1
|
Wu HY, Luo B, Yuan G, Wang QX, Liu P, Zhao YL, Zhai LH, Lv WZ, Zhang J, Chen L. A Prediction Model for Detecting Dysthyroid Optic Neuropathy Based on Clinical Factors and Imaging Markers of the Optic Nerve and Cerebrospinal Fluid in the Optic Nerve Sheath. Curr Med Sci 2024; 44:827-832. [PMID: 39096474 DOI: 10.1007/s11596-024-2890-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/30/2024] [Indexed: 08/05/2024]
Abstract
OBJECTIVE This study aimed to develop and test a model for predicting dysthyroid optic neuropathy (DON) based on clinical factors and imaging markers of the optic nerve and cerebrospinal fluid (CSF) in the optic nerve sheath. METHODS This retrospective study included patients with thyroid-associated ophthalmopathy (TAO) without DON and patients with TAO accompanied by DON at our hospital. The imaging markers of the optic nerve and CSF in the optic nerve sheath were measured on the water-fat images of each patient and, together with clinical factors, were screened by Least absolute shrinkage and selection operator. Subsequently, we constructed a prediction model using multivariate logistic regression. The accuracy of the model was verified using receiver operating characteristic curve analysis. RESULTS In total, 80 orbits from 44 DON patients and 90 orbits from 45 TAO patients were included in our study. Two variables (optic nerve subarachnoid space and the volume of the CSF in the optic nerve sheath) were found to be independent predictive factors and were included in the prediction model. In the development cohort, the mean area under the curve (AUC) was 0.994, with a sensitivity of 0.944, specificity of 0.967, and accuracy of 0.901. Moreover, in the validation cohort, the AUC was 0.960, the sensitivity was 0.889, the specificity was 0.893, and the accuracy was 0.890. CONCLUSIONS A combined model was developed using imaging data of the optic nerve and CSF in the optic nerve sheath, serving as a noninvasive potential tool to predict DON.
Collapse
Affiliation(s)
- Hong-Yu Wu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ban Luo
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gang Yuan
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qiu-Xia Wang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ping Liu
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Ya-Li Zhao
- Department of Radiology, Sir Run Run Shaw Hospital Affiliated with the School of Medicine of Zhejiang University, Hangzhou, 310000, China
| | - Lin-Han Zhai
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wen-Zhi Lv
- Department of Artificial Intelligence, Julei Technology Company, Wuhan, 430030, China
| | - Jing Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lang Chen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
2
|
Qi H, Jiang S, Nan J, Guo H, Cheng C, He X, Jin H, Zhang R, Lei J. Application and research progress of magnetic resonance proton density fat fraction in metabolic dysfunction-associated steatotic liver disease: a comprehensive review. Abdom Radiol (NY) 2024:10.1007/s00261-024-04448-9. [PMID: 39048719 DOI: 10.1007/s00261-024-04448-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 07/27/2024]
Abstract
Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD), formerly known as Non-Alcoholic Fatty Liver Disease (NAFLD), is a chronic liver disorder associated with disturbances in lipid metabolism. The disease is prevalent worldwide, particularly closely linked with metabolic syndromes such as obesity and diabetes. Magnetic Resonance Proton Density Fat Fraction (MRI-PDFF), serving as a non-invasive and highly quantitative imaging assessment tool, holds promising applications in the diagnosis and research of MASLD. This paper aims to comprehensively review and summarize the applications and research progress of MRI-PDFF technology in MASLD, analyze its strengths and challenges, and anticipate its future developments in clinical practice.
Collapse
Affiliation(s)
- Hongyan Qi
- The First Clinical Medical College of Lanzhou University, No.1 Donggang West Road, Chengguan District, Lanzhou City, 730000, Gansu Province, China
| | | | - Jiang Nan
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hang Guo
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Cai Cheng
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xin He
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hongyang Jin
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Rongfan Zhang
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Junqiang Lei
- The First Clinical Medical College of Lanzhou University, No.1 Donggang West Road, Chengguan District, Lanzhou City, 730000, Gansu Province, China.
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China.
- Radiological Clinical Medicine Research Center of Gansu Province, Lanzhou, Gansu, China.
| |
Collapse
|
3
|
Samsonov AA, Yarnykh VL. Accurate actual flip angle imaging (AFI) in the presence of fat. Magn Reson Med 2024; 91:2345-2357. [PMID: 38193249 PMCID: PMC10997465 DOI: 10.1002/mrm.30000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024]
Abstract
PURPOSE To investigate the effect of incomplete fat spoiling on the accuracy of B1 mapping with actual flip angle imaging (AFI) and to propose a method to minimize the errors using the chemical shift properties of fat. THEORY AND METHODS Diffusion-based dephasing is the main spoiling mechanism exploited in AFI. However, a very low diffusion in fat may make the spoiling insufficient, leading to ghosts in the B1 maps. As the errors retain the chemical-shift signature of fat, their impact can be minimized using chemical-shift-based fat signal removal from AFI acquisition modified to include multi-echo readout. The source of the errors and the proposed correction were studied in simulations and phantom and in-vivo imaging experiments. RESULTS Our results support that AFI artifacts are caused by the incomplete fat spoiling present in clinically attractive short TR acquisition regimes. The correction eliminated the ghosting and significantly improved the B1 mapping accuracy as well as the accuracy of R1 mapping performed with AFI-derived B1 maps. CONCLUSIONS The incomplete fat signal spoiling may be a source of AFI B1 mapping errors, especially in subjects with high fat content. Achieving complete fat spoiling requires longer TR, which is undesirable in clinical applications. The proposed approach based on fat signal removal can reduce errors without significant prolongation of the AFI pulse sequence. We propose that, when attaining complete fat spoiling is not feasible, AFI mapping should be performed in a multi-echo regime with appropriate fat separation or suppression to minimize these errors.
Collapse
Affiliation(s)
- Alexey A Samsonov
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Vasily L Yarnykh
- Department of Radiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
4
|
Zsombor Z, Zsély B, Rónaszéki AD, Stollmayer R, Budai BK, Palotás L, Bérczi V, Kalina I, Maurovich Horvat P, Kaposi PN. Comparison of Vendor-Independent Software Tools for Liver Proton Density Fat Fraction Estimation at 1.5 T. Diagnostics (Basel) 2024; 14:1138. [PMID: 38893664 PMCID: PMC11171873 DOI: 10.3390/diagnostics14111138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
(1) Background: Open-source software tools are available to estimate proton density fat fraction (PDFF). (2) Methods: We compared four algorithms: complex-based with graph cut (GC), magnitude-based (MAG), magnitude-only estimation with Rician noise modeling (MAG-R), and multi-scale quadratic pseudo-Boolean optimization with graph cut (QPBO). The accuracy and reliability of the methods were evaluated in phantoms with known fat/water ratios and a patient cohort with various grades (S0-S3) of steatosis. Image acquisitions were performed at 1.5 Tesla (T). (3) Results: The PDFF estimates showed a nearly perfect correlation (Pearson r = 0.999, p < 0.001) and inter-rater agreement (ICC = from 0.995 to 0.999, p < 0.001) with true fat fractions. The absolute bias was low with all methods (0.001-1%), and an ANCOVA detected no significant difference between the algorithms in vitro. The agreement across the methods was very good in the patient cohort (ICC = 0.891, p < 0.001). However, MAG estimates (-2.30% ± 6.11%, p = 0.005) were lower than MAG-R. The field inhomogeneity artifacts were most frequent in MAG-R (70%) and GC (39%) and absent in QPBO images. (4) Conclusions: The tested algorithms all accurately estimate PDFF in vitro. Meanwhile, QPBO is the least affected by field inhomogeneity artifacts in vivo.
Collapse
Affiliation(s)
- Zita Zsombor
- Department of Radiology, Medical Imaging Centre, Semmelweis University, 1083 Budapest, Hungary; (Z.Z.); (B.Z.); (A.D.R.); (R.S.); (B.K.B.); (L.P.); (V.B.); (I.K.); (P.M.H.)
| | - Boglárka Zsély
- Department of Radiology, Medical Imaging Centre, Semmelweis University, 1083 Budapest, Hungary; (Z.Z.); (B.Z.); (A.D.R.); (R.S.); (B.K.B.); (L.P.); (V.B.); (I.K.); (P.M.H.)
| | - Aladár D. Rónaszéki
- Department of Radiology, Medical Imaging Centre, Semmelweis University, 1083 Budapest, Hungary; (Z.Z.); (B.Z.); (A.D.R.); (R.S.); (B.K.B.); (L.P.); (V.B.); (I.K.); (P.M.H.)
| | - Róbert Stollmayer
- Department of Radiology, Medical Imaging Centre, Semmelweis University, 1083 Budapest, Hungary; (Z.Z.); (B.Z.); (A.D.R.); (R.S.); (B.K.B.); (L.P.); (V.B.); (I.K.); (P.M.H.)
- Clinic for Diagnostic and Interventional Radiology (DIR), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Bettina K. Budai
- Department of Radiology, Medical Imaging Centre, Semmelweis University, 1083 Budapest, Hungary; (Z.Z.); (B.Z.); (A.D.R.); (R.S.); (B.K.B.); (L.P.); (V.B.); (I.K.); (P.M.H.)
- Clinic for Diagnostic and Interventional Radiology (DIR), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Lőrinc Palotás
- Department of Radiology, Medical Imaging Centre, Semmelweis University, 1083 Budapest, Hungary; (Z.Z.); (B.Z.); (A.D.R.); (R.S.); (B.K.B.); (L.P.); (V.B.); (I.K.); (P.M.H.)
| | - Viktor Bérczi
- Department of Radiology, Medical Imaging Centre, Semmelweis University, 1083 Budapest, Hungary; (Z.Z.); (B.Z.); (A.D.R.); (R.S.); (B.K.B.); (L.P.); (V.B.); (I.K.); (P.M.H.)
| | - Ildikó Kalina
- Department of Radiology, Medical Imaging Centre, Semmelweis University, 1083 Budapest, Hungary; (Z.Z.); (B.Z.); (A.D.R.); (R.S.); (B.K.B.); (L.P.); (V.B.); (I.K.); (P.M.H.)
| | - Pál Maurovich Horvat
- Department of Radiology, Medical Imaging Centre, Semmelweis University, 1083 Budapest, Hungary; (Z.Z.); (B.Z.); (A.D.R.); (R.S.); (B.K.B.); (L.P.); (V.B.); (I.K.); (P.M.H.)
| | - Pál Novák Kaposi
- Department of Radiology, Medical Imaging Centre, Semmelweis University, 1083 Budapest, Hungary; (Z.Z.); (B.Z.); (A.D.R.); (R.S.); (B.K.B.); (L.P.); (V.B.); (I.K.); (P.M.H.)
| |
Collapse
|
5
|
Tian Y, Nayak KS. Real-time water/fat imaging at 0.55T with spiral out-in-out-in sampling. Magn Reson Med 2024; 91:649-659. [PMID: 37815020 PMCID: PMC10841523 DOI: 10.1002/mrm.29885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/23/2023] [Accepted: 09/21/2023] [Indexed: 10/11/2023]
Abstract
PURPOSE To develop an efficient and flexible water/fat separated real-time MRI (RT-MRI) method using spiral out-in-out-in (OIOI) sampling and balanced SSFP (bSSFP) at 0.55T. METHODS A bSSFP sequence with golden-angle spiral OIOI readout was developed, capturing three echoes to allow water/fat separation. A low-latency reconstruction that combines all echoes was available for online visualization. An offline reconstruction provided water and fat RT-MRI in two steps: (1) image reconstruction with spatiotemporally constrained reconstruction (STCR) and (2) water/fat separation with hierarchical iterative decomposition of water and fat with echo asymmetry and least-squares estimation (HIDEAL). In healthy volunteers, spiral OIOI was acquired in the wrist during a radial-to-ulnar deviation maneuver, in the heart without breath-hold and cardiac gating, and in the lower abdomen during free-breathing for visualizing small bowel motility. RESULTS We demonstrate successful water/fat separated RT-MRI for all tested applications. In the wrist, resulting images provided clear depiction of ligament gaps and their interactions during the radial-to-ulnar deviation maneuver. In the heart, water/fat RT-MRI depicted epicardial fat, provided improved delineation of epicardial coronary arteries, and provided high blood-myocardial contrast for ventricular function assessment. In the abdomen, water-only RT-MRI captured small bowel mobility clearly with improved water-fat contrast. CONCLUSIONS We have demonstrated a novel and flexible bSSFP spiral OIOI sequence at 0.55T that can provide water/fat separated RT-MRI with a variety of application-specific temporal resolution and spatial resolution requirements.
Collapse
Affiliation(s)
- Ye Tian
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Krishna S. Nayak
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
6
|
Peng H, Cheng C, Wan Q, Liang D, Liu X, Zheng H, Zou C. Reducing the ambiguity of field inhomogeneity and chemical shift effect for fat-water separation by field factor. Magn Reson Med 2023; 90:1830-1843. [PMID: 37379480 DOI: 10.1002/mrm.29774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/16/2023] [Accepted: 06/03/2023] [Indexed: 06/30/2023]
Abstract
PURPOSE To reduce the ambiguity between chemical shift and field inhomogeneity with flexible TE combinations by introducing a variable (field factor). THEORY AND METHODS The ambiguity between chemical shift and field inhomogeneity can be eliminated directly from the multiple in-phase images acquired at different TEs; however, it is only applicable to few echo combinations. In this study, we accommodated such an implementation in flexible TE combinations by introducing a new variable (field factor). The effects of the chemical shift were removed from the field inhomogeneity in the candidate solutions, thus reducing the ambiguity problem. To validate this concept, multi-echo MRI data acquired from various anatomies with different imaging parameters were tested. The derived fat and water images were compared with those of the state-of-the-art fat-water separation algorithms. RESULTS Robust fat-water separation was achieved with the accurate solution of field inhomogeneity, and no apparent fat-water swap was observed. In addition to the good performance, the proposed method is applicable to various fat-water separation applications, including different sequence types and flexible TE choices. CONCLUSION We propose an algorithm to reduce the ambiguity of chemical shift and field inhomogeneity and achieved robust fat-water separation in various applications.
Collapse
Affiliation(s)
- Hao Peng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advance Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chuanli Cheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advance Technology, Chinese Academy of Sciences, Shenzhen, China
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen Institutes of Advance Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qian Wan
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advance Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dong Liang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advance Technology, Chinese Academy of Sciences, Shenzhen, China
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen Institutes of Advance Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advance Technology, Chinese Academy of Sciences, Shenzhen, China
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen Institutes of Advance Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advance Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chao Zou
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advance Technology, Chinese Academy of Sciences, Shenzhen, China
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen Institutes of Advance Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
7
|
Montrazi ET, Bao Q, Martinho RP, Peters DC, Harris T, Sasson K, Agemy L, Scherz A, Frydman L. Deuterium imaging of the Warburg effect at sub-millimolar concentrations by joint processing of the kinetic and spectral dimensions. NMR IN BIOMEDICINE 2023; 36:e4995. [PMID: 37401393 DOI: 10.1002/nbm.4995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/21/2023] [Accepted: 06/03/2023] [Indexed: 07/05/2023]
Abstract
Deuterium metabolic imaging (DMI) is a promising molecular MRI approach, which follows the administration of deuterated substrates and their metabolization. [6,6'-2 H2 ]-glucose for instance is preferentially converted in tumors to [3,3'-2 H2 ]-lactate as a result of the Warburg effect, providing a distinct resonance whose mapping using time-resolved spectroscopic imaging can diagnose cancer. The MR detection of low-concentration metabolites such as lactate, however, is challenging. It has been recently shown that multi-echo balanced steady-state free precession (ME-bSSFP) increases the signal-to-noise ratio (SNR) of these experiments approximately threefold over regular chemical shift imaging; the present study examines how DMI's sensitivity can be increased further by advanced processing methods. Some of these, such as compressed sensing multiplicative denoising and block-matching/3D filtering, can be applied to any spectroscopic/imaging methods. Sensitivity-enhancing approaches were also specifically tailored to ME-bSSFP DMI, by relying on priors related to the resonances' positions and to features of the metabolic kinetics. Two new methods are thus proposed that use these constraints for enhancing the sensitivity of both the spectral images and the metabolic kinetics. The ability of these methods to improve DMI is evidenced in pancreatic cancer studies carried at 15.2 T, where suitable implementations of the proposals imparted eightfold or more SNR improvement over the original ME-bSSFP data, at no informational cost. Comparisons with other propositions in the literature are briefly discussed.
Collapse
Affiliation(s)
- Elton T Montrazi
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Qingjia Bao
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Ricardo P Martinho
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
- University of Twente, Enschede, The Netherlands
| | - Dana C Peters
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Talia Harris
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Keren Sasson
- Department of Plant and Environmental Science, Weizmann Institute of Science, Rehovot, Israel
| | - Lilach Agemy
- Department of Plant and Environmental Science, Weizmann Institute of Science, Rehovot, Israel
| | - Avigdor Scherz
- Department of Plant and Environmental Science, Weizmann Institute of Science, Rehovot, Israel
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
8
|
Dimov AV, Li J, Nguyen TD, Roberts AG, Spincemaille P, Straub S, Zun Z, Prince MR, Wang Y. QSM Throughout the Body. J Magn Reson Imaging 2023; 57:1621-1640. [PMID: 36748806 PMCID: PMC10192074 DOI: 10.1002/jmri.28624] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/08/2023] Open
Abstract
Magnetic materials in tissue, such as iron, calcium, or collagen, can be studied using quantitative susceptibility mapping (QSM). To date, QSM has been overwhelmingly applied in the brain, but is increasingly utilized outside the brain. QSM relies on the effect of tissue magnetic susceptibility sources on the MR signal phase obtained with gradient echo sequence. However, in the body, the chemical shift of fat present within the region of interest contributes to the MR signal phase as well. Therefore, correcting for the chemical shift effect by means of water-fat separation is essential for body QSM. By employing techniques to compensate for cardiac and respiratory motion artifacts, body QSM has been applied to study liver iron and fibrosis, heart chamber blood and placenta oxygenation, myocardial hemorrhage, atherosclerotic plaque, cartilage, bone, prostate, breast calcification, and kidney stone.
Collapse
Affiliation(s)
- Alexey V. Dimov
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Jiahao Li
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Thanh D. Nguyen
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | | | - Pascal Spincemaille
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Sina Straub
- Department of Radiology, Mayo Clinic, Jacksonville, FL, United States
| | - Zungho Zun
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Martin R. Prince
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
9
|
Jang W, Song JS. Non-Invasive Imaging Methods to Evaluate Non-Alcoholic Fatty Liver Disease with Fat Quantification: A Review. Diagnostics (Basel) 2023; 13:diagnostics13111852. [PMID: 37296703 DOI: 10.3390/diagnostics13111852] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Hepatic steatosis without specific causes (e.g., viral infection, alcohol abuse, etc.) is called non-alcoholic fatty liver disease (NAFLD), which ranges from non-alcoholic fatty liver (NAFL) to non-alcoholic steatohepatitis (NASH), fibrosis, and NASH-related cirrhosis. Despite the usefulness of the standard grading system, liver biopsy has several limitations. In addition, patient acceptability and intra- and inter-observer reproducibility are also concerns. Due to the prevalence of NAFLD and limitations of liver biopsies, non-invasive imaging methods such as ultrasonography (US), computed tomography (CT), and magnetic resonance imaging (MRI) that can reliably diagnose hepatic steatosis have developed rapidly. US is widely available and radiation-free but cannot examine the entire liver. CT is readily available and helpful for detection and risk classification, significantly when analyzed using artificial intelligence; however, it exposes users to radiation. Although expensive and time-consuming, MRI can measure liver fat percentage with magnetic resonance imaging proton density fat fraction (MRI-PDFF). Specifically, chemical shift-encoded (CSE)-MRI is the best imaging indicator for early liver fat detection. The purpose of this review is to provide an overview of each imaging modality with an emphasis on the recent progress and current status of liver fat quantification.
Collapse
Affiliation(s)
- Weon Jang
- Department of Radiology, Jeonbuk National University Medical School and Hospital, 20 Geonji-ro, Deokjin-gu, Jeonju 54907, Jeonbuk, Republic of Korea
- Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju 54907, Jeonbuk, Republic of Korea
- Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Jeonbuk, Republic of Korea
| | - Ji Soo Song
- Department of Radiology, Jeonbuk National University Medical School and Hospital, 20 Geonji-ro, Deokjin-gu, Jeonju 54907, Jeonbuk, Republic of Korea
- Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju 54907, Jeonbuk, Republic of Korea
- Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Jeonbuk, Republic of Korea
| |
Collapse
|
10
|
Triay Bagur A, McClymont D, Hutton C, Borghetto A, Gyngell ML, Aljabar P, Robson MD, Brady M, Bulte DP. Estimation of field inhomogeneity map following magnitude-based ambiguity-resolved water-fat separation. Magn Reson Imaging 2023; 97:102-111. [PMID: 36632946 DOI: 10.1016/j.mri.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Magnitude-based PDFF (Proton Density Fat Fraction) and R2∗ mapping with resolved water-fat ambiguity is extended to calculate field inhomogeneity (field map) using the phase images. The estimation is formulated in matrix form, resolving the field map in a least-squares sense. PDFF and R2∗ from magnitude fitting may be updated using the estimated field maps. The limits of quantification of our voxel-independent implementation were assessed. Bland-Altman was used to compare PDFF and field maps from our method against a reference complex-based method on 152 UK Biobank subjects (1.5 T Siemens). A separate acquisition (3 T Siemens) presenting field inhomogeneities was also used. The proposed field mapping was accurate beyond double the complex-based limit range. High agreement was obtained between the proposed method and the reference in UK. Robust field mapping was observed at 3 T, for inhomogeneities over 400 Hz including rapid variation across edges. Field mapping following unambiguous magnitude-based water-fat separation was demonstrated in-vivo and showed potential at 3 T.
Collapse
Affiliation(s)
- Alexandre Triay Bagur
- Department of Engineering Science, University of Oxford, Oxford, UK; Perspectum Ltd, Oxford, UK.
| | | | | | | | | | | | | | | | - Daniel P Bulte
- Department of Engineering Science, University of Oxford, Oxford, UK
| |
Collapse
|
11
|
Boehm C, Schlaeger S, Meineke J, Weiss K, Makowski MR, Karampinos DC. On the water-fat in-phase assumption for quantitative susceptibility mapping. Magn Reson Med 2023; 89:1068-1082. [PMID: 36321543 DOI: 10.1002/mrm.29516] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 10/06/2022] [Accepted: 10/15/2022] [Indexed: 11/07/2022]
Abstract
PURPOSE To (a) define multi-peak fat model-based effective in-phase echo times for quantitative susceptibility mapping (QSM) in water-fat regions, (b) analyze the relationship between fat fraction, field map quantification bias and susceptibility bias, and (c) evaluate the susceptibility mapping performance of the proposed effective in-phase echoes in comparison to single-peak in-phase echoes and water-fat separation for regions where both water and fat are present. METHODS Effective multipeak in-phase echo times for a bone marrow and a liver fat spectral model were derived from a single voxel simulation. A Monte Carlo simulation was performed to assess the field map estimation error as a function of fat fraction for the different in-phase echoes. Additionally, a phantom scan and in vivo scans in the liver, spine, and breast were performed and evaluated with respect to quantification accuracy. RESULTS The use of single-peak in-phase echoes can introduce a worst-case susceptibility bias of 0.43 $$ 0.43 $$ ppm. The use of effective multipeak in-phase echoes shows a similar quantitative performance in the numerical simulation, the phantom and in all in vivo anatomies when compared to water-fat separation-based QSM. CONCLUSION QSM based on the proposed effective multipeak in-phase echoes can alleviate the quantification bias present in QSM based on single-peak in-phase echoes. When compared to water-fat separation-based QSM the proposed effective in-phase echo times achieve a similar quantitative performance while drastically reducing the computational expense for field map estimation.
Collapse
Affiliation(s)
- Christof Boehm
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Sarah Schlaeger
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | | | - Marcus R Makowski
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
12
|
Dong Y, Riedel M, Koolstra K, van Osch MJP, Börnert P. Water/fat separation for self-navigated diffusion-weighted multishot echo-planar imaging. NMR IN BIOMEDICINE 2023; 36:e4822. [PMID: 36031585 PMCID: PMC10078174 DOI: 10.1002/nbm.4822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/25/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
The purpose of this study was to develop a self-navigation strategy to improve scan efficiency and image quality of water/fat-separated, diffusion-weighted multishot echo-planar imaging (ms-EPI). This is accomplished by acquiring chemical shift-encoded diffusion-weighted data and using an appropriate water-fat and diffusion-encoded signal model to enable reconstruction directly from k-space data. Multishot EPI provides reduced geometric distortion and improved signal-to-noise ratio in diffusion-weighted imaging compared with single-shot approaches. Multishot acquisitions require corrections for physiological motion-induced shot-to-shot phase errors using either extra navigators or self-navigation principles. In addition, proper fat suppression is important, especially in regions with large B0 inhomogeneity. This makes the use of chemical shift encoding attractive. However, when combined with ms-EPI, shot-to-shot phase navigation can be challenging because of the spatial displacement of fat signals along the phase-encoding direction. In this work, a new model-based, self-navigated water/fat separation reconstruction algorithm is proposed. Experiments in legs and in the head-neck region of 10 subjects were performed to validate the algorithm. The results are compared with an image-based, two-dimensional (2D) navigated water/fat separation approach for ms-EPI and with a conventional fat saturation approach. Compared with the 2D navigated method, the use of self-navigation reduced the shot duration time by 30%-35%. The proposed algorithm provided improved diffusion-weighted water images in both leg and head-neck regions compared with the 2D navigator-based approach. The proposed algorithm also produced better fat suppression compared with the conventional fat saturation technique in the B0 inhomogeneous regions. In conclusion, the proposed self-navigated reconstruction algorithm can produce superior water-only diffusion-weighted EPI images with less artefacts compared with the existing methods.
Collapse
Affiliation(s)
- Yiming Dong
- C. J. Gorter Center for High Field MRI, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Malte Riedel
- Institute for Biomedical EngineeringETH Zurich and University of ZurichZurichSwitzerland
| | - Kirsten Koolstra
- Division of Image Processing, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Matthias J. P. van Osch
- C. J. Gorter Center for High Field MRI, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Peter Börnert
- C. J. Gorter Center for High Field MRI, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
- Philips Research HamburgHamburgGermany
| |
Collapse
|
13
|
Song R, Hwang SN, Goode C, Storment D, Scoggins M, Abramson Z, Hillenbrand CM, Mandrell B, Krull K, Reddick WE. Assessment of Fat Fractions in the Tongue, Soft Palate, Pharyngeal Wall, and Parapharyngeal Fat Pad by the GOOSE and DIXON Methods. Invest Radiol 2022; 57:802-809. [PMID: 36350068 PMCID: PMC9663130 DOI: 10.1097/rli.0000000000000899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE The 2-point DIXON method is widely used to assess fat fractions (FFs) in magnetic resonance images (MRIs) of the tongue, pharyngeal wall, and surrounding tissues in patients with obstructive sleep apnea (OSA). However, the method is semiquantitative and is susceptible to B0 field inhomogeneities and R2* confounding factors. Using the method, although several studies have shown that patients with OSA have increased fat deposition around the pharyngeal cavity, conflicting findings was also reported in 1 study. This discrepancy necessitates that we examine the FF estimation method used in the earlier studies and seek a more accurate method to measure FFs. MATERIALS AND METHODS We examined the advantages of using the GOOSE (globally optimal surface estimation) method to replace the 2-point DIXON method for quantifying fat in the tongue and surrounding tissues on MRIs. We first used phantoms with known FFs (true FFs) to validate the GOOSE method and examine the errors in the DIXON method. Then, we compared the 2 methods in the tongue, soft palate, pharyngeal wall, and parapharyngeal fat pad of 63 healthy participants to further assess the errors caused by the DIXON method. Six participants were excluded from the comparison of the tongue FFs because of technical failures. Paired Student t tests were performed on FFs to detect significant differences between the 2 methods. All measures were obtained using 3 T Siemens MRI scanners. RESULTS In the phantoms, the FFs measured by GOOSE agreed with the true FF, with only a 1.2% mean absolute error. However, the same measure by DIXON had a 10.5% mean absolute error. The FFs obtained by DIXON were significantly lower than those obtained by GOOSE (P < 0.0001) in the human participants. We found strong correlations between GOOSE and DIXON in the tongue (R2 = 0.90), soft palate (R2 = 0.66), and parapharyngeal fat pad (R2 = 0.88), but the correlation was weaker in the posterior pharyngeal walls (R2 = 0.32) in participants. CONCLUSIONS The widely used 2-point DIXON underestimated FFs, relative to GOOSE, in phantom measurements and tissues studied in vivo. Thus, an advanced method, such as GOOSE, that uses multiecho complex data is preferred for estimating FF.
Collapse
Affiliation(s)
- Ruitian Song
- From the Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, TN
| | | | - Chris Goode
- From the Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, TN
| | - Diana Storment
- From the Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, TN
| | - Matthew Scoggins
- From the Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, TN
| | - Zachary Abramson
- From the Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, TN
| | | | | | - Kevin Krull
- Department of Epidemiology and Cancer Control, St Jude Children's Research Hospital, Memphis, TN
| | - Wilburn E Reddick
- From the Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
14
|
Enoki T. [4. Fat Suppression Techniques in MR Imaging: from Basics to Applications]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2021; 77:1469-1478. [PMID: 34924484 DOI: 10.6009/jjrt.2021_jsrt_77.12.1469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Takuya Enoki
- Department of Radiological Technology, Hyogo College of Medicine College Hospital
| |
Collapse
|
15
|
Peng H, Cheng C, Wan Q, Jia S, Wang S, Lv J, Liang D, Liu W, Liu X, Zheng H, Zou C. Fast multi-parametric imaging in abdomen by B 1 + corrected dual-flip angle sequence with interleaved echo acquisition. Magn Reson Med 2021; 87:2194-2208. [PMID: 34888911 DOI: 10.1002/mrm.29127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 11/07/2022]
Abstract
PURPOSE To achieve simultaneous T1, w /proton density fat fraction (PDFF)/ R 2 ∗ mapping in abdomen within a single breadth-hold, and validate the accuracy using state-of-art measurement. THEORY AND METHODS An optimized multiple echo gradient echo (GRE) sequence with dual flip-angle acquisition was used to realize simultaneous water T1 (T1, w )/PDFF/ R 2 ∗ quantification. A new method, referred to as "solving the fat-water ambiguity based on their T1 difference" (SORT), was proposed to address the fat-water separation problem. This method was based on the finding that compared to the true solution, the wrong (or aliased) solution to fat-water separation problem showed extra dependency on the applied flip angle due to the T1 difference between fat and water. The B 1 + measurement sequence was applied to correct the B 1 + inhomogeneity for T1, w relaxometry. The 2D parallel imaging was incorporated to enable the acquisition within a single breath-hold in abdomen. RESULTS The multi-parametric quantification results of the proposed method were consistent with the results of reference methods in phantom experiments (PDFF quantification: R2 = 0.993, mean error 0.73%; T1, w quantification: R2 = 0.999, mean error 4.3%; R 2 ∗ quantification: R2 = 0.949, mean error 4.07 s-1 ). For volunteer studies, robust fat-water separation was achieved without evident fat-water swaps. Based on the accurate fat-water separation, simultaneous T1, w /PDFF/ R 2 ∗ quantification was realized for whole liver within a single breath-hold. CONCLUSION The proposed method accurately quantified T1, w /PDFF/ R 2 ∗ for the whole liver within a single breath-hold. This technique serves as a quantitative tool for disease management in patients with hepatic steatosis.
Collapse
Affiliation(s)
- Hao Peng
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advance Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chuanli Cheng
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advance Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qian Wan
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advance Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Sen Jia
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advance Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Shuai Wang
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advance Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jianxun Lv
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advance Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Dong Liang
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advance Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Wenzhong Liu
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Image Processing and Intelligent Control, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Liu
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advance Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Hairong Zheng
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advance Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Chao Zou
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advance Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
16
|
Henze Bancroft LC, Strigel RM, Macdonald EB, Longhurst C, Johnson J, Hernando D, Reeder SB. Proton density water fraction as a reproducible MR-based measurement of breast density. Magn Reson Med 2021; 87:1742-1757. [PMID: 34775638 DOI: 10.1002/mrm.29076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/06/2021] [Accepted: 10/19/2021] [Indexed: 01/12/2023]
Abstract
PURPOSE To introduce proton density water fraction (PDWF) as a confounder-corrected (CC) MR-based biomarker of mammographic breast density, a known risk factor for breast cancer. METHODS Chemical shift encoded (CSE) MR images were acquired using a low flip angle to provide proton density contrast from multiple echo times. Fat and water images, corrected for known biases, were produced by a six-echo CC CSE-MRI algorithm. Fibroglandular tissue (FGT) volume was calculated from whole-breast segmented PDWF maps at 1.5T and 3T. The method was evaluated in (1) a physical fat-water phantom and (2) normal volunteers. Results from two- and three-echo CSE-MRI methods were included for comparison. RESULTS Six-echo CC-CSE-MRI produced unbiased estimates of the total water volume in the phantom (mean bias 3.3%) and was reproducible across protocol changes (repeatability coefficient [RC] = 14.8 cm3 and 13.97 cm3 at 1.5T and 3.0T, respectively) and field strengths (RC = 51.7 cm3 ) in volunteers, while the two- and three-echo CSE-MRI approaches produced biased results in phantoms (mean bias 30.7% and 10.4%) that was less reproducible across field strengths in volunteers (RC = 82.3 cm3 and 126.3 cm3 ). Significant differences in measured FGT volume were found between the six-echo CC-CSE-MRI and the two- and three-echo CSE-MRI approaches (p = 0.002 and p = 0.001, respectively). CONCLUSION The use of six-echo CC-CSE-MRI to create unbiased PDWF maps that reproducibly quantify FGT in the breast is demonstrated. Further studies are needed to correlate this quantitative MR biomarker for breast density with mammography and overall risk for breast cancer.
Collapse
Affiliation(s)
| | - Roberta M Strigel
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA.,University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Erin B Macdonald
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Clinical Imaging Physics Group, Duke University Medical Center, Durham, North Carolina, USA
| | - Colin Longhurst
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jacob Johnson
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Diego Hernando
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Scott B Reeder
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Emergency Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
17
|
Starekova J, Hernando D, Pickhardt PJ, Reeder SB. Quantification of Liver Fat Content with CT and MRI: State of the Art. Radiology 2021; 301:250-262. [PMID: 34546125 PMCID: PMC8574059 DOI: 10.1148/radiol.2021204288] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022]
Abstract
Hepatic steatosis is defined as pathologically elevated liver fat content and has many underlying causes. Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide, with an increasing prevalence among adults and children. Abnormal liver fat accumulation has serious consequences, including cirrhosis, liver failure, and hepatocellular carcinoma. In addition, hepatic steatosis is increasingly recognized as an independent risk factor for the metabolic syndrome, type 2 diabetes, and, most important, cardiovascular mortality. During the past 2 decades, noninvasive imaging-based methods for the evaluation of hepatic steatosis have been developed and disseminated. Chemical shift-encoded MRI is now established as the most accurate and precise method for liver fat quantification. CT is important for the detection and quantification of incidental steatosis and may play an increasingly prominent role in risk stratification, particularly with the emergence of CT-based screening and artificial intelligence. Quantitative imaging methods are increasingly used for diagnostic work-up and management of steatosis, including treatment monitoring. The purpose of this state-of-the-art review is to provide an overview of recent progress and current state of the art for liver fat quantification using CT and MRI, as well as important practical considerations related to clinical implementation.
Collapse
Affiliation(s)
- Jitka Starekova
- From the Departments of Radiology (J.S., D.H., P.J.P., S.B.R.),
Medical Physics (D.H., S.B.R.), Biomedical Engineering (S.B.R.), Medicine
(S.B.R.), and Emergency Medicine (S.B.R.), University of Wisconsin, 1111
Highland Ave, Madison, WI 53705
| | - Diego Hernando
- From the Departments of Radiology (J.S., D.H., P.J.P., S.B.R.),
Medical Physics (D.H., S.B.R.), Biomedical Engineering (S.B.R.), Medicine
(S.B.R.), and Emergency Medicine (S.B.R.), University of Wisconsin, 1111
Highland Ave, Madison, WI 53705
| | - Perry J. Pickhardt
- From the Departments of Radiology (J.S., D.H., P.J.P., S.B.R.),
Medical Physics (D.H., S.B.R.), Biomedical Engineering (S.B.R.), Medicine
(S.B.R.), and Emergency Medicine (S.B.R.), University of Wisconsin, 1111
Highland Ave, Madison, WI 53705
| | - Scott B. Reeder
- From the Departments of Radiology (J.S., D.H., P.J.P., S.B.R.),
Medical Physics (D.H., S.B.R.), Biomedical Engineering (S.B.R.), Medicine
(S.B.R.), and Emergency Medicine (S.B.R.), University of Wisconsin, 1111
Highland Ave, Madison, WI 53705
| |
Collapse
|
18
|
Dong Y, Koolstra K, Riedel M, van Osch MJP, Börnert P. Regularized joint water-fat separation with B 0 map estimation in image space for 2D-navigated interleaved EPI based diffusion MRI. Magn Reson Med 2021; 86:3034-3051. [PMID: 34255392 PMCID: PMC8596522 DOI: 10.1002/mrm.28919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 12/15/2022]
Abstract
Purpose To develop a new water–fat separation and B0 estimation algorithm to effectively suppress the multiple resonances of fat signal in EPI. This is especially relevant for DWI where fat is often a confounding factor. Methods Water–fat separation based on chemical‐shift encoding enables robust fat suppression in routine MRI. However, for EPI the different chemical‐shift displacements of the multiple fat resonances along the phase‐encoding direction can be problematic for conventional separation algorithms. This work proposes a suitable model approximation for EPI under B0 and fat off‐resonance effects, providing a feasible multi‐peak water–fat separation algorithm. Simulations were performed to validate the algorithm. In vivo validation was performed in 6 volunteers, acquiring spin‐echo EPI images in the leg (B0 homogeneous) and head‐neck (B0 inhomogeneous) regions, using a TE‐shifted interleaved EPI sequence with/without diffusion sensitization. The results are numerically and statistically compared with voxel‐independent water–fat separation and fat saturation techniques to demonstrate the performance of the proposed algorithm. Results The reference separation algorithm without the proposed spatial shift correction caused water–fat ambiguities in simulations and in vivo experiments. Some spectrally selective fat saturation approaches also failed to suppress fat in regions with severe B0 inhomogeneities. The proposed algorithm was able to achieve improved fat suppression for DWI data and ADC maps in the head–neck and leg regions. Conclusion The proposed algorithm shows improved suppression of the multi‐peak fat components in multi‐shot interleaved EPI applications compared to the conventional fat saturation approaches and separation algorithms.
Collapse
Affiliation(s)
- Yiming Dong
- Radiology, C.J. Gorter Center for High-Field MRI, Leiden University Medical Center, Leiden, The Netherlands
| | - Kirsten Koolstra
- Radiology, Division of Image Processing, Leiden University Medical Center, Leiden, The Netherlands
| | - Malte Riedel
- Institute for Signal Processing, University of Lübeck, Lübeck, Germany
| | - Matthias J P van Osch
- Radiology, C.J. Gorter Center for High-Field MRI, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Börnert
- Radiology, C.J. Gorter Center for High-Field MRI, Leiden University Medical Center, Leiden, The Netherlands.,Philips Research Hamburg, Hamburg, Germany
| |
Collapse
|
19
|
Kořínek R, Pfleger L, Eckstein K, Beiglböck H, Robinson SD, Krebs M, Trattnig S, Starčuk Z, Krššák M. Feasibility of Hepatic Fat Quantification Using Proton Density Fat Fraction by Multi-Echo Chemical-Shift-Encoded MRI at 7T. FRONTIERS IN PHYSICS 2021; 9:665562. [PMID: 34849373 PMCID: PMC7612048 DOI: 10.3389/fphy.2021.665562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fat fraction quantification and assessment of its distribution in the hepatic tissue become more important with the growing epidemic of obesity, and the increasing prevalence of diabetes mellitus type 2 and non-alcoholic fatty liver disease. At 3Tesla, the multi-echo, chemical-shift-encoded magnetic resonance imaging (CSE-MRI)-based acquisition allows the measurement of proton density fat-fraction (PDFF) even in clinical protocols. Further improvements in SNR can be achieved by the use of phased array coils and increased static magnetic field. The purpose of the study is to evaluate the feasibility of PDFF imaging using a multi-echo CSE-MRI technique at ultra-high magnetic field (7Tesla). Thirteen volunteers (M/F) with a broad range of age, body mass index, and hepatic PDFF were measured at 3 and 7T by multi-gradient-echo MRI and single-voxel spectroscopy MRS. All measurements were performed in breath-hold (exhalation); the MRI protocols were optimized for a short measurement time, thus minimizing motion-related problems. 7T data were processed off-line using Matlab® (MRI:multi-gradient-echo) and jMRUI (MRS), respectively. For quantitative validation of the PDFF results, a similar protocol was performed at 3T, including on-line data processing provided by the system manufacturer, and correlation analyses between 7 and 3T data were performed off-line. The multi-echo CSE-MRI measurements at 7T with a phased-array coil configuration and an optimal post-processing yielded liver volume coverage ranging from 30 to 90% for high- and low-BMI subjects, respectively. PDFFs ranged between 1 and 20%. We found significant correlations between 7T MRI and -MRS measurements (R2 ≅ 0.97; p < 0.005), and between MRI-PDFF at 7T and 3T fields (R2 ≅ 0.94; p < 0.005) in the evaluated volumes. Based on the measurements and analyses performed, the multi-echo CSE-MRI method using a 32-channel coil at 7T showed its aptitude for MRI-based quantitation of PDFF in the investigated volumes. The results are the first step toward qMRI of the whole liver at 7T with further improvements in hardware.
Collapse
Affiliation(s)
- Radim Kořínek
- Magnetic Resonance group, Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czechia
| | - Lorenz Pfleger
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Korbinian Eckstein
- Department of Biomedical Imaging and Image-Guided Therapy, High-Field Magnetic Resonance Centre, Medical University of Vienna, Vienna, Austria
| | - Hannes Beiglböck
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Simon Daniel Robinson
- Department of Biomedical Imaging and Image-Guided Therapy, High-Field Magnetic Resonance Centre, Medical University of Vienna, Vienna, Austria
| | - Michael Krebs
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Siegfried Trattnig
- Department of Biomedical Imaging and Image-Guided Therapy, High-Field Magnetic Resonance Centre, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Clinical Molecular Imaging, CD Laboratory for Clinical Molecular MR Imaging (MOLIMA), Medical University of Vienna, Vienna, Austria
| | - Zenon Starčuk
- Magnetic Resonance group, Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czechia
| | - Martin Krššák
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Department of Biomedical Imaging and Image-Guided Therapy, High-Field Magnetic Resonance Centre, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Clinical Molecular Imaging, CD Laboratory for Clinical Molecular MR Imaging (MOLIMA), Medical University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Bachrata B, Strasser B, Bogner W, Schmid AI, Korinek R, Krššák M, Trattnig S, Robinson SD. Simultaneous Multiple Resonance Frequency imaging (SMURF): Fat-water imaging using multi-band principles. Magn Reson Med 2021; 85:1379-1396. [PMID: 32981114 PMCID: PMC7756227 DOI: 10.1002/mrm.28519] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 07/31/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE To develop a fat-water imaging method that allows reliable separation of the two tissues, uses established robust reconstruction methods, and requires only one single-echo acquisition. THEORY AND METHODS The proposed method uses spectrally selective dual-band excitation in combination with CAIPIRINHA to generate separate images of fat and water simultaneously. Spatially selective excitation without cross-contamination is made possible by the use of spatial-spectral pulses. Fat and water images can either be visualized separately, or the fat images can be corrected for chemical shift displacement and, in gradient echo imaging, for chemical shift-related phase discrepancy, and recombined with water images, generating fat-water images free of chemical shift effects. Gradient echo and turbo spin echo sequences were developed based on this Simultaneous Multiple Resonance Frequency imaging (SMURF) approach and their performance was assessed at 3Tesla in imaging of the knee, breasts, and abdomen. RESULTS The proposed method generated well-separated fat and water images with minimal unaliasing artefacts or cross-excitation, evidenced by the near absence of water signal attributed to the fat image and vice versa. The separation achieved was similar to or better than that using separate acquisitions with water- and fat-saturation or Dixon methods. The recombined fat-water images provided similar image contrast to conventional images, but the chemical shift effects were eliminated. CONCLUSION Simultaneous Multiple Resonance Frequency imaging is a robust fat-water imaging technique that offers a solution to imaging of body regions with significant amounts of fat.
Collapse
Affiliation(s)
- Beata Bachrata
- High Field MR Centre, Department of Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria,Christian Doppler Laboratory for Clinical Molecular MR ImagingViennaAustria
| | - Bernhard Strasser
- High Field MR Centre, Department of Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria,Athinoula A. Martinos Center for Biomedical Imaging, Department of RadiologyMassachusetts General Hospital, Harvard Medical SchoolBostonMAUSA
| | - Wolfgang Bogner
- High Field MR Centre, Department of Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria
| | - Albrecht Ingo Schmid
- High Field MR Centre, Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
| | - Radim Korinek
- Institute of Scientific Instruments of the CASBrnoCzech Republic
| | - Martin Krššák
- High Field MR Centre, Department of Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria,Christian Doppler Laboratory for Clinical Molecular MR ImagingViennaAustria,Department of Internal Medicine III, Division of Endocrinology and MetabolismMedical University of ViennaViennaAustria
| | - Siegfried Trattnig
- High Field MR Centre, Department of Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria,Christian Doppler Laboratory for Clinical Molecular MR ImagingViennaAustria
| | - Simon Daniel Robinson
- High Field MR Centre, Department of Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria,Centre of Advanced ImagingUniversity of QueenslandBrisbaneQLDAustralia,Department of NeurologyMedical University of GrazGrazAustria
| |
Collapse
|
21
|
Boehm C, Diefenbach MN, Makowski MR, Karampinos DC. Improved body quantitative susceptibility mapping by using a variable-layer single-min-cut graph-cut for field-mapping. Magn Reson Med 2020; 85:1697-1712. [PMID: 33151604 DOI: 10.1002/mrm.28515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE To develop a robust algorithm for field-mapping in the presence of water-fat components, large B 0 field inhomogeneities and MR signal voids and to apply the developed method in body applications of quantitative susceptibility mapping (QSM). METHODS A framework solving the cost-function of the water-fat separation problem in a single-min-cut graph-cut based on the variable-layer graph construction concept was developed. The developed framework was applied to a numerical phantom enclosing an MR signal void, an air bubble experimental phantom, 14 large field of view (FOV) head/neck region in vivo scans and to 6 lumbar spine in vivo scans. Field-mapping and subsequent QSM results using the proposed algorithm were compared to results using an iterative graph-cut algorithm and a formerly proposed single-min-cut graph-cut. RESULTS The proposed method was shown to yield accurate field-map and susceptibility values in all simulation and in vivo datasets when compared to reference values (simulation) or literature values (in vivo). The proposed method showed improved field-map and susceptibility results compared to iterative graph-cut field-mapping especially in regions with low SNR, strong field-map variations and high R 2 ∗ values. CONCLUSIONS A single-min-cut graph-cut field-mapping method with a variable-layer construction was developed for field-mapping in body water-fat regions, improving quantitative susceptibility mapping particularly in areas close to MR signal voids.
Collapse
Affiliation(s)
- Christof Boehm
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Maximilian N Diefenbach
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany.,Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Marcus R Makowski
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| |
Collapse
|
22
|
Nahon KJ, Janssen LGM, Sardjoe Mishre ASD, Bilsen MP, van der Eijk JA, Botani K, Overduin LA, Ruiz JR, Burakiewicz J, Dzyubachyk O, Webb AG, Kan HE, Berbée JFP, van Klinken J, van Dijk KW, van Weeghel M, Vaz FM, Coskun T, Jazet IM, Kooijman S, Martinez‐Tellez B, Boon MR, Rensen PCN. The effect of mirabegron on energy expenditure and brown adipose tissue in healthy lean South Asian and Europid men. Diabetes Obes Metab 2020; 22:2032-2044. [PMID: 32558052 PMCID: PMC7771034 DOI: 10.1111/dom.14120] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/04/2020] [Accepted: 06/14/2020] [Indexed: 02/06/2023]
Abstract
AIM To compare the effects of cold exposure and the β3-adrenergic receptor agonist mirabegron on plasma lipids, energy expenditure and brown adipose tissue (BAT) activity in South Asians versus Europids. MATERIALS AND METHODS Ten lean Dutch South Asian (aged 18-30 years; body mass index [BMI] 18-25 kg/m2 ) and 10 age- and BMI-matched Europid men participated in a randomized, double-blinded, cross-over study consisting of three interventions: short-term (~ 2 hours) cold exposure, mirabegron (200 mg one dose p.o.) and placebo. Before and after each intervention, we performed lipidomic analysis in serum, assessed resting energy expenditure (REE) and skin temperature, and measured BAT fat fraction by magnetic resonance imaging. RESULTS In both ethnicities, cold exposure increased the levels of several serum lipid species, whereas mirabegron only increased free fatty acids. Cold exposure increased lipid oxidation in both ethnicities, while mirabegron increased lipid oxidation in Europids only. Cold exposure and mirabegron enhanced supraclavicular skin temperature in both ethnicities. Cold exposure decreased BAT fat fraction in both ethnicities. After the combination of data from both ethnicities, mirabegron decreased BAT fat fraction compared with placebo. CONCLUSIONS In South Asians and Europids, cold exposure and mirabegron induced beneficial metabolic effects. When combining both ethnicities, cold exposure and mirabegron increased REE and lipid oxidation, coinciding with a higher supraclavicular skin temperature and lower BAT fat fraction.
Collapse
Affiliation(s)
- Kimberly J. Nahon
- Department of Medicine, Division of EndocrinologyLeiden University Medical CenterLeidenthe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenthe Netherlands
| | - Laura G. M. Janssen
- Department of Medicine, Division of EndocrinologyLeiden University Medical CenterLeidenthe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenthe Netherlands
| | | | - Manu P. Bilsen
- Department of Medicine, Division of EndocrinologyLeiden University Medical CenterLeidenthe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenthe Netherlands
| | - Jari A. van der Eijk
- Department of RadiologyC.J. Gorter Center for High Field MRILeidenthe Netherlands
| | - Kani Botani
- Department of Medicine, Division of EndocrinologyLeiden University Medical CenterLeidenthe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenthe Netherlands
| | - Lisanne A. Overduin
- Department of Medicine, Division of EndocrinologyLeiden University Medical CenterLeidenthe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenthe Netherlands
| | - Jonatan R. Ruiz
- Department of Physical Education and Sport, Faculty of Sport SciencesPROFITH “PROmoting FITness and Health through physical activity” research group, Sport and Health University Research Institute (iMUDS), University of GranadaGranadaSpain
| | - Jedrzej Burakiewicz
- Department of RadiologyC.J. Gorter Center for High Field MRILeidenthe Netherlands
| | - Oleh Dzyubachyk
- Department of Radiology, Division of Image Processing (LKEB)Leiden University Medical CenterLeidenthe Netherlands
| | - Andrew G. Webb
- Department of RadiologyC.J. Gorter Center for High Field MRILeidenthe Netherlands
| | - Hermien E. Kan
- Department of RadiologyC.J. Gorter Center for High Field MRILeidenthe Netherlands
| | - Jimmy F. P. Berbée
- Department of Medicine, Division of EndocrinologyLeiden University Medical CenterLeidenthe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenthe Netherlands
| | - Jan‐Bert van Klinken
- Department of Human GeneticsLeiden University Medical CenterLeidenthe Netherlands
- Laboratory Genetic Metabolic DiseasesAmsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular SciencesAmsterdamthe Netherlands
- Core Facility MetabolomicsAmsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
| | - Ko Willems van Dijk
- Department of Medicine, Division of EndocrinologyLeiden University Medical CenterLeidenthe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenthe Netherlands
- Department of Human GeneticsLeiden University Medical CenterLeidenthe Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic DiseasesAmsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular SciencesAmsterdamthe Netherlands
- Core Facility MetabolomicsAmsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
| | - Frédéric M. Vaz
- Laboratory Genetic Metabolic DiseasesAmsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular SciencesAmsterdamthe Netherlands
- Core Facility MetabolomicsAmsterdam UMC, University of AmsterdamAmsterdamthe Netherlands
| | - Tamer Coskun
- Department of Diabetes/EndocrineLilly Research Laboratories, Lilly Corporate CenterIndianapolisIndianaUSA
| | - Ingrid M. Jazet
- Department of Medicine, Division of EndocrinologyLeiden University Medical CenterLeidenthe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenthe Netherlands
| | - Sander Kooijman
- Department of Medicine, Division of EndocrinologyLeiden University Medical CenterLeidenthe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenthe Netherlands
| | - Borja Martinez‐Tellez
- Department of Medicine, Division of EndocrinologyLeiden University Medical CenterLeidenthe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenthe Netherlands
- Department of Physical Education and Sport, Faculty of Sport SciencesPROFITH “PROmoting FITness and Health through physical activity” research group, Sport and Health University Research Institute (iMUDS), University of GranadaGranadaSpain
| | - Mariëtte R. Boon
- Department of Medicine, Division of EndocrinologyLeiden University Medical CenterLeidenthe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenthe Netherlands
| | - Patrick C. N. Rensen
- Department of Medicine, Division of EndocrinologyLeiden University Medical CenterLeidenthe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenthe Netherlands
| |
Collapse
|
23
|
Roberts NT, Hinshaw LA, Colgan TJ, Ii T, Hernando D, Reeder SB. B 0 and B 1 inhomogeneities in the liver at 1.5 T and 3.0 T. Magn Reson Med 2020; 85:2212-2220. [PMID: 33107109 DOI: 10.1002/mrm.28549] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/02/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE The purpose of this work is to characterize the magnitude and variability of B0 and B1 inhomogeneities in the liver in large cohorts of patients at both 1.5 T and 3.0 T. METHODS Volumetric B0 and B1 maps were acquired over the liver of patients presenting for routine abdominal MRI. Regions of interest were drawn in the nine Couinaud segments of the liver, and the average value was recorded. Magnitude and variation of measured averages in each segment were reported across all patients. RESULTS A total of 316 B0 maps and 314 B1 maps, acquired at 1.5 T and 3.0 T on a variety of GE Healthcare MRI systems in 630 unique exams, were identified, analyzed, and, in the interest of reproducible research, de-identified and made public. Measured B0 inhomogeneities ranged (5th-95th percentiles) from -31.7 Hz to 164.0 Hz for 3.0 T (-14.5 Hz to 81.3 Hz at 1.5 T), while measured B1 inhomogeneities (ratio of actual over prescribed flip angle) ranged from 0.59 to 1.13 for 3.0 T (0.83 to 1.11 at 1.5 T). CONCLUSION This study provides robust characterization of B0 and B1 inhomogeneities in the liver to guide the development of imaging applications and protocols. Field strength, bore diameter, and sex were determined to be statistically significant effects for both B0 and B1 uniformity. Typical clinical liver imaging at 3.0 T should expect B0 inhomogeneities ranging from approximately -100 Hz to 250 Hz (-50 Hz to 150 Hz at 1.5 T) and B1 inhomogeneities ranging from approximately 0.4 to 1.3 (0.7 to 1.2 at 1.5 T).
Collapse
Affiliation(s)
- Nathan T Roberts
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Louis A Hinshaw
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy J Colgan
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Takanori Ii
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Radiology, University of Yamanashi, Yamanashi, Japan
| | - Diego Hernando
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Scott B Reeder
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Emergency Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
24
|
Dalto VF, Assad RL, Lorenzato MM, Crema MD, Louzada-Junior P, Nogueira-Barbosa MH. Comparison between STIR and T2-weighted SPAIR sequences in the evaluation of inflammatory sacroiliitis: diagnostic performance and signal-to-noise ratio. Radiol Bras 2020; 53:223-228. [PMID: 32904772 PMCID: PMC7458563 DOI: 10.1590/0100-3984.2019.0077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Objective To compare two different fat-saturated magnetic resonance imaging (MRI) techniques-STIR and T2 SPAIR-in terms of image quality, as well as in terms of their diagnostic performance in detecting sacroiliac joints (SIJ) active inflammation. Materials and Methods We included 69 consecutive patients with suspected spondyloarthritis undergoing MRI between 2012 and 2014. The signal-to-noise ratio (SNR) was calculated with the method recommended by the American College of Radiology. Two readers evaluated SIJ MRI following ASAS criteria to assess diagnostic performance regarding the detection of active SIJ inflammation. T1 SPIR Gd+ sequence was used as the reference standard. Results The mean SNR was 72.8 for the T1 SPIR Gd+ sequence, compared with 14.1 and 37.6 for the STIR and T2 SPAIR sequences, respectively. The sensitivity and specificity of STIR and SPAIR T2 sequences did not show any statistically significant differences, for the diagnosis of sacroiliitis with active inflammation. Conclusion Our results corroborate those in the recent literature suggesting that STIR sequences are not superior to T2 SPAIR sequences for SIJ evaluation in patients with suspected spondyloarthritis. On 1.5-T MRI, T2-weighted SPAIR sequences provide better SNRs than do STIR sequences, which reinforces that T2 SPAIR sequences may be an advantageous option for the evaluation of sacroiliitis.
Collapse
Affiliation(s)
- Vitor Faeda Dalto
- Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
| | - Rodrigo Luppino Assad
- Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
| | | | - Michel Daoud Crema
- Institut National du Sport, de l'Expertise et de la Performance (INSEP), Paris, France
| | - Paulo Louzada-Junior
- Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
| | | |
Collapse
|
25
|
van Eyk HJ, Paiman EHM, Bizino MB, IJzermans SL, Kleiburg F, Boers TGW, Rappel EJ, Burakiewicz J, Kan HE, Smit JWA, Lamb HJ, Jazet IM, Rensen PCN. Liraglutide decreases energy expenditure and does not affect the fat fraction of supraclavicular brown adipose tissue in patients with type 2 diabetes. Nutr Metab Cardiovasc Dis 2020; 30:616-624. [PMID: 32127340 DOI: 10.1016/j.numecd.2019.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/22/2019] [Accepted: 12/04/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND AIMS Several studies have shown that glucagon-like peptide-1 (GLP-1) analogues can affect resting energy expenditure, and preclinical studies suggest that they may activate brown adipose tissue (BAT). The aim of the present study was to investigate the effect of treatment with liraglutide on energy metabolism and BAT fat fraction in patients with type 2 diabetes. METHODS AND RESULTS In a 26-week double-blind, placebo-controlled trial, 50 patients with type 2 diabetes were randomized to treatment with liraglutide (1.8 mg/day) or placebo added to standard care. At baseline and after treatment for 4, 12 and 26 weeks, we assessed resting energy expenditure (REE) by indirect calorimetry. Furthermore, at baseline and after 26 weeks, we determined the fat fraction in the supraclavicular BAT depot using chemical-shift water-fat MRI at 3T. Liraglutide reduced REE after 4 weeks, which persisted after 12 weeks and tended to be present after 26 weeks (week 26 vs baseline: liraglutide -52 ± 128 kcal/day; P = 0.071, placebo +44 ± 144 kcal/day; P = 0.153, between group P = 0.057). Treatment with liraglutide for 26 weeks did not decrease the fat fraction in supraclavicular BAT (-0.4 ± 1.7%; P = 0.447) compared to placebo (-0.4 ± 1.4%; P = 0.420; between group P = 0.911). CONCLUSION Treatment with liraglutide decreases REE in the first 12 weeks and tends to decrease this after 26 weeks without affecting the fat fraction in the supraclavicular BAT depot. These findings suggest reduction in energy intake rather than an increase in REE to contribute to the liraglutide-induced weight loss. TRIAL REGISTRY NUMBER NCT01761318.
Collapse
Affiliation(s)
- Huub J van Eyk
- Dept. Medicine, Div. Endocrinology, Leiden University Medical Center (LUMC), Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, LUMC, Leiden, the Netherlands.
| | | | - Maurice B Bizino
- Dept. Medicine, Div. Endocrinology, Leiden University Medical Center (LUMC), Leiden, the Netherlands; Dept. Radiology, LUMC, Leiden, the Netherlands
| | - Suzanne L IJzermans
- Dept. Medicine, Div. Endocrinology, Leiden University Medical Center (LUMC), Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, LUMC, Leiden, the Netherlands
| | - Fleur Kleiburg
- Dept. Medicine, Div. Endocrinology, Leiden University Medical Center (LUMC), Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, LUMC, Leiden, the Netherlands
| | | | | | | | | | - Johannes W A Smit
- Dept. Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Ingrid M Jazet
- Dept. Medicine, Div. Endocrinology, Leiden University Medical Center (LUMC), Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, LUMC, Leiden, the Netherlands
| | - Patrick C N Rensen
- Dept. Medicine, Div. Endocrinology, Leiden University Medical Center (LUMC), Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, LUMC, Leiden, the Netherlands
| |
Collapse
|
26
|
Kořínek R, Gajdošík M, Trattnig S, Starčuk Z, Krššák M. Low-level fat fraction quantification at 3 T: comparative study of different tools for water-fat reconstruction and MR spectroscopy. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2020; 33:455-468. [PMID: 31980962 DOI: 10.1007/s10334-020-00825-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/12/2019] [Accepted: 01/03/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Chemical Shift Encoded Magnetic Resonance Imaging (CSE-MRI)-based quantification of low-level (< 5% of proton density fat fraction-PDFF) fat infiltration requires highly accurate data reconstruction for the assessment of hepatic or pancreatic fat accumulation in diagnostics and biomedical research. MATERIALS AND METHODS We compare three software tools available for water/fat image reconstruction and PDFF quantification with MRS as the reference method. Based on the algorithm exploited in the tested software, the accuracy of fat fraction quantification varies. We evaluate them in phantom and in vivo MRS and MRI measurements. RESULTS The signal model of Intralipid 20% emulsion used for phantoms was established for 3 T and 9.4 T fields. In all cases, we noticed a high coefficient of determination (R-squared) between MRS and MRI-PDFF measurements: in phantoms <0.9924-0.9990>; and in vivo <0.8069-0.9552>. Bland-Altman analysis was applied to phantom and in vivo measurements. DISCUSSION Multi-echo MRI in combination with an advanced algorithm including multi-peak spectrum modeling appears as a valuable and accurate method for low-level PDFF quantification over large FOV in high resolution, and is much faster than MRS methods. The graph-cut algorithm (GC) showed the fewest water/fat swaps in the PDFF maps, and hence stands out as the most robust method of those tested.
Collapse
Affiliation(s)
- Radim Kořínek
- Institute of Scientific Instruments of the CAS, Kralovopolska 147, 612 64, Brno, Czech Republic.
| | - Martin Gajdošík
- Department of Biomedical Imaging and Image-Guided Therapy, High-Field MR Centre, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.,Department of Biomedical Engineering, Columbia University Fu Foundation School of Engineering and Applied Science, 1210 Amsterdam Ave, New York, NY, 10027, USA
| | - Siegfried Trattnig
- Department of Biomedical Imaging and Image-Guided Therapy, High-Field MR Centre, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.,Christian Doppler Laboratory for Clinical Molecular Imaging, MOLIMA, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Zenon Starčuk
- Institute of Scientific Instruments of the CAS, Kralovopolska 147, 612 64, Brno, Czech Republic
| | - Martin Krššák
- Department of Biomedical Imaging and Image-Guided Therapy, High-Field MR Centre, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.,Christian Doppler Laboratory for Clinical Molecular Imaging, MOLIMA, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.,Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| |
Collapse
|
27
|
Lin CY, Fessler JA. Efficient Regularized Field Map Estimation in 3D MRI. IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING 2020; 6:1451-1458. [PMID: 33693053 PMCID: PMC7943027 DOI: 10.1109/tci.2020.3031082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Magnetic field inhomogeneity estimation is important in some types of magnetic resonance imaging (MRI), including field-corrected reconstruction for fast MRI with long readout times, and chemical shift based water-fat imaging. Regularized field map estimation methods that account for phase wrapping and noise involve nonconvex cost functions that require iterative algorithms. Most existing minimization techniques were computationally or memory intensive for 3D datasets, and are designed for single-coil MRI. This paper considers 3D MRI with optional consideration of coil sensitivity, and addresses the multi-echo field map estimation and water-fat imaging problem. Our efficient algorithm uses a preconditioned nonlinear conjugate gradient method based on an incomplete Cholesky factorization of the Hessian of the cost function, along with a monotonic line search. Numerical experiments show the computational advantage of the proposed algorithm over state-of-the-art methods with similar memory requirements.
Collapse
Affiliation(s)
- Claire Yilin Lin
- Department of Mathematics, University of Michigan, Ann Arbor, MI, 48109 USA
| | - Jeffrey A Fessler
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
28
|
Guo Y, Liu Z, Wen Y, Spincemaille P, Zhang H, Jafari R, Zhang S, Eskreis-Winkler S, Gillen KM, Yi P, Feng Q, Feng Y, Wang Y. Quantitative susceptibility mapping of the spine using in-phase echoes to initialize inhomogeneous field and R2* for the nonconvex optimization problem of fat-water separation. NMR IN BIOMEDICINE 2019; 32:e4156. [PMID: 31424131 DOI: 10.1002/nbm.4156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
Quantitative susceptibility mapping (QSM) of human spinal vertebrae from a multi-echo gradient-echo (GRE) sequence is challenging, because comparable amounts of fat and water in the vertebrae make it difficult to solve the nonconvex optimization problem of fat-water separation (R2*-IDEAL) for estimating the magnetic field induced by tissue susceptibility. We present an in-phase (IP) echo initialization of R2*-IDEAL for QSM in the spinal vertebrae. Ten healthy human subjects were recruited for spine MRI. A 3D multi-echo GRE sequence was implemented to acquire out-phase and IP echoes. For the IP method, the R2* and field maps estimated by separately fitting the magnitude and phase of IP echoes were used to initialize gradient search R2*-IDEAL to obtain final R2*, field, water, and fat maps, and the final field map was used to generate QSM. The IP method was compared with the existing Zero method (initializing the field to zero), VARPRO-GC (variable projection using graphcuts but still initializing the field to zero), and SPURS (simultaneous phase unwrapping and removal of chemical shift using graphcuts for initialization) on both simulation and in vivo data. The single peak fat model was also compared with the multi-peak fat model. There was no substantial difference on QSM between the single peak and multi-peak fat models, but there were marked differences among different initialization methods. The simulations demonstrated that IP provided the lowest error in the field map. Compared to Zero, VARPRO-GC and SPURS, the proposed IP method provided substantially improved spine QSM in all 10 subjects.
Collapse
Affiliation(s)
- Yihao Guo
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Department of Radiology, Weill Medical College of Cornell University, New York, New York
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Zhe Liu
- Department of Radiology, Weill Medical College of Cornell University, New York, New York
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Yan Wen
- Department of Radiology, Weill Medical College of Cornell University, New York, New York
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Pascal Spincemaille
- Department of Radiology, Weill Medical College of Cornell University, New York, New York
| | - Honglei Zhang
- Department of Radiology, Weill Medical College of Cornell University, New York, New York
| | - Ramin Jafari
- Department of Radiology, Weill Medical College of Cornell University, New York, New York
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Shun Zhang
- Department of Radiology, Weill Medical College of Cornell University, New York, New York
| | - Sarah Eskreis-Winkler
- Department of Radiology, Weill Medical College of Cornell University, New York, New York
| | - Kelly M Gillen
- Department of Radiology, Weill Medical College of Cornell University, New York, New York
| | - Peiwei Yi
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Qianjin Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Yanqiu Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Yi Wang
- Department of Radiology, Weill Medical College of Cornell University, New York, New York
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| |
Collapse
|
29
|
Liu S, Wu P, Liu H, Hu Z, Guo H. Referenceless multi‐channel signal combination: A demonstration in chemical‐shift‐encoded water‐fat imaging. Magn Reson Med 2019; 83:1810-1824. [DOI: 10.1002/mrm.28028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Simin Liu
- Center for Biomedical Imaging Research Department of Biomedical Engineering School of Medicine Tsinghua University Beijing China
| | - Peng Wu
- Center for Biomedical Imaging Research Department of Biomedical Engineering School of Medicine Tsinghua University Beijing China
- Philips Healthcare Suzhou Co Ltd Suzhou
| | - Haining Liu
- Department of Radiology University of Washington Seattle Washington
| | - Zhangxuan Hu
- Center for Biomedical Imaging Research Department of Biomedical Engineering School of Medicine Tsinghua University Beijing China
| | - Hua Guo
- Center for Biomedical Imaging Research Department of Biomedical Engineering School of Medicine Tsinghua University Beijing China
| |
Collapse
|
30
|
Tan Z, Voit D, Kollmeier JM, Uecker M, Frahm J. Dynamic water/fat separation and B 0 inhomogeneity mapping-joint estimation using undersampled triple-echo multi-spoke radial FLASH. Magn Reson Med 2019; 82:1000-1011. [PMID: 31033051 DOI: 10.1002/mrm.27795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/26/2019] [Accepted: 04/10/2019] [Indexed: 11/05/2022]
Abstract
PURPOSE To achieve dynamic water/fat separation and B 0 field inhomogeneity mapping via model-based reconstructions of undersampled triple-echo multi-spoke radial FLASH acquisitions. METHODS This work introduces an undersampled triple-echo multi-spoke radial FLASH sequence, which uses (i) complementary radial spokes per echo train for faster spatial encoding, (ii) asymmetric echoes for flexible and nonuniform echo spacing, and (iii) a golden angle increment across frames for optimal k-space coverage. Joint estimation of water, fat, B 0 inhomogeneity, and coil sensitivity maps from undersampled triple-echo data poses a nonlinear and non-convex inverse problem which is solved by a model-based reconstruction with suitable regularization. The developed methods are validated using phantom experiments with different degrees of undersampling. Real-time MRI studies of the knee, liver, and heart are conducted without prospective gating or retrospective data sorting at temporal resolutions of 70, 158, and 40 ms, respectively. RESULTS Up to 18-fold undersampling is achieved in this work. Even in the presence of rapid physiological motion, large B 0 field inhomogeneities, and phase wrapping, the model-based reconstruction yields reliably separated water/fat maps in conjunction with spatially smooth inhomogeneity maps. CONCLUSIONS The combination of a triple-echo acquisition and joint reconstruction technique provides a practical solution to time-resolved and motion robust water/fat separation at high spatial and temporal resolution.
Collapse
Affiliation(s)
- Zhengguo Tan
- Biomedizinische NMR, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany.,Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany
| | - Dirk Voit
- Biomedizinische NMR, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Jost M Kollmeier
- Biomedizinische NMR, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
| | - Martin Uecker
- Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Jens Frahm
- Biomedizinische NMR, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| |
Collapse
|
31
|
Triay Bagur A, Hutton C, Irving B, Gyngell ML, Robson MD, Brady M. Magnitude-intrinsic water-fat ambiguity can be resolved with multipeak fat modeling and a multipoint search method. Magn Reson Med 2019; 82:460-475. [PMID: 30874334 PMCID: PMC6593794 DOI: 10.1002/mrm.27728] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/16/2019] [Accepted: 02/15/2019] [Indexed: 12/21/2022]
Abstract
Purpose To develop a postprocessing algorithm for multiecho chemical‐shift encoded water–fat separation that estimates proton density fat fraction (PDFF) maps over the full dynamic range (0‐100%) using multipeak fat modeling and multipoint search optimization. To assess its accuracy, reproducibility, and agreement with state‐of‐the‐art complex‐based methods, and to evaluate its robustness to artefacts in abdominal PDFF maps. Methods We introduce MAGO (MAGnitude‐Only), a magnitude‐based reconstruction that embodies multipeak liver fat spectral modeling and multipoint optimization, and which is compatible with asymmetric echo acquisitions. MAGO is assessed first for accuracy and reproducibility on publicly available phantom data. Then, MAGO is applied to N = 178 UK Biobank cases, in which its liver PDFF measures are compared using Bland‐Altman analysis with those from a version of the hybrid iterative decomposition of water and fat with echo asymmetry and least squares estimation (IDEAL) algorithm, LiverMultiScan IDEAL (LMS IDEAL, Perspectum Diagnostics Ltd, Oxford, UK). Finally, MAGO is tested on a succession of high field challenging cases for which LMS IDEAL generated artefacts in the PDFF maps. Results Phantom data showed accurate, reproducible MAGO PDFF values across manufacturers, field strengths, and acquisition protocols. Moreover, we report excellent agreement between MAGO and LMS IDEAL for 6‐echo, 1.5 tesla human acquisitions (bias = −0.02% PDFF, 95% confidence interval = ±0.13% PDFF). When tested on 12‐echo, 3 tesla cases from different manufacturers, MAGO was shown to be more robust to artefacts compared to LMS IDEAL. Conclusion MAGO resolves the water–fat ambiguity over the entire fat fraction dynamic range without compromising accuracy, therefore enabling robust PDFF estimation where phase data is inaccessible or unreliable and complex‐based and hybrid methods fail.
Collapse
Affiliation(s)
| | - Chloe Hutton
- Perspectum Diagnostics Ltd, Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
32
|
Peng H, Zou C, Cheng C, Tie C, Qiao Y, Wan Q, Lv J, He Q, Liang D, Liu X, Liu W, Zheng H. Fat‐water separation based on Transition REgion Extraction (TREE). Magn Reson Med 2019; 82:436-448. [DOI: 10.1002/mrm.27710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 01/29/2019] [Accepted: 02/05/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Hao Peng
- Huazhong University of Science and Technology Wuhan China
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
| | - Chao Zou
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
- University of Chinese Academy of Sciences Beijing China
| | - Chuanli Cheng
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
- University of Chinese Academy of Sciences Beijing China
| | - Changjun Tie
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
| | - Yangzi Qiao
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
| | - Qian Wan
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
- University of Chinese Academy of Sciences Beijing China
| | - Jianxun Lv
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
- University of Chinese Academy of Sciences Beijing China
| | - Qiang He
- Shanghai United Imaging Healthcare Co., Ltd Shanghai China
| | - Dong Liang
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
- University of Chinese Academy of Sciences Beijing China
| | - Xin Liu
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
- University of Chinese Academy of Sciences Beijing China
| | - Wenzhong Liu
- Huazhong University of Science and Technology Wuhan China
| | - Hairong Zheng
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
33
|
Hu Z, Wang Y, Dong Z, Guo H. Water/fat separation for distortion-free EPI with point spread function encoding. Magn Reson Med 2019; 82:251-262. [PMID: 30847991 DOI: 10.1002/mrm.27717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/30/2019] [Accepted: 02/06/2019] [Indexed: 12/31/2022]
Abstract
PURPOSE Effective removal of chemical-shift artifacts in echo-planar imaging (EPI) is a challenging problem especially with severe field inhomogeneity. This study aims to develop a reliable water/fat separation technique for point spread function (PSF) encoded EPI (PSF-EPI) by using its intrinsic multiple echo-shifted images. THEORY AND METHODS EPI with PSF encoding can achieve distortion-free imaging and can be highly accelerated using the tilted-CAIPI technique. In this study, the chemical-shift encoding existing in the intermediate images with different time shifts of PSF-EPI is used for water/fat separation, which is conducted with latest water/fat separation algorithms. The method was tested in T1-weighted, T2-weighted, and diffusion weighted imaging in healthy volunteers. RESULTS The ability of the proposed method to separate water/fat using intrinsic PSF-EPI signals without extra scans was demonstrated through in vivo T1-weighted, T2-weighted, and diffusion weighted imaging experiments. By exploring different imaging contrasts and regions, the results show that this PSF-EPI based method can separate water/fat and remove fat residues robustly. CONCLUSION By using the intrinsic signals of PSF-EPI for water/fat separation, fat signals can be effectively suppressed in EPI even with severe field inhomogeneity. This water/fat separation method for EPI can be extended to multiple image contrasts. The distortion-free PSF-EPI technique, thus, has the potential to provide anatomical and functional images with high-fidelity and practical acquisition efficiency.
Collapse
Affiliation(s)
- Zhangxuan Hu
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Yishi Wang
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Zijing Dong
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Hua Guo
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
34
|
Samsonov A, Liu F, Velikina JV. Resolving estimation uncertainties of chemical shift encoded fat-water imaging using magnetization transfer effect. Magn Reson Med 2019; 82:202-212. [PMID: 30847974 DOI: 10.1002/mrm.27709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/30/2019] [Accepted: 02/04/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE B0 field inhomogeneity may cause significant errors in chemical shift encoding-based fat-water (F/W) separation. We describe a new approach to improve its robustness using novel B0 field map pre-estimation. METHODS Our method exploits insensitivity of fat to magnetization transfer effect, which allows generating fat-insensitive B0 field priors with full or partial spatial support using a low-resolution magnetization transfer-weighted scan. The full prior can be employed by most F/W separation methods for initialization or data demodulation. We also propose a modified region-growing algorithm in which the partial prior is utilized for its initial seeding. RESULTS The magnetization transfer-based B0 priors significantly reduced F/W errors of three representative F/W separation methods in all cases. In cases with moderate B0 inhomogeneity, the full prior allowed error-free separation even with basic, voxel-independent processing. When coupled with methods exploiting B0 field smoothness, it significantly improved separation accuracy even in the presence of strong inhomogeneities. Seeding the region-growing with the partial prior significantly improved performance of F/W separation, including cases with spatially disconnected tissues. CONCLUSION Magnetization transfer-based B0 field pre-estimation provides valuable prior information for F/W separation, which may significantly improve its robustness at the expense of nominal (< 5%-10%) scan time increase.
Collapse
Affiliation(s)
- Alexey Samsonov
- Department of Radiology, University of Wisconsin, Madison, Wisconsin
| | - Fang Liu
- Department of Radiology, University of Wisconsin, Madison, Wisconsin
| | - Julia V Velikina
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
35
|
Cho J, Park H. Robust water–fat separation for multi‐echo gradient‐recalled echo sequence using convolutional neural network. Magn Reson Med 2019; 82:476-484. [DOI: 10.1002/mrm.27697] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 01/10/2019] [Accepted: 01/25/2019] [Indexed: 12/24/2022]
Affiliation(s)
- JaeJin Cho
- Department of Electrical Engineering Korea Advanced Institute of Science and Technology (KAIST) Daejeon South Korea
| | - HyunWook Park
- Department of Electrical Engineering Korea Advanced Institute of Science and Technology (KAIST) Daejeon South Korea
| |
Collapse
|
36
|
Zhu L, Xu Z, Li G, Wang Y, Li X, Shi X, Lin H, Chang S. Marrow adiposity as an indicator for insulin resistance in postmenopausal women with newly diagnosed type 2 diabetes - an investigation by chemical shift-encoded water-fat MRI. Eur J Radiol 2019; 113:158-164. [PMID: 30927942 DOI: 10.1016/j.ejrad.2019.02.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/14/2019] [Accepted: 02/15/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Marrow fat accumulates in diabetic conditions but remains elusive. The published works on the relationships between marrow fat phenotypes and glucose homeostasis are controversial. PURPOSE To detect the association of insulin resistance with marrow adiposity in postmenopausal women with newly diagnosed type 2 diabetes (T2D) using chemical shift-encoded water-fat MRI. METHODS We measured vertebral proton density fat fraction (PDFF) by 3T-MRI in 75 newly diagnosed T2D and 20 nondiabetic postmenopausal women. Bone mineral density (BMD), whole body fat mass and lean mass were determined by dual-energy X-ray absorptiometry. Insulin sensitivity was estimated using the homeostasis model assessment of insulin resistance (HOMA-IR). RESULTS Lumbar spine PDFF was higher in women with T2D (65.9 ± 6.8%) than those without diabetes (59.5 ± 6.1%, P = 0.009). There was a consistent inverse association between the vertebral PDFF and BMD. PDFF had a positive association with glycated hemoglobin and HOMA-IR but not with fasting plasma glucose and insulin. PDFF was significantly increased, and BMD was decreased in a linear trend from the lowest (<1.90) to highest (≥2.77) HOMA-IR quartile. Multivariate linear regression analyses revealed a positive association between log-transformed HOMA-IR and PDFF after adjustment for multiple covariates (ß = 0.382, P < 0.001). The positive association of HOMA-IR with PDFF remained robust when total body lean mass and fat mass, BMD was entered into the multivariate regression model, respectively (ß = 0.293 and ß = 0.251, respectively; all P <0.05). CONCLUSIONS Elevated HOMA-IR was linked to higher marrow fat fraction in postmenopausal women with newly diagnosed T2D independently of body compositions.
Collapse
Affiliation(s)
- Lequn Zhu
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Zheng Xu
- Xinzhuang Community Health Center, Shanghai 201199, China
| | - Guanwu Li
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| | - Ying Wang
- Department of Clinical Laboratory, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xuefeng Li
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xiao Shi
- Department of Geriatrics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Haiyang Lin
- Department of Endocrinology, The Affiliated Wenling Hospital, Wenzhou medical University, Zhejiang 317500, China
| | - Shixin Chang
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| |
Collapse
|
37
|
Abreu-Vieira G, Sardjoe Mishre ASD, Burakiewicz J, Janssen LGM, Nahon KJ, van der Eijk JA, Riem TT, Boon MR, Dzyubachyk O, Webb AG, Rensen PCN, Kan HE. Human Brown Adipose Tissue Estimated With Magnetic Resonance Imaging Undergoes Changes in Composition After Cold Exposure: An in vivo MRI Study in Healthy Volunteers. Front Endocrinol (Lausanne) 2019; 10:898. [PMID: 31998233 PMCID: PMC6964318 DOI: 10.3389/fendo.2019.00898] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/09/2019] [Indexed: 01/02/2023] Open
Abstract
Aim: Magnetic resonance imaging (MRI) is increasingly being used to evaluate brown adipose tissue (BAT) function. Reports on the extent and direction of cold-induced changes in MRI fat fraction and estimated BAT volume vary between studies. Here, we aimed to explore the effect of different fat fraction threshold ranges on outcomes measured by MRI. Moreover, we aimed to investigate the effect of cold exposure on estimated BAT mass and energy content. Methods: The effects of cold exposure at different fat fraction thresholding levels were analyzed in the supraclavicular adipose depot of nine adult males. MRI data were reconstructed, co-registered and analyzed in two ways. First, we analyzed cold-induced changes in fat fraction, T2* relaxation time, volume, mass, and energy of the entire supraclavicular adipose depot at different fat fraction threshold levels. As a control, we assessed fat fraction differences of deltoid subcutaneous adipose tissue (SAT). Second, a local analysis was performed to study changes in fat fraction and T2* on a voxel-level. Thermoneutral and post-cooling data were compared using paired-sample t-tests (p < 0.05). Results: Global analysis unveiled that the largest cold-induced change in fat fraction occurred within a thermoneutral fat fraction range of 30-100% (-3.5 ± 1.9%), without changing the estimated BAT volume. However, the largest cold-induced changes in estimated BAT volume were observed when applying a thermoneutral fat fraction range of 70-100% (-3.8 ± 2.6%). No changes were observed for the deltoid SAT fat fractions. Tissue energy content was reduced from 126 ± 33 to 121 ± 30 kcal, when using a 30-100% fat fraction range, and also depended on different fat fraction thresholds. Voxel-wise analysis showed that while cold exposure changed the fat fraction across nearly all thermoneutral fat fractions, decreases were most pronounced at high thermoneutral fat fractions. Conclusion: Cold-induced changes in fat fraction occurred over the entire range of thermoneutral fat fractions, and were especially found in lipid-rich regions of the supraclavicular adipose depot. Due to the variability in response between lipid-rich and lipid-poor regions, care should be taken when applying fat fraction thresholds for MRI BAT analysis.
Collapse
Affiliation(s)
- Gustavo Abreu-Vieira
- Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Aashley S. D. Sardjoe Mishre
- Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Leiden University Medical Center, Leiden, Netherlands
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, Netherlands
| | - Jedrzej Burakiewicz
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, Netherlands
| | - Laura G. M. Janssen
- Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Kimberly J. Nahon
- Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Jari A. van der Eijk
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, Netherlands
| | - Titia T. Riem
- Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Mariëtte R. Boon
- Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Oleh Dzyubachyk
- Division of Image Processing (LKEB), Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Andrew G. Webb
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, Netherlands
| | - Patrick C. N. Rensen
- Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Hermien E. Kan
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, Netherlands
- *Correspondence: Hermien E. Kan
| |
Collapse
|
38
|
Hutton C, Gyngell ML, Milanesi M, Bagur A, Brady M. Validation of a standardized MRI method for liver fat and T2* quantification. PLoS One 2018; 13:e0204175. [PMID: 30235288 PMCID: PMC6147490 DOI: 10.1371/journal.pone.0204175] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/03/2018] [Indexed: 01/01/2023] Open
Abstract
Purpose Several studies have demonstrated the accuracy, precision, and reproducibility of proton density fat fraction (PDFF) quantification using vendor-specific image acquisition protocols and PDFF estimation methods. The purpose of this work is to validate a confounder-corrected, cross-vendor, cross field-strength, in-house variant LMS IDEAL of the IDEAL method licensed from the University of Wisconsin, which has been developed for routine clinical use. Methods LMS IDEAL is implemented using a combination of patented and/or published acquisition and some novel model fitting methods required to correct confounds which result from the imaging and estimation processes, including: water-fat ambiguity; T2* relaxation; multi-peak fat modelling; main field inhomogeneity; T1 and noise bias; bipolar readout gradients; and eddy currents. LMS IDEAL has been designed to use image acquisition protocols that can be installed on most MRI scanners and cloud-based image processing to provide fast, standardized clinical results. Publicly available phantom data were used to validate LMS IDEAL PDFF calculations against results from originally published IDEAL methodology. LMS PDFF and T2* measurements were also compared with an independent technique in human volunteer data (n = 179) acquired as part of the UK Biobank study. Results We demonstrate excellent agreement of LMS IDEAL across vendors, field strengths, and over a wide range of PDFF and T2* values in the phantom study. The performance of LMS IDEAL was then assessed in vivo against widely accepted PDFF and T2* estimation methods (LMS Dixon and LMS T2*, respectively), demonstrating the robustness of LMS IDEAL to potential sources of error. Conclusion The development and clinical validation of the LMS IDEAL algorithm as a chemical shift-encoded MRI method for PDFF and T2* estimation contributes towards robust, unbiased applications for quantification of hepatic steatosis and iron overload, which are key features of chronic liver disease.
Collapse
Affiliation(s)
- Chloe Hutton
- Perspectum Diagnostics, Oxford, United Kingdom
- * E-mail:
| | | | | | | | | |
Collapse
|
39
|
Bray TJP, Chouhan MD, Punwani S, Bainbridge A, Hall-Craggs MA. Fat fraction mapping using magnetic resonance imaging: insight into pathophysiology. Br J Radiol 2018; 91:20170344. [PMID: 28936896 PMCID: PMC6223159 DOI: 10.1259/bjr.20170344] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/18/2017] [Accepted: 09/06/2017] [Indexed: 02/06/2023] Open
Abstract
Adipose cells have traditionally been viewed as a simple, passive energy storage depot for triglycerides. However, in recent years it has become clear that adipose cells are highly physiologically active and have a multitude of endocrine, metabolic, haematological and immune functions. Changes in the number or size of adipose cells may be directly implicated in disease (e.g. in the metabolic syndrome), but may also be linked to other pathological processes such as inflammation, malignant infiltration or infarction. MRI is ideally suited to the quantification of fat, since most of the acquired signal comes from water and fat protons. Fat fraction (FF, the proportion of the acquired signal derived from fat protons) has, therefore, emerged as an objective, image-based biomarker of disease. Methods for FF quantification are becoming increasingly available in both research and clinical settings, but these methods vary depending on the scanner, manufacturer, imaging sequence and reconstruction software being used. Careful selection of the imaging method-and correct interpretation-can improve the accuracy of FF measurements, minimize potential confounding factors and maximize clinical utility. Here, we review methods for fat quantification and their strengths and weaknesses, before considering how they can be tailored to specific applications, particularly in the gastrointestinal and musculoskeletal systems. FF quantification is becoming established as a clinical and research tool, and understanding the underlying principles will be helpful to both imaging scientists and clinicians.
Collapse
Affiliation(s)
- Timothy JP Bray
- Centre for
Medical Imaging, University College London,University College London,
London, UK
| | - Manil D Chouhan
- Centre for
Medical Imaging, University College London,University College London,
London, UK
| | - Shonit Punwani
- Centre for
Medical Imaging, University College London,University College London,
London, UK
| | - Alan Bainbridge
- Department
of Medical Physics, University College London
Hospitals,University
College London Hospitals, London,
UK
| | - Margaret A Hall-Craggs
- Centre for
Medical Imaging, University College London,University College London,
London, UK
- Department
of Medical Physics, University College London
Hospitals,University
College London Hospitals, London,
UK
| |
Collapse
|
40
|
Quantification of Liver Fat Content With Unenhanced MDCT: Phantom and Clinical Correlation With MRI Proton Density Fat Fraction. AJR Am J Roentgenol 2018; 211:W151-W157. [PMID: 30016142 DOI: 10.2214/ajr.17.19391] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The purpose of this study was to evaluate the relation between unenhanced CT liver attenuation values and MRI-derived proton density fat fraction (PDFF) for estimation of liver fat content at CT. MATERIALS AND METHODS A CT-MRI phantom was constructed and imaged containing 12 vials with lipid fractions ranging from 0% to 100%. For the retrospective clinical arm, 221 patients (120 men, 101 women; mean age, 54 years) underwent both unenhanced CT and chemical shift-encoded MRI of the liver between 2007 and 2017. Among these patients, 92 had more than one 120-kV CT scan for comparison. CT attenuation and MRI PDFF were derived with coregistered ROI measurements in the right hepatic lobe. The 120-kV subgroup of CT examinations performed within 1 month of MRI PDFF examinations (n = 72) served as the primary cohort for linear correlation. The effects of different tube voltage settings, time intervals between CT and MRI, and iron overload were assessed. Linear least squares regression analysis was performed. RESULTS Phantom results showed excellent linear fit between CT attenuation and MRI PDFF (r2 = 0.986). In patients, 120-kV CT performed within 1 month of MRI PDFF exhibited strong linear correlation (r2 = 0.828) that closely matched the phantom data, yielding the following clinical CT-MRI conversion formula: MRI PDFF (%) = -0.58 × CT attenuation (HU) + 38.2. Correlation worsened for CT-to-MRI intervals longer than 1 month (r2 = 0.565), and this specific relationship did not apply as well to non-120-kV settings (r2 = 0.554). For patients with multiple scans, correlation progressively worsened over time. CT-based liver fat content was underestimated in several patients with iron overload. CONCLUSION The linear correlation between unenhanced CT attenuation and MRI PDFF allows quantification of liver fat content by means of unenhanced CT in clinical practice. As expected, correlation worsened with increasing CT-MRI time interval, variable tube voltage settings, and iron overload.
Collapse
|
41
|
Cho J, Park H. Technical Note: Interleaved bipolar acquisition and low‐rank reconstruction for water–fat separation in
MRI. Med Phys 2018; 45:3229-3237. [DOI: 10.1002/mp.12981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/07/2018] [Accepted: 05/07/2018] [Indexed: 11/06/2022] Open
Affiliation(s)
- JaeJin Cho
- Department of Electrical Engineering Korea Advanced Institute of Science and Technology (KAIST) Daejeon South Korea
| | - HyunWook Park
- Department of Electrical Engineering Korea Advanced Institute of Science and Technology (KAIST) Daejeon South Korea
| |
Collapse
|
42
|
Ong F, Cheng J, Lustig M. General phase regularized reconstruction using phase cycling. Magn Reson Med 2018; 80:112-125. [PMID: 29159989 PMCID: PMC5876131 DOI: 10.1002/mrm.27011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 12/21/2022]
Abstract
PURPOSE To develop a general phase regularized image reconstruction method, with applications to partial Fourier imaging, water-fat imaging and flow imaging. THEORY AND METHODS The problem of enforcing phase constraints in reconstruction was studied under a regularized inverse problem framework. A general phase regularized reconstruction algorithm was proposed to enable various joint reconstruction of partial Fourier imaging, water-fat imaging and flow imaging, along with parallel imaging (PI) and compressed sensing (CS). Since phase regularized reconstruction is inherently non-convex and sensitive to phase wraps in the initial solution, a reconstruction technique, named phase cycling, was proposed to render the overall algorithm invariant to phase wraps. The proposed method was applied to retrospectively under-sampled in vivo datasets and compared with state of the art reconstruction methods. RESULTS Phase cycling reconstructions showed reduction of artifacts compared to reconstructions without phase cycling and achieved similar performances as state of the art results in partial Fourier, water-fat and divergence-free regularized flow reconstruction. Joint reconstruction of partial Fourier + water-fat imaging + PI + CS, and partial Fourier + divergence-free regularized flow imaging + PI + CS were demonstrated. CONCLUSION The proposed phase cycling reconstruction provides an alternative way to perform phase regularized reconstruction, without the need to perform phase unwrapping. It is robust to the choice of initial solutions and encourages the joint reconstruction of phase imaging applications. Magn Reson Med 80:112-125, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Frank Ong
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California
| | - Joseph Cheng
- Department of Radiology, Stanford University, Stanford, California
| | - Michael Lustig
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California
| |
Collapse
|
43
|
Matakos A, Balter JM, Cao Y. A Robust Method for Estimating B0 Inhomogeneity Field in the Liver by Mitigating Fat Signals and Phase-Wrapping. Tomography 2018; 3:79-88. [PMID: 29657962 PMCID: PMC5892841 DOI: 10.18383/j.tom.2017.00003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We developed an optimized and robust method to estimate liver B0 field inhomogeneity for monitoring and correcting susceptibility-induced geometric distortion in magnetic resonance images for precision therapy. A triple-gradient-echo acquisition was optimized for the whole liver B0 field estimation within a single-exhale breath-hold scan on a 3 T scanner. To eliminate chemical-shift artifacts, fat signals were chosen in-phase between 2 echoes with an echo time difference (ΔTE) of 2.3 milliseconds. To avoid phase-wrapping, other 2 echoes provided a large field dynamic range (1/ΔTE) to cover the B0 field inhomogeneity. In addition, using high parallel imaging factor of 4 and a readout-bandwidth of 1955 Hz/pixel, an ∼18-second acquisition time for breath-held scans was achieved. A 2-step, 1-dimensional regularized method for the ΔB0 field map estimation was developed, tested and validated in phantom and patient studies. Our method was validated on a water phantom with fat components and air pockets; it yielded ΔB0-field maps that had no chemical-shift and phase-wrapping artifacts, and it had a <0.5 mm of geometric distortion near the air pockets. The ΔB0-field maps of the patients' abdominal regions were also free from phase-wrapping and chemical-shift artifacts. The maximum field inhomogeneity was found near the lung–liver interface, up to ∼300 Hz, resulting in ∼2 mm of distortions in anatomical images with a readout-bandwidth of 440 Hz/pixel. The field mapping method in the abdominal region is robust; it can be easily integrated in clinical workflow for patient-based quality control of magnetic resonance imaging geometric integrity.
Collapse
Affiliation(s)
- Antonis Matakos
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - James M Balter
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Yue Cao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.,Department of Radiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
44
|
Cui C, Shah A, Wu X, Thedens D, Jacob M. A rapid 3D fat-water decomposition method using globally optimal surface estimation (R-GOOSE). Magn Reson Med 2018; 79:2401-2407. [PMID: 28726301 PMCID: PMC5817637 DOI: 10.1002/mrm.26843] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 06/26/2017] [Accepted: 06/26/2017] [Indexed: 01/20/2023]
Abstract
PURPOSE To improve the graph model of our previous work GOOSE for fat-water decomposition with higher computational efficiency and quantitative accuracy. METHODS A modification of the GOOSE fat water decomposition algorithm is introduced while the global convergence guarantees of GOOSE are still inherited to minimize fat-water swaps and phase wraps. In this paper, two non-equidistant graph optimization frameworks are proposed as a single-step framework termed as rapid GOOSE (R-GOOSE), and a multi-step framework termed as multi-scale R-GOOSE (mR-GOOSE). Both frameworks contain considerably less graph connectivity than GOOSE, resulting in a great computation reduction thus making it readily applicable to multidimensional fat water applications. The quantitative accuracy and computational time of the novel frameworks are compared with GOOSE on the 2012 ISMRM Challenge datasets to demonstrate the improvement in performance. RESULTS Both frameworks accomplish the same level of high accuracy as GOOSE among all datasets. Compared to 100 layers in GOOSE, only 8 layers were used in the new graph model. Computational time is lowered by an order of magnitude to around 5 s for each dataset in (mR-GOOSE), R-GOOSE achieves an average run-time of 8 s. CONCLUSION The proposed method provides fat-water decomposition results with a lower run-time and higher accuracy compared to the previously proposed GOOSE algorithm. Magn Reson Med 79:2401-2407, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Chen Cui
- Department of Electrical and Computer Engineering, The University of Iowa, Iowa
| | - Abhay Shah
- Department of Electrical and Computer Engineering, The University of Iowa, Iowa
| | - Xiaodong Wu
- Department of Electrical and Computer Engineering, The University of Iowa, Iowa
| | - Dan Thedens
- Department of Electrical and Computer Engineering, The University of Iowa, Iowa
| | - Mathews Jacob
- Department of Electrical and Computer Engineering, The University of Iowa, Iowa
| |
Collapse
|
45
|
Andersson J, Ahlström H, Kullberg J. Water-fat separation incorporating spatial smoothing is robust to noise. Magn Reson Imaging 2018; 50:78-83. [PMID: 29601865 DOI: 10.1016/j.mri.2018.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/19/2018] [Accepted: 03/26/2018] [Indexed: 01/13/2023]
Abstract
PURPOSE To develop and evaluate a noise-robust method for reconstruction of water and fat images for spoiled gradient multi-echo sequences. METHODS The proposed method performs water-fat separation by using a graph cut to minimize an energy function consisting of unary and binary terms. Spatial smoothing is incorporated to increase robustness to noise. The graph cut can fail to find a solution covering the entire image, in which case the relative weighting of the unary term is iteratively increased until a complete solution is found. The proposed method was compared to two previously published methods. Reconstructions were performed on 16 cases taken from the 2012 ISMRM water-fat reconstruction challenge dataset, for which reference reconstructions were provided. Robustness towards noise was evaluated by reconstructing images with different levels of noise added. The percentage of water-fat swaps were calculated to measure performance. RESULTS At low noise levels the proposed method produced similar results to one of the previously published methods, while outperforming the other. The proposed method significantly outperformed both of the previously published methods at moderate and high noise levels. CONCLUSION By incorporating spatial smoothing, an increased robustness towards noise is achieved when performing water-fat reconstruction of spoiled gradient multi-echo sequences.
Collapse
Affiliation(s)
- Jonathan Andersson
- Section of Radiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| | - Håkan Ahlström
- Section of Radiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Antaros Medical, Mölndal, Sweden.
| | - Joel Kullberg
- Section of Radiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Antaros Medical, Mölndal, Sweden.
| |
Collapse
|
46
|
Diefenbach MN, Ruschke S, Eggers H, Meineke J, Rummeny EJ, Karampinos DC. Improving chemical shift encoding-based water-fat separation based on a detailed consideration of magnetic field contributions. Magn Reson Med 2018; 80:990-1004. [PMID: 29424458 PMCID: PMC6001469 DOI: 10.1002/mrm.27097] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/29/2017] [Accepted: 12/31/2017] [Indexed: 12/11/2022]
Abstract
Purpose To improve the robustness of existing chemical shift encoding‐based water–fat separation methods by incorporating a priori information of the magnetic field distortions in complex‐based water–fat separation. Methods Four major field contributions are considered: inhomogeneities of the scanner magnet, the shim field, an object‐based field map estimate, and a residual field. The former two are completely determined by spherical harmonic expansion coefficients directly available from the magnetic resonance (MR) scanner. The object‐based field map is forward simulated from air–tissue interfaces inside the field of view (FOV). The missing residual field originates from the object outside the FOV and is investigated by magnetic field simulations on a numerical whole body phantom. In vivo the spatially linear first‐order component of the residual field is estimated by measuring echo misalignments after demodulation of other field contributions resulting in a linear residual field. Gradient echo datasets of the cervical and the ankle region without and with shimming were acquired, where all four contributions were incorporated in the water–fat separation with two algorithms from the ISMRM water–fat toolbox and compared to water–fat separation with less incorporated field contributions. Results Incorporating all four field contributions as demodulation steps resulted in reduced temporal and spatial phase wraps leading to almost swap‐free water–fat separation results in all datasets. Conclusion Demodulating estimates of major field contributions reduces the phase evolution to be driven by only small differences in local tissue susceptibility, which supports the field smoothness assumption of existing water–fat separation techniques.
Collapse
Affiliation(s)
- Maximilian N Diefenbach
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Stefan Ruschke
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | | | | | - Ernst J Rummeny
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| |
Collapse
|
47
|
A data-oriented self-calibration and robust chemical-shift encoding by using clusterization (OSCAR): Theory, optimization and clinical validation in neuromuscular disorders. Magn Reson Imaging 2017; 45:84-96. [PMID: 28982632 DOI: 10.1016/j.mri.2017.09.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/29/2017] [Accepted: 09/29/2017] [Indexed: 12/15/2022]
Abstract
Multi-echo Chemical Shift-Encoded (CSE) methods for Fat-Water quantification are growing in clinical use due to their ability to estimate and correct some confounding effects. State of the art CSE water/fat separation approaches rely on a multi-peak fat spectrum with peak frequencies and relative amplitudes kept constant over the entire MRI dataset. However, the latter approximation introduces a systematic error in fat percentage quantification in patients where the differences in lipid chemical composition are significant (such as for neuromuscular disorders) because of the spatial dependence of the peak amplitudes. The present work aims to overcome this limitation by taking advantage of an unsupervised clusterization-based approach offering a reliable criterion to carry out a data-driven segmentation of the input MRI dataset into multiple regions. Results established that the presented algorithm is able to identify at least 4 different partitions from MRI dataset under which to perform independent self-calibration routines and was found robust in NMD imaging studies (as evaluated on a cohort of 24 subjects) against latest CSE techniques with either calibrated or non-calibrated approaches. Particularly, the PDFF of the thigh was more reproducible for the quantitative estimation of pathological muscular fat infiltrations, which may be promising to evaluate disease progression in clinical practice.
Collapse
|
48
|
Franconi F, Lemaire L, Saint‐Jalmes H, Saulnier P. Tissue oxygenation mapping by combined chemical shift and T
1
magnetic resonance imaging. Magn Reson Med 2017; 79:1981-1991. [DOI: 10.1002/mrm.26857] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/22/2017] [Accepted: 07/07/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Florence Franconi
- PRISM Plate‐forme de recherche en imagerie et spectroscopie multi‐modales, PRISM‐Icat, Angers et PRISM‐Biosit CNRS UMS 3480, INSERM UMS 018, Rennes, UBL Universite BretagneLoire France
- Micro & Nanomédecines Translationelles‐MINT, UNIV Angers, INSERM U1066, CNRS UMR 6021UBL Universite Bretagne LoireAngers France
| | - Laurent Lemaire
- PRISM Plate‐forme de recherche en imagerie et spectroscopie multi‐modales, PRISM‐Icat, Angers et PRISM‐Biosit CNRS UMS 3480, INSERM UMS 018, Rennes, UBL Universite BretagneLoire France
- Micro & Nanomédecines Translationelles‐MINT, UNIV Angers, INSERM U1066, CNRS UMR 6021UBL Universite Bretagne LoireAngers France
| | - Hervé Saint‐Jalmes
- PRISM Plate‐forme de recherche en imagerie et spectroscopie multi‐modales, PRISM‐Icat, Angers et PRISM‐Biosit CNRS UMS 3480, INSERM UMS 018, Rennes, UBL Universite BretagneLoire France
- INSERM, UMR 1099Rennes France
- LTSI, Université de Rennes 1Rennes France
- CRLCC, Centre Eugène MarquisRennes France
| | - Patrick Saulnier
- Micro & Nanomédecines Translationelles‐MINT, UNIV Angers, INSERM U1066, CNRS UMR 6021UBL Universite Bretagne LoireAngers France
| |
Collapse
|
49
|
Karampinos DC, Holwein C, Buchmann S, Baum T, Ruschke S, Gersing AS, Sutter R, Imhoff AB, Rummeny EJ, Jungmann PM. Proton Density Fat-Fraction of Rotator Cuff Muscles Is Associated With Isometric Strength 10 Years After Rotator Cuff Repair: A Quantitative Magnetic Resonance Imaging Study of the Shoulder. Am J Sports Med 2017; 45:1990-1999. [PMID: 28460192 DOI: 10.1177/0363546517703086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Quantitative muscle fat-fraction magnetic resonance (MR) imaging techniques correlate with semiquantitative Goutallier scores with failure after rotator cuff (RC) repair. PURPOSE To investigate the relationship of proton density fat fraction (PDFF) of the RC muscles with semiquantitative MR scores, cartilage T2 relaxation times, and clinical isometric strength measurements in patients 10 years after unilateral RC repair. STUDY DESIGN Cross-sectional study; Level of evidence, 3. METHODS Bilateral shoulder MR imaging was performed in 13 patients (11 male, 2 female; age, 72 ± 8 years) 10.9 ± 0.4 years after unilateral autologous periosteal flap augmented RC repair (total shoulders assessed, N = 26). Goutallier classification, muscle atrophy, RC tendon integrity, and cartilage defects were determined based on morphological MR sequences. A paracoronal 2D multi-slice multi-echo sequence was used for quantitative cartilage T2 mapping. A chemical shift-encoding-based water-fat separation technique (based on a 6-echo 3D spoiled gradient echo sequence) was used for quantification of the PDFF of RC muscles. Isometric shoulder abduction strength was measured clinically. Mean and SD, Pearson correlation, and partial Spearman correlation were calculated. RESULTS There were 6 RC full-thickness retears in ipsilateral shoulders and 6 RC full-thickness tears in contralateral shoulders. Isometric shoulder abduction strength was not significantly different between ipsilateral and contralateral shoulders (50 ± 24 N vs 54 ± 24 N; P = .159). The mean PDFF of RC muscles was 11.7% ± 10.4% (ipsilateral, 14.2% ± 8.5%; contralateral, 9.2% ± 7.8%; P = .002). High supraspinatus PDFF correlated significantly with higher Goutallier scores ( R = 0.75, P < .001) and with lower isometric muscle strength ( R = -0.49, P = .011). This correlation remained significant after adjustment for muscle area measurements and tendon rupture ( R = -0.41, P = .048). More severe cartilage defects at the humerus were significantly associated with higher supraspinatus PDFF ( R = 0.44; P = .023). Cartilage T2 values did not correlate with muscle PDFF ( P > .05). CONCLUSION MR imaging-derived RC muscle PDFF is associated with isometric strength independent of muscle atrophy and tendon rupture in shoulders with early and advanced degenerative changes. It therefore provides complementary, clinically relevant information in tracking RC muscle composition on a quantitative level.
Collapse
Affiliation(s)
- Dimitrios C Karampinos
- Department of Radiology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Munich, Germany
| | - Christian Holwein
- Department of Orthopaedic Sports Medicine, Klinikum rechts der Isar, Technische Universitaet Muenchen, Munich, Germany.,Department of Trauma and Orthopaedic Surgery, BG Unfallklinik Murnau, Murnau, Germany
| | - Stefan Buchmann
- Department of Orthopaedic Sports Medicine, Klinikum rechts der Isar, Technische Universitaet Muenchen, Munich, Germany.,Orthopaedisches Fachzentrum (OFZ) Weilheim/Starnberg/Garmisch-Partenkirchen/Penzberg, Weilheim, Germany
| | - Thomas Baum
- Department of Radiology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Munich, Germany
| | - Stefan Ruschke
- Department of Radiology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Munich, Germany
| | - Alexandra S Gersing
- Department of Radiology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Munich, Germany
| | - Reto Sutter
- Department of Radiology, Orthopedic University Hospital Balgrist, Zurich, Switzerland
| | - Andreas B Imhoff
- Department of Orthopaedic Sports Medicine, Klinikum rechts der Isar, Technische Universitaet Muenchen, Munich, Germany
| | - Ernst J Rummeny
- Department of Radiology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Munich, Germany
| | - Pia M Jungmann
- Department of Radiology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Munich, Germany.,Department of Radiology, Orthopedic University Hospital Balgrist, Zurich, Switzerland
| |
Collapse
|
50
|
MRI assessment of bone marrow oedema in the sacroiliac joints of patients with spondyloarthritis: is the SPAIR T2w technique comparable to STIR? Eur Radiol 2017; 27:3669-3676. [DOI: 10.1007/s00330-017-4746-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 01/06/2017] [Accepted: 01/13/2017] [Indexed: 01/19/2023]
|