1
|
Zhu Y, Wang G, Gu Y, Zhao W, Lu J, Zhu J, MacAskill CJ, Dupuis A, Griswold MA, Ma D, Flask CA, Yu X. 3D MR fingerprinting for dynamic contrast-enhanced imaging of whole mouse brain. Magn Reson Med 2025; 93:67-79. [PMID: 39164799 PMCID: PMC11518651 DOI: 10.1002/mrm.30253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/15/2024] [Accepted: 07/28/2024] [Indexed: 08/22/2024]
Abstract
PURPOSE Quantitative MRI enables direct quantification of contrast agent concentrations in contrast-enhanced scans. However, the lengthy scan times required by conventional methods are inadequate for tracking contrast agent transport dynamically in mouse brain. We developed a 3D MR fingerprinting (MRF) method for simultaneous T1 and T2 mapping across the whole mouse brain with 4.3-min temporal resolution. METHOD We designed a 3D MRF sequence with variable acquisition segment lengths and magnetization preparations on a 9.4T preclinical MRI scanner. Model-based reconstruction approaches were employed to improve the accuracy and speed of MRF acquisition. The method's accuracy for T1 and T2 measurements was validated in vitro, while its repeatability of T1 and T2 measurements was evaluated in vivo (n = 3). The utility of the 3D MRF sequence for dynamic tracking of intracisternally infused gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) in the whole mouse brain was demonstrated (n = 5). RESULTS Phantom studies confirmed accurate T1 and T2 measurements by 3D MRF with an undersampling factor of up to 48. Dynamic contrast-enhanced MRF scans achieved a spatial resolution of 192 × 192 × 500 μm3 and a temporal resolution of 4.3 min, allowing for the analysis and comparison of dynamic changes in concentration and transport kinetics of intracisternally infused Gd-DTPA across brain regions. The sequence also enabled highly repeatable, high-resolution T1 and T2 mapping of the whole mouse brain (192 × 192 × 250 μm3) in 30 min. CONCLUSION We present the first dynamic and multi-parametric approach for quantitatively tracking contrast agent transport in the mouse brain using 3D MRF.
Collapse
Affiliation(s)
- Yuran Zhu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Guanhua Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Yuning Gu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Walter Zhao
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jiahao Lu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Junqing Zhu
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Christina J. MacAskill
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Andrew Dupuis
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mark A. Griswold
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Dan Ma
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Chris A. Flask
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xin Yu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Gut P, Cochet H, Caluori G, El-Hamrani D, Constantin M, Vlachos K, Sridi S, Antiochos P, Schwitter J, Masi A, Sacher F, Jaïs P, Stuber M, Bustin A. Wideband black-blood late gadolinium enhancement imaging for improved myocardial scar assessment in patients with cardiac implantable electronic devices. Magn Reson Med 2024; 92:1851-1866. [PMID: 38852175 DOI: 10.1002/mrm.30162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 06/11/2024]
Abstract
PURPOSE Wideband phase-sensitive inversion recovery (PSIR) late gadolinium enhancement (LGE) enables myocardial scar imaging in implantable cardioverter defibrillators (ICD) patients, mitigating hyperintensity artifacts. To address subendocardial scar visibility challenges, a 2D breath-hold single-shot electrocardiography-triggered black-blood (BB) LGE sequence was integrated with wideband imaging, enhancing scar-blood contrast. METHODS Wideband BB, with increased bandwidth in the inversion pulse (0.8-3.8 kHz) and T2 preparation refocusing pulses (1.6-5.0 kHz), was compared with conventional and wideband PSIR, and conventional BB, in a phantom and sheep with and without ICD, and in six patients with cardiac devices and known myocardial injury. ICD artifact extent was quantified in the phantom and specific absorption rate (SAR) was reported for each sequence. Image contrast ratios were analyzed in both phantom and animal experiments. Expert radiologists assessed image quality, artifact severity, and scar segments in patients and sheep. Additionally, histology was performed on the sheep's heart. RESULTS In the phantom, wideband BB reduced ICD artifacts by 62% compared to conventional BB while substantially improving scar-blood contrast, but with a SAR more than 24 times that of wideband PSIR. Similarly, the animal study demonstrated a considerable increase in scar-blood contrast with wideband BB, with superior scar detection compared with wideband PSIR, the latter confirmed by histology. In alignment with the animal study, wideband BB successfully eliminated severe ICD hyperintensity artifacts in all patients, surpassing wideband PSIR in image quality and scar detection. CONCLUSION Wideband BB may play a crucial role in imaging ICD patients, offering images with reduced ICD artifacts and enhanced scar detection.
Collapse
Affiliation(s)
- Pauline Gut
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, INSERM, CRCTB, U 1045, IHU Liryc, Bordeaux, France
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Hubert Cochet
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, INSERM, CRCTB, U 1045, IHU Liryc, Bordeaux, France
- Department of Cardiovascular Imaging, Hôpital Cardiologique du Haut-Lévêque, CHU de Bordeaux, Pessac, France
| | - Guido Caluori
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, INSERM, CRCTB, U 1045, IHU Liryc, Bordeaux, France
| | - Dounia El-Hamrani
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, INSERM, CRCTB, U 1045, IHU Liryc, Bordeaux, France
| | - Marion Constantin
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, INSERM, CRCTB, U 1045, IHU Liryc, Bordeaux, France
| | - Konstantinos Vlachos
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, INSERM, CRCTB, U 1045, IHU Liryc, Bordeaux, France
| | - Soumaya Sridi
- Department of Cardiovascular Imaging, Hôpital Cardiologique du Haut-Lévêque, CHU de Bordeaux, Pessac, France
| | - Panagiotis Antiochos
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jürg Schwitter
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ambra Masi
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Frederic Sacher
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, INSERM, CRCTB, U 1045, IHU Liryc, Bordeaux, France
- Department of Cardiac Pacing and Electrophysiology, Hôpital Cardiologique du Haut-Lévêque, CHU de Bordeaux, Pessac, France
| | - Pierre Jaïs
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, INSERM, CRCTB, U 1045, IHU Liryc, Bordeaux, France
- Department of Cardiac Pacing and Electrophysiology, Hôpital Cardiologique du Haut-Lévêque, CHU de Bordeaux, Pessac, France
| | - Matthias Stuber
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, INSERM, CRCTB, U 1045, IHU Liryc, Bordeaux, France
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
| | - Aurélien Bustin
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, INSERM, CRCTB, U 1045, IHU Liryc, Bordeaux, France
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Cardiovascular Imaging, Hôpital Cardiologique du Haut-Lévêque, CHU de Bordeaux, Pessac, France
- Hôpital Xavier Arnozan, Pessac, France
| |
Collapse
|
3
|
McElroy S, Tomi-Tricot R, Cleary J, Tan HEI, Kinsella S, Jeljeli S, Goh V, Neji R. 3D distortion-free, reduced FOV diffusion-prepared gradient echo at 3 T. Magn Reson Med 2024. [PMID: 39462469 DOI: 10.1002/mrm.30357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024]
Abstract
PURPOSE To develop a 3D distortion-free reduced-FOV diffusion-prepared gradient-echo sequence and demonstrate its application in vivo for diffusion imaging of the spinal cord in healthy volunteers. METHODS A 3D multi-shot reduced-FOV diffusion-prepared gradient-echo acquisition is achieved using a slice-selective tip-down pulse in the phase-encoding direction in the diffusion preparation, combined with magnitude stabilizers, centric k-space encoding, and 2D phase navigators to correct for intershot phase errors. The accuracy of the ADC values obtained using the proposed approach was evaluated in a diffusion phantom and compared to the tabulated reference ADC values and to the ADC values obtained using a standard spin echo diffusion-weighted single-shot EPI sequence (DW-SS-EPI). Five healthy volunteers were scanned at 3 T using the proposed sequence, DW-SS-EPI, and a clinical diffusion-weighted multi-shot readout-segmented EPI sequence (RESOLVE) for cervical spinal cord imaging. Image quality, perceived SNR, and image distortion were assessed by two expert radiologists. ADC maps were calculated, and ADC values obtained with the proposed sequence were compared to those obtained using DW-SS-EPI and RESOLVE. RESULTS Consistent ADC estimates were measured in the diffusion phantom with the proposed sequence and the conventional DW-SS-EPI sequence, and the ADC values were in close agreement with the reference values provided by the manufacturer of the phantom. In vivo, the proposed sequence demonstrated improved image quality, improved perceived SNR, and reduced perceived distortion compared to DW-SS-EPI, whereas all measures were comparable against RESOLVE. There were no significant differences in ADC values estimated in vivo for each of the sequences. CONCLUSION 3D distortion-free diffusion-prepared imaging can be achieved using the proposed sequence.
Collapse
Affiliation(s)
- Sarah McElroy
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK
| | - Raphael Tomi-Tricot
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Siemens Healthcare, Courbevoie, France
| | - Jon Cleary
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | - Shawna Kinsella
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Sami Jeljeli
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Vicky Goh
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
4
|
Shigenaga Y, Osaki T, Murai N, Kamino S, Nakao K, Kawasaki R, Takenaka D, Ishida T. Identification of peroneal artery perforators using non-contrast-enhanced T2prep multi-shot gradient echo planar imaging MRA. Radiol Phys Technol 2024; 17:610-619. [PMID: 38805078 DOI: 10.1007/s12194-024-00799-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 05/29/2024]
Abstract
The purpose of this study was to investigate the spatial resolution of non-contrast-enhanced (CE) T2prep multi-shot gradient echo planar imaging (MSG-EPI) magnetic resonance angiography (MRA) required to identify peroneal artery perforators and demonstrate its effectiveness in preoperative simulation. Twenty-six legs of 13 volunteers were scanned using non-CE T2prep MSG-EPI-MRA at three spatial resolutions: 1.0-, 0.8-, and 0.6-mm isotropic voxels. The location and number of peroneal artery perforators that could be candidates for free fibula flaps were identified by consensus among three plastic surgeons. Surgeons distinguished between septocutaneous and musculocutaneous perforators using MRA, and confirmed the accuracy of their presence and identification using ultrasonography (US). The ability to detect hypoplasia or stenosis of the anterior tibial, posterior tibial, and peroneal arteries was evaluated by confirming the consistency between the MRA and US results. The number of cutaneous perforators identified using MRA and confirmed using US was 39, 51, and 52 at each respective resolution. The discrimination accuracies between septocutaneous and musculocutaneous perforators were 92.3%, 96.1%, and 96.2%. The number of identified septocutaneous perforators was 1.3 ± 0.6, 1.6 ± 0.8, and 1.7 ± 0.8 at 1.0-, 0.8-, and 0.6-mm data, respectively. All the MRA results, including hypoplasia and stenosis, were consistent with the US results. Non-CE T2prep MSG-EPI-MRA with a spatial resolution of 0.8 mm or less shows promise for identifying septocutaneous perforators of the peroneal artery, suggesting its potential as an alternative to conventional imaging methods for the preoperative planning of free fibula osteocutaneous flap transfers.
Collapse
Affiliation(s)
| | - Takeo Osaki
- Department of Plastic Surgery, Hyogo Cancer Center, Hyogo, Japan
| | - Nobuyuki Murai
- Department of Plastic Surgery, Hyogo Cancer Center, Hyogo, Japan
| | - Saki Kamino
- Department of Plastic Surgery, Hyogo Cancer Center, Hyogo, Japan
| | - Koji Nakao
- Department of Radiology, Hyogo Cancer Center, Hyogo, Japan
| | | | | | - Takayuki Ishida
- Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan.
| |
Collapse
|
5
|
Guo R, Fan Y, Liu B, Qian X, Dai J, Si D, Wang Y, Wang A, Dong G, Jin Y, Xiao J, Ding H, Tang X. MyoFold: Joint myocardial tissue composition and wall motion quantification via a highly folded sequence. Magn Reson Med 2024; 92:1064-1078. [PMID: 38726772 DOI: 10.1002/mrm.30124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/09/2024] [Accepted: 04/03/2024] [Indexed: 06/27/2024]
Abstract
PURPOSE This study aims to develop and evaluate a novel cardiovascular MR sequence, MyoFold, designed for the simultaneous quantifications of myocardial tissue composition and wall motion. METHODS MyoFold is designed as a 2D single breathing-holding sequence, integrating joint T1/T2 mapping and cine imaging. The sequence uses a 2-fold accelerated balanced SSFP (bSSFP) for data readout and incorporates electrocardiogram synchronization to align with the cardiac cycle. MyoFold initially acquires six single-shot inversion-recovery images, completed during the diastole of six successive heartbeats. T2 preparation (T2-prep) is applied to introduce T2 weightings for the last three images. Subsequently, over the following six heartbeats, segmented bSSFP is performed for the movie of the entire cardiac cycle, synchronized with an electrocardiogram. A neural network trained using numerical simulations of MyoFold is used for T1 and T2 calculations. MyoFold was validated through phantom and in vivo experiments, with comparisons made against MOLLI, SASHA, T2-prep bSSFP, and the conventional cine. RESULTS In phantom studies, MyoFold exhibited a 10% overestimation in T1 measurements, whereas T2 measurements demonstrated high accuracy. In vivo experiments revealed that MyoFold T1 had comparable accuracy to SASHA and precision similar to MOLLI. MyoFold demonstrated good agreement with T2-prep bSSFP in myocardial T2 measurements. No significant differences were observed in the quantification of left-ventricle wall thickness and function between MyoFold and the conventional cine. CONCLUSION MyoFold presents as a rapid, simple, and multitasking approach for quantitative cardiovascular MR examinations, offering simultaneous assessment of tissue composition and wall motion. The sequence's multitasking capabilities make it a promising tool for comprehensive cardiac evaluations in clinical settings.
Collapse
Affiliation(s)
- Rui Guo
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Yingwei Fan
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Bowei Liu
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Xiaofeng Qian
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Jiahuan Dai
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Dongyue Si
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Yuanyuan Wang
- School of Optics and Photonics, Beijing Institute of Technology, Beijing, China
| | - Ancong Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Guozhao Dong
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Yongsheng Jin
- Department of Infectious Diseases, The Affiliated Hospital of Yan'an University, Shaanxi, China
| | - Jingjing Xiao
- Bio-Med Informatics Research Center and Clinical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Haiyan Ding
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Xiaoying Tang
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
6
|
Si D, Guo R, Cheng L, Kong X, Herzka DA, Ding H. Free-breathing three-dimensional simultaneous myocardial T 1 and T 2 mapping based on multi-parametric SAturation-recovery and Variable-flip-Angle. J Cardiovasc Magn Reson 2024; 26:101065. [PMID: 39059610 PMCID: PMC11347066 DOI: 10.1016/j.jocmr.2024.101065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/29/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Quantitative myocardial tissue characterization with T1 and T2 parametric mapping can provide an accurate and complete assessment of tissue abnormalities across a broad range of cardiomyopathies. However, current clinical T1 and T2 mapping tools rely predominantly on two-dimensional (2D) breath-hold sequences. Clinical adoption of three-dimensional (3D) techniques is limited by long scan duration. The aim of this study is to develop and validate a time-efficient 3D free-breathing simultaneous T1 and T2 mapping sequence using multi-parametric SAturation-recovery and Variable-flip-Angle (mSAVA). METHODS mSAVA acquires four volumes for simultaneous whole-heart T1 and T2 mapping. We validated mSAVA using simulations, phantoms, and in-vivo experiments at 3T in 11 healthy subjects and 11 patients with diverse cardiomyopathies. T1 and T2 values by mSAVA were compared with modified Look-Locker inversion recovery (MOLLI) and gradient and spin echo (GraSE), respectively. The clinical performance of mSAVA was evaluated against late gadolinium enhancement (LGE) imaging in patients. RESULTS Phantom T1 and T2 by mSAVA showed a strong correlation to reference sequences (R2 = 0.98 and 0.99). In-vivo imaging with an imaging resolution of 1.5 × 1.5 × 8 mm3 could be achieved. Myocardial T1 and T2 of healthy subjects by mSAVA were 1310 ± 46 and 44.6 ± 2.0 ms, respectively, with T1 standard deviation higher than MOLLI (105 ± 12 vs 60 ± 16 ms) and T2 standard deviation lower than GraSE (4.5 ± 0.8 vs 5.5 ± 1.0 ms). mSAVA T1 and T2 maps presented consistent findings in patients undergoing LGE. Myocardial T1 and T2 of all patients by mSAVA were 1421 ± 79 and 47.2 ± 3.3 ms, respectively. CONCLUSION mSAVA is a fast 3D technique promising for clinical whole-heart T1 and T2 mapping.
Collapse
Affiliation(s)
- Dongyue Si
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Rui Guo
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Lan Cheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xiangchuang Kong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China.
| | - Daniel A Herzka
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Haiyan Ding
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
7
|
Kameda H, Nakada Y, Urushibata Y, Sugimori H, Fujii T, Kinota N, Kato D, Tang M, Sakamoto K, Kudo K. Imaging of 17O-labeled Water Using Fast T2 Mapping with T2-preparation: A Phantom Study. Magn Reson Med Sci 2024:tn.2023-0152. [PMID: 38494701 DOI: 10.2463/mrms.tn.2023-0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
17O-labeled water is a T2-shortening contrast agent used in proton MRI and is a promising method for visualizing cerebrospinal fluid (CSF) dynamics because it provides long-term tracking of water molecules. However, various external factors reduce the accuracy of 17O-concentration measurements using conventional signal-intensity-based methods. In addition, T2 mapping, which is expected to provide a stable assessment, is generally limited to temporal-spatial resolution. We developed the T2-prepared based on T2 mapping used in cardiac imaging to adapt to long T2 values and tested whether it could accurately measure 17O-concentration in the CSF using a phantom. The results showed that 17O-concentration in a fluid mimicking CSF could be evaluated with an accuracy comparable to conventional T2-mapping (Carr-Purcell-Meiboom-Gill multi-echo spin-echo method). This method allows 17O-imaging with a high temporal resolution and stability in proton MRI. This imaging technique may be promising for visualizing CSF dynamics using 17O-labeled water.
Collapse
Affiliation(s)
- Hiroyuki Kameda
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
- Faculty of Dental Medicine, Department of Radiology, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yumi Nakada
- Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | | | - Hiroyuki Sugimori
- Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takaaki Fujii
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
- Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Naoya Kinota
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
- Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Daisuke Kato
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
- Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Minghui Tang
- Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Keita Sakamoto
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
- Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Kohsuke Kudo
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
- Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| |
Collapse
|
8
|
Fan H, Bunker L, Wang Z, Durfee AZ, Lin DDM, Yedavalli V, Ge Y, Zhou XJ, Hillis AE, Lu H. Simultaneous perfusion, diffusion, T 2 *, and T 1 mapping with MR fingerprinting. Magn Reson Med 2024; 91:558-569. [PMID: 37749847 PMCID: PMC10872728 DOI: 10.1002/mrm.29880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/27/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023]
Abstract
PURPOSE Quantitative mapping of brain perfusion, diffusion, T2 *, and T1 has important applications in cerebrovascular diseases. At present, these sequences are performed separately. This study aims to develop a novel MRI technique to simultaneously estimate these parameters. METHODS This sequence to measure perfusion, diffusion, T2 *, and T1 mapping with magnetic resonance fingerprinting (MRF) was based on a previously reported MRF-arterial spin labeling (ASL) sequence, but the acquisition module was modified to include different TEs and presence/absence of bipolar diffusion-weighting gradients. We compared parameters derived from the proposed method to those derived from reference methods (i.e., separate sequences of MRF-ASL, conventional spin-echo DWI, and T2 * mapping). Test-retest repeatability and initial clinical application in two patients with stroke were evaluated. RESULTS The scan time of our proposed method was 24% shorter than the sum of the reference methods. Parametric maps obtained from the proposed method revealed excellent image quality. Their quantitative values were strongly correlated with those from reference methods and were generally in agreement with values reported in the literature. Repeatability assessment revealed that ADC, T2 *, T1 , and B1 + estimation was highly reliable, with voxelwise coefficient of variation (CoV) <5%. The CoV for arterial transit time and cerebral blood flow was 16% ± 3% and 25% ± 9%, respectively. The results from the two patients with stroke demonstrated that parametric maps derived from the proposed method can detect both ischemic and hemorrhagic stroke. CONCLUSION The proposed method is a promising technique for multi-parametric mapping and has potential use in patients with stroke.
Collapse
Affiliation(s)
- Hongli Fan
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lisa Bunker
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Zihan Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Alexandra Zezinka Durfee
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Doris Da May Lin
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Vivek Yedavalli
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yulin Ge
- Department of Radiology, New York University Grossman School of Medicine, New York, NY, Unites States
| | - Xiaohong Joe Zhou
- Center for Magnetic Resonance Research and Department of Radiology, University of Illinois at Chicago, Chicago, IL, United States
| | - Argye E. Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Hanzhang Lu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| |
Collapse
|
9
|
Cho J, Gagoski B, Kim TH, Wang F, Manhard MK, Dean D, Kecskemeti S, Caprihan A, Lo WC, Splitthoff DN, Liu W, Polak D, Cauley S, Setsompop K, Grant PE, Bilgic B. Time-efficient, high-resolution 3T whole-brain relaxometry using 3D-QALAS with wave-CAIPI readouts. Magn Reson Med 2024; 91:630-639. [PMID: 37705496 DOI: 10.1002/mrm.29865] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/16/2023] [Accepted: 08/25/2023] [Indexed: 09/15/2023]
Abstract
PURPOSE Volumetric, high-resolution, quantitative mapping of brain-tissue relaxation properties is hindered by long acquisition times and SNR challenges. This study combines time-efficient wave-controlled aliasing in parallel imaging (wave-CAIPI) readouts with the 3D quantification using an interleaved Look-Locker acquisition sequence with a T2 preparation pulse (3D-QALAS), enabling full-brain quantitative T1 , T2 , and proton density (PD) maps at 1.15-mm3 isotropic voxels in 3 min. METHODS Wave-CAIPI readouts were embedded in the standard 3D-QALAS encoding scheme, enabling full-brain quantitative parameter maps (T1 , T2 , and PD) at acceleration factors of R = 3 × 2 with minimum SNR loss due to g-factor penalties. The quantitative parameter maps were estimated using a dictionary-based mapping algorithm incorporating inversion efficiency and B1 -field inhomogeneity effects. The parameter maps using the accelerated protocol were quantitatively compared with those obtained from the conventional 3D-QALAS sequence using GRAPPA acceleration of R = 2 in the ISMRM/NIST phantom, and in 10 healthy volunteers. RESULTS When tested in both the ISMRM/NIST phantom and 10 healthy volunteers, the quantitative maps using the accelerated protocol showed excellent agreement against those obtained from conventional 3D-QALAS at RGRAPPA = 2. CONCLUSION Three-dimensional QALAS enhanced with wave-CAIPI readouts enables time-efficient, full-brain quantitative T1 , T2 , and PD mapping at 1.15 mm3 in 3 min at R = 3 × 2 acceleration. The quantitative maps obtained from the accelerated wave-CAIPI 3D-QALAS protocol showed very similar values to those from the standard 3D-QALAS (R = 2) protocol, alluding to the robustness and reliability of the proposed method.
Collapse
Affiliation(s)
- Jaejin Cho
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Borjan Gagoski
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Tae Hyung Kim
- Department of Computer Engineering, Hongik University, Seoul, South Korea
| | - Fuyixue Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Mary Kate Manhard
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Douglas Dean
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Steven Kecskemeti
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Wei-Ching Lo
- Siemens Medical Solutions USA, Inc., Charlestown, Massachusetts, USA
| | | | - Wei Liu
- Siemens Healthcare GmbH, Erlangen, Germany
| | | | - Stephen Cauley
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kawin Setsompop
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Patricia Ellen Grant
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard/MIT Health Sciences and Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
10
|
Vernier B, Van Reeth E, Pilleul F, Lapert M, Beuf O, Ratiney H. Optimal control in a magnetization-prepared rapid acquisition gradient-echo sequence. NMR IN BIOMEDICINE 2024; 37:e5041. [PMID: 37771076 DOI: 10.1002/nbm.5041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 09/30/2023]
Abstract
This article proposes a numerical framework to determine the optimal magnetization preparation in a three-dimensional magnetization-prepared rapid gradient-echo (MP-RAGE) sequence to obtain the best achievable contrast between target tissues based on differences in their relaxation times. The benefit lies in the adaptation of the algorithm of optimal control, GRAdient Ascent Pulse Engineering (GRAPE), to the optimization of magnetization preparation in a cyclic sequence without full recovery between each cycle. This numerical approach optimizes magnetization preparation of an arbitrary number of radio frequency pulses to enhance contrast, taking into account the establishment of a steady state in the longitudinal component of the magnetization. The optimal control preparation offers an optimized mixed T 1 / T 2 contrast in this traditional T 1 -weighted sequence. To show the versatility of the proposed method, numerical and in vitro results are described. Examples of contrasts acquired on brain regions of a healthy volunteer are presented for potential applications at 3 T.
Collapse
Affiliation(s)
- Benoît Vernier
- Univ Lyon, INSA Lyon, Inserm, UCBL, CNRS, CREATIS, UMR5220, U1294, Villeurbanne, France
- SIEMENS Healthcare SAS, Saint-Denis, France
| | - Eric Van Reeth
- Univ Lyon, INSA Lyon, Inserm, UCBL, CNRS, CREATIS, UMR5220, U1294, Villeurbanne, France
- CPE, Lyon, France
| | - Frank Pilleul
- Univ Lyon, INSA Lyon, Inserm, UCBL, CNRS, CREATIS, UMR5220, U1294, Villeurbanne, France
- Department of Radiology, Centre de lutte contre le cancer Léon Bérard (CLB), Lyon, France
| | | | - Oliver Beuf
- Univ Lyon, INSA Lyon, Inserm, UCBL, CNRS, CREATIS, UMR5220, U1294, Villeurbanne, France
| | - Hélène Ratiney
- Univ Lyon, INSA Lyon, Inserm, UCBL, CNRS, CREATIS, UMR5220, U1294, Villeurbanne, France
| |
Collapse
|
11
|
Guo R, Si D, Fan Y, Qian X, Zhang H, Ding H, Tang X. DeepFittingNet: A deep neural network-based approach for simplifying cardiac T 1 and T 2 estimation with improved robustness. Magn Reson Med 2023; 90:1979-1989. [PMID: 37415445 DOI: 10.1002/mrm.29782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/12/2023] [Accepted: 06/13/2023] [Indexed: 07/08/2023]
Abstract
PURPOSE To develop and evaluate a deep neural network (DeepFittingNet) for T1 /T2 estimation of the most commonly used cardiovascular MR mapping sequences to simplify data processing and improve robustness. THEORY AND METHODS DeepFittingNet is a 1D neural network composed of a recurrent neural network (RNN) and a fully connected (FCNN) neural network, in which RNN adapts to the different number of input signals from various sequences and FCNN subsequently predicts A, B, and Tx of a three-parameter model. DeepFittingNet was trained using Bloch-equation simulations of MOLLI and saturation-recovery single-shot acquisition (SASHA) T1 mapping sequences, and T2 -prepared balanced SSFP (T2 -prep bSSFP) T2 mapping sequence, with reference values from the curve-fitting method. Several imaging confounders were simulated to improve robustness. The trained DeepFittingNet was tested using phantom and in-vivo signals, and compared to the curve-fitting algorithm. RESULTS In testing, DeepFittingNet performed T1 /T2 estimation of four sequences with improved robustness in inversion-recovery T1 estimation. The mean bias in phantom T1 and T2 between the curve-fitting and DeepFittingNet was smaller than 30 and 1 ms, respectively. Excellent agreements between both methods was found in the left ventricle and septum T1 /T2 with a mean bias <6 ms. There was no significant difference in the SD of both the left ventricle and septum T1 /T2 between the two methods. CONCLUSION DeepFittingNet trained with simulations of MOLLI, SASHA, and T2 -prep bSSFP performed T1 /T2 estimation tasks for all these most used sequences. Compared with the curve-fitting algorithm, DeepFittingNet improved the robustness for inversion-recovery T1 estimation and had comparable performance in terms of accuracy and precision.
Collapse
Affiliation(s)
- Rui Guo
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Dongyue Si
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Yingwei Fan
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Xiaofeng Qian
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Haina Zhang
- Center for Community Health Service, Peking University Health Science Center, Beijing, China
| | - Haiyan Ding
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Xiaoying Tang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
12
|
Coletti C, Fotaki A, Tourais J, Zhao Y, van de Steeg-Henzen C, Akçakaya M, Tao Q, Prieto C, Weingärtner S. Robust cardiac T 1 ρ $$ {\mathrm{T}}_{1_{\boldsymbol{\rho}}} $$ mapping at 3T using adiabatic spin-lock preparations. Magn Reson Med 2023; 90:1363-1379. [PMID: 37246420 PMCID: PMC10984724 DOI: 10.1002/mrm.29713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/30/2023]
Abstract
PURPOSE The aim of this study is to develop and optimize an adiabaticT 1 ρ $$ {\mathrm{T}}_{1\uprho} $$ (T 1 ρ , adiab $$ {\mathrm{T}}_{1\uprho, \mathrm{adiab}} $$ ) mapping method for robust quantification of spin-lock (SL) relaxation in the myocardium at 3T. METHODS Adiabatic SL (aSL) preparations were optimized for resilience againstB 0 $$ {\mathrm{B}}_0 $$ andB 1 + $$ {\mathrm{B}}_1^{+} $$ inhomogeneities using Bloch simulations. OptimizedB 0 $$ {\mathrm{B}}_0 $$ -aSL, Bal-aSL andB 1 $$ {\mathrm{B}}_1 $$ -aSL modules, each compensating for different inhomogeneities, were first validated in phantom and human calf. MyocardialT 1 ρ $$ {\mathrm{T}}_{1\uprho} $$ mapping was performed using a single breath-hold cardiac-triggered bSSFP-based sequence. Then, optimizedT 1 ρ , adiab $$ {\mathrm{T}}_{1\uprho, \mathrm{adiab}} $$ preparations were compared to each other and to conventional SL-preparedT 1 ρ $$ {\mathrm{T}}_{1\uprho} $$ maps (RefSL) in phantoms to assess repeatability, and in 13 healthy subjects to investigate image quality, precision, reproducibility and intersubject variability. Finally, aSL and RefSL sequences were tested on six patients with known or suspected cardiovascular disease and compared with LGE,T 1 $$ {\mathrm{T}}_1 $$ , and ECV mapping. RESULTS The highestT 1 ρ , adiab $$ {\mathrm{T}}_{1\uprho, \mathrm{adiab}} $$ preparation efficiency was obtained in simulations for modules comprising 2 HS pulses of 30 ms each. In vivoT 1 ρ , adiab $$ {\mathrm{T}}_{1\uprho, \mathrm{adiab}} $$ maps yielded significantly higher quality than RefSL maps. Average myocardialT 1 ρ , adiab $$ {\mathrm{T}}_{1\uprho, \mathrm{adiab}} $$ values were 183.28± $$ \pm $$ 25.53 ms, compared with 38.21± $$ \pm $$ 14.37 ms RefSL-preparedT 1 ρ $$ {\mathrm{T}}_{1\uprho} $$ .T 1 ρ , adiab $$ {\mathrm{T}}_{1\uprho, \mathrm{adiab}} $$ maps showed a significant improvement in precision (avg. 14.47± $$ \pm $$ 3.71% aSL, 37.61± $$ \pm $$ 19.42% RefSL, p < 0.01) and reproducibility (avg. 4.64± $$ \pm $$ 2.18% aSL, 47.39± $$ \pm $$ 12.06% RefSL, p < 0.0001), with decreased inter-subject variability (avg. 8.76± $$ \pm $$ 3.65% aSL, 51.90± $$ \pm $$ 15.27% RefSL, p < 0.0001). Among aSL preparations,B 0 $$ {\mathrm{B}}_0 $$ -aSL achieved the better inter-subject variability. In patients,B 1 $$ {\mathrm{B}}_1 $$ -aSL preparations showed the best artifact resilience among the adiabatic preparations.T 1 ρ , adiab $$ {\mathrm{T}}_{1\uprho, \mathrm{adiab}} $$ times show focal alteration colocalized with areas of hyper-enhancement in the LGE images. CONCLUSION Adiabatic preparations enable robust in vivo quantification of myocardial SL relaxation times at 3T.
Collapse
Affiliation(s)
- Chiara Coletti
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Anastasia Fotaki
- Department of Biomedical Engineering, King’s College London, London, United Kingdom
| | - Joao Tourais
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Yidong Zhao
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | | | - Mehmet Akçakaya
- Department of Electrical and Computer Engineering and Center for Magnetic Resonance Research, University of Minnesota, Minnesota, USA
| | - Qian Tao
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Claudia Prieto
- Department of Biomedical Engineering, King’s College London, London, United Kingdom
- School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
- Milleniun Institute for Intelligent Healthcare Engineering, Santiago, Chile
| | - Sebastian Weingärtner
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
13
|
Bustin A, Witschey WRT, van Heeswijk RB, Cochet H, Stuber M. Magnetic resonance myocardial T1ρ mapping : Technical overview, challenges, emerging developments, and clinical applications. J Cardiovasc Magn Reson 2023; 25:34. [PMID: 37331930 DOI: 10.1186/s12968-023-00940-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
The potential of cardiac magnetic resonance to improve cardiovascular care and patient management is considerable. Myocardial T1-rho (T1ρ) mapping, in particular, has emerged as a promising biomarker for quantifying myocardial injuries without exogenous contrast agents. Its potential as a contrast-agent-free ("needle-free") and cost-effective diagnostic marker promises high impact both in terms of clinical outcomes and patient comfort. However, myocardial T1ρ mapping is still at a nascent stage of development and the evidence supporting its diagnostic performance and clinical effectiveness is scant, though likely to change with technological improvements. The present review aims at providing a primer on the essentials of myocardial T1ρ mapping, and to describe the current range of clinical applications of the technique to detect and quantify myocardial injuries. We also delineate the important limitations and challenges for clinical deployment, including the urgent need for standardization, the evaluation of bias, and the critical importance of clinical testing. We conclude by outlining technical developments to be expected in the future. If needle-free myocardial T1ρ mapping is shown to improve patient diagnosis and prognosis, and can be effectively integrated in cardiovascular practice, it will fulfill its potential as an essential component of a cardiac magnetic resonance examination.
Collapse
Affiliation(s)
- Aurelien Bustin
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Avenue du Haut Lévêque, 33604, Pessac, France.
- Department of Cardiovascular Imaging, Hôpital Cardiologique du Haut-Lévêque, CHU de Bordeaux, Avenue de Magellan, 33604, Pessac, France.
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| | | | - Ruud B van Heeswijk
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Hubert Cochet
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Avenue du Haut Lévêque, 33604, Pessac, France
- Department of Cardiovascular Imaging, Hôpital Cardiologique du Haut-Lévêque, CHU de Bordeaux, Avenue de Magellan, 33604, Pessac, France
| | - Matthias Stuber
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Avenue du Haut Lévêque, 33604, Pessac, France
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| |
Collapse
|
14
|
Li B, Lee NG, Cui SX, Nayak KS. Lung parenchyma transverse relaxation rates at 0.55 T. Magn Reson Med 2023; 89:1522-1530. [PMID: 36404674 PMCID: PMC10100111 DOI: 10.1002/mrm.29541] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/14/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022]
Abstract
PURPOSE To determine R2 and R 2 ' $$ {R}_2^{\prime } $$ transverse relaxation rates in healthy lung parenchyma at 0.55 T. This is important in that it informs the design and optimization of new imaging methods for 0.55T lung MRI. METHODS Experiments were performed in 3 healthy adult volunteers on a prototype whole-body 0.55T MRI, using a custom free-breathing electrocardiogram-triggered, single-slice echo-shifted multi-echo spin echo (ES-MCSE) pulse sequence with respiratory navigation. Transverse relaxation rates R2 and R 2 ' $$ {R}_2^{\prime } $$ and off-resonance ∆f were jointly estimated using nonlinear least-squares estimation. These measurements were compared against R2 estimates from T2 -prepared balanced SSFP (T2 -Prep bSSFP) and R 2 * $$ {R}_2^{\ast } $$ estimates from multi-echo gradient echo, which are used widely but prone to error due to different subvoxel weighting. RESULTS The mean R2 and R 2 ' $$ {R}_2^{\prime } $$ values of lung parenchyma obtained from ES-MCSE were 17.3 ± 0.7 Hz and 127.5 ± 16.4 Hz (T2 = 61.6 ± 1.7 ms; T 2 ' $$ {\mathrm{T}}_2^{\prime } $$ = 9.5 ms ± 1.6 ms), respectively. The off-resonance estimates ranged from -60 to 30 Hz. The R2 from T2 -Prep bSSFP was 15.7 ± 1.7 Hz (T2 = 68.6 ± 8.6 ms) and R 2 * $$ {R}_2^{\ast } $$ from multi-echo gradient echo was 131.2 ± 30.4 Hz ( T 2 * $$ {\mathrm{T}}_2^{\ast } $$ = 8.0 ± 2.5 ms). Paired t-test indicated that there is a significant difference between the proposed and reference methods (p < 0.05). The mean R2 estimate from T2 -Prep bSSFP was slightly smaller than that from ES-MCSE, whereas the mean R 2 ' $$ {R}_2^{\prime } $$ and R 2 * $$ {R}_2^{\ast } $$ estimates from ES-MCSE and multi-echo gradient echo were similar to each other across all subjects. CONCLUSIONS Joint estimation of transverse relaxation rates and off-resonance is feasible at 0.55 T with a free-breathing electrocardiogram-gated and navigator-gated ES-MCSE sequence. At 0.55 T, the mean R2 of 17.3 Hz is similar to the reported mean R2 of 16.7 Hz at 1.5 T, but the mean R 2 ' $$ {R}_2^{\prime } $$ of 127.5 Hz is about 5-10 times smaller than that reported at 1.5 T.
Collapse
Affiliation(s)
- Bochao Li
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, California, Los Angeles, USA
| | - Nam G Lee
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, California, Los Angeles, USA
| | - Sophia X Cui
- Siemens Medical Solutions USA, Los Angeles, California, USA
| | - Krishna S Nayak
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, California, Los Angeles, USA.,Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, California, Los Angeles, USA
| |
Collapse
|
15
|
Park J, Jang M, Heier L, Limperopoulos C, Zun Z. Rapid anatomical imaging of the neonatal brain using T 2 -prepared 3D balanced steady-state free precession. Magn Reson Med 2023; 89:1456-1468. [PMID: 36420869 PMCID: PMC10208121 DOI: 10.1002/mrm.29537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/18/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE To develop a new approach to 3D gradient echo-based anatomical imaging of the neonatal brain with a substantially shorter scan time than standard 3D fast spin echo (FSE) methods, while maintaining a high SNR. METHODS T2 -prepration was employed immediately prior to image acquisition of 3D balanced steady-state free precession (bSSFP) with a single trajectory of center-out k-space view ordering, which requires no magnetization recovery time between imaging segments during the scan. This approach was compared with 3D FSE, 2D single-shot FSE, and product 3D bSSFP imaging in numerical simulations, plus phantom and in vivo experiments. RESULTS T2 -prepared 3D bSSFP generated image contrast of gray matter, white matter, and CSF very similar to that of reference T2 -weighted imaging methods, without major image artifacts. Scan time of T2 -prepared 3D bSSFP was remarkably shorter compared to 3D FSE, whereas SNR was comparable to that of 3D FSE and higher than that of 2D single-shot FSE. Specific absorption rate of T2 -prepared 3D bSSFP remained within the safety limit. Determining an optimal imaging flip angle of T2 -prepared 3D bSSFP was critical to minimizing blurring of images. CONCLUSION T2 -prepared 3D bSSFP offers an alternative method for anatomical imaging of the neonatal brain with dramatically reduced scan time compared to standard 3D FSE and higher SNR than 2D single-shot FSE.
Collapse
Affiliation(s)
- Jinho Park
- Department of Cardiology, Yonsei University, Seoul, Korea
| | - MinJung Jang
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Linda Heier
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Catherine Limperopoulos
- Developing Brain Institute, Division of Diagnostic Imaging and Radiology, Children’s National Hospital, Washington, DC, USA
- Division of Fetal and Transitional Medicine, Children’s National Hospital, Washington, DC, USA
- Department of Pediatrics, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
- Department of Radiology, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
| | - Zungho Zun
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
16
|
Si D, Kong X, Guo R, Cheng L, Ning Z, Chen Z, Chen S, Herzka DA, Ding H. Single breath-hold three-dimensional whole-heart T 2 mapping with low-rank plus sparse reconstruction. NMR IN BIOMEDICINE 2023:e4924. [PMID: 36912448 DOI: 10.1002/nbm.4924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/14/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
The purpose of the current study was to develop and evaluate a three-dimensional single Breath-hOLd cardiac T2 mapping sequence (3D BOLT) with low-rank plus sparse (L + S) reconstruction for rapid whole-heart T2 measurement. 3D BOLT collects three highly accelerated electrocardiogram-triggered volumes with whole-heart coverage, all within a single 12-heartbeat breath-hold. Saturation pulses are performed every heartbeat to prepare longitudinal magnetization before T2 preparation (T2 -prep) or readout, and the echo time of T2 -prep is varied per volume for variable T2 weighting. Accelerated volumes are reconstructed jointly by an L + S algorithm. 3D BOLT was optimized and validated against gradient spin echo (GraSE) and a previously published approach (three-dimensional free-breathing cardiac T2 mapping [3DFBT2]) in both phantoms and human subjects (11 healthy subjects and 10 patients). The repeatability of 3D BOLT was validated on healthy subjects. Retrospective experiments indicated that 3D BOLT with 4.2-fold acceleration achieved T2 measurements comparable with those obtained with fully sampled data. T2 measured in phantoms using 3D BOLT demonstrated good accuracy and precision compared with the reference (R2 > 0.99). All in vivo imaging was successful and the average left ventricle T2 s measured by GraSE, 3DFBT2, and 3D BOLT were comparable and consistent for all healthy subjects (47.0 ± 2.3 vs. 47.7 ± 2.7 vs. 48.4 ± 1.8 ms) and patients (50.8 ± 3.0 vs. 48.6 ± 3.9 vs. 49.1 ± 3.7 ms), respectively. Myocardial T2 measured by 3D BOLT had excellent agreement with 3DFBT2 and there was no significant difference in mean, standard deviation, and coefficient of variation. 3D BOLT showed excellent repeatability (intraclass correlation coefficient: 0.938). The proposed 3D BOLT achieved whole-heart T2 mapping in a single breath-hold with good accuracy, precision, and repeatability on T2 measurements.
Collapse
Affiliation(s)
- Dongyue Si
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Xiangchuang Kong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Rui Guo
- School of medical technology, Beijing Institute of Technology, Beijing, China
| | - Lan Cheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Zihan Ning
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Zhensen Chen
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Shuo Chen
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Daniel A Herzka
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Haiyan Ding
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
17
|
Gatefait CGF, Ellison SLR, Nyangoma S, Schmitter S, Kolbitsch C. Optimisation of data acquisition towards continuous cardiac Magnetic Resonance Fingerprinting applications. Phys Med 2023; 105:102514. [PMID: 36608390 DOI: 10.1016/j.ejmp.2022.102514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/10/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
PURPOSE Assess and optimise acquisition parameters for continuous cardiac Magnetic Resonance Fingerprinting (MRF). METHODS Different acquisition schemes (flip angle amplitude, lobe size, T2-preparation pulses) for cardiac MRF were assessed in simulations and phantom and demonstrated in one healthy volunteer. Three different experimental designs were evaluated using central composite and fractional factorial designs. Relative errors for T1 and T2 were calculated for a wide range of realistic T1 and T2 value combinations. The effect of different designs on the accuracy of T1 and T2 was assessed using response surface modelling and Cohen's f calculations. RESULTS Larger flip angle amplitudes lead to an improvement of T2 accuracy and precision for simulations and phantom experiments. Similar effects could also be shown qualitatively in in-vivo scans. Accuracy and precision of T1 were robust to different design parameters with improved values for faster flip angle variation. Cohen's f showed that T2-preparation pulses influence the accuracy of T2. The number of pulses used is the most important parameter. Without T2-preparation pulses, RMSE were 3.0 ± 8.09 % for T1 and 16.24 ± 14.47 % for T2. Using those pulses reduced the RMSE to 2.3 ± 8.4 % for T1 and 14.11 ± 13.46 % for T2. Nonetheless, even if the improvement is significant, RMSE are still too high for reliable quantification. CONCLUSION In contrast to previous study using triggered MRF sequences using < 30° flip angles, large flip angle amplitudes led to better results for continuous cardiac MRF sequences. T2-preparation pulse can improve the accuracy of T2 estimation but lead to longer scan times.
Collapse
|
18
|
Cardiac MR fingerprinting with a short acquisition window in consecutive patients referred for clinical CMR and healthy volunteers. Sci Rep 2022; 12:18705. [PMID: 36333385 PMCID: PMC9636181 DOI: 10.1038/s41598-022-23573-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Cardiac Magnetic Resonance Fingerprinting (cMRF) has been demonstrated to enable robust and accurate T1 and T2 mapping for the detection of myocardial fibrosis and edema. However, the relatively long acquisition window (250 ms) used in previous cMRF studies might leave it vulnerable to motion artifacts in patients with high heart rates. The goal of this study was therefore to compare cMRF with a short acquisition window (154 ms) and low-rank reconstruction to routine cardiac T1 and T2 mapping at 1.5 T. Phantom studies showed that the proposed cMRF had a high T1 and T2 accuracy over a wider range than routine mapping techniques. In 9 healthy volunteers, the proposed cMRF showed small but significant myocardial T1 and T2 differences compared to routine mapping (ΔT1 = 1.5%, P = 0.031 and ΔT2 = - 7.1%, P < 0.001). In 61 consecutive patients referred for CMR, the native T1 values were slightly lower (ΔT1 = 1.6%; P = 0.02), while T2 values did not show statistical difference (ΔT2 = 4.3%; P = 0.11). However, the difference was higher in post-contrast myocardial T1 values (ΔT1 = 12.3%; P < 0.001), which was reflected in the extracellular volume (ΔECV = 2.4%; P < 0.001). Across all subjects, the proposed cMRF had a lower precision when compared to routine techniques, although its higher spatial resolution enabled the visualization of smaller details.
Collapse
|
19
|
Sridi S, Nuñez-Garcia M, Sermesant M, Maillot A, Hamrani DE, Magat J, Naulin J, Laurent F, Montaudon M, Jaïs P, Stuber M, Cochet H, Bustin A. Improved myocardial scar visualization with fast free-breathing motion-compensated black-blood T 1-rho-prepared late gadolinium enhancement MRI. Diagn Interv Imaging 2022; 103:607-617. [PMID: 35961843 DOI: 10.1016/j.diii.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 11/19/2022]
Abstract
PURPOSE Clinical guidelines recommend the use of bright-blood late gadolinium enhancement (BR-LGE) for the detection and quantification of regional myocardial fibrosis and scar. This technique, however, may suffer from poor contrast at the blood-scar interface, particularly in patients with subendocardial myocardial infarction. The purpose of this study was to assess the clinical performance of a two-dimensional black-blood LGE (BL-LGE) sequence, which combines free-breathing T1-rho-prepared single-shot acquisitions with an advanced non-rigid motion-compensated patch-based reconstruction. MATERIALS AND METHODS Extended phase graph simulations and phantom experiments were performed to investigate the performance of the motion-correction algorithm and to assess the black-blood properties of the proposed sequence. Fifty-one patients (37 men, 14 women; mean age, 55 ± 15 [SD] years; age range: 19-81 years) with known or suspected cardiac disease prospectively underwent free-breathing T1-rho-prepared BL-LGE imaging with inline non-rigid motion-compensated patch-based reconstruction at 1.5T. Conventional breath-held BR-LGE images were acquired for comparison purposes. Acquisition times were recorded. Two readers graded the image quality and relative contrasts were calculated. Presence, location, and extent of LGE were evaluated. RESULTS BL-LGE images were acquired with full ventricular coverage in 115 ± 25 (SD) sec (range: 64-160 sec). Image quality was significantly higher on free-breathing BL-LGE imaging than on its breath-held BR-LGE counterpart (3.6 ± 0.7 [SD] [range: 2-4] vs. 3.9 ± 0.2 [SD] [range: 3-4]) (P <0.01) and was graded as diagnostic for 44/51 (86%) patients. The mean scar-to-myocardium and scar-to-blood relative contrasts were significantly higher on BL-LGE images (P < 0.01 for both). The extent of LGE was larger on BL-LGE (median, 5 segments [IQR: 2, 7 segments] vs. median, 4 segments [IQR: 1, 6 segments]) (P < 0.01), the method being particularly sensitive in segments with LGE involving the subendocardium or papillary muscles. In eight patients (16%), BL-LGE could ascertain or rule out a diagnosis otherwise inconclusive on BR-LGE. CONCLUSION Free-breathing T1-rho-prepared BL-LGE imaging with inline motion compensated reconstruction offers a promising diagnostic technology for the non-invasive assessment of myocardial injuries.
Collapse
Affiliation(s)
- Soumaya Sridi
- Department of Cardiovascular Imaging, Groupe Hospitalier Sud, CHU Bordeaux, 33000, Pessac, France.
| | - Marta Nuñez-Garcia
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, INSERM U1045, 33600, Pessac, France
| | - Maxime Sermesant
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, INSERM U1045, 33600, Pessac, France; INRIA, Université Côte d'Azur, Sophia Antipolis, 06902, Valbonne, France
| | - Aurélien Maillot
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, INSERM U1045, 33600, Pessac, France
| | - Dounia El Hamrani
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, INSERM U1045, 33600, Pessac, France
| | - Julie Magat
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, INSERM U1045, 33600, Pessac, France
| | - Jérôme Naulin
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, INSERM U1045, 33600, Pessac, France
| | - François Laurent
- Department of Cardiovascular Imaging, Groupe Hospitalier Sud, CHU Bordeaux, 33000, Pessac, France
| | - Michel Montaudon
- Department of Cardiovascular Imaging, Groupe Hospitalier Sud, CHU Bordeaux, 33000, Pessac, France
| | - Pierre Jaïs
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, INSERM U1045, 33600, Pessac, France; Department of Cardiac Electrophysiologhy, Hôpital Cardiologique du Haut-Lévêque, CHU de Bordeaux, 33600, Pessac, France
| | - Matthias Stuber
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, INSERM U1045, 33600, Pessac, France; Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, 1011, Lausanne, Switzerland; Center for Biomedical Imaging (CIBM), 1015, Lausanne, Switzerland
| | - Hubert Cochet
- Department of Cardiovascular Imaging, Groupe Hospitalier Sud, CHU Bordeaux, 33000, Pessac, France; IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, INSERM U1045, 33600, Pessac, France
| | - Aurélien Bustin
- Department of Cardiovascular Imaging, Groupe Hospitalier Sud, CHU Bordeaux, 33000, Pessac, France; IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, INSERM U1045, 33600, Pessac, France; Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, 1011, Lausanne, Switzerland
| |
Collapse
|
20
|
O'Brien AT, Gil KE, Varghese J, Simonetti OP, Zareba KM. T2 mapping in myocardial disease: a comprehensive review. J Cardiovasc Magn Reson 2022; 24:33. [PMID: 35659266 PMCID: PMC9167641 DOI: 10.1186/s12968-022-00866-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 04/27/2022] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular magnetic resonance (CMR) is considered the gold standard imaging modality for myocardial tissue characterization. Elevated transverse relaxation time (T2) is specific for increased myocardial water content, increased free water, and is used as an index of myocardial edema. The strengths of quantitative T2 mapping lie in the accurate characterization of myocardial edema, and the early detection of reversible myocardial disease without the use of contrast agents or ionizing radiation. Quantitative T2 mapping overcomes the limitations of T2-weighted imaging for reliable assessment of diffuse myocardial edema and can be used to diagnose, stage, and monitor myocardial injury. Strong evidence supports the clinical use of T2 mapping in acute myocardial infarction, myocarditis, heart transplant rejection, and dilated cardiomyopathy. Accumulating data support the utility of T2 mapping for the assessment of other cardiomyopathies, rheumatologic conditions with cardiac involvement, and monitoring for cancer therapy-related cardiac injury. Importantly, elevated T2 relaxation time may be the first sign of myocardial injury in many diseases and oftentimes precedes symptoms, changes in ejection fraction, and irreversible myocardial remodeling. This comprehensive review discusses the technical considerations and clinical roles of myocardial T2 mapping with an emphasis on expanding the impact of this unique, noninvasive tissue parameter.
Collapse
Affiliation(s)
- Aaron T O'Brien
- Ohio University Heritage College of Osteopathic Medicine, Athens, Ohio, USA
| | - Katarzyna E Gil
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Juliet Varghese
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Orlando P Simonetti
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
- Department of Radiology, The Ohio State University, Columbus, Ohio, USA
| | - Karolina M Zareba
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
21
|
Ogier AC, Bustin A, Cochet H, Schwitter J, van Heeswijk RB. The Road Toward Reproducibility of Parametric Mapping of the Heart: A Technical Review. Front Cardiovasc Med 2022; 9:876475. [PMID: 35600490 PMCID: PMC9120534 DOI: 10.3389/fcvm.2022.876475] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/11/2022] [Indexed: 01/02/2023] Open
Abstract
Parametric mapping of the heart has become an essential part of many cardiovascular magnetic resonance imaging exams, and is used for tissue characterization and diagnosis in a broad range of cardiovascular diseases. These pulse sequences are used to quantify the myocardial T1, T2, T2*, and T1ρ relaxation times, which are unique surrogate indices of fibrosis, edema and iron deposition that can be used to monitor a disease over time or to compare patients to one another. Parametric mapping is now well-accepted in the clinical setting, but its wider dissemination is hindered by limited inter-center reproducibility and relatively long acquisition times. Recently, several new parametric mapping techniques have appeared that address both of these problems, but substantial hurdles remain for widespread clinical adoption. This review serves both as a primer for newcomers to the field of parametric mapping and as a technical update for those already well at home in it. It aims to establish what is currently needed to improve the reproducibility of parametric mapping of the heart. To this end, we first give an overview of the metrics by which a mapping technique can be assessed, such as bias and variability, as well as the basic physics behind the relaxation times themselves and what their relevance is in the prospect of myocardial tissue characterization. This is followed by a summary of routine mapping techniques and their variations. The problems in reproducibility and the sources of bias and variability of these techniques are reviewed. Subsequently, novel fast, whole-heart, and multi-parametric techniques and their merits are treated in the light of their reproducibility. This includes state of the art segmentation techniques applied to parametric maps, and how artificial intelligence is being harnessed to solve this long-standing conundrum. We finish up by sketching an outlook on the road toward inter-center reproducibility, and what to expect in the future.
Collapse
Affiliation(s)
- Augustin C. Ogier
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Aurelien Bustin
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- Department of Cardiovascular Imaging, Hôpital Cardiologique du Haut-Lévêque, CHU de Bordeaux, Avenue de Magellan, Pessac, France
| | - Hubert Cochet
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- Department of Cardiovascular Imaging, Hôpital Cardiologique du Haut-Lévêque, CHU de Bordeaux, Avenue de Magellan, Pessac, France
| | - Juerg Schwitter
- Cardiac MR Center, Cardiology Service, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Ruud B. van Heeswijk
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- *Correspondence: Ruud B. van Heeswijk
| |
Collapse
|
22
|
Androulakis E, Mohiaddin R, Bratis K. Magnetic resonance coronary angiography in the era of multimodality imaging. Clin Radiol 2022; 77:e489-e499. [DOI: 10.1016/j.crad.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/09/2022] [Indexed: 11/28/2022]
|
23
|
Unenhanced Whole-Heart Coronary MRA: Prospective Intraindividual Comparison of 1.5-T SSFP and 3-T Dixon Water-Fat Separation GRE Methods Using Coronary Angiography as Reference. AJR Am J Roentgenol 2022; 219:199-211. [PMID: 35293232 DOI: 10.2214/ajr.21.27292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background: Coronary MRA is commonly performed at 1.5 T using SSFP acquisitions. Coronary MRA at 3 T is limited using SSFP due to impaired fat suppression and has been investigated typically using contrast-enhanced techniques. A Dixon fat-water separation gradient-recalled echo (GRE) method may enable high-quality unenhanced 3-T coronary MRA. Objective: To compare 1.5-T SSFP and 3-T Dixon water-fat separation GRE methods for unenhanced whole-heart coronary MRA in patients with suspected coronary artery disease (CAD). Methods: This prospective study included 44 patients (27 men, 17 women; mean age 59±8 years) with intermediate-to-high risk of CAD who underwent both 1.5-T SSFP and 3-T Dixon GRE coronary MRA examinations before coronary angiography (CAG). Two radiologists independently assessed coronary arteries in terms of subjective image quality (1-5 scale; 5=highest image quality), number of visible segments, apparent contrast-to-noise ratio (CNR; vs myocardium)), and presence of significant stenoses. Methods were compared using readers' mean values for apparent CNR and consensus interpretations for other measures. CAG served as reference standard for presence of stenoses. Results: Interobserver agreement expressed as kappa was 0.85 for image quality, 0.85 for segment visibility, and 0.83 for stenosis, and expressed as intraclass correlation coefficient was 0.92 for apparent CNR. Mean overall image quality score was 4.0±1.1 for 3-T Dixon GRE versus 3.0±1.2 for 1.5-T SSFP. Percentage of visible segments for 3-T Dixon GRE versus 1.5-T SSFP was 96.7% versus 88.9% for all segments, 96.9% versus 90.1% for distal segments, and 93.1% versus 77.2% for branch segments. Mean overall apparent CNR was 93.2±29.2 for 3-T Dixon GRE versus 80.8±27.9 for 1.5-T SSFP. 3-T Dixon GRE, compared with 1.5-T SSFP, showed higher sensitivity and specificity in per-vessel analysis (87.9% vs 77.3%; 83.3% vs 60.6%), per-segment analysis (84.6% vs 74.8%, 90.9% vs 79.6%), and per-segment analysis of distal and branch segments (89.7% vs 75.9%, 89.7% vs 73.7%). Conclusion: For unenhanced coronary MRA, 3-T unenhanced Dixon GRE had better image quality and diagnostic performance than 1.5-T SSFP, particularly for distal and branch segments. Clinical Impact: The 3-T Dixon GRE technique may be preferred to the current clinical standard of 1.5-T SSFP for unenhanced coronary MRA.
Collapse
|
24
|
Mao X, Lee HL, Hu Z, Cao T, Han F, Ma S, Serry FM, Fan Z, Xie Y, Li D, Christodoulou AG. Simultaneous Multi-Slice Cardiac MR Multitasking for Motion-Resolved, Non-ECG, Free-Breathing T1–T2 Mapping. Front Cardiovasc Med 2022; 9:833257. [PMID: 35310971 PMCID: PMC8930916 DOI: 10.3389/fcvm.2022.833257] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/27/2022] [Indexed: 02/05/2023] Open
Abstract
The aim of this study is to simultaneously quantify T1/T2 across three slices of the left-ventricular myocardium without breath-holds or ECG monitoring, all within a 3 min scan. Radial simultaneous multi-slice (SMS) encoding, self-gating, and image reconstruction was incorporated into the cardiovascular magnetic resonance (CMR) Multitasking framework to simultaneously image three short-axis slices. A T2prep-IR FLASH sequence with two flip angles was designed and implemented to allow B1+-robust T1 and T2 mapping. The proposed Multitasking-SMS method was validated in a standardized phantom and 10 healthy volunteers, comparing T1 and T2 measurements and scan-rescan repeatability against corresponding reference methods in one layer of phantom vials and in 16 American Heart Association (AHA) myocardial segments. In phantom, Multitasking-SMS T1/T2 measurements showed substantial correlation (R2 > 0.996) and excellent agreement [intraclass correlation coefficients (ICC) ≥ 0.999)] with reference measurements. In healthy volunteers, Multitasking-SMS T1/T2 maps reported similar myocardial T1/T2 values (1,215 ± 91.0/41.5 ± 6.3 ms) to the reference myocardial T1/T2 values (1,239 ± 67.5/42.7 ± 4.1 ms), with P = 0.347 and P = 0.296, respectively. Bland–Altman analyses also demonstrated good in vivo repeatability in both the multitasking and references, with segment-wise coefficients of variation of 4.7% (multitasking T1), 8.9% (multitasking T2), 2.4% [modified look-locker inversion recovery (MOLLI)], and 4.6% (T2-prep FLASH), respectively. In summary, multitasking-SMS is feasible for free-breathing, non-ECG, myocardial T1/T2 quantification in 16 AHA segments over 3 short-axis slices in 3 min. The method shows the great potential for reducing exam time for quantitative CMR without ECG or breath-holds.
Collapse
Affiliation(s)
- Xianglun Mao
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Hsu-Lei Lee
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Zhehao Hu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Radiology, University of Southern California, Los Angeles, CA, United States
| | - Tianle Cao
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Fei Han
- Siemens Medical Solutions, Inc., Los Angeles, CA, United States
| | - Sen Ma
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Fardad M. Serry
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Zhaoyang Fan
- Department of Radiology, University of Southern California, Los Angeles, CA, United States
| | - Yibin Xie
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Anthony G. Christodoulou
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Anthony G. Christodoulou
| |
Collapse
|
25
|
Gu Y, Wang L, Yang H, Wu Y, Kim K, Zhu Y, Androjna C, Zhu X, Chen Y, Zhong K, Yu X. Three-dimensional high-resolution T 1 and T 2 mapping of whole macaque brain at 9.4 T using magnetic resonance fingerprinting. Magn Reson Med 2022; 87:2901-2913. [PMID: 35129226 DOI: 10.1002/mrm.29181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 11/12/2022]
Abstract
PURPOSE Quantitative T1 and T2 mapping in non-human primates with whole-brain coverage is challenged by the requirement of sub-millimeter resolution and the inhomogeneity of the transmit magnetic field (B1 + ) covering a large field of view. The goal of the current study is to develop a magnetic resonance fingerprinting (MRF) method for simultaneous T1 and T2 mapping of the entire macaque brain within feasible scan time. METHODS A three-dimensional (3D) MRF sequence with both inversion- and T2 -preparation modules was developed and evaluated on a 9.4 T preclinical scanner. Data acquisition used a 3D stack-of-spirals trajectory, with undersampling along both the in-plane and the through-plane directions. The effect of B1 + inhomogeneity was accounted for by matching the acquired fingerprint to a dictionary simulated with the B1 + factors measured from a separate scan. In vitro and ex vivo studies were performed to evaluate the accuracy and the undersampling capacity of the MRF method. The application of the MRF method for in vivo, brain-wide T1 and T2 mapping was demonstrated on macaques at 4, 6, and 12 years of age. RESULTS The MRF method enabled highly repeatable T1 and T2 mapping at high spatial resolution (0.35 × 0.35 × 1 mm3 ) with an acceleration factor of 24. In vivo studies showed significant age-related T2 reduction in deep gray nuclei including the globus pallidus, the putamen, and the caudate nucleus. CONCLUSIONS This study demonstrates the first MRF study for brain-wide, multi-parametric quantification in non-human primates with sub-millimeter resolution.
Collapse
Affiliation(s)
- Yuning Gu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Lulu Wang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, China.,Anhui Province Key Laboratory of High Field Magnetic Resonance Imaging, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Hongyi Yang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, China.,Anhui Province Key Laboratory of High Field Magnetic Resonance Imaging, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,School of Graduate Studies, Science Island Branch, University of Science and Technology of China, Hefei, China
| | - Yun Wu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, China.,Anhui Province Key Laboratory of High Field Magnetic Resonance Imaging, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Kihwan Kim
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yuran Zhu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Charlie Androjna
- Center for Preclinical Magnetic Resonance Imaging, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Xiaofeng Zhu
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yong Chen
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Kai Zhong
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, China.,Anhui Province Key Laboratory of High Field Magnetic Resonance Imaging, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Biomedical Engineering Department, Peking University, Beijing, China
| | - Xin Yu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
26
|
Comparison of T2 Quantification Strategies in the Abdominal-Pelvic Region for Clinical Use. Invest Radiol 2022; 57:412-421. [PMID: 34999669 DOI: 10.1097/rli.0000000000000852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The aim of the study was to compare different magnetic resonance imaging (MRI) acquisition strategies appropriate for T2 quantification in the abdominal-pelvic area. The different techniques targeted in the study were chosen according to 2 main considerations: performing T2 measurement in an acceptable time for clinical use and preventing/correcting respiratory motion. MATERIALS AND METHODS Acquisitions were performed at 3 T. To select sequences for in vivo measurements, a phantom experiment was conducted, for which the T2 values obtained with the different techniques of interest were compared with the criterion standard (single-echo SE sequence, multiple acquisitions with varying echo time). Repeatability and temporal reproducibility studies for the different techniques were also conducted on the phantom. Finally, an in vivo study was conducted on 12 volunteers to compare the techniques that offer acceptable acquisition time for clinical use and either address or correct respiratory motion. RESULTS For the phantom study, the DESS and T2-preparation techniques presented the lowest precision (ρ2 = 0.9504 and ρ2 = 0.9849 respectively), and showed a poor repeatability/reproducibility compared with the other techniques. The strategy relying on SE-EPI showed the best precision and accuracy (ρ2 = 0.9994 and Cb = 0.9995). GRAPPATINI exhibited a very good precision (ρ2 = 0.9984). For the technique relying on radial TSE, the precision was not as good as GRAPPATINI (ρ2 = 0.9872). The in vivo study demonstrated good respiratory motion management for all of the selected techniques. It also showed that T2 estimate ranges were different from one method to another. For GRAPPATINI and radial TSE techniques, there were significant differences between all the different types of organs of interest. CONCLUSIONS To perform T2 measurement in the abdominal-pelvic region, one should favor a technique with acceptable acquisition time for clinical use, with proper respiratory motion management, with good repeatability, reproducibility, and precision. In this study, the techniques relying respectively on SE-EPI, radial TSE, and GRAPPATINI appeared as good candidates.
Collapse
|
27
|
Hermann I, Kellman P, Demirel OB, Akçakaya M, Schad LR, Weingärtner S. Free-breathing simultaneous T1 , T2 , and T2∗ quantification in the myocardium. Magn Reson Med 2021; 86:1226-1240. [PMID: 33780037 PMCID: PMC8252099 DOI: 10.1002/mrm.28753] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/15/2021] [Accepted: 02/06/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE To implement a free-breathing sequence for simultaneous quantification of T 1 , T 2 , and T 2 ∗ for comprehensive tissue characterization of the myocardium in a single scan using a multi-gradient-echo readout with saturation and T 2 preparation pulses. METHODS In the proposed Saturation And T 2 -prepared Relaxometry with Navigator-gating (SATURN) technique, a series of multi-gradient-echo (GRE) images with different magnetization preparations was acquired during free breathing. A total of 35 images were acquired in 26.5 ± 14.9 seconds using multiple saturation times and T 2 preparation durations and with imaging at 5 echo times. Bloch simulations and phantom experiments were used to validate a 5-parameter fit model for accurate relaxometry. Free-breathing simultaneous T 1 , T 2 , and T 2 ∗ measurements were performed in 10 healthy volunteers and 2 patients using SATURN at 3T and quantitatively compared to conventional single-parameter methods such as SASHA for T 1 , T 2 -prepared bSSFP, and multi-GRE for T 2 ∗ . RESULTS Simulations confirmed accurate fitting with the 5-parameter model. Phantom measurements showed good agreement with the reference methods in the relevant range for in vivo measurements. Compared to single-parameter methods comparable accuracy was achieved. SATURN produced in vivo parameter maps that were visually comparable to single-parameter methods. No significant difference between T 1 , T 2 , and T 2 ∗ times acquired with SATURN and single-parameter methods was shown in quantitative measurements (SATURN T 1 = 1573 ± 86 ms , T 2 = 33.2 ± 3.6 ms , T 2 ∗ = 25.3 ± 6.1 ms ; conventional methods: T 1 = 1544 ± 107 ms , T 2 = 33.2 ± 3.6 ms , T 2 ∗ = 23.8 ± 5.5 ms ; P > . 2 ) CONCLUSION: SATURN enables simultaneous quantification of T 1 , T 2 , and T 2 ∗ in the myocardium for comprehensive tissue characterization with co-registered maps, in a single scan with good agreement to single-parameter methods.
Collapse
Affiliation(s)
- Ingo Hermann
- Department of Imaging PhysicsMagnetic Resonance Systems LabDelft University of TechnologyDelftThe Netherlands
- Computer Assisted Clinical MedicineMedical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Peter Kellman
- National Heart, Lung, and Blood InstituteNational Institutes of Health, DHHSBethesdaMDUSA
| | - Omer B. Demirel
- Department of Electrical and Computer Engineering and Center for Magnetic Resonance ResearchUniversity of MinnesotaMinnesotaMNUSA
| | - Mehmet Akçakaya
- Department of Electrical and Computer Engineering and Center for Magnetic Resonance ResearchUniversity of MinnesotaMinnesotaMNUSA
| | - Lothar R. Schad
- Computer Assisted Clinical MedicineMedical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Sebastian Weingärtner
- Department of Imaging PhysicsMagnetic Resonance Systems LabDelft University of TechnologyDelftThe Netherlands
| |
Collapse
|
28
|
Hu C, Huber S, Nguyen V, Baldassarre L, Mojibian H, Peters D. Fat-saturated dark-blood cardiac T2 mapping in a single breath-hold. Magn Reson Imaging 2021; 81:24-32. [PMID: 34044065 DOI: 10.1016/j.mri.2021.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/06/2021] [Accepted: 05/23/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE Conventional cardiac T2 mapping suffers from the partial-voluming effect in the endocardium and epicardium due to the co-presence of intra-cavity blood and epicardial fat. The aim of the study is to develop a novel single-breath-hold Fat-Saturated Dark-Blood (FSDB) cardiac T2-mapping technique to mitigate the partial-voluming and improve T2 accuracy. METHODS The proposed FSDB T2-mapping technique combines T2-prepared bSSFP, a novel use of double inversion-recovery with heart-rate-adaptive TI, and spectrally-selective fat saturation to mitigate partial-voluming from both the blood and fat. FSDB T2 mapping was compared to conventional T2 mapping via simulations, phantom imaging, healthy-subject imaging (n = 8), and patient imaging (n = 7). In the healthy subjects, a high-resolution coplanar anatomical imaging was performed to provide a gold standard for segmentation of endocardium and epicardium. T2 maps were registered to the gold standard image to evaluate any inter-layer T2 difference, which is a surrogate for partial-voluming. RESULTS Simulations and phantom imaging showed that FSDB T2 mapping was accurate in a range of heartrates, off-resonance, and T2 values, and blood/fat reasonably nulled in a range of heartrates. In healthy subjects, FSDB T2 mapping showed similar T2 values over different myocardial layers in all 3 short-axis slices (e.g. basal epicardial/mid-wall/endocardial T2 = 42 ± 2 ms/41 ± 1 ms/42 ± 1 ms), whereas conventional T2 mapping showed considerably increased T2 in the endocardium and epicardium (e.g. basal epicardial/mid-wall/endocardial T2 = 48 ± 3 ms/43 ± 1 ms/49 ± 3 ms). The homogeneous T2 in the FSDB T2 mapping increased the apparent LV-wall thickness by 25-41% compared with the conventional method. CONCLUSIONS The proposed technique improves accuracy of myocardial T2 mapping against partial-voluming associated with both fat and blood, facilitating a multi-layer T2 evaluation of the myocardium. This technique may improve utility of cardiac T2 mapping in diseases affecting the endocardium and epicardium, and in patients with a small heart.
Collapse
Affiliation(s)
- Chenxi Hu
- The Institute of Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University (SJTU), Shanghai, PR China.
| | - Steffen Huber
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, Yale University, New Haven, CT, United States of America
| | - Vinh Nguyen
- Cardiovascular Section, Department of Internal Medicine, Yale School of Medicine, Yale University, , New Haven, CT, United States of America
| | - Lauren Baldassarre
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, Yale University, New Haven, CT, United States of America; Cardiovascular Section, Department of Internal Medicine, Yale School of Medicine, Yale University, , New Haven, CT, United States of America
| | - Hamid Mojibian
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, Yale University, New Haven, CT, United States of America
| | - Dana Peters
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, Yale University, New Haven, CT, United States of America
| |
Collapse
|
29
|
Hajhosseiny R, Rashid I, Bustin A, Munoz C, Cruz G, Nazir MS, Grigoryan K, Ismail TF, Preston R, Neji R, Kunze K, Razavi R, Chiribiri A, Masci PG, Rajani R, Prieto C, Botnar RM. Clinical comparison of sub-mm high-resolution non-contrast coronary CMR angiography against coronary CT angiography in patients with low-intermediate risk of coronary artery disease: a single center trial. J Cardiovasc Magn Reson 2021; 23:57. [PMID: 33993890 PMCID: PMC8127202 DOI: 10.1186/s12968-021-00758-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 04/06/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The widespread clinical application of coronary cardiovascular magnetic resonance (CMR) angiography (CMRA) for the assessment of coronary artery disease (CAD) remains limited due to low scan efficiency leading to prolonged and unpredictable acquisition times; low spatial-resolution; and residual respiratory motion artefacts resulting in limited image quality. To overcome these limitations, we have integrated highly undersampled acquisitions with image-based navigators and non-rigid motion correction to enable high resolution (sub-1 mm3) free-breathing, contrast-free 3D whole-heart coronary CMRA with 100% respiratory scan efficiency in a clinically feasible and predictable acquisition time. OBJECTIVES To evaluate the diagnostic performance of this coronary CMRA framework against coronary computed tomography angiography (CTA) in patients with suspected CAD. METHODS Consecutive patients (n = 50) with suspected CAD were examined on a 1.5T CMR scanner. We compared the diagnostic accuracy of coronary CMRA against coronary CTA for detecting a ≥ 50% reduction in luminal diameter. RESULTS The 50 recruited patients (55 ± 9 years, 33 male) completed coronary CMRA in 10.7 ± 1.4 min. Twelve (24%) had significant CAD on coronary CTA. Coronary CMRA obtained diagnostic image quality in 95% of all, 97% of proximal, 97% of middle and 90% of distal coronary segments. The sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy were: per patient (100%, 74%, 55%, 100% and 80%), per vessel (81%, 88%, 46%, 97% and 88%) and per segment (76%, 95%, 44%, 99% and 94%) respectively. CONCLUSIONS The high diagnostic image quality and diagnostic performance of coronary CMRA compared against coronary CTA demonstrates the potential of coronary CMRA as a robust and safe non-invasive alternative for excluding significant disease in patients at low-intermediate risk of CAD.
Collapse
Affiliation(s)
- Reza Hajhosseiny
- School of Biomedical Engineering and Imaging Sciences, King's College London, 3rdfloor Lambeth Wing, London, SE1 7EH, UK.
| | - Imran Rashid
- School of Biomedical Engineering and Imaging Sciences, King's College London, 3rdfloor Lambeth Wing, London, SE1 7EH, UK
| | - Aurélien Bustin
- School of Biomedical Engineering and Imaging Sciences, King's College London, 3rdfloor Lambeth Wing, London, SE1 7EH, UK
| | - Camila Munoz
- School of Biomedical Engineering and Imaging Sciences, King's College London, 3rdfloor Lambeth Wing, London, SE1 7EH, UK
| | - Gastao Cruz
- School of Biomedical Engineering and Imaging Sciences, King's College London, 3rdfloor Lambeth Wing, London, SE1 7EH, UK
| | - Muhummad Sohaib Nazir
- School of Biomedical Engineering and Imaging Sciences, King's College London, 3rdfloor Lambeth Wing, London, SE1 7EH, UK
- Department of Cardiology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Karine Grigoryan
- School of Biomedical Engineering and Imaging Sciences, King's College London, 3rdfloor Lambeth Wing, London, SE1 7EH, UK
- Department of Cardiology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Tevfik F Ismail
- School of Biomedical Engineering and Imaging Sciences, King's College London, 3rdfloor Lambeth Wing, London, SE1 7EH, UK
- Department of Cardiology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Rebecca Preston
- Department of Radiology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, King's College London, 3rdfloor Lambeth Wing, London, SE1 7EH, UK
- MR Research Collaborations, Siemens Healthcare Limited, Frimley, UK
| | - Karl Kunze
- School of Biomedical Engineering and Imaging Sciences, King's College London, 3rdfloor Lambeth Wing, London, SE1 7EH, UK
- MR Research Collaborations, Siemens Healthcare Limited, Frimley, UK
| | - Reza Razavi
- School of Biomedical Engineering and Imaging Sciences, King's College London, 3rdfloor Lambeth Wing, London, SE1 7EH, UK
| | - Amedeo Chiribiri
- School of Biomedical Engineering and Imaging Sciences, King's College London, 3rdfloor Lambeth Wing, London, SE1 7EH, UK
| | - Pier Giorgio Masci
- School of Biomedical Engineering and Imaging Sciences, King's College London, 3rdfloor Lambeth Wing, London, SE1 7EH, UK
| | - Ronak Rajani
- School of Biomedical Engineering and Imaging Sciences, King's College London, 3rdfloor Lambeth Wing, London, SE1 7EH, UK
- Department of Cardiology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, 3rdfloor Lambeth Wing, London, SE1 7EH, UK
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - René M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, 3rdfloor Lambeth Wing, London, SE1 7EH, UK
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
30
|
Arn L, van Heeswijk RB, Stuber M, Bastiaansen JAM. A robust broadband fat-suppressing phaser T 2 -preparation module for cardiac magnetic resonance imaging at 3T. Magn Reson Med 2021; 86:1434-1444. [PMID: 33759208 DOI: 10.1002/mrm.28785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE Designing a new T2 -preparation (T2 -Prep) module to simultaneously provide robust fat suppression and efficient T2 preparation without requiring an additional fat-suppression module for T2 -weighted imaging at 3T. METHODS The tip-down radiofrequency (RF) pulse of an adiabatic T2 -Prep module was replaced by a custom-designed RF-excitation pulse that induces a phase difference between water and fat, resulting in a simultaneous T2 preparation of water signals and the suppression of fat signals at the end of the module (a phaser adiabatic T2 -Prep). Numerical simulations and in vitro and in vivo electrocardiogram (ECG)-triggered navigator-gated acquisitions of the human heart were performed. Blood, myocardium, and fat signal-to-noise ratios and right coronary artery vessel sharpness were compared against previously published adiabatic T2 -Prep approaches. RESULTS Numerical simulations predicted an increased fat-suppression bandwidth and decreased sensitivity to transmit magnetic field inhomogeneities using the proposed approach while preserving the water T2 -Prep capabilities. This was confirmed by the tissue signals acquired in the phantom and the in vivo images, which show similar blood and myocardium signal-to-noise ratio, contrast-to-noise ratio, and significantly reduced fat signal-to-noise ratio compared with the other methods. As a result, the right coronary artery conspicuity was significantly increased. CONCLUSION A novel fat-suppressing T2 -Prep method was developed and implemented that showed robust fat suppression and increased vessel sharpness compared with conventional techniques while preserving its T2 -Prep capabilities.
Collapse
Affiliation(s)
- Lionel Arn
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ruud B van Heeswijk
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Matthias Stuber
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Center for Biomedical Imaging, Lausanne, Switzerland
| | - Jessica A M Bastiaansen
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
31
|
Bustin A, Hua A, Milotta G, Jaubert O, Hajhosseiny R, Ismail TF, Botnar RM, Prieto C. High-Spatial-Resolution 3D Whole-Heart MRI T2 Mapping for Assessment of Myocarditis. Radiology 2021; 298:578-586. [PMID: 33464179 PMCID: PMC7924517 DOI: 10.1148/radiol.2021201630] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/25/2020] [Accepted: 10/07/2020] [Indexed: 12/20/2022]
Abstract
Background Clinical guidelines recommend the use of established T2 mapping sequences to detect and quantify myocarditis and edema, but T2 mapping is performed in two dimensions with limited coverage and repetitive breath holds. Purpose To assess the reproducibility of an accelerated free-breathing three-dimensional (3D) whole-heart T2 MRI mapping sequence in phantoms and participants without a history of cardiac disease and to investigate its clinical performance in participants with suspected myocarditis. Materials and Methods Eight participants (three women, mean age, 31 years ± 4 [standard deviation]; cohort 1) without a history of cardiac disease and 25 participants (nine women, mean age, 45 years ± 17; cohort 2) with clinically suspected myocarditis underwent accelerated free-breathing 3D whole-heart T2 mapping with 100% respiratory scanning efficiency at 1.5 T. The participants were enrolled from November 2018 to August 2020. Three repeated scans were performed on 2 separate days in cohort 1. Segmental variations in T2 relaxation times of the left ventricular myocardium were assessed, and intrasession and intersession reproducibility were measured. In cohort 2, segmental myocardial T2 values, detection of focal inflammation, and map quality were compared with those obtained from clinical breath-hold two-dimensional (2D) T2 mapping. Statistical differences were assessed using the nonparametric Mann-Whitney and Kruskal-Wallis tests, whereas the paired Wilcoxon signed-rank test was used to assess subjective scores. Results Whole-heart T2 maps were acquired in a mean time of 6 minutes 53 seconds ± 1 minute 5 seconds at 1.5 mm3 resolution. Breath-hold 2D and free-breathing 3D T2 mapping had similar intrasession (mean T2 change of 3.2% and 2.3% for 2D and 3D, respectively) and intersession (4.8% and 4.9%, respectively) reproducibility. The two T2 mapping sequences showed similar map quality (P = .23, cohort 2). Abnormal myocardial segments were identified with confidence (score 3) in 14 of 25 participants (56%) with 3D T2 mapping and only in 10 of 25 participants (40%) with 2D T2 mapping. Conclusion High-spatial-resolution three-dimensional (3D) whole-heart T2 mapping shows high intrasession and intersession reproducibility and helps provide T2 myocardial characterization in agreement with clinical two-dimensional reference, while enabling 3D assessment of focal disease with higher confidence. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Friedrich in this issue.
Collapse
Affiliation(s)
- Aurélien Bustin
- From the Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, 3rd Floor, Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, England (A.B., A.H., G.M., O.J., R.H., T.F.I., R.M.B., C.P.); and Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile (R.M.B., C.P.)
| | - Alina Hua
- From the Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, 3rd Floor, Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, England (A.B., A.H., G.M., O.J., R.H., T.F.I., R.M.B., C.P.); and Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile (R.M.B., C.P.)
| | - Giorgia Milotta
- From the Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, 3rd Floor, Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, England (A.B., A.H., G.M., O.J., R.H., T.F.I., R.M.B., C.P.); and Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile (R.M.B., C.P.)
| | - Olivier Jaubert
- From the Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, 3rd Floor, Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, England (A.B., A.H., G.M., O.J., R.H., T.F.I., R.M.B., C.P.); and Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile (R.M.B., C.P.)
| | - Reza Hajhosseiny
- From the Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, 3rd Floor, Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, England (A.B., A.H., G.M., O.J., R.H., T.F.I., R.M.B., C.P.); and Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile (R.M.B., C.P.)
| | - Tevfik F. Ismail
- From the Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, 3rd Floor, Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, England (A.B., A.H., G.M., O.J., R.H., T.F.I., R.M.B., C.P.); and Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile (R.M.B., C.P.)
| | - René M. Botnar
- From the Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, 3rd Floor, Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, England (A.B., A.H., G.M., O.J., R.H., T.F.I., R.M.B., C.P.); and Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile (R.M.B., C.P.)
| | - Claudia Prieto
- From the Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, 3rd Floor, Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, England (A.B., A.H., G.M., O.J., R.H., T.F.I., R.M.B., C.P.); and Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile (R.M.B., C.P.)
| |
Collapse
|
32
|
Ladrova M, Martinek R, Nedoma J, Hanzlikova P, Nelson MD, Kahankova R, Brablik J, Kolarik J. Monitoring and Synchronization of Cardiac and Respiratory Traces in Magnetic Resonance Imaging: A Review. IEEE Rev Biomed Eng 2021; 15:200-221. [PMID: 33513108 DOI: 10.1109/rbme.2021.3055550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Synchronization of human vital signs, namely the cardiac cycle and respiratory excursions, is necessary during magnetic resonance imaging of the cardiovascular system and the abdominal cavity to achieve optimal image quality with minimized artifacts. This review summarizes techniques currently available in clinical practice, as well as methods under development, outlines the benefits and disadvantages of each approach, and offers some unique solutions for consideration.
Collapse
|
33
|
Jenista ER, Wendell DC, Kim HW, Rehwald WG, Chen EL, Darty SN, Smith LR, Azevedo CF, Parker MA, Kim RJ. Comparison of magnetization transfer-preparation and T2-preparation for dark-blood delayed-enhancement imaging. NMR IN BIOMEDICINE 2020; 33:e4396. [PMID: 32875674 DOI: 10.1002/nbm.4396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/03/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
Recently developed dark-blood techniques such as Flow-Independent Dark-blood DeLayed Enhancement (FIDDLE) allow simultaneous visualization of tissue contrast-enhancement and blood-pool suppression. Critical to FIDDLE is the magnetization preparation, which accentuates differences between myocardium and blood-pool. Here, we compared magnetization transfer (MT)-preparation and T2-preparation for use with FIDDLE. Variants of FIDDLE were developed with MT- or T2-preparation modules and tested in 35 patients (11 at 1.5 T, 24 at 3 T). Images were acquired with each FIDDLE variant in an interleaved fashion 10 minutes after gadolinium administration with otherwise identical acquisition parameters. Images were visually and quantitatively assessed for artifacts and differences in right ventricle to left ventricle (RV-to-LV) blood-pool suppression. Bright artifacts, reflecting incomplete blood-pool suppression, were frequently observed in the left atrium with T2-preparation FIDDLE at 1.5 and 3 T (82% and up to 100% of patients, respectively). MT-preparation FIDDLE resulted in fewer patients with artifacts (0% at 1.5 T, 22% at 3 T; P < .01). Left atrial blood-pool signal was significantly more homogeneous with MT-preparation than with T2-preparation at 1.5 and 3 T (P < .001 for all comparisons). Visibly different RV-to-LV blood-pool suppression was observed with T2-preparation in 36% of patients at 1.5 T and up to 94% at 3 T. In these patients, RV blood-pool signal was elevated, reducing the conspicuity of the myocardial-RV blood-pool border. Conversely, there were no visible differences in RV-to-LV blood-pool suppression with MT-preparation. Quantitative assessment of differences in blood-pool suppression and blood-pool artifacts was consistent with visual analyses. We conclude that for dark blood-blood delayed-enhancement imaging of the heart, MT-preparation results in fewer bright blood-pool artifacts and more uniform blood-pool suppression than T2-preparation.
Collapse
Affiliation(s)
- Elizabeth R Jenista
- Duke Cardiovascular Magnetic Resonance Center, Duke University Medical Center, Durham, North Carolina
- Division of Cardiology, Duke University Medical Center, Durham, North Carolina
| | - David C Wendell
- Duke Cardiovascular Magnetic Resonance Center, Duke University Medical Center, Durham, North Carolina
- Division of Cardiology, Duke University Medical Center, Durham, North Carolina
| | - Han W Kim
- Duke Cardiovascular Magnetic Resonance Center, Duke University Medical Center, Durham, North Carolina
- Division of Cardiology, Duke University Medical Center, Durham, North Carolina
| | | | - Enn-Ling Chen
- Duke Cardiovascular Magnetic Resonance Center, Duke University Medical Center, Durham, North Carolina
- Division of Cardiology, Duke University Medical Center, Durham, North Carolina
| | - Stephen N Darty
- Duke Cardiovascular Magnetic Resonance Center, Duke University Medical Center, Durham, North Carolina
- Division of Cardiology, Duke University Medical Center, Durham, North Carolina
| | - Logan R Smith
- Duke Cardiovascular Magnetic Resonance Center, Duke University Medical Center, Durham, North Carolina
| | - Clerio F Azevedo
- Duke Cardiovascular Magnetic Resonance Center, Duke University Medical Center, Durham, North Carolina
- Division of Cardiology, Duke University Medical Center, Durham, North Carolina
| | - Michele A Parker
- Duke Cardiovascular Magnetic Resonance Center, Duke University Medical Center, Durham, North Carolina
- Division of Cardiology, Duke University Medical Center, Durham, North Carolina
| | - Raymond J Kim
- Duke Cardiovascular Magnetic Resonance Center, Duke University Medical Center, Durham, North Carolina
- Division of Cardiology, Duke University Medical Center, Durham, North Carolina
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
34
|
Ma S, Wang N, Fan Z, Kaisey M, Sicotte NL, Christodoulou AG, Li D. Three-dimensional whole-brain simultaneous T1, T2, and T1ρ quantification using MR Multitasking: Method and initial clinical experience in tissue characterization of multiple sclerosis. Magn Reson Med 2020; 85:1938-1952. [PMID: 33107126 DOI: 10.1002/mrm.28553] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE To develop a 3D whole-brain simultaneous T1/T2/T1ρ quantification method with MR Multitasking that provides high quality, co-registered multiparametric maps in 9 min. METHODS MR Multitasking conceptualizes T1/T2/T1ρ relaxations as different time dimensions, simultaneously resolving all three dimensions with a low-rank tensor image model. The proposed method was validated on a phantom and in healthy volunteers, comparing quantitative measurements against corresponding reference methods and evaluating the scan-rescan repeatability. Initial clinical validation was performed in age-matched relapsing-remitting multiple sclerosis (RRMS) patients to examine the feasibility of quantitative tissue characterization and to compare with the healthy control cohort. The feasibility of synthesizing six contrast-weighted images was also examined. RESULTS Our framework produced high quality, co-registered T1/T2/T1ρ maps that closely resemble the reference maps. Multitasking T1/T2/T1ρ measurements showed substantial agreement with reference measurements on the phantom and in healthy controls. Bland-Altman analysis indicated good in vivo repeatability of all three parameters. In RRMS patients, lesions were conspicuously delineated on all three maps and on four synthetic weighted images (T2-weighted, T2-FLAIR, double inversion recovery, and a novel "T1ρ-FLAIR" contrast). T1 and T2 showed significant differences for normal appearing white matter between patients and controls, while T1ρ showed significant differences for normal appearing white matter, cortical gray matter, and deep gray matter. The combination of three parameters significantly improved the differentiation between RRMS patients and healthy controls, compared to using any single parameter alone. CONCLUSION MR Multitasking simultaneously quantifies whole-brain T1/T2/T1ρ and is clinically promising for quantitative tissue characterization of neurological diseases, such as MS.
Collapse
Affiliation(s)
- Sen Ma
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Nan Wang
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Zhaoyang Fan
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Marwa Kaisey
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Nancy L Sicotte
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Anthony G Christodoulou
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Bioengineering, University of California, Los Angeles, California, USA
| |
Collapse
|
35
|
Guo R, Cai X, Kucukseymen S, Rodriguez J, Paskavitz A, Pierce P, Goddu B, Thompson RB, Nezafat R. Free-breathing simultaneous myocardial T 1 and T 2 mapping with whole left ventricle coverage. Magn Reson Med 2020; 85:1308-1321. [PMID: 33078443 DOI: 10.1002/mrm.28506] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 01/20/2023]
Abstract
PURPOSE To develop a free-breathing sequence, that is, Multislice Joint T1 -T2 , for simultaneous measurement of myocardial T1 and T2 for multiple slices to achieve whole left-ventricular coverage. METHODS Multislice Joint T1 -T2 adopts slice-interleaved acquisition to collect 10 single-shot electrocardiogram-triggered images for each slice prepared by saturation and T2 preparation to simultaneously estimate myocardial T1 and T2 and achieve whole left-ventricular coverage. Prospective slice-tracking using a respiratory navigator and retrospective image registration are used to reduce through-plane and in-plane motion, respectively. Multislice Joint T1 -T2 was validated through numerical simulations and phantom and in vivo experiments, and compared with saturation-recovery single-shot acquisition and T2 -prepared balanced Steady-State Free Precession (T2 -prep SSFP) sequences. RESULTS Phantom T1 and T2 from Multislice Joint T1 -T2 had good accuracy and precision, and were insensitive to heart rate. Multislice Joint T1 -T2 yielded T1 and T2 maps of nine left-ventricular slices in 1.4 minutes. The mean left-ventricular T1 difference between saturation-recovery single-shot acquisition and Multislice Joint T1 -T2 across healthy subjects and patients was 191 ms (1564 ± 60 ms versus 1373 ± 50 ms; P < .05) and 111 ms (1535 ± 49 ms vs 1423 ± 49 ms; P < .05), respectively. The mean difference in left-ventricular T2 between T2 -prep SSFP and Multislice Joint T1 -T2 across healthy subjects and patients was -6.3 ms (42.4 ± 1.4 ms vs 48.7 ± 2.5; P < .05) and -5.7 ms (41.6 ± 2.5 ms vs 47.3 ± 2.7; P < .05), respectively. CONCLUSION Multislice Joint T1 -T2 enables quantification of whole left-ventricular T1 and T2 during free breathing within a clinically feasible scan time of less than 2 minutes.
Collapse
Affiliation(s)
- Rui Guo
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaoying Cai
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Siemens Medical Solutions USA, Inc., Boston, Massachusetts, USA
| | - Selcuk Kucukseymen
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Jennifer Rodriguez
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Amanda Paskavitz
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Patrick Pierce
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Beth Goddu
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Richard B Thompson
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Reza Nezafat
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
36
|
Roccia E, Neji R, Benkert T, Kiefer B, Goh V, Dregely I. Distortion-free 3D diffusion imaging of the prostate using a multishot diffusion-prepared phase-cycled acquisition and dictionary matching. Magn Reson Med 2020; 85:1441-1454. [PMID: 32989765 DOI: 10.1002/mrm.28527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/27/2020] [Accepted: 08/31/2020] [Indexed: 11/06/2022]
Abstract
PURPOSE To achieve three-dimensional (3D) distortion-free apparent diffusion coefficient (ADC) maps for prostate imaging using a multishot diffusion prepared-gradient echo (msDP-GRE) sequence and ADC dictionary matching. METHODS The msDP-GRE sequence is combined with a 3D Cartesian, centric k-space trajectory with center oversampling. Oversampled k-space center averaging and phase cycling are used to address motion- and eddy current-induced magnitude corruption. Extended-phase-graph (EPG) simulations and ADC dictionary matching are used to compensate for T1 effects. To shorten the acquisition time, each volume is undersampled by a factor of two and reconstructed using iterative sensitivity encoding. The proposed approach is characterized using simulations and validated in a kiwifruit phantom, comparing the msDP-GRE ADC maps obtained using both standard monoexponential fitting and dictionary matching with the clinical standard single-shot diffusion weighted-echo planar imaging (ssDW-EPI) ADC. Initial in vivo feasibility is tested in three healthy subjects, and geometric distortion is compared with anatomical T2 -weighted-turbo spin echo. RESULTS In the kiwifruit phantom experiment, the signal magnitude could be recovered using k-space center averaging and phase cycling. No statistically significant difference was observed in the ADC values estimated using msDP-GRE with dictionary matching and clinical standard DW-EPI (P < .05). The in vivo prostate msDP-GRE scans were free of geometric distortion caused by off-resonance susceptibility, and the ADC values in the prostate were in agreement with values found in the published literature. CONCLUSION Nondistorted 3D ADC maps of the prostate can be achieved using a msDP sequence and dictionary matching.
Collapse
Affiliation(s)
- Elisa Roccia
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,MR Research Collaboration, Siemens Healthcare Limited, Frimley, United Kingdom
| | - Thomas Benkert
- Oncology Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Berthold Kiefer
- Oncology Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Vicky Goh
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,Department of Radiology, Guy's & St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Isabel Dregely
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| |
Collapse
|
37
|
Zeng DY, Baron CA, Malavé MO, Kerr AB, Yang PC, Hu BS, Nishimura DG. Combined T 2 -preparation and multidimensional outer volume suppression for coronary artery imaging with 3D cones trajectories. Magn Reson Med 2020; 83:2221-2231. [PMID: 31691350 PMCID: PMC7047567 DOI: 10.1002/mrm.28057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 11/07/2022]
Abstract
PURPOSE To develop a modular magnetization preparation sequence for combined T2 -preparation and multidimensional outer volume suppression (OVS) for coronary artery imaging. METHODS A combined T2 -prepared 1D OVS sequence with fat saturation was defined to contain a 90°-60 180°60 composite nonselective tip-down pulse, two 180°Y hard pulses for refocusing, and a -90° spectral-spatial sinc tip-up pulse. For 2D OVS, 2 modules were concatenated, selective in X and then Y. Bloch simulations predicted robustness of the sequence to B0 and B1 inhomogeneities. The proposed sequence was compared with a T2 -prepared 2D OVS sequence proposed by Luo et al, which uses a spatially selective 2D spiral tip-up. The 2 sequences were compared in phantom studies and in vivo coronary artery imaging studies with a 3D cones trajectory. RESULTS Phantom results demonstrated superior OVS for the proposed sequence compared with the Luo sequence. In studies on 15 healthy volunteers, the proposed sequence had superior image edge profile acutance values compared with the Luo sequence for the right (P < .05) and left (P < .05) coronary arteries, suggesting superior vessel sharpness. The proposed sequence also had superior signal-to-noise ratio (P < .05) and passband-to-stopband ratio (P < .05). Reader scores and reader preference indicated superior coronary image quality of the proposed sequence for both the right (P < .05) and left (P < .05) coronary arteries. CONCLUSION The proposed sequence with concatenated 1D spatially selective tip-ups and integrated fat saturation has superior image quality and suppression compared with the Luo sequence with 2D spatially selective tip-up.
Collapse
Affiliation(s)
- David Y Zeng
- Department of Electrical Engineering, Stanford University, Stanford, California
| | - Corey A Baron
- Department of Electrical Engineering, Stanford University, Stanford, California
- Department of Medical Biophysics, Western University, London, Canada
| | - Mario O Malavé
- Department of Electrical Engineering, Stanford University, Stanford, California
| | - Adam B Kerr
- Department of Electrical Engineering, Stanford University, Stanford, California
| | - Phillip C Yang
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, California
| | - Bob S Hu
- Department of Electrical Engineering, Stanford University, Stanford, California
- Department of Cardiology, Palo Alto Medical Foundation, Palo Alto, California
| | - Dwight G Nishimura
- Department of Electrical Engineering, Stanford University, Stanford, California
| |
Collapse
|
38
|
Jaubert O, Arrieta C, Cruz G, Bustin A, Schneider T, Georgiopoulos G, Masci P, Sing‐Long C, Botnar RM, Prieto C. Multi‐parametric liver tissue characterization using MR fingerprinting: Simultaneous T
1
, T
2
, T
2
*, and fat fraction mapping. Magn Reson Med 2020; 84:2625-2635. [DOI: 10.1002/mrm.28311] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/23/2020] [Accepted: 04/16/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Olivier Jaubert
- School of Biomedical Engineering and Imaging Sciences King’s College London London United Kingdom
| | - Cristobal Arrieta
- Biomedical Imaging Center and Millennium Nucleus for Cardiovascular Magnetic Resonance Pontificia Universidad Católica de Chile Santiago Chile
| | - Gastão Cruz
- School of Biomedical Engineering and Imaging Sciences King’s College London London United Kingdom
| | - Aurélien Bustin
- School of Biomedical Engineering and Imaging Sciences King’s College London London United Kingdom
| | | | - Georgios Georgiopoulos
- School of Biomedical Engineering and Imaging Sciences King’s College London London United Kingdom
| | - Pier‐Giorgio Masci
- School of Biomedical Engineering and Imaging Sciences King’s College London London United Kingdom
| | - Carlos Sing‐Long
- Biomedical Imaging Center and Millennium Nucleus for Cardiovascular Magnetic Resonance Pontificia Universidad Católica de Chile Santiago Chile
- Instituto de Ingeniería Matemática y Computacional and Millennium Nucleus for the Discovery of Structures in Complex Data Pontificia Universidad Católica de Chile Santiago Chile
| | - Rene M. Botnar
- School of Biomedical Engineering and Imaging Sciences King’s College London London United Kingdom
- Escuela de Ingeniería Pontificia Universidad Católica de Chile Santiago Chile
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences King’s College London London United Kingdom
- Escuela de Ingeniería Pontificia Universidad Católica de Chile Santiago Chile
| |
Collapse
|
39
|
Wyatt CR, Barbara TM, Guimaraes AR. T 1ρ magnetic resonance fingerprinting. NMR IN BIOMEDICINE 2020; 33:e4284. [PMID: 32125050 PMCID: PMC8818303 DOI: 10.1002/nbm.4284] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 05/15/2023]
Abstract
T1ρ relaxation imaging is a quantitative imaging technique that has been used to assess cartilage integrity, liver fibrosis, tumors, cardiac infarction, and Alzheimer's disease. T1 , T2 , and T1ρ relaxation time constants have each demonstrated different degrees of sensitivity to several markers of fibrosis and inflammation, allowing for a potential multi-parametric approach to tissue quantification. Traditional magnetic resonance fingerprinting (MRF) has been shown to provide quick, quantitative mapping of T1 and T2 relaxation time constants. In this study, T1ρ relaxation is added to the MRF framework using spin lock preparations. An MRF sequence involving an RF-spoiled sequence with TR , flip angle, T1ρ , and T2 preparation variation is described. The sequence is then calibrated against conventional T1 , T2 , and T1ρ relaxation mapping techniques in agar phantoms and the abdomens of four healthy volunteers. Strong intraclass correlation coefficients (ICC > 0.9) were found between conventional and MRF sequences in phantoms and also in healthy volunteers (ICC > 0.8). The highest ICC correlation values were seen in T1 , followed by T1ρ and then T2 . In this study, T1ρ relaxation has been incorporated into the MRF framework by using spin lock preparations, while still fitting for T1 and T2 relaxation time constants. The acquisition of these parameters within a single breath hold in the abdomen alleviates the issues of movement between breath holds in conventional techniques.
Collapse
Affiliation(s)
- Cory R. Wyatt
- Advanced Imaging Research Center, Oregon Health & Sciences University, Portland, OR 97239
- Department of Diagnostic Radiology, Oregon Health & Sciences University, Portland, OR 97239
| | - Thomas M. Barbara
- Advanced Imaging Research Center, Oregon Health & Sciences University, Portland, OR 97239
| | - Alexander R. Guimaraes
- Advanced Imaging Research Center, Oregon Health & Sciences University, Portland, OR 97239
- Department of Diagnostic Radiology, Oregon Health & Sciences University, Portland, OR 97239
| |
Collapse
|
40
|
Bustin A, Rashid I, Cruz G, Hajhosseiny R, Correia T, Neji R, Rajani R, Ismail TF, Botnar RM, Prieto C. 3D whole-heart isotropic sub-millimeter resolution coronary magnetic resonance angiography with non-rigid motion-compensated PROST. J Cardiovasc Magn Reson 2020; 22:24. [PMID: 32299445 PMCID: PMC7161114 DOI: 10.1186/s12968-020-00611-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 02/19/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND To enable free-breathing whole-heart sub-millimeter resolution coronary magnetic resonance angiography (CMRA) in a clinically feasible scan time by combining low-rank patch-based undersampled reconstruction (3D-PROST) with a highly accelerated non-rigid motion correction framework. METHODS Non-rigid motion corrected CMRA combined with 2D image-based navigators has been previously proposed to enable 100% respiratory scan efficiency in modestly undersampled acquisitions. Achieving sub-millimeter isotropic resolution with such techniques still requires prohibitively long acquisition times. We propose to combine 3D-PROST reconstruction with a highly accelerated non-rigid motion correction framework to achieve sub-millimeter resolution CMRA in less than 10 min. Ten healthy subjects and eight patients with suspected coronary artery disease underwent 4-5-fold accelerated free-breathing whole-heart CMRA with 0.9 mm3 isotropic resolution. Vessel sharpness, vessel length and image quality obtained with the proposed non-rigid (NR) PROST approach were compared against translational correction only (TC-PROST) and a previously proposed NR motion-compensated technique (non-rigid SENSE) in healthy subjects. For the patient study, image quality scoring and visual comparison with coronary computed tomography angiography (CCTA) were performed. RESULTS Average scan times [min:s] were 6:01 ± 0:59 (healthy subjects) and 8:29 ± 1:41 (patients). In healthy subjects, vessel sharpness of the left anterior descending (LAD) and right (RCA) coronary arteries were improved with the proposed non-rigid PROST (LAD: 51.2 ± 8.8%, RCA: 61.2 ± 9.1%) in comparison to TC-PROST (LAD: 43.8 ± 5.1%, P = 0.051, RCA: 54.3 ± 8.3%, P = 0.218) and non-rigid SENSE (LAD: 46.1 ± 5.8%, P = 0.223, RCA: 56.7 ± 9.6%, P = 0.50), although differences were not statistically significant. The average visual image quality score was significantly higher for NR-PROST (LAD: 3.2 ± 0.6, RCA: 3.3 ± 0.7) compared with TC-PROST (LAD: 2.1 ± 0.6, P = 0.018, RCA: 2.0 ± 0.7, P = 0.014) and non-rigid SENSE (LAD: 2.3 ± 0.5, P = 0.008, RCA: 2.5 ± 0.7, P = 0.016). In patients, the proposed approach showed good delineation of the coronaries, in agreement with CCTA, with image quality scores and vessel sharpness similar to that of healthy subjects. CONCLUSIONS We demonstrate the feasibility of combining high undersampling factors with non-rigid motion-compensated reconstruction to obtain high-quality sub-millimeter isotropic CMRA images in ~ 8 min. Validation in a larger cohort of patients with coronary artery disease is now warranted.
Collapse
Affiliation(s)
- Aurélien Bustin
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, 3rd Floor, Lambeth Wing, London, SE1 7EH, UK
| | - Imran Rashid
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, 3rd Floor, Lambeth Wing, London, SE1 7EH, UK
| | - Gastao Cruz
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, 3rd Floor, Lambeth Wing, London, SE1 7EH, UK
| | - Reza Hajhosseiny
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, 3rd Floor, Lambeth Wing, London, SE1 7EH, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Teresa Correia
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, 3rd Floor, Lambeth Wing, London, SE1 7EH, UK
| | - Radhouene Neji
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, 3rd Floor, Lambeth Wing, London, SE1 7EH, UK
- MR Research Collaborations, Siemens Healthcare Limited, Frimley, UK
| | - Ronak Rajani
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, 3rd Floor, Lambeth Wing, London, SE1 7EH, UK
- Department of Cardiology, Guy's & St Thomas' Hospitals, London, UK
| | - Tevfik F Ismail
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, 3rd Floor, Lambeth Wing, London, SE1 7EH, UK
| | - René M Botnar
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, 3rd Floor, Lambeth Wing, London, SE1 7EH, UK.
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Claudia Prieto
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, 3rd Floor, Lambeth Wing, London, SE1 7EH, UK
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
41
|
Bustin A, Milotta G, Ismail TF, Neji R, Botnar RM, Prieto C. Accelerated free-breathing whole-heart 3D T 2 mapping with high isotropic resolution. Magn Reson Med 2020; 83:988-1002. [PMID: 31535729 PMCID: PMC6899588 DOI: 10.1002/mrm.27989] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 08/07/2019] [Accepted: 08/16/2019] [Indexed: 01/07/2023]
Abstract
PURPOSE To enable free-breathing whole-heart 3D T2 mapping with high isotropic resolution in a clinically feasible and predictable scan time. This 3D motion-corrected undersampled signal matched (MUST) T2 map is achieved by combining an undersampled motion-compensated T2 -prepared Cartesian acquisition with a high-order patch-based reconstruction. METHODS The 3D MUST-T2 mapping acquisition consists of an electrocardiogram-triggered, T2 -prepared, balanced SSFP sequence with nonselective saturation pulses. Three undersampled T2 -weighted volumes are acquired using a 3D Cartesian variable-density sampling with increasing T2 preparation times. A 2D image-based navigator is used to correct for respiratory motion of the heart and allow 100% scan efficiency. Multicontrast high-dimensionality undersampled patch-based reconstruction is used in concert with dictionary matching to generate 3D T2 maps. The proposed framework was evaluated in simulations, phantom experiments, and in vivo (10 healthy subjects, 2 patients) with 1.5-mm3 isotropic resolution. Three-dimensional MUST-T2 was compared against standard multi-echo spin-echo sequence (phantom) and conventional breath-held single-shot 2D SSFP T2 mapping (in vivo). RESULTS Three-dimensional MUST-T2 showed high accuracy in phantom experiments (R2 > 0.99). The precision of T2 values was similar for 3D MUST-T2 and 2D balanced SSFP T2 mapping in vivo (5 ± 1 ms versus 4 ± 2 ms, P = .52). Slightly longer T2 values were observed with 3D MUST-T2 in comparison to 2D balanced SSFP T2 mapping (50.7 ± 2 ms versus 48.2 ± 1 ms, P < .05). Preliminary results in patients demonstrated T2 values in agreement with literature values. CONCLUSION The proposed approach enables free-breathing whole-heart 3D T2 mapping with high isotropic resolution in about 8 minutes, achieving accurate and precise T2 quantification of myocardial tissue in a clinically feasible scan time.
Collapse
Affiliation(s)
- Aurélien Bustin
- Department of Biomedical EngineeringSchool of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUnited Kingdom
| | - Giorgia Milotta
- Department of Biomedical EngineeringSchool of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUnited Kingdom
| | - Tevfik F. Ismail
- Department of Biomedical EngineeringSchool of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUnited Kingdom
| | - Radhouene Neji
- Department of Biomedical EngineeringSchool of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUnited Kingdom
- MR Research Collaborations, Siemens HealthcareFrimleyUnited Kingdom
| | - René M. Botnar
- Department of Biomedical EngineeringSchool of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUnited Kingdom
- Escuela de IngenieríaPontificia Universidad Católica de ChileSantiagoChile
| | - Claudia Prieto
- Department of Biomedical EngineeringSchool of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUnited Kingdom
- Escuela de IngenieríaPontificia Universidad Católica de ChileSantiagoChile
| |
Collapse
|
42
|
Hirai K, Kido T, Kido T, Ogawa R, Tanabe Y, Nakamura M, Kawaguchi N, Kurata A, Watanabe K, Yamaguchi O, Schmidt M, Forman C, Mochizuki T. Feasibility of contrast-enhanced coronary artery magnetic resonance angiography using compressed sensing. J Cardiovasc Magn Reson 2020; 22:15. [PMID: 32050982 PMCID: PMC7017458 DOI: 10.1186/s12968-020-0601-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 01/09/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Coronary magnetic resonance angiography (CMRA) is a promising technique for assessing the coronary arteries. However, a disadvantage of CMRA is the comparatively long acquisition time. Compressed sensing (CS) can considerably reduce the scan time. The aim of this study was to verify the feasibility of CS CMRA scanning during the waiting time between contrast injection and late gadolinium enhancement (LGE) scan in a clinical protocol. METHODS Fifty clinical patients underwent contrast-enhanced CS CMRA and conventional CMRA on a 3 T CMR scanner. After contrast injection, CS CMRA was scanned during the waiting time for LGE CMR. A conventional CMRA scan was performed after LGE CMR. We assessed acquisition times and coronary artery image quality for each segment on a 4-point scale. Visible vessel length, sharpness and diameter of right (RCA), left anterior descending (LAD), and left circumflex (LCX) coronary arteries were also quantitatively compared among the scans. RESULTS All CS CMRA scans were successfully performed within the LGE waiting time. The median total scan time was 207 s (163, 259 s) for CS and 785 s (698, 975 s) for conventional CMRA (p < 0.001). No significant differences were observed in image quality scores, vessel length measurements, sharpness, and diameter between CS and conventional CMRA. CONCLUSIONS We could achieve all CS CMRA scans within the LGE waiting time. Contrast-enhanced CS CMRA could considerably shorten the scan time while maintaining image quality compared with conventional CMRA.
Collapse
Affiliation(s)
- Kuniaki Hirai
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295 Japan
| | - Teruhito Kido
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295 Japan
| | - Tomoyuki Kido
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295 Japan
| | - Ryo Ogawa
- Department of Radiology, Saiseikai Matsuyama Hospital, 880-2, Yamanishi, Matsuyama, Ehime 791-8026 Japan
| | - Yuki Tanabe
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295 Japan
| | - Masashi Nakamura
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295 Japan
| | - Naoto Kawaguchi
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295 Japan
| | - Akira Kurata
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295 Japan
| | - Kouki Watanabe
- Department of Cardiology, Saiseikai Matsuyama Hospital, 880-2, Yamanishi, Matsuyama, Ehime 791-8026 Japan
| | - Osamu Yamaguchi
- Department of Cardiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295 Japan
| | - Michaela Schmidt
- Siemens Healthcare GmbH, Allee am Roethelheimpark 2, 91052 Erlangen, Germany
| | - Christoph Forman
- Siemens Healthcare GmbH, Allee am Roethelheimpark 2, 91052 Erlangen, Germany
| | - Teruhito Mochizuki
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295 Japan
| |
Collapse
|
43
|
Dekkers IA, de Boer A, Sharma K, Cox EF, Lamb HJ, Buckley DL, Bane O, Morris DM, Prasad PV, Semple SIK, Gillis KA, Hockings P, Buchanan C, Wolf M, Laustsen C, Leiner T, Haddock B, Hoogduin JM, Pullens P, Sourbron S, Francis S. Consensus-based technical recommendations for clinical translation of renal T1 and T2 mapping MRI. MAGMA (NEW YORK, N.Y.) 2020; 33:163-176. [PMID: 31758418 PMCID: PMC7021750 DOI: 10.1007/s10334-019-00797-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023]
Abstract
To develop technical recommendations on the acquisition and post-processing of renal longitudinal (T1) and transverse (T2) relaxation time mapping. A multidisciplinary panel consisting of 18 experts in the field of renal T1 and T2 mapping participated in a consensus project, which was initiated by the European Cooperation in Science and Technology Action PARENCHIMA CA16103. Consensus recommendations were formulated using a two-step modified Delphi method. The first survey consisted of 56 items on T1 mapping, of which 4 reached the pre-defined consensus threshold of 75% or higher. The second survey was expanded to include both T1 and T2 mapping, and consisted of 54 items of which 32 reached consensus. Recommendations based were formulated on hardware, patient preparation, acquisition, analysis and reporting. Consensus-based technical recommendations for renal T1 and T2 mapping were formulated. However, there was considerable lack of consensus for renal T1 and particularly renal T2 mapping, to some extent surprising considering the long history of relaxometry in MRI, highlighting key knowledge gaps that require further work. This paper should be regarded as a first step in a long-term evidence-based iterative process towards ever increasing harmonization of scan protocols across sites, to ultimately facilitate clinical implementation.
Collapse
Affiliation(s)
- Ilona A Dekkers
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anneloes de Boer
- Department of Radiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Kaniska Sharma
- Department of Biomedical Imaging Sciences, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Eleanor F Cox
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Hildo J Lamb
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - David L Buckley
- Department of Biomedical Imaging Sciences, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Octavia Bane
- Department of Radiology, Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David M Morris
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Pottumarthi V Prasad
- Department of Radiology, Center for Advanced Imaging, NorthShore University Health System, Evanston, IL, USA
| | - Scott I K Semple
- Centre for Cardiovascular Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Keith A Gillis
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Paul Hockings
- Antaros Medical, Mölndal, Sweden
- MedTech West, Chalmers University of Technology, Gothenburg, Sweden
| | - Charlotte Buchanan
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Marcos Wolf
- Center for Medical Physics and Biomedical Engineering, MR-Centre of Excellence, Medical University of Vienna, Vienna, Austria
| | - Christoffer Laustsen
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Tim Leiner
- Department of Radiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Bryan Haddock
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Copenhagen University Hospital, Glostrup, Denmark
| | - Johannes M Hoogduin
- Department of Radiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Pim Pullens
- Department of Radiology, University Hospital Ghent, Ghent, Belgium
- Ghent Institute of Functional and Metabolic Imaging, Ghent University, Ghent, Belgium
| | - Steven Sourbron
- Department of Biomedical Imaging Sciences, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Susan Francis
- Department of Radiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
44
|
Dekkers IA, de Boer A, Sharma K, Cox EF, Lamb HJ, Buckley DL, Bane O, Morris DM, Prasad PV, Semple SIK, Gillis KA, Hockings P, Buchanan C, Wolf M, Laustsen C, Leiner T, Haddock B, Hoogduin JM, Pullens P, Sourbron S, Francis S. Consensus-based technical recommendations for clinical translation of renal T1 and T2 mapping MRI. MAGMA (NEW YORK, N.Y.) 2019. [PMID: 31758418 DOI: 10.1007/s10334‐019‐00797‐5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
To develop technical recommendations on the acquisition and post-processing of renal longitudinal (T1) and transverse (T2) relaxation time mapping. A multidisciplinary panel consisting of 18 experts in the field of renal T1 and T2 mapping participated in a consensus project, which was initiated by the European Cooperation in Science and Technology Action PARENCHIMA CA16103. Consensus recommendations were formulated using a two-step modified Delphi method. The first survey consisted of 56 items on T1 mapping, of which 4 reached the pre-defined consensus threshold of 75% or higher. The second survey was expanded to include both T1 and T2 mapping, and consisted of 54 items of which 32 reached consensus. Recommendations based were formulated on hardware, patient preparation, acquisition, analysis and reporting. Consensus-based technical recommendations for renal T1 and T2 mapping were formulated. However, there was considerable lack of consensus for renal T1 and particularly renal T2 mapping, to some extent surprising considering the long history of relaxometry in MRI, highlighting key knowledge gaps that require further work. This paper should be regarded as a first step in a long-term evidence-based iterative process towards ever increasing harmonization of scan protocols across sites, to ultimately facilitate clinical implementation.
Collapse
Affiliation(s)
- Ilona A Dekkers
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anneloes de Boer
- Department of Radiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Kaniska Sharma
- Department of Biomedical Imaging Sciences, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Eleanor F Cox
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Hildo J Lamb
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - David L Buckley
- Department of Biomedical Imaging Sciences, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Octavia Bane
- Department of Radiology, Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David M Morris
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Pottumarthi V Prasad
- Department of Radiology, Center for Advanced Imaging, NorthShore University Health System, Evanston, IL, USA
| | - Scott I K Semple
- Centre for Cardiovascular Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Keith A Gillis
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Paul Hockings
- Antaros Medical, Mölndal, Sweden.,MedTech West, Chalmers University of Technology, Gothenburg, Sweden
| | - Charlotte Buchanan
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Marcos Wolf
- Center for Medical Physics and Biomedical Engineering, MR-Centre of Excellence, Medical University of Vienna, Vienna, Austria
| | - Christoffer Laustsen
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Tim Leiner
- Department of Radiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Bryan Haddock
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Copenhagen University Hospital, Glostrup, Denmark
| | - Johannes M Hoogduin
- Department of Radiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Pim Pullens
- Department of Radiology, University Hospital Ghent, Ghent, Belgium.,Ghent Institute of Functional and Metabolic Imaging, Ghent University, Ghent, Belgium
| | - Steven Sourbron
- Department of Biomedical Imaging Sciences, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Susan Francis
- Department of Radiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
45
|
Three-Dimensional Free-Breathing Whole-Heart Coronary Magnetic Resonance Angiography at 1.5 T: Gadobutrol-Enhanced Gradient-Echo Acquisition Sequence Versus Non-Contrast-Enhanced Steady-State Free Precession Sequence. J Comput Assist Tomogr 2019; 43:919-925. [PMID: 31738205 DOI: 10.1097/rct.0000000000000933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The objective of this study was to compare gadobutrol-enhanced gradient-echo sequence (GRE) acquisition with T2-prepared non-contrast-enhanced steady-state free precession (SSFP) in coronary magnetic resonance angiography at 1.5 T. METHODS Twenty-one subjects successfully completed GRE and SSFP acquisition. Signal-to-noise ratio (SNR), contrast-to-noise ratio, image quality, sharpness, visibility, length, and lumen diameter of vessels were analyzed by 2 experienced radiologists. RESULTS The SNR at whole left circumflex artery, left main artery, and proximal left descending artery (LAD) was significantly higher in SSFP acquisition (P < 0.05). The SNR of distal LAD was slightly higher in GRE acquisition (P < 0.05). The contrast-to-noise ratio at distal LAD, proximal and distal RCA were significantly higher with GRE acquisition (P < 0.05). CONCLUSIONS Double-dose gadobutrol-enhanced GRE and unenhanced SSFP coronary magnetic resonance angiography at 1.5 T have their own characteristics, and the combined use of the 2 methods may be taken into consideration.
Collapse
|
46
|
Jaubert O, Cruz G, Bustin A, Schneider T, Lavin B, Koken P, Hajhosseiny R, Doneva M, Rueckert D, Botnar RM, Prieto C. Water-fat Dixon cardiac magnetic resonance fingerprinting. Magn Reson Med 2019; 83:2107-2123. [PMID: 31736146 PMCID: PMC7064906 DOI: 10.1002/mrm.28070] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 12/12/2022]
Abstract
Purpose Cardiac magnetic resonance fingerprinting (cMRF) has been recently introduced to simultaneously provide T1, T2, and M0 maps. Here, we develop a 3‐point Dixon‐cMRF approach to enable simultaneous water specific T1, T2, and M0 mapping of the heart and fat fraction (FF) estimation in a single breath‐hold scan. Methods Dixon‐cMRF is achieved by combining cMRF with several innovations that were previously introduced for other applications, including a 3‐echo GRE acquisition with golden angle radial readout and a high‐dimensional low‐rank tensor constrained reconstruction to recover the highly undersampled time series images for each echo. Water–fat separation of the Dixon‐cMRF time series is performed to allow for water‐ and fat‐specific T1, T2, and M0 estimation, whereas FF estimation is extracted from the M0 maps. Dixon‐cMRF was evaluated in a standardized T1–T2 phantom, in a water–fat phantom, and in healthy subjects in comparison to current clinical standards: MOLLI, SASHA, T2‐GRASE, and 6‐point Dixon proton density FF (PDFF) mapping. Results Dixon‐cMRF water T1 and T2 maps showed good agreement with reference T1 and T2 mapping techniques (R2 > 0.99 and maximum normalized RMSE ~5%) in a standardized phantom. Good agreement was also observed between Dixon‐cMRF FF and reference PDFF (R2 > 0.99) and between Dixon‐cMRF water T1 and T2 and water selective T1 and T2 maps (R2 > 0.99) in a water–fat phantom. In vivo Dixon‐cMRF water T1 values were in good agreement with MOLLI and water T2 values were slightly underestimated when compared to T2‐GRASE. Average myocardium septal T1 values were 1129 ± 38 ms, 1026 ± 28 ms, and 1045 ± 32 ms for SASHA, MOLLI, and the proposed water Dixon‐cMRF. Average T2 values were 51.7 ± 2.2 ms and 42.8 ± 2.6 ms for T2‐GRASE and water Dixon‐cMRF, respectively. Dixon‐cMRF FF maps showed good agreement with in vivo PDFF measurements (R2 > 0.98) and average FF in the septum was measured at 1.3%. Conclusion The proposed Dixon‐cMRF allows to simultaneously quantify myocardial water T1, water T2, and FF in a single breath‐hold scan, enabling multi‐parametric T1, T2, and fat characterization. Moreover, reduced T1 and T2 quantification bias caused by water–fat partial volume was demonstrated in phantom experiments.
Collapse
Affiliation(s)
- Olivier Jaubert
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Gastão Cruz
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Aurélien Bustin
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | | | - Begoña Lavin
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | | | - Reza Hajhosseiny
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | | | - Daniel Rueckert
- Department of Computing, Imperial College London, London, United Kingdom
| | - René M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
47
|
Qi H, Bustin A, Cruz G, Jaubert O, Chen H, Botnar RM, Prieto C. Free-running simultaneous myocardial T1/T2 mapping and cine imaging with 3D whole-heart coverage and isotropic spatial resolution. Magn Reson Imaging 2019; 63:159-169. [DOI: 10.1016/j.mri.2019.08.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/10/2019] [Accepted: 08/15/2019] [Indexed: 12/14/2022]
|
48
|
Jang J, Ngo LH, Captur G, Moon JC, Nezafat R. Measurement reproducibility of slice-interleaved T1 and T2 mapping sequences over 20 months: A single center study. PLoS One 2019; 14:e0220190. [PMID: 31344078 PMCID: PMC6658153 DOI: 10.1371/journal.pone.0220190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/10/2019] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Quantifying reproducibility of native T1 and T2 mapping over a long period (> 1 year) is necessary to assess whether changes in T1 and T2 over repeated sessions in a longitudinal study are associated with variability due to underlying tissue composition or technical confounders. OBJECTIVES To carry out a single-center phantom study to 1) investigate measurement reproducibility of slice-interleaved T1 (STONE) and T2 mapping over 20 months, 2) quantify sources of variability, and 3) compare reproducibility and measurements against reference spin-echo measurements. METHODS MR imaging was performed on a 1.5 Tesla Philips Achieva scanner every 2-3 weeks over 20 months using the T1MES phantom. In each session, slice-interleaved T1 and T2 mapping was repeated 3 times for 5 slices, and maps were reconstructed using both 2-parameter and 3-parameter fit models. Reproducibility between sessions, and repeatability between repetitions and slices were evaluated using coefficients of variation (CV). Different sources of variability were quantified using variance decomposition analysis. The slice-interleaved measurement was compared to the spin-echo reference and MOLLI. RESULTS Slice-interleaved T1 had excellent reproducibility and repeatability with a CV < 2%. The main sources of T1 variability were temperature in 2-parameter maps, and slice in 3-parameter maps. Superior between-session reproducibility to the spin-echo T1 was shown in 2-parameter maps, and similar reproducibility in 3-parameter maps. Superior reproducibility to MOLLI T1 was also shown. Similar measurements to the spin-echo T1 were observed with linear regression slopes of 0.94-0.99, but slight underestimation. Slice-interleaved T2 showed good reproducibility and repeatability with a CV < 7%. The main source of T2 variability was slice location/orientation. Between-session reproducibility was lower than the spin-echo T2 reference and showed good measurement agreement with linear regression slopes of 0.78-1.06. CONCLUSIONS Slice-interleaved T1 and T2 mapping sequences yield excellent long-term reproducibility over 20 months.
Collapse
Affiliation(s)
- Jihye Jang
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States of America
- Department of Computer Science, Technical University of Munich, Munich, Germany
| | - Long H. Ngo
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States of America
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Gabriella Captur
- Barts Heart Center, The Cardiovascular Magnetic Resonance Imaging Unit, St Bartholomew’s Hospital, West Smithfield, London, United Kingdom
- NIHR University College London Hospitals Biomedical Research Center, London, United Kingdom
- UCL Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - James C. Moon
- Barts Heart Center, The Cardiovascular Magnetic Resonance Imaging Unit, St Bartholomew’s Hospital, West Smithfield, London, United Kingdom
- NIHR University College London Hospitals Biomedical Research Center, London, United Kingdom
- UCL Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Reza Nezafat
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
49
|
Bastiaansen JAM, van Heeswijk RB, Stuber M, Piccini D. Noncontrast free-breathing respiratory self-navigated coronary artery cardiovascular magnetic resonance angiography at 3 T using lipid insensitive binomial off-resonant excitation (LIBRE). J Cardiovasc Magn Reson 2019; 21:38. [PMID: 31291957 PMCID: PMC6621993 DOI: 10.1186/s12968-019-0543-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/20/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Robust and homogeneous lipid suppression is mandatory for coronary artery cardiovascular magnetic resonance (CMR) imaging since the coronary arteries are commonly embedded in epicardial fat. However, effective large volume lipid suppression becomes more challenging when performing radial whole-heart coronary artery CMR for respiratory self-navigation and the problem may even be exacerbated at increasing magnetic field strengths. Incomplete fat suppression not only hinders a correct visualization of the coronary vessels and generates image artifacts, but may also affect advanced motion correction methods. The aim of this study was to evaluate a recently reported lipid insensitive CMR method when applied to a noncontrast self-navigated coronary artery CMR acquisitions at 3 T, and to compare it to more conventional fat suppression techniques. METHODS Lipid insensitive binomial off resonant excitation (LIBRE) radiofrequency excitation pulses were included into a self-navigated 3D radial GRE coronary artery CMR sequence at 3 T. LIBRE was compared against a conventional CHESS fat saturation (FS) and a binomial 1-180°-1 water excitation (WE) pulse. First, fat suppression of all techniques was numerically characterized using Matlab and experimentally validated in phantoms and in legs of human volunteers. Subsequently, free-breathing self-navigated coronary artery CMR was performed using the LIBRE pulse as well as FS and WE in ten healthy subjects. Myocardial, arterial and chest fat signal-to-noise ratios (SNR), as well as coronary vessel conspicuity were quantitatively compared among those scans. RESULTS The results obtained in the simulations were confirmed by the experimental validations as LIBRE enabled near complete fat suppression for 3D radial imaging in vitro and in vivo. For self-navigated whole-heart coronary artery CMR at 3 T, fat SNR was significantly attenuated using LIBRE compared with conventional FS. LIBRE increased the right coronary artery (RCA) vessel sharpness significantly (37 ± 9% (LIBRE) vs. 29 ± 8% (FS) and 30 ± 8% (WE), both p < 0.05) and led to a significant increase in the measured RCA vessel length to (83 ± 31 mm (LIBRE) vs. 56 ± 12 mm (FS) and 59 ± 27 (WE) p < 0.05). CONCLUSIONS Applied to a respiratory self-navigated noncontrast 3D radial whole-heart sequence, LIBRE enables robust large volume fat suppression and significantly improves coronary artery image quality at 3 T compared to the use of conventional FS and WE.
Collapse
Affiliation(s)
- Jessica A. M. Bastiaansen
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ruud B. van Heeswijk
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Matthias Stuber
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Center for Biomedical Imaging, Lausanne, Switzerland
| | - Davide Piccini
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Advanced clinical imaging technology, Siemens Healthcare AG, Lausanne, Switzerland
| |
Collapse
|
50
|
Erturk MA, Li X, Van de Moortele PF, Ugurbil K, Metzger GJ. Evolution of UHF Body Imaging in the Human Torso at 7T: Technology, Applications, and Future Directions. Top Magn Reson Imaging 2019; 28:101-124. [PMID: 31188271 PMCID: PMC6587233 DOI: 10.1097/rmr.0000000000000202] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
The potential value of ultrahigh field (UHF) magnetic resonance imaging (MRI) and spectroscopy to biomedical research and in clinical applications drives the development of technologies to overcome its many challenges. The increased difficulties of imaging the human torso compared with the head include its overall size, the dimensions and location of its anatomic targets, the increased prevalence and magnitude of physiologic effects, the limited availability of tailored RF coils, and the necessary transmit chain hardware. Tackling these issues involves addressing notoriously inhomogeneous transmit B1 (B1) fields, limitations in peak B1, larger spatial variations of the static magnetic field B0, and patient safety issues related to implants and local RF power deposition. However, as research institutions and vendors continue to innovate, the potential gains are beginning to be realized. Solutions overcoming the unique challenges associated with imaging the human torso are reviewed as are current studies capitalizing on the benefits of UHF in several anatomies and applications. As the field progresses, strategies associated with the RF system architecture, calibration methods, RF pulse optimization, and power monitoring need to be further integrated into the MRI systems making what are currently complex processes more streamlined. Meanwhile, the UHF MRI community must seize the opportunity to build upon what have been so far proof of principle and feasibility studies and begin to further explore the true impact in both research and the clinic.
Collapse
Affiliation(s)
- M Arcan Erturk
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | | | | | | | | |
Collapse
|