Weizmann Institute of Science, Rehovot, Israel
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
42
|
Huang XC, Huang YL, Guo YT, Li SY, Gao C, Chen JX, Ma JY, He B. An experimental study for quantitative assessment of fatty infiltration and blood flow perfusion in quadriceps muscle of rats using IDEAL-IQ and BOLD-MRI for early diagnosis of sarcopenia. Exp Gerontol 2023; 183:112322. [PMID: 37929293 DOI: 10.1016/j.exger.2023.112322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/15/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Severe sarcopenia may result in severe disability. Early diagnosis is currently the key to enhancing the treatment of sarcopenia, and there is an urgent need for a highly sensitive and dependable tool to evaluate the course of early sarcopenia in clinical practice. This study aims to investigate longitudinally the early diagnosability of magnetic resonance imaging (MRI)-based fat infiltration and blood flow perfusion technology in sarcopenia progression. METHODS 48 Sprague-Dawley rats were randomly assigned into six groups that were based on different periods of dexamethasone (DEX) injection (0, 2, 4, 6, 8, 10 days). Multimodal MRI was scanned to assess muscle mass. Grip strength and swimming exhaustion time of rats were measured to assess muscle strength and function. Immunofluorescence staining for CD31 was employed to assess skeletal muscle capillary formation, and western blot was used to detect vascular endothelial growth factor-A (VEGF-A) and muscle ring finger-1 (MuRF-1) protein expression. Subsequently, we analyzed the correlation between imaging and histopathologic parameters. A receiver operating characteristic (ROC) analysis was conducted to assess the effectiveness of quantitative MRI parameters for discriminating diagnosis in both pre- and post-modeling of DEX-induced sarcopenic rats. RESULTS Significant differences were found in PDFF, R2* and T2 values on day 2 of DEX-induction compared to the control group, occurring prior to the MRI-CSA values and limb grip strength on day 6 of induction and swimming exhaustion time on day 8 of induction. There is a strong correlation between MRI-CSA with HE-CSA values (r = 0.67; p < 0.001), oil red O (ORO) area with PDFF (r = 0.67; p < 0.001), microvascular density (MVD) (r = -0.79; p < 0.001) and VEGF-A (r = -0.73; p < 0.001) with R2*, MuRF-1 with MRI-CSA (r = -0.82; p < 0.001). The AUC of PDFF, R2*, and T2 values used for modeling evaluation are 0.81, 0.93, and 0.98, respectively. CONCLUSION Imaging parameters PDFF, R2*, and T2 can be used to sensitively evaluate early pathological changes in sarcopenia. The successful construction of a sarcopenia rat model can be assessed when PDFF exceeds 1.25, R2* exceeds 53.85, and T2 exceeds 33.88.
Collapse
Affiliation(s)
- Xin-Chen Huang
- Department of Radiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yi-Long Huang
- Department of Radiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yi-Tong Guo
- Department of Radiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Si-Yu Li
- Department of Physiology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, China
| | - Chao Gao
- Department of Radiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jia-Xin Chen
- Department of Radiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ji-Yao Ma
- Department of Radiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Bo He
- Department of Radiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
43
|
Wang K, Cunha GM, Hasenstab K, Henderson WC, Middleton MS, Cole SA, Umans JG, Ali T, Hsiao A, Sirlin CB. Deep Learning for Inference of Hepatic Proton Density Fat Fraction From T1-Weighted In-Phase and Opposed-Phase MRI: Retrospective Analysis of Population-Based Trial Data. AJR Am J Roentgenol 2023; 221:620-631. [PMID: 37466189 DOI: 10.2214/ajr.23.29607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
BACKGROUND. The confounder-corrected chemical shift-encoded MRI (CSE-MRI) sequence used to determine proton density fat fraction (PDFF) for hepatic fat quantification is not widely available. As an alternative, hepatic fat can be assessed by a two-point Dixon method to calculate signal fat fraction (FF) from conventional T1-weighted in- and opposed-phase (IOP) images, although signal FF is prone to biases, leading to inaccurate quantification. OBJECTIVE. The purpose of this study was to compare hepatic fat quantification by use of PDFF inferred from conventional T1-weighted IOP images and deep-learning convolutional neural networks (CNNs) with quantification by use of two-point Dixon signal FF with CSE-MRI PDFF as the reference standard. METHODS. This study entailed retrospective analysis of data from 292 participants (203 women, 89 men; mean age, 53.7 ± 12.0 [SD] years) enrolled at two sites from September 1, 2017, to December 18, 2019, in the Strong Heart Family Study (a prospective population-based study of American Indian communities). Participants underwent liver MRI (site A, 3 T; site B, 1.5 T) including T1-weighted IOP MRI and CSE-MRI (used to reconstruct CSE PDFF and CSE R2* maps). With CSE PDFF as reference, a CNN was trained in a random sample of 218 (75%) participants to infer voxel-by-voxel PDFF maps from T1-weighted IOP images; testing was performed in the other 74 (25%) participants. Parametric values from the entire liver were automatically extracted. Per-participant median CNN-inferred PDFF and median two-point Dixon signal FF were compared with reference median CSE-MRI PDFF by means of linear regression analysis, intraclass correlation coefficient (ICC), and Bland-Altman analysis. The code is publicly available at github.com/kang927/CNN-inference-of-PDFF-from-T1w-IOP-MR. RESULTS. In the 74 test-set participants, reference CSE PDFF ranged from 1% to 32% (mean, 11.3% ± 8.3% [SD]); reference CSE R2* ranged from 31 to 457 seconds-1 (mean, 62.4 ± 67.3 seconds-1 [SD]). Agreement metrics with reference to CSE PDFF for CNN-inferred PDFF were ICC = 0.99, bias = -0.19%, 95% limits of agreement (LoA) = (-2.80%, 2.71%) and for two-point Dixon signal FF were ICC = 0.93, bias = -1.11%, LoA = (-7.54%, 5.33%). CONCLUSION. Agreement with reference CSE PDFF was better for CNN-inferred PDFF from conventional T1-weighted IOP images than for two-point Dixon signal FF. Further investigation is needed in individuals with moderate-to-severe iron overload. CLINICAL IMPACT. Measurement of CNN-inferred PDFF from widely available T1-weighted IOP images may facilitate adoption of hepatic PDFF as a quantitative bio-marker for liver fat assessment, expanding opportunities to screen for hepatic steatosis and nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Kang Wang
- Department of Radiology, Artificial Intelligence and Data Analytic Laboratory, University of California, San Diego, La Jolla, CA
- Department of Radiology, Liver Imaging Group, University of California, San Diego, La Jolla, CA
- Department of Radiology, Stanford University, 500 Pasteur Dr, Palo Alto, CA 94304
| | | | - Kyle Hasenstab
- Department of Radiology, Artificial Intelligence and Data Analytic Laboratory, University of California, San Diego, La Jolla, CA
- Department of Radiology, Liver Imaging Group, University of California, San Diego, La Jolla, CA
- Department of Mathematics and Statistics, San Diego State University, San Diego, CA
| | - Walter C Henderson
- Department of Radiology, Liver Imaging Group, University of California, San Diego, La Jolla, CA
| | - Michael S Middleton
- Department of Radiology, Liver Imaging Group, University of California, San Diego, La Jolla, CA
| | - Shelley A Cole
- Population Health, Texas Biomedical Research Institute, San Antonio, TX
| | - Jason G Umans
- MedStar Health Research Institute, Field Studies Division, Hyattsville, MD
- Georgetown-Howard Universities Center for Clinical and Translational Science, Washington, DC
| | - Tauqeer Ali
- Department of Biostatistics and Epidemiology, Center for American Indian Health Research, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Albert Hsiao
- Department of Radiology, Artificial Intelligence and Data Analytic Laboratory, University of California, San Diego, La Jolla, CA
| | - Claude B Sirlin
- Department of Radiology, Liver Imaging Group, University of California, San Diego, La Jolla, CA
| |
Collapse
|
44
|
Montrazi ET, Bao Q, Martinho RP, Peters DC, Harris T, Sasson K, Agemy L, Scherz A, Frydman L. Deuterium imaging of the Warburg effect at sub-millimolar concentrations by joint processing of the kinetic and spectral dimensions. NMR IN BIOMEDICINE 2023; 36:e4995. [PMID: 37401393 DOI: 10.1002/nbm.4995] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/21/2023] [Accepted: 06/03/2023] [Indexed: 07/05/2023]
Abstract
Deuterium metabolic imaging (DMI) is a promising molecular MRI approach, which follows the administration of deuterated substrates and their metabolization. [6,6'-2 H2 ]-glucose for instance is preferentially converted in tumors to [3,3'-2 H2 ]-lactate as a result of the Warburg effect, providing a distinct resonance whose mapping using time-resolved spectroscopic imaging can diagnose cancer. The MR detection of low-concentration metabolites such as lactate, however, is challenging. It has been recently shown that multi-echo balanced steady-state free precession (ME-bSSFP) increases the signal-to-noise ratio (SNR) of these experiments approximately threefold over regular chemical shift imaging; the present study examines how DMI's sensitivity can be increased further by advanced processing methods. Some of these, such as compressed sensing multiplicative denoising and block-matching/3D filtering, can be applied to any spectroscopic/imaging methods. Sensitivity-enhancing approaches were also specifically tailored to ME-bSSFP DMI, by relying on priors related to the resonances' positions and to features of the metabolic kinetics. Two new methods are thus proposed that use these constraints for enhancing the sensitivity of both the spectral images and the metabolic kinetics. The ability of these methods to improve DMI is evidenced in pancreatic cancer studies carried at 15.2 T, where suitable implementations of the proposals imparted eightfold or more SNR improvement over the original ME-bSSFP data, at no informational cost. Comparisons with other propositions in the literature are briefly discussed.
Collapse
Affiliation(s)
- Elton T Montrazi
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Qingjia Bao
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Ricardo P Martinho
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
- University of Twente, Enschede, The Netherlands
| | - Dana C Peters
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Talia Harris
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Keren Sasson
- Department of Plant and Environmental Science, Weizmann Institute of Science, Rehovot, Israel
| | - Lilach Agemy
- Department of Plant and Environmental Science, Weizmann Institute of Science, Rehovot, Israel
| | - Avigdor Scherz
- Department of Plant and Environmental Science, Weizmann Institute of Science, Rehovot, Israel
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
45
|
Wu HX, Lin X, Cheng CL, Jiang HL, Iqbal J, Liu J, Zhou HD. Fat distribution measurements by chemical shift-encoded transition region extraction predict the risk of hyperglycaemia, dyslipidaemia and metabolic syndrome in mice. NMR IN BIOMEDICINE 2023; 36:e4985. [PMID: 37283179 DOI: 10.1002/nbm.4985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/27/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023]
Abstract
Metabolically healthy or unhealthy obesity is closely related to metabolic syndrome (MetS). To validate a more accurate diagnostic method for obesity that reflects the risk of metabolic disorders in a pre-clinical mouse model, C57BL/6J mice were fed high-sucrose-high-fat and chow diets for 12 weeks to induce obesity. MRI was performed and analysed by chemical shift-encoded fat-water separation based on the transition region extraction method. Abdominal fat was divided into upper and lower abdominal regions at the horizontal lower border of the liver. Blood samples were collected, and the glucose level, lipid profile, liver function, HbA1c and insulin were tested. k-means clustering and stepwise logistic regression were applied to validate the diagnosis of hyperglycaemia, dyslipidaemia and MetS, and to ascertain the predictive effect of MRI-derived parameters to the metabolic disorders. Pearson or Spearman correlation was used to assess the relationship between MRI-derived parameters and metabolic traits. The receiver-operating characteristic curve was used to evaluate the diagnostic effect of each logistic regression model. A two-sided p value less than 0.05 was considered to indicate statistical significance for all tests. We made the precise diagnosis of obesity, dyslipidaemia, hyperglycaemia and MetS in mice. In all, 14 mice could be diagnosed as having MetS, and the levels of body weight, HbA1c, triglyceride, total cholesterol and low-density lipoprotein cholesterol were significantly higher than in the normal group. Upper abdominal fat better predicted dyslipidaemia (odds ratio, OR = 2.673; area under the receiver-operating characteristic curve, AUCROC = 0.9153) and hyperglycaemia (OR = 2.456; AUCROC = 0.9454), and the abdominal visceral adipose tissue (VAT) was better for predicting MetS risk (OR = 1.187; AUCROC = 0.9619). We identified the predictive effect of fat volume and distribution in dyslipidaemia, hyperglycaemia and MetS. The upper abdominal fat played a better predictive role for the risk of dyslipidaemia and hyperglycaemia, and the abdominal VAT played a better predictive role for the risk of MetS.
Collapse
Affiliation(s)
- Hui-Xuan Wu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiao Lin
- Clinical Research Center for Medical Imaging in Hunan Province, Department of Radiology Quality Control Center in Hunan Province, Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chuan-Li Cheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Hong-Li Jiang
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Junaid Iqbal
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jun Liu
- Clinical Research Center for Medical Imaging in Hunan Province, Department of Radiology Quality Control Center in Hunan Province, Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Hou-De Zhou
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
46
|
Tian Y, Liu PF, Li JY, Li YN, Sun P. Hepatic MR imaging using IDEAL-IQ sequence: Will Gd-EOB-DTPA interfere with reproductivity of fat fraction quantification? World J Clin Cases 2023; 11:5887-5896. [PMID: 37727487 PMCID: PMC10506030 DOI: 10.12998/wjcc.v11.i25.5887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/31/2023] [Accepted: 07/14/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Iterative decomposition of water and fat with echo asymmetry and least squares estimation quantification sequence (IDEAL-IQ) is based on chemical shift-based water and fat separation technique to get proton density fat fraction. Multiple studies have shown that using IDEAL-IQ to test the stability and repeatability of liver fat is acceptable and has high accuracy. AIM To explore whether Gadoxetate Disodium (Gd-EOB-DTPA) interferes with the measurement of the hepatic fat content quantified with the IDEAL-IQ and to evaluate the robustness of this technique. METHODS IDEAL-IQ was used to quantify the liver fat content at 3.0T in 65 patients injected with Gd-EOB-DTPA contrast. After injection, IDEAL-IQ was estimated four times, and the fat fraction (FF) and R2* were measured at the following time points: Pre-contrast, between the portal phase (70 s) and the late phase (180 s), the delayed phase (5 min) and the hepatobiliary phase (20 min). One-way repeated-measures analysis was conducted to evaluate the difference in the FFs between the four time points. Bland-Altman plots were adopted to assess the FF changes before and after injection of the contrast agent. P < 0.05 was considered statistically significant. RESULTS The assessment of the FF at the four time points in the liver, spleen and spine showed no significant differences, and the measurements of hepatic FF yielded good consistency between T1 and T2 [95% confidence interval: -0.6768%, 0.6658%], T1 and T3 (-0.3900%, 0.3178%), and T1 and T4 (-0.3750%, 0.2825%). R2* of the liver, spleen and spine increased significantly after injection (P < 0.0001). CONCLUSION Using the IDEAL-IQ sequence to measure the FF, we can obtain results that will not be affected by Gd-EOB-DTPA. The high reproducibility of the IDEAL-IQ sequence makes it available in the scanning interval to save time during multiphase examinations.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Peng-Fei Liu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Jia-Yu Li
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Ya-Nan Li
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Peng Sun
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| |
Collapse
|
47
|
Engelke K, Chaudry O, Gast L, Eldib MAB, Wang L, Laredo JD, Schett G, Nagel AM. Magnetic resonance imaging techniques for the quantitative analysis of skeletal muscle: State of the art. J Orthop Translat 2023; 42:57-72. [PMID: 37654433 PMCID: PMC10465967 DOI: 10.1016/j.jot.2023.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/04/2023] [Accepted: 07/19/2023] [Indexed: 09/02/2023] Open
Abstract
Background Magnetic resonance imaging (MRI) is the dominant 3D imaging modality to quantify muscle properties in skeletal muscle disorders, in inherited and acquired muscle diseases, and in sarcopenia, in cachexia and frailty. Methods This review covers T1 weighted and Dixon sequences, introduces T2 mapping, diffusion tensor imaging (DTI) and non-proton MRI. Technical concepts, strengths, limitations and translational aspects of these techniques are discussed in detail. Examples of clinical applications are outlined. For comparison 31P-and 13C-MR Spectroscopy are also addressed. Results MRI technology provides a rich toolset to assess muscle deterioration. In addition to classical measures such as muscle atrophy using T1 weighted imaging and fat infiltration using Dixon sequences, parameters characterizing inflammation from T2 maps, tissue sodium using non-proton MRI techniques or concentration or fiber architecture using diffusion tensor imaging may be useful for an even earlier diagnosis of the impairment of muscle quality. Conclusion Quantitative MRI provides new options for muscle research and clinical applications. Current limitations that also impair its more widespread use in clinical trials are lack of standardization, ambiguity of image segmentation and analysis approaches, a multitude of outcome parameters without a clear strategy which ones to use and the lack of normal data.
Collapse
Affiliation(s)
- Klaus Engelke
- Department of Medicine III, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
- Institute of Medical Physics (IMP), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Henkestr. 91, 91052, Erlangen, Germany
- Clario Inc, Germany
| | - Oliver Chaudry
- Department of Medicine III, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Lena Gast
- Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Maximiliansplatz 3, 91054, Erlangen, Germany
| | | | - Ling Wang
- Department of Radiology, Beijing Jishuitan Hospital, Beijing, China
| | - Jean-Denis Laredo
- Service d’Imagerie Médicale, Institut Mutualiste Montsouris & B3OA, UMR CNRS 7052, Inserm U1271 Université de Paris-Cité, Paris, France
| | - Georg Schett
- Department of Medicine III, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Armin M. Nagel
- Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Maximiliansplatz 3, 91054, Erlangen, Germany
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| |
Collapse
|
48
|
Liu Y, Hamilton J, Jiang Y, Seiberlich N. Assessment of MRF for simultaneous T 1 and T 2 quantification and water-fat separation in the liver at 0.55 T. MAGMA (NEW YORK, N.Y.) 2023; 36:513-523. [PMID: 36574163 PMCID: PMC10293475 DOI: 10.1007/s10334-022-01057-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/10/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The goal of this work was to assess the feasibility of performing MRF in the liver on a 0.55 T scanner and to examine the feasibility of water-fat separation using rosette MRF at 0.55 T. MATERIALS AND METHODS Spiral and rosette MRF sequences were implemented on a commercial 0.55 T scanner. The accuracy of both sequences in T1 and T2 quantification was validated in the ISMRM/NIST system phantom. The efficacy of rosette MRF in water-fat separation was evaluated in simulations and water/oil phantoms. Both spiral and rosette MRF were performed in the liver of healthy subjects. RESULTS In the ISMRM/NIST phantom, both spiral and rosette MRF achieved good agreement with reference values in T1 and T2 measurements. In addition, rosette MRF enables water-fat separation and can generate water- and fat- specific T1 maps, T2 maps, and proton density images from the same dataset for a spatial resolution of 1.56 × 1.56 × 5mm3 within the acquisition time of 15 s. CONCLUSION It is feasible to measure T1 and T2 simultaneously in the liver using MRF on a 0.55 T system with lower performance gradients compared to state-of-the-art 1.5 T and 3 T systems within an acquisition time of 15 s. In addition, rosette MRF enables water-fat separation along with T1 and T2 quantification with no time penalty.
Collapse
Affiliation(s)
- Yuchi Liu
- Department of Radiology, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI, 48109, USA.
| | - Jesse Hamilton
- Department of Radiology, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Yun Jiang
- Department of Radiology, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Nicole Seiberlich
- Department of Radiology, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
49
|
Armandi A, Michel M, Gjini K, Emrich T, Bugianesi E, Schattenberg JM. Emerging concepts in the detection of liver fibrosis in non-alcoholic fatty liver disease. Expert Rev Mol Diagn 2023; 23:771-782. [PMID: 37505901 DOI: 10.1080/14737159.2023.2242779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/24/2023] [Accepted: 07/27/2023] [Indexed: 07/30/2023]
Abstract
INTRODUCTION The non-invasive identification of liver fibrosis related to Non-Alcoholic Fatty Liver Disease is crucial for risk-stratification of patients. Currently, the reference standard to stage hepatic fibrosis relies on liver biopsy, but multiple approaches are developed to allow for non-invasive diagnosis and risk stratification. Non-invasive tests, including blood-based scores and vibration-controlled transient elastography, have been widely validated and represent a good surrogate for risk stratification according to recent European and American guidelines. AREAS COVERED Novel approaches are based on 'liquid' biomarkers of liver fibrogenesis, including collagen-derived markers (PRO-C3 or PRO-C6), or 'multi-omics' technologies (e.g. proteomic-based molecules or miRNA testing), bearing the advantage of tailoring the intrahepatic disease activity. Alternative approaches are based on 'dry' biomarkers, including magnetic resonance-based tools (including proton density fat fraction, magnetic resonance elastography, or corrected T1), which reach similar accuracy of liver histology and will potentially help identify the best candidates for pharmacological treatment of fibrosing non-alcoholic steatohepatitis. EXPERT OPINION In the near future, the sequential use of non-invasive tests, as well as the complimentary use of liquid and dry biomarkers according to the clinical need (diagnosis, risk stratification, and prognosis, or treatment response) will guide and improve the management of this liver disease.
Collapse
Affiliation(s)
- Angelo Armandi
- Division of Gastroenterology and Hepatology, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy
- Metabolic Liver Research Program, I. Department of Medicine, University Medical Centre Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Maurice Michel
- Metabolic Liver Research Program, I. Department of Medicine, University Medical Centre Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
- I. Department of Medicine, University Medical Centre Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Kamela Gjini
- Division of Gastroenterology and Hepatology, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy
| | - Tilman Emrich
- Department of Radiology, University Medical Centre Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Elisabetta Bugianesi
- Division of Gastroenterology and Hepatology, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy
| | - Jorn M Schattenberg
- Metabolic Liver Research Program, I. Department of Medicine, University Medical Centre Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
- I. Department of Medicine, University Medical Centre Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| |
Collapse
|
50
|
Chen F, Huang Y, Guo A, Ye P, He J, Chen S. Associations between vertebral bone marrow fat and sagittal spine alignment as assessed by chemical shift-encoding-based water-fat MRI. J Orthop Surg Res 2023; 18:460. [PMID: 37370128 DOI: 10.1186/s13018-023-03944-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/21/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The relationship between sagittal spine alignment and vertebral bone marrow fat is unknown. We aimed to assess the relationship between vertebral bone marrow fat and sagittal spine alignment using chemical shift-encoding-based water-fat magnetic resonance imaging (MRI). METHODS A total of 181 asymptomatic volunteers were recruited for whole spine X-ray and lumbar MRI. Spine typing was performed according to the Roussouly classification and measurement of vertebral fat fraction based on the chemical shift-encoding-based water-fat MRI. One-way analysis of variance (ANOVA) was used to analyze the differences in vertebral fat fraction between spine types. The post hoc least significant difference (LSD) test was utilized for subgroup comparison after ANOVA. RESULTS Overall, the vertebral fat fraction increased from L1 to L5 and was the same for each spine type. The vertebral fat fraction was the highest in type 1 and lowest in type 4 at all levels. ANOVA revealed statistically significant differences in fat fraction among different spine types at L4 and L5 (P < .05). The post hoc LSD test showed that the fat fraction of L4 was significantly different (P < .05) between type 1 and type 4 as well as between type 2 and type 4. The fat fraction of L5 was significantly different between type 1 and type 3, between type 1 and type 4, and between type 2 and type 4 (P < .05). CONCLUSION Our study found that vertebral bone marrow fat is associated with sagittal spine alignment, which may serve as a new additional explanation for the association of sagittal alignment with spinal degeneration.
Collapse
Affiliation(s)
- Fangsi Chen
- Department of Radiology, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Yingying Huang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuanxi Rd, Wenzhou, 325027, Zhejiang, China
| | - Anna Guo
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuanxi Rd, Wenzhou, 325027, Zhejiang, China
| | - Peipei Ye
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuanxi Rd, Wenzhou, 325027, Zhejiang, China
| | - Jiawei He
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuanxi Rd, Wenzhou, 325027, Zhejiang, China
| | - Shaoqing Chen
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuanxi Rd, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|