1
|
Chen L, Xu H, Gong T, Jin J, Lin L, Zhou Y, Huang J, Chen Z. Accelerating multipool CEST MRI of Parkinson's disease using deep learning-based Z-spectral compressed sensing. Magn Reson Med 2024; 92:2616-2630. [PMID: 39044635 DOI: 10.1002/mrm.30233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/23/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024]
Abstract
PURPOSE To develop a deep learning-based approach to reduce the scan time of multipool CEST MRI for Parkinson's disease (PD) while maintaining sufficient prediction accuracy. METHOD A deep learning approach based on a modified one-dimensional U-Net, termed Z-spectral compressed sensing (CS), was proposed to recover dense Z-spectra from sparse ones. The neural network was trained using simulated Z-spectra generated by the Bloch equation with various parameter settings. Its feasibility and effectiveness were validated through numerical simulations and in vivo rat brain experiments, compared with commonly used linear, pchip, and Lorentzian interpolation methods. The proposed method was applied to detect metabolism-related changes in the 6-hydroxydopamine PD model with multipool CEST MRI, including APT, CEST@2 ppm, nuclear Overhauser enhancement, direct saturation, and magnetization transfer, and the prediction performance was evaluated by area under the curve. RESULTS The numerical simulations and in vivo rat-brain experiments demonstrated that the proposed method could yield superior fidelity in retrieving dense Z-spectra compared with existing methods. Significant differences were observed in APT, CEST@2 ppm, nuclear Overhauser enhancement, and direct saturation between the striatum regions of wild-type and PD models, whereas magnetization transfer exhibited no significant difference. Receiver operating characteristic analysis demonstrated that multipool CEST achieved better predictive performance compared with individual pools. Combined with Z-spectral CS, the scan time of multipool CEST MRI can be reduced to 33% without distinctly compromising prediction accuracy. CONCLUSION The integration of Z-spectral CS with multipool CEST MRI can enhance the prediction accuracy of PD and maintain the scan time within a reasonable range.
Collapse
Affiliation(s)
- Lin Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
- Institute of Artificial Intelligence, Xiamen University, Xiamen, China
| | - Haipeng Xu
- Institute of Artificial Intelligence, Xiamen University, Xiamen, China
| | - Tao Gong
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Junxian Jin
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| | - Liangjie Lin
- Clinical & Technical Supports, Philips Healthcare, Beijing, China
| | - Yang Zhou
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jianpan Huang
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong, China
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
- Institute of Artificial Intelligence, Xiamen University, Xiamen, China
| |
Collapse
|
2
|
Cronin AE, Liebig P, Detombe SA, Duggal N, Bartha R. Reproducibility of 3D chemical exchange saturation transfer (CEST) contrasts in the healthy brain at 3T. Sci Rep 2024; 14:25637. [PMID: 39465319 PMCID: PMC11514173 DOI: 10.1038/s41598-024-75777-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024] Open
Abstract
Chemical exchange saturation transfer (CEST) imaging may provide novel contrast for the diagnosis, prognosis, and monitoring of the progression or treatment of neurological applications. However, the reproducibility of prominent CEST contrasts like amide CEST and nuclear Overhauser enhancement (NOE) CEST must be characterized in healthy brain gray matter (GM) and white matter (GM) prior to clinical implementation. The objective of this study was to characterize the reproducibility of four different CEST contrasts in the healthy human brain. Using a 3T MRI scanner, two 3D CEST scans were acquired in 12 healthy subjects (7 females, mean age (± SD) 26 ± 4 years) approximately 10 days apart. Scan-rescan reproducibility was measured for four contrasts: amine/amide concentration-independent detection (AACID), Amide*, and inverse magnetization transfer ratio (MTRRex) contrast for amide and NOE. Reproducibility was evaluated between- and within-subjects using coefficients of variation (CV) and the percent difference between measurements. AACID and NOE-MTRRex contrasts demonstrated the lowest within-subject CVs (0.8-1.2% and 1.6-2.0%, respectively), between-subject CVs (1.2-2.1% and 3.4-4.2%, respectively), and percent difference (1.2-1.4% and 2.2-2.8%, respectively) for both GM and WM. AACID and NOE-MTRRex contrasts demonstrated the highest reproducibility and represented stable measurements suitable for characterizing changes in brain tissue caused by pathological processes.
Collapse
Affiliation(s)
- Alicia E Cronin
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Western University, 1151 Richmond St. N, London, N6A 5B7, ON, Canada
| | | | - Sarah A Detombe
- Department of Clinical Neurological Sciences, London Health Sciences Centre, University Hospital, London, ON, Canada
| | - Neil Duggal
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
- Department of Clinical Neurological Sciences, London Health Sciences Centre, University Hospital, London, ON, Canada
| | - Robert Bartha
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada.
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, Western University, 1151 Richmond St. N, London, N6A 5B7, ON, Canada.
| |
Collapse
|
3
|
Filimonova E, Pashkov A, Borisov N, Kalinovsky A, Rzaev J. Utilizing the amide proton transfer technique to characterize diffuse gliomas based on the WHO 2021 classification of CNS tumors. Neuroradiol J 2024; 37:490-499. [PMID: 38548655 PMCID: PMC11366199 DOI: 10.1177/19714009241242658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Abstract
PURPOSE Diffuse gliomas present a significant challenge for healthcare systems globally. While brain MRI plays a vital role in diagnosis, prognosis, and treatment monitoring, accurately characterizing gliomas using conventional MRI techniques alone is challenging. In this study, we explored the potential of utilizing the amide proton transfer (APT) technique to predict tumor grade and type based on the WHO 2021 Classification of CNS Tumors. METHODS Forty-two adult patients with histopathologically confirmed brain gliomas were included in the study. They underwent 3T MRI imaging, which involved APT sequence. Multinomial and binary logistic regression models were employed to classify patients into clinically relevant groups based on MRI findings and demographic variables. RESULTS We found that the best model for tumor grade classification included patient age along with APT values. The highest sensitivity (88%) was observed for Grade 4 tumors, while Grade 3 tumors showed the highest specificity (79%). For tumor type classification, our model incorporated four predictors: APT values, patient's age, necrosis, and the presence of hemorrhage. The glioblastoma group had the highest sensitivity and specificity (87%), whereas balanced accuracy was the lowest for astrocytomas (0.73). CONCLUSION The APT technique shows great potential for noninvasive evaluation of diffuse gliomas. The changes in the classification of gliomas as per the WHO 2021 version of the CNS Tumor Classification did not affect its usefulness in predicting tumor grade or type.
Collapse
Affiliation(s)
- Elena Filimonova
- FSBI “Federal Center of Neurosurgery”, Novosibirsk, Russia
- Department of Neurosurgery, Novosibirsk State Medical University, Novosibirsk, Russia
| | - Anton Pashkov
- FSBI “Federal Center of Neurosurgery”, Novosibirsk, Russia
- Department of Neurosurgery, Novosibirsk State Medical University, Novosibirsk, Russia
- Department of Data Collection and Processing Systems, Novosibirsk State Technical University, Novosibirsk, Russia
| | - Norayr Borisov
- Department of Neurosurgery, Novosibirsk State Medical University, Novosibirsk, Russia
| | - Anton Kalinovsky
- FSBI “Federal Center of Neurosurgery”, Novosibirsk, Russia
- Department of Neurosurgery, Novosibirsk State Medical University, Novosibirsk, Russia
| | - Jamil Rzaev
- FSBI “Federal Center of Neurosurgery”, Novosibirsk, Russia
- Department of Neurosurgery, Novosibirsk State Medical University, Novosibirsk, Russia
- Department of Neuroscience, Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
4
|
Peng Y, Dai Y, Zhang S, Deng J, Jia X. Joint k- ω Space Image Reconstruction and Data Fitting for Chemical Exchange Saturation Transfer Magnetic Resonance Imaging. Tomography 2024; 10:1123-1138. [PMID: 39058057 PMCID: PMC11280605 DOI: 10.3390/tomography10070085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) is a novel MRI technology to image certain compounds at extremely low concentrations. Long acquisition time to measure signals at a set of offset frequencies of the Z-spectra and to repeat measurements to reduce noise pose significant challenges to its applications. This study explores correlations of CEST MR images along the spatial and Z-spectral dimensions to improve MR image quality and robustness of magnetization transfer ratio (MTR) asymmetry estimation via a joint k-ω reconstruction model. The model was formulated as an optimization problem with respect to MR images at all frequencies ω, while incorporating regularizations along the spatial and spectral dimensions. The solution was subject to a self-consistency condition that the Z-spectrum of each pixel follows a multi-peak data fitting model corresponding to different CEST pools. The optimization problem was solved using the alternating direction method of multipliers. The proposed joint reconstruction method was evaluated on a simulated CEST MRI phantom and semi-experimentally on choline and iopamidol phantoms with added Gaussian noise of various levels. Results demonstrated that the joint reconstruction method was more tolerable to noise and reduction in number of offset frequencies by improving signal-to-noise ratio (SNR) of the reconstructed images and reducing uncertainty in MTR asymmetry estimation. In the choline and iopamidol phantom cases with 10.5% noise in the measurement data, our method achieved an averaged SNR of 31.0 dB and 32.2 dB compared to the SNR of 24.7 dB and 24.4 dB in the conventional reconstruction approach. It reduced uncertainty of the MTR asymmetry estimation over all regions of interest by 54.4% and 43.7%, from 1.71 and 2.38 to 0.78 and 1.71, respectively.
Collapse
Affiliation(s)
- Yuting Peng
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Yan Dai
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shu Zhang
- Department of Radiology, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Jie Deng
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xun Jia
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
5
|
Mohanta Z, Gori S, McMahon MT. Intramolecular Hydrogen Bonding Based CEST MRI Contrast Agents As an Emerging Design Strategy: A Mini-Review. ACS OMEGA 2024; 9:27755-27765. [PMID: 38973929 PMCID: PMC11223143 DOI: 10.1021/acsomega.4c02296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/21/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024]
Abstract
Intramolecular hydrogen bonding-based chemical exchange saturation transfer magnetic resonance imaging (CEST MRI) contrast agents represent an innovative design strategy aiming to overcome limitations in diamagnetic CEST (diaCEST) MRI contrast agent specificity and also those associated with traditional metal-based MRI contrast agents. Ward and Balaban's proposal of small diamagnetic compounds marked a paradigm shift in contrast-based radiologic research, inspiring extensive investigations since 2000. These contrast agents leverage labile hydrogen bonds, serving as chemical exchange sites to induce saturation of water. The selective manipulation of radiofrequency (RF) allows for optimized signal contrast in soft tissue, with a significant signal amplification even at low probe concentrations, mitigating concerns about dose-dependent toxicities. This mini-review delves into the evolution of CEST MRI, its classification, and the strategic design principles of synthetic small molecules containing intramolecular hydrogen bonds. With a focus on applications and potential clinical relevance, the authors highlight the promising role of intramolecular hydrogen bonding-based CEST MRI in diverse medical contexts, especially renal imaging and pH mapping, paving the way for enhanced molecular imaging capabilities. Ongoing research endeavors aim to further optimize and expand the utility of these contrast agents, underscoring their transformative potential in clinical diagnostics and imaging.
Collapse
Affiliation(s)
- Zinia Mohanta
- Russell
H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- F.M.
Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland 21205, United States
| | - Sadakatali Gori
- Center
for Translational Pharmacology, Department of Pharmacy and Pharmaceutical
Sciences, St. Jude Children’s Research
Hospital, Memphis, Tennessee 38105-3678, United States
| | - Michael T. McMahon
- Russell
H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- F.M.
Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland 21205, United States
| |
Collapse
|
6
|
Mu C, Reed JL, Wang F, Tantawy MN, Gore JC, Chen LM. Spatiotemporal Dynamics of Neuroinflammation Relate to Behavioral Recovery in Rats with Spinal Cord Injury. Mol Imaging Biol 2024; 26:240-252. [PMID: 38151582 DOI: 10.1007/s11307-023-01875-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 12/29/2023]
Abstract
PURPOSE The degree and dynamic progression of neuroinflammation after traumatic spinal cord injuries (SCI) are crucial determinants of the severity of injury and potential for recovery. We used Positron Emission Tomography (PET) to monitor neuroinflammation longitudinally, correlating it with Chemical Exchange Saturation Transfer (CEST) Magnetic Resonance Imaging (MRI) and behavior in contusion-injured rats. These studies help validate CEST metrics and confirm how imaging may be used to evaluate the efficacy of therapies and understand their mechanisms of action. PROCEDURES 12 SCI and 4 sham surgery rats were subjected to CEST MRI and PET-Translocator Protein (TSPO) scans for 8 weeks following injury. Z-spectra from the SCI were analyzed using a 5-Lorentzian pool model for fitting. Weekly motor and somatosensory behavior were correlated with imaging metrics, which were validated through post-mortem histological and immuo-staining using ionized calcium-binding adaptor protein-1 (iba-1, microglia) and glial fibrillary acidic protein (GFAP, astrocytes). RESULTS PET-TSPO showed widespread inflammation and post-mortem histology confirmed the presence of activated microglia. Changes in CEST and nuclear Overhauser Effect (NOE) peaks at 3.5 ppm and -1.6 ppm respectively were largest within the first week after injury and more pronounced in rostral versus caudal segments. These temporal indices of neuroinflammation corresponded to the recovery of locomotor behaviors and somatic sensation in rats with moderate contusion injury. The results confirm that CEST MRI metrics are sensitive indices of states of neuroinflammation within injured spinal cords. CONCLUSIONS The detection of dynamic spatiotemporal features of neuroinflammation progression underscores the importance of considering their timings and locations for neuroprotective and anti-inflammatory therapies. The availability of noninvasive MRI indices of neuroinflammation may facilitate clinical trials aimed at treatments that promote recovery after SCI.
Collapse
Affiliation(s)
- Chaoqi Mu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Jamie L Reed
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Feng Wang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M Noor Tantawy
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Li Min Chen
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA.
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
7
|
Hu LS, Smits M, Kaufmann TJ, Knutsson L, Rapalino O, Galldiks N, Sundgrene PC, Cha S. Advanced Imaging in the Diagnosis and Response Assessment of High-Grade Glioma: AJR Expert Panel Narrative Review. AJR Am J Roentgenol 2024. [PMID: 38477525 DOI: 10.2214/ajr.23.30612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
This AJR Expert Panel Narrative explores the current status of advanced MRI and PET techniques for the post-therapeutic response assessment of high-grade adult-type gliomas, focusing on ongoing clinical controversies in current practice. Discussed techniques that complement conventional MRI and aid the differentiation of recurrent tumor from post-treatment effects include DWI and diffusion tensor imaging; perfusion MRI techniques including dynamic susceptibility contrast (DSC), dynamic contrast-enhanced MRI, and arterial spin labeling; MR spectroscopy including assessment of 2-hydroxyglutarate (2HG) concentration; glucose- and amino acid (AA)-based PET; and amide proton transfer imaging. Updated criteria for Response Assessment in Neuro-Oncology are presented. Given the abundant supporting clinical evidence, the panel supports a recommendation that routine response assessment after HGG treatment should include perfusion MRI, particularly given the development of a consensus recommended DSC-MRI protocol. Although published studies support 2HG MRS and AA PET, these techniques' widespread adoption will likely require increased availability (for 2HG MRS) or increased insurance funding in the United States (for AA PET). The article concludes with a series of consensus opinions from the author panel, centered on the clinical integration of the advanced imaging techniques into posttreatment surveillance protocols.
Collapse
Affiliation(s)
- Leland S Hu
- Department of Radiology, Mayo Clinic, Phoenix, AZ
- Department of Cancer Biology, Mayo Clinic, Phoenix, AZ
- Department of Neurological Surgery, Mayo Clinic, Phoenix, AZ
| | - Marion Smits
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
- Medical Delta, Delft, The Netherlands
| | | | - Linda Knutsson
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Otto Rapalino
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Norbert Galldiks
- Dept. of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
- Inst. of Neuroscience and Medicine (INM-3), Research Center Juelich, Juelich, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
| | - Pia C Sundgrene
- Institution of Clinical Sciences Lund/Radiology, Lund University, Lund Sweden
- Lund BioImaging Center, Lund University, Lud, Sweden
- Department of Medical Imaging and Function Skane University hospital, Lund, Sweden
| | - Soonmee Cha
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| |
Collapse
|
8
|
Tseng CL, Zeng KL, Mellon EA, Soltys SG, Ruschin M, Lau AZ, Lutsik NS, Chan RW, Detsky J, Stewart J, Maralani PJ, Sahgal A. Evolving concepts in margin strategies and adaptive radiotherapy for glioblastoma: A new future is on the horizon. Neuro Oncol 2024; 26:S3-S16. [PMID: 38437669 PMCID: PMC10911794 DOI: 10.1093/neuonc/noad258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Chemoradiotherapy is the standard treatment after maximal safe resection for glioblastoma (GBM). Despite advances in molecular profiling, surgical techniques, and neuro-imaging, there have been no major breakthroughs in radiotherapy (RT) volumes in decades. Although the majority of recurrences occur within the original gross tumor volume (GTV), treatment of a clinical target volume (CTV) ranging from 1.5 to 3.0 cm beyond the GTV remains the standard of care. Over the past 15 years, the incorporation of standard and functional MRI sequences into the treatment workflow has become a routine practice with increasing adoption of MR simulators, and new integrated MR-Linac technologies allowing for daily pre-, intra- and post-treatment MR imaging. There is now unprecedented ability to understand the tumor dynamics and biology of GBM during RT, and safe CTV margin reduction is being investigated with the goal of improving the therapeutic ratio. The purpose of this review is to discuss margin strategies and the potential for adaptive RT for GBM, with a focus on the challenges and opportunities associated with both online and offline adaptive workflows. Lastly, opportunities to biologically guide adaptive RT using non-invasive imaging biomarkers and the potential to define appropriate volumes for dose modification will be discussed.
Collapse
Affiliation(s)
- Chia-Lin Tseng
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - K Liang Zeng
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Radiation Oncology, Simcoe Muskoka Regional Cancer Program, Royal Victoria Regional Health Centre, University of Toronto, Toronto, Ontario, Canada
| | - Eric A Mellon
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Scott G Soltys
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Mark Ruschin
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Angus Z Lau
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Natalia S Lutsik
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Rachel W Chan
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Jay Detsky
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - James Stewart
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Pejman J Maralani
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Wu J, Huang Q, Shen Y, Guo P, Zhou J, Jiang S. Radiomic feature reliability of amide proton transfer-weighted MR images acquired with compressed sensing at 3T. INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY 2024; 34:e23027. [PMID: 39185083 PMCID: PMC11343505 DOI: 10.1002/ima.23027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 01/08/2024] [Indexed: 08/27/2024]
Abstract
Compressed sensing (CS) is a novel technique for MRI acceleration. The purpose of this paper was to assess the effects of CS on the radiomic features extracted from amide proton transfer-weighted (APTw) images. Brain tumor MRI data of 40 scans were studied. Standard images using sensitivity encoding (SENSE) with an acceleration factor (AF) of 2 were used as the gold standard, and APTw images using SENSE with CS (CS-SENSE) with an AF of 4 were assessed. Regions of interest (ROIs), including normal tissue, edema, liquefactive necrosis, and tumor, were manually drawn, and the effects of CS-SENSE on radiomics were assessed for each ROI category. An intraclass correlation coefficient (ICC) was first calculated for each feature extracted from APTw images with SENSE and CS-SENSE for all ROIs. Different filters were applied to the original images, and the effects of these filters on the ICCs were further compared between APTw images with SENSE and CS-SENSE. Feature deviations were also provided for a more comprehensive evaluation of the effects of CS-SENSE on radiomic features. The ROI-based comparison showed that most radiomic features extracted from CS-SENSE-APTw images and SENSE-APTw images had moderate or greater reliabilities (ICC ≥ 0.5) for all four ROIs and all eight image sets with different filters. Tumor showed significantly higher ICCs than normal tissue, edema, and liquefactive necrosis. Compared to the original images, filters (such as Exponential or Square) may improve the reliability of radiomic features extracted from CS-SENSE-APTw and SENSE-APTw images.
Collapse
Affiliation(s)
- Jingpu Wu
- Department of Radiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Applied Mathematics and Statistics, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Qianqi Huang
- Department of Radiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yiqing Shen
- Department of Radiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Pengfei Guo
- Department of Radiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jinyuan Zhou
- Department of Radiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Shanshan Jiang
- Department of Radiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Park SW, Lai JHC, Han X, Leung VWM, Xiao P, Huang J, Chan KWY. Preclinical Application of CEST MRI to Detect Early and Regional Tumor Response to Local Brain Tumor Treatment. Pharmaceutics 2024; 16:101. [PMID: 38258112 PMCID: PMC10820766 DOI: 10.3390/pharmaceutics16010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Treating glioblastoma and monitoring treatment response non-invasively remain challenging. Here, we developed a robust approach using a drug-loaded liposomal hydrogel that is mechanically compatible with the brain, and, simultaneously, we successfully monitored early tumor response using Chemical Exchange Saturation Transfer (CEST) MRI. This CEST-detectable liposomal hydrogel was optimized based on a sustainable drug release and a soft hydrogel for the brain tumor, which is unfavorable for tumor cell proliferation. After injecting the hydrogel next to the tumor, three distinctive CEST contrasts enabled the monitoring of tumor response and drug release longitudinally at 3T. As a result, a continuous tumor volume decrease was observed in the treatment group along with a significant decrease in CEST contrasts relating to the tumor response at 3.5 ppm (Amide Proton Transfer; APT) and at -3.5 ppm (relayed Nuclear Overhauser Effect; rNOE) when compared to the control group (p < 0.05). Interestingly, the molecular change at 3.5 ppm on day 3 (p < 0.05) was found to be prior to the significant decrease in tumor volume on day 5. An APT signal also showed a strong correlation with the number of proliferating cells in the tumors. This demonstrated that APT detected a distinctive decrease in mobile proteins and peptides in tumors before the change in tumor morphology. Moreover, the APT signal showed a regional response to the treatment, associated with proliferating and apoptotic cells, which allowed an in-depth evaluation and prediction of the tumor treatment response. This newly developed liposomal hydrogel allows image-guided brain tumor treatment to address clinical needs using CEST MRI.
Collapse
Affiliation(s)
- Se-Weon Park
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (S.-W.P.); (J.H.C.L.); (X.H.); (P.X.)
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Joseph H. C. Lai
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (S.-W.P.); (J.H.C.L.); (X.H.); (P.X.)
| | - Xiongqi Han
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (S.-W.P.); (J.H.C.L.); (X.H.); (P.X.)
| | - Vivian W. M. Leung
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (S.-W.P.); (J.H.C.L.); (X.H.); (P.X.)
| | - Peng Xiao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (S.-W.P.); (J.H.C.L.); (X.H.); (P.X.)
| | - Jianpan Huang
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong, China;
| | - Kannie W. Y. Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (S.-W.P.); (J.H.C.L.); (X.H.); (P.X.)
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
11
|
Kim H, Park S, Hu R, Hoang KB, Sun PZ. 3D CEST MRI with an unevenly segmented RF irradiation scheme: A feasibility study in brain tumor imaging. Magn Reson Med 2023; 90:2400-2410. [PMID: 37526017 PMCID: PMC10586718 DOI: 10.1002/mrm.29810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/17/2023] [Accepted: 07/08/2023] [Indexed: 08/02/2023]
Abstract
PURPOSE To integrate 3D CEST EPI with an unevenly segmented RF irradiation module and preliminarily demonstrate it in the clinical setting. METHODS A CEST MRI with unevenly segmented RF saturation was implemented, including a long primary RF saturation to induce the steady-state CEST effect, maintained with repetitive short secondary RF irradiation between readouts. This configuration reduces relaxation-induced blur artifacts during acquisition, allowing fast 3D spatial coverage. Numerical simulations were performed to select parameters such as flip angle (FA), short RF saturation duration (Ts2), and the number of readout segments. The sequence was validated experimentally with data from a phantom, healthy volunteers, and a brain tumor patient. RESULTS Based on the numerical simulation and l-carnosine gel phantom experiment, FA, Ts2, and the number of segments were set to 20°, 0.3 s, and the range from 4 to 8, respectively. The proposed method minimized signal modulation in the human brain images in the kz direction during the acquisition and provided the blur artifacts-free CEST contrast over the whole volume. Additionally, the CEST contrast in the tumor tissue region is higher than in the contralateral normal tissue region. CONCLUSIONS It is feasible to implement a highly accelerated 3D EPI CEST imaging with unevenly segmented RF irradiation.
Collapse
Affiliation(s)
- Hahnsung Kim
- Emory National Primate Research Center, Emory University, Atlanta GA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta GA
| | - Suhyung Park
- Department of Computer Engineering, Chonnam National University, South Korea
- Department of ICT Convergence System Engineering, Chonnam National University, South Korea
| | - Ranliang Hu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta GA
| | - Kimberly B Hoang
- Department of Neurosurgery, Emory University School of Medicine, Atlanta GA
| | - Phillip Zhe Sun
- Emory National Primate Research Center, Emory University, Atlanta GA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta GA
| |
Collapse
|
12
|
Inoue A, Watanabe H, Kusakabe K, Nishikawa M, Shiraishi Y, Taniwaki M, Takimoto Y, Harada M, Furumochi T, Shigekawa S, Kitazawa R, Kido T, Ohnishi T, Kunieda T. Role of amide proton transfer imaging in maximizing tumor resection in malignant glioma: a possibility to take the place of 11C-methionine positron emission tomography. Neurosurg Rev 2023; 46:294. [PMID: 37925381 DOI: 10.1007/s10143-023-02202-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 07/22/2023] [Accepted: 10/29/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Amide proton transfer (APT) imaging has been proposed as a technique to assess tumor metabolism. However, the relationship between APT imaging and other quantitative modalities including positron emission tomography (PET) has not been investigated in detail. This study aimed to evaluate the clinical usefulness of APT imaging in determining the metabolic status of malignant glioma and to compare findings with those from 11C-methionine (Met)-PET. METHODS This research analyzed APT imaging data from 20 consecutive patients with malignant glioma treated between January 2022 and July 2023. Patients underwent tumor resection and correlations between tumor activity and intensity of APT signal were investigated. We also compared 11C-Met-PET and APT imaging for the same regions of the perifocal tumor invasion area. RESULTS Clear, diagnostic APT images were obtained from all 20 cases. Mean APT intensity (APTmean) was significantly higher in the glioblastoma (GBM), IDH wild type group (27.2 ± 12.8%) than in other gliomas (6.0 ± 4.7%; p < 0.001). The cut-off APTmean to optimally distinguish between GBM and other malignant gliomas was 12.8%, offering 100% sensitivity and 83.3% specificity. These values for APTmean broadly matched the tumor-to-contralateral normal brain tissue ratio from 11C-Met-PET analysis (r = 0.66). The APT signal was also observed in the gadolinium non-contrast region on T1-weighted imaging, appearing to reflect the surrounding tumor-infiltrated area. CONCLUSIONS APT imaging can be used to evaluate the area of tumor invasion, similar to 11C-Met-PET. APT imaging revealed low invasiveness in patients and was useful in preoperative planning for tumor resection, facilitating maximum tumor resection including the tumor invasive area.
Collapse
Affiliation(s)
- Akihiro Inoue
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan.
| | - Hideaki Watanabe
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Kosuke Kusakabe
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Masahiro Nishikawa
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yasuhiro Shiraishi
- Division of Neurology, Ehime University Hospital, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Mashio Taniwaki
- Division of Diagnostic Pathology, Ehime University Hospital, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yoshihiro Takimoto
- Division of Neurology, Ehime University Hospital, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Mizusa Harada
- Division of Neurology, Ehime University Hospital, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Taichi Furumochi
- Division of Neurology, Ehime University Hospital, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Seiji Shigekawa
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Riko Kitazawa
- Division of Neurology, Ehime University Hospital, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Teruhito Kido
- Department of Radiology, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Takanori Ohnishi
- Department of Neurosurgery, Washoukai Sadamoto Hospital, 1-6-1 Takehara, Matsuyama, Ehime, 790-0052, Japan
| | - Takeharu Kunieda
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
13
|
Chen LM, Wang F, Mishra A, Yang PF, Sengupta A, Reed JL, Gore JC. Longitudinal multiparametric MRI of traumatic spinal cord injury in animal models. Magn Reson Imaging 2023; 102:184-200. [PMID: 37343904 PMCID: PMC10528214 DOI: 10.1016/j.mri.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
Multi-parametric MRI (mpMRI) technology enables non-invasive and quantitative assessments of the structural, molecular, and functional characteristics of various neurological diseases. Despite the recognized importance of studying spinal cord pathology, mpMRI applications in spinal cord research have been somewhat limited, partly due to technical challenges associated with spine imaging. However, advances in imaging techniques and improved image quality now allow longitudinal investigations of a comprehensive range of spinal cord pathological features by exploiting different endogenous MRI contrasts. This review summarizes the use of mpMRI techniques including blood oxygenation level-dependent (BOLD) functional MRI (fMRI), diffusion tensor imaging (DTI), quantitative magnetization transfer (qMT), and chemical exchange saturation transfer (CEST) MRI in monitoring different aspects of spinal cord pathology. These aspects include cyst formation and axonal disruption, demyelination and remyelination, changes in the excitability of spinal grey matter and the integrity of intrinsic functional circuits, and non-specific molecular changes associated with secondary injury and neuroinflammation. These approaches are illustrated with reference to a nonhuman primate (NHP) model of traumatic cervical spinal cord injuries (SCI). We highlight the benefits of using NHP SCI models to guide future studies of human spinal cord pathology, and demonstrate how mpMRI can capture distinctive features of spinal cord pathology that were previously inaccessible. Furthermore, the development of mechanism-based MRI biomarkers from mpMRI studies can provide clinically useful imaging indices for understanding the mechanisms by which injured spinal cords progress and repair. These biomarkers can assist in the diagnosis, prognosis, and evaluation of therapies for SCI patients, potentially leading to improved outcomes.
Collapse
Affiliation(s)
- Li Min Chen
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Feng Wang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Arabinda Mishra
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pai-Feng Yang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anirban Sengupta
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jamie L Reed
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
14
|
Dan Q, Jiang X, Wang R, Dai Z, Sun D. Biogenic Imaging Contrast Agents. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207090. [PMID: 37401173 PMCID: PMC10477908 DOI: 10.1002/advs.202207090] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/08/2023] [Indexed: 07/05/2023]
Abstract
Imaging contrast agents are widely investigated in preclinical and clinical studies, among which biogenic imaging contrast agents (BICAs) are developing rapidly and playing an increasingly important role in biomedical research ranging from subcellular level to individual level. The unique properties of BICAs, including expression by cells as reporters and specific genetic modification, facilitate various in vitro and in vivo studies, such as quantification of gene expression, observation of protein interactions, visualization of cellular proliferation, monitoring of metabolism, and detection of dysfunctions. Furthermore, in human body, BICAs are remarkably helpful for disease diagnosis when the dysregulation of these agents occurs and can be detected through imaging techniques. There are various BICAs matched with a set of imaging techniques, including fluorescent proteins for fluorescence imaging, gas vesicles for ultrasound imaging, and ferritin for magnetic resonance imaging. In addition, bimodal and multimodal imaging can be realized through combining the functions of different BICAs, which helps overcome the limitations of monomodal imaging. In this review, the focus is on the properties, mechanisms, applications, and future directions of BICAs.
Collapse
Affiliation(s)
- Qing Dan
- Shenzhen Key Laboratory for Drug Addiction and Medication SafetyDepartment of UltrasoundInstitute of Ultrasonic MedicinePeking University Shenzhen HospitalShenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhen518036P. R. China
| | - Xinpeng Jiang
- Department of Biomedical EngineeringCollege of Future TechnologyPeking UniversityBeijing100871P. R. China
| | - Run Wang
- Shenzhen Key Laboratory for Drug Addiction and Medication SafetyDepartment of UltrasoundInstitute of Ultrasonic MedicinePeking University Shenzhen HospitalShenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhen518036P. R. China
| | - Zhifei Dai
- Department of Biomedical EngineeringCollege of Future TechnologyPeking UniversityBeijing100871P. R. China
| | - Desheng Sun
- Shenzhen Key Laboratory for Drug Addiction and Medication SafetyDepartment of UltrasoundInstitute of Ultrasonic MedicinePeking University Shenzhen HospitalShenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhen518036P. R. China
| |
Collapse
|
15
|
Łopuszyńska N, Węglarz WP. Contrasting Properties of Polymeric Nanocarriers for MRI-Guided Drug Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2163. [PMID: 37570481 PMCID: PMC10420849 DOI: 10.3390/nano13152163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023]
Abstract
Poor pharmacokinetics and low aqueous solubility combined with rapid clearance from the circulation of drugs result in their limited effectiveness and generally high therapeutic doses. The use of nanocarriers for drug delivery can prevent the rapid degradation of the drug, leading to its increased half-life. It can also improve the solubility and stability of drugs, advance their distribution and targeting, ensure a sustained release, and reduce drug resistance by delivering multiple therapeutic agents simultaneously. Furthermore, nanotechnology enables the combination of therapeutics with biomedical imaging agents and other treatment modalities to overcome the challenges of disease diagnosis and therapy. Such an approach is referred to as "theranostics" and aims to offer a more patient-specific approach through the observation of the distribution of contrast agents that are linked to therapeutics. The purpose of this paper is to present the recent scientific reports on polymeric nanocarriers for MRI-guided drug delivery. Polymeric nanocarriers are a very broad and versatile group of materials for drug delivery, providing high loading capacities, improved pharmacokinetics, and biocompatibility. The main focus was on the contrasting properties of proposed polymeric nanocarriers, which can be categorized into three main groups: polymeric nanocarriers (1) with relaxation-type contrast agents, (2) with chemical exchange saturation transfer (CEST) properties, and (3) with direct detection contrast agents based on fluorinated compounds. The importance of this aspect tends to be downplayed, despite its being essential for the successful design of applicable theranostic nanocarriers for image-guided drug delivery. If available, cytotoxicity and therapeutic effects were also summarized.
Collapse
Affiliation(s)
- Natalia Łopuszyńska
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Cracow, Poland
| | - Władysław P. Węglarz
- Department of Magnetic Resonance Imaging, Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Cracow, Poland
| |
Collapse
|
16
|
Ohno Y, Yui M, Yamamoto K, Takenaka D, Koyama H, Nagata H, Ueda T, Ikeda H, Ozawa Y, Toyama H, Yoshikawa T. Chemical Exchange Saturation Transfer MRI: Capability for Predicting Therapeutic Effect of Chemoradiotherapy on Non-Small Cell Lung Cancer Patients. J Magn Reson Imaging 2023; 58:174-186. [PMID: 36971493 DOI: 10.1002/jmri.28691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Amide proton transfer (APT) weighted chemical exchange saturation transfer CEST (APTw/CEST) magnetic resonance imaging (MRI) has been suggested as having the potential for assessing the therapeutic effect of brain tumors or rectal cancer. Moreover, diffusion-weighted imaging (DWI) and positron emission tomography fused with computed tomography by means of 2-[fluorine-18]-fluoro-2-deoxy-D-glucose (FDG-PET/CT) have been suggested as useful in same setting. PURPOSE To compare the capability of APTw/CEST imaging, DWI, and FDG-PET/CT for predicting therapeutic effect of chemoradiotherapy (CRT) on stage III non-small cell lung cancer (NSCLC) patients. STUDY TYPE Prospective. POPULATION Eighty-four consecutive patients with Stage III NSCLC, 45 men (age range, 62-75 years; mean age, 71 years) and 39 women (age range, 57-75 years; mean age, 70 years). All patients were then divided into two groups (Response Evaluation Criteria in Solid Tumors [RECIST] responders, consisting of the complete response and partial response groups, and RECIST non-responders, consisting of the stable disease and progressive disease groups). FIELD STRENGTH/SEQUENCE 3 T, echo planar imaging or fast advanced spin-echo (FASE) sequences for DWI and 2D half Fourier FASE sequences with magnetization transfer pulses for CEST imaging. ASSESSMENT Magnetization transfer ratio asymmetry (MTRasym ) at 3.5 ppm, apparent diffusion coefficient (ADC), and maximum standard uptake value (SUVmax, ) on PET/CT were assessed by means of region of interest (ROI) measurements at primary tumor. STATISTICAL TESTS Kaplan-Meier method followed by log-rank test and Cox proportional hazards regression analysis with multivariate analysis. A P value <0.05 was considered statistically significant. RESULTS Progression-free survival (PFS) and overall survival (OS) had significant difference between two groups. MTRasym at 3.5 ppm (hazard ratio [HR] = 0.70) and SUVmax (HR = 1.41) were identified as significant predictors for PFS. Tumor staging (HR = 0.57) was also significant predictors for OS. DATA CONCLUSION APTw/CEST imaging showed potential performance as DWI and FDG-PET/CT for predicting the therapeutic effect of CRT on stage III NSCLC patients. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Yoshiharu Ohno
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Japan
- Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masao Yui
- Canon Medical Systems Corporation, Otawara, Japan
| | | | - Daisuke Takenaka
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan
- Department of Diagnostic Radiology, Hyogo Cancer Center, Akashi, Japan
| | - Hisanobu Koyama
- Department of Radiology, Osaka Police Hospital, Osaka, Japan
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroyuki Nagata
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Japan
| | - Takahiro Ueda
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hirotaka Ikeda
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yoshiyuki Ozawa
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroshi Toyama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Takeshi Yoshikawa
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan
- Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Diagnostic Radiology, Hyogo Cancer Center, Akashi, Japan
| |
Collapse
|
17
|
Zhang Y, Zu T, Liu R, Zhou J. Acquisition sequences and reconstruction methods for fast chemical exchange saturation transfer imaging. NMR IN BIOMEDICINE 2023; 36:e4699. [PMID: 35067987 DOI: 10.1002/nbm.4699] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/02/2022] [Accepted: 01/17/2022] [Indexed: 05/23/2023]
Abstract
Chemical exchange saturation transfer (CEST) imaging is an emerging molecular magnetic resonance imaging (MRI) technique that has been developed and employed in numerous diseases. Based on the unique saturation transfer principle, a family of CEST-detectable biomolecules in vivo have been found capable of providing valuable diagnostic information. However, CEST MRI needs a relatively long scan time due to the common long saturation labeling module and typical acquisition of multiple frequency offsets and signal averages, limiting its widespread clinical applications. So far, a plethora of imaging schemes and techniques has been developed to accelerate CEST MRI. In this review, the key acquisition and reconstruction methods for fast CEST imaging are summarized from a practical and systematic point of view. The first acquisition sequence section describes the major development of saturation schemes, readout patterns, ultrafast z-spectroscopy, and saturation-editing techniques for rapid CEST imaging. The second reconstruction method section lists the important advances of parallel imaging, compressed sensing, sparsity in the z-spectrum, and algorithms beyond the Fourier transform for speeding up CEST MRI.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tao Zu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ruibin Liu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinyuan Zhou
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
18
|
Perlman O, Farrar CT, Heo HY. MR fingerprinting for semisolid magnetization transfer and chemical exchange saturation transfer quantification. NMR IN BIOMEDICINE 2023; 36:e4710. [PMID: 35141967 PMCID: PMC9808671 DOI: 10.1002/nbm.4710] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/18/2022] [Accepted: 02/04/2022] [Indexed: 05/11/2023]
Abstract
Chemical exchange saturation transfer (CEST) MRI has positioned itself as a promising contrast mechanism, capable of providing molecular information at sufficient resolution and amplified sensitivity. However, it has not yet become a routinely employed clinical technique, due to a variety of confounding factors affecting its contrast-weighted image interpretation and the inherently long scan time. CEST MR fingerprinting (MRF) is a novel approach for addressing these challenges, allowing simultaneous quantitation of several proton exchange parameters using rapid acquisition schemes. Recently, a number of deep-learning algorithms have been developed to further boost the performance and speed of CEST and semi-solid macromolecule magnetization transfer (MT) MRF. This review article describes the fundamental theory behind semisolid MT/CEST-MRF and its main applications. It then details supervised and unsupervised learning approaches for MRF image reconstruction and describes artificial intelligence (AI)-based pipelines for protocol optimization. Finally, practical considerations are discussed, and future perspectives are given, accompanied by basic demonstration code and data.
Collapse
Affiliation(s)
- Or Perlman
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Christian T. Farrar
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Hye-Young Heo
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
19
|
3D Amide Proton Transfer-Weighted Imaging for Grading Glioma and Correlating IDH Mutation Status: Added Value to 3D Pseudocontinuous Arterial Spin Labelling Perfusion. Mol Imaging Biol 2023; 25:343-352. [PMID: 35962302 DOI: 10.1007/s11307-022-01762-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 10/15/2022]
Abstract
PURPOSE The goal of this study was to evaluate the diagnostic performance of 3D amide proton transfer-weighted (3D-APTW) imaging and 3D pseudocontinuous arterial spin labelling (3D-pCASL) alone and in combination in grading gliomas (low-grade glioma (LGG) vs. high-grade glioma (HGG)) and correlating isocitrate dehydrogenase (IDH) mutation status. PROCEDURES Preoperatively, 81 patients with pathologically confirmed gliomas underwent 3.0-T magnetic resonance imaging (MRI) examinations. The APTW, relative APTW (rAPTW), cerebral blood flow (CBF), and relative CBF (rCBF) values were calculated to evaluate the solid components of the tumours. The MRI parameters were compared in the classification of gliomas by independent- and paired-samples t tests. A receiver operating characteristic (ROC) curve was constructed, and the area under the ROC curve (AUC) was calculated to assess the diagnostic performance of each parameter and the combination of the rAPTW and rCBF values. RESULTS Patients with HGG showed significantly higher APTW, rAPTW, CBF, and rCBF values than those with LGG (all p < 0.001). In the ROC curve analysis, the AUC of rAPTW was the highest at 0.90. By adding the rAPTW signal to the rCBF values, the diagnostic ability of the combined parameters improved from 0.90 to 0.96. The rAPTW value yielded the highest AUC (0.92) in correlating the IDH mutation status, and the diagnostic ability improved to 0.96 by adding it to the rCBF value. CONCLUSION 3D-APTW imaging combined with 3D-pCASL imaging may be used to aid assessment of grading glioma and IDH mutation status.
Collapse
|
20
|
Chen Z, Huang J, Lai JHC, Tse KH, Xu J, Chan KWY. Chemical exchange saturation transfer MRI detects myelin changes in cuprizone mouse model at 3T. NMR IN BIOMEDICINE 2023:e4937. [PMID: 36965064 DOI: 10.1002/nbm.4937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/18/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Chemical exchange saturation transfer (CEST) sensitively detects molecular alterations in the brain, such as relayed nuclear Overhauser effect (rNOE) CEST contrast at -3.5 ppm representing aliphatic protons in both lipids and proteins, and CEST contrast at 3.5 ppm correlating with amide proton in proteins. Myelin is rich in lipids and proteins, and therefore CEST can be explored as a biomarker for myelin pathology, which could contribute to the diagnosis and prognosis of multiple sclerosis (MS). In the current study, we investigate the specificity of aliphatic rNOE and the amide pool in myelin detection using the cuprizone (CPZ) mouse model, which recapitulates the demyelination and remyelination of MS. In this study, preclinical 3T MRI was performed in 19 male C57BL/6 mice. Mice in the normal control (NC) group (n = 9) were fed a normal diet for the whole course, while mice in the CPZ group (n = 10) were fed with CPZ for 10 weeks, followed by 4 weeks with a normal diet. The CEST contrast of rNOE (-3.5 ppm) and amide (3.5 ppm) in brain regions of the corpus callosum (CC) and the caudate putamen were compared. Statistical differences between the groups were calculated using two-way ANOVA. We observed significantly decreased rNOE (NC: 4.85% ± 0.09%/s vs. CPZ: 3.88% ± 0.18%/s, p = 0.007) and amide pool (NC: 3.20% ± 0.10%/s vs. CPZ: 2.46% ± 0.16%/s, p = 0.02) in the CC after 8 weeks on CPZ diet (p < 0.05). Moreover, the rNOE in the CPZ group recovered to a level comparable with the NC group at week 14 (p = 0.39), while amide remained at a level as low as that for the NC group (p = 0.051). Significant rNOE and amide changes, validated by immunohistochemistry results for demyelination and remyelination, demonstrate the huge potential of CEST for revealing myelin pathology, which has implications for MS identification at the clinical field strength of 3T.
Collapse
Affiliation(s)
- Zilin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Jianpan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Joseph H C Lai
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Kai-Hei Tse
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jiadi Xu
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kannie W Y Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Tung Biomedical Science Centre, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
21
|
Kido A, Tamada T, Ueda Y, Takeuchi M, Kanki A, Yamamoto A. Comparison Between Amide Proton Transfer Magnetic Resonance Imaging Using 3-Dimensional Acquisition and Diffusion-Weighted Imaging for Characterization of Prostate Cancer: A Preliminary Study. J Comput Assist Tomogr 2023; 47:178-185. [PMID: 36729617 DOI: 10.1097/rct.0000000000001398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE This study aimed to compare diagnostic performance for tumor detection and for assessment of tumor aggressiveness in prostate cancer (PC) between amide proton transfer magnetic resonance imaging (MRI) with 3-dimensional acquisition (3DAPT) and diffusion-weighted imaging. METHODS The subjects were 23 patients with 27 pathologically proven PCs who underwent 3T multiparametric MRI. With reference to the pathology findings, 2 readers in consensus identified the location of PC on multiparametric MRI and measured APT signal intensity (APT SI [%]) and mean apparent diffusion coefficient (ADC) of the benign region and each PC lesion. RESULTS The mean ADC showed a significant difference between benign regions and PC lesions (0.74 ± 0.15 vs 1.37 ± 0.21, P < 0.001), whereas APT SI did not ( P = 0.091). Lesion APT SI was significantly higher and lesion ADC was significantly lower in PCs with Gleason group (GG) ≥3 than in PCs with GG ≤2 (3.37 ± 1.30 vs 1.78 ± 0.67, P < 0.001, and 0.71 ± 0.18 vs 0.79 ± 0.10, P = 0.038, respectively). The APT SI was significantly higher in GG3 than in GG1, in GG3 than in GG2, and in GG4 than in GG2 ( P = 0.009, P = 0.001, and P = 0.006, respectively). The area under the curve for separating tumor lesions and benign regions was 0.601 for 3DAPT and 0.983 for ADC ( P < 0.001). The area under the curve for separating tumors with GG ≤2 from tumors with GG ≥3 was 0.912 for 3DAPT and 0.734 for ADC ( P = 0.172). CONCLUSIONS In patients with PC, it might be preferable to use ADC to discriminate benign from malignant tissue and use APT SI for assessment of tumor aggressiveness.
Collapse
Affiliation(s)
- Ayumu Kido
- From the Department of Radiology, Kawasaki Medical School, Kurashiki
| | - Tsutomu Tamada
- From the Department of Radiology, Kawasaki Medical School, Kurashiki
| | | | | | - Akihiko Kanki
- From the Department of Radiology, Kawasaki Medical School, Kurashiki
| | - Akira Yamamoto
- From the Department of Radiology, Kawasaki Medical School, Kurashiki
| |
Collapse
|
22
|
Amide Proton Transfer-Chemical Exchange Saturation Transfer Imaging of Intracranial Brain Tumors and Tumor-like Lesions: Our Experience and a Review. Diagnostics (Basel) 2023; 13:diagnostics13050914. [PMID: 36900058 PMCID: PMC10000843 DOI: 10.3390/diagnostics13050914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Chemical exchange saturation transfer (CEST) is a molecular magnetic resonance imaging (MRI) method that can generate image contrast based on the proton exchange between labeled protons in solutes and free, bulk water protons. Amide proton transfer (APT) imaging is the most frequently reported amide-proton-based CEST technique. It generates image contrast by reflecting the associations of mobile proteins and peptides resonating at 3.5 ppm downfield from water. Although the origin of the APT signal intensity in tumors is unclear, previous studies have suggested that the APT signal intensity is increased in brain tumors due to the increased mobile protein concentrations in malignant cells in association with an increased cellularity. High-grade tumors, which demonstrate a higher proliferation than low-grade tumors, have higher densities and numbers of cells (and higher concentrations of intracellular proteins and peptides) than low-grade tumors. APT-CEST imaging studies suggest that the APT-CEST signal intensity can be used to help differentiate between benign and malignant tumors and high-grade gliomas and low-grade gliomas as well as estimate the nature of lesions. In this review, we summarize the current applications and findings of the APT-CEST imaging of various brain tumors and tumor-like lesions. We report that APT-CEST imaging can provide additional information on intracranial brain tumors and tumor-like lesions compared to the information provided by conventional MRI methods, and that it can help indicate the nature of lesions, differentiate between benign and malignant lesions, and determine therapeutic effects. Future research could initiate or improve the lesion-specific clinical applicability of APT-CEST imaging for meningioma embolization, lipoma, leukoencephalopathy, tuberous sclerosis complex, progressive multifocal leukoencephalopathy, and hippocampal sclerosis.
Collapse
|
23
|
Law LH, Huang J, Xiao P, Liu Y, Chen Z, Lai JHC, Han X, Cheng GWY, Tse KH, Chan KWY. Multiple CEST contrast imaging of nose-to-brain drug delivery using iohexol liposomes at 3T MRI. J Control Release 2023; 354:208-220. [PMID: 36623695 DOI: 10.1016/j.jconrel.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023]
Abstract
Image guided nose-to-brain drug delivery provides a non-invasive way to monitor drug delivered to the brain, and the intranasal administration could increase effective dose via bypassing Blood Brain Barrier (BBB). Here, we investigated the imaging of liposome-based drug delivery to the brain via intranasal administration, in which the liposome could penetrate mucus and could be detected by chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) at 3T field strength. Liposomes were loaded with a computed tomography (CT) contrast agent, iohexol (Ioh-Lipo), which has specific amide protons exchanging at 4.3 ppm of Z-spectrum (or CEST spectrum). Ioh-Lipo generated CEST contrasts of 35.4% at 4.3 ppm, 1.8% at -3.4 ppm and 20.6% at 1.2 ppm in vitro. After intranasal administration, these specific CEST contrasts were observed in both olfactory bulb (OB) and frontal lobe (FL) in the case of 10% polyethylene glycol (PEG) Ioh-Lipo. We observed obvious increases in CEST contrast in OB half an hour after the injection of 10% PEG Ioh-Lipo, with a percentage increase of 62.0% at 4.3 ppm, 10.9% at -3.4 ppm and 25.7% at 1.2 ppm. Interestingly, the CEST map at 4.3 ppm was distinctive from that at -3.4 pm and 1.2 ppm. The highest contrast of 4.3 ppm was at the external plexiform layer (EPL) and the region between left and right OB (LROB), while the CEST contrast at -3.4 ppm had no significant difference among all investigated regions with slightly higher signal in olfactory limbus (OL, between OB and FL) and FL, as validated with histology. While no substantial increase of CEST contrast at 4.3 ppm, -3.4 ppm or 1.2 ppm was observed in OB and FL when 1% PEG Ioh-Lipo was administered. We demonstrated for the first time the feasibility of non-invasively detecting the nose-to-brain delivery of liposomes using CEST MRI. This multiple-contrast approach is necessary to image the specific distribution of iohexol and liposome simultaneously and independently, especially when designing drug carriers for nose-to-brain drug delivery.
Collapse
Affiliation(s)
- Lok Hin Law
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Jianpan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Peng Xiao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yang Liu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zilin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Joseph H C Lai
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xiongqi Han
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Gerald W Y Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Kai-Hei Tse
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Kannie W Y Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States; City University of Hong Kong Shenzhen Research Institute, Shenzhen, China; Tung Biomedical Science Centre, City University of Hong Kong, Hong Kong, China; Hong Kong Centre for Cerebro-cardiovascular Health Engineering, Hong Kong, China.
| |
Collapse
|
24
|
Predicting a Favorable (mRS 0-2) or Unfavorable (mRS 3-6) Stroke Outcome by Arterial Spin Labeling and Amide Proton Transfer Imaging in Post-Thrombolysis Stroke Patients. J Pers Med 2023; 13:jpm13020248. [PMID: 36836482 PMCID: PMC9962289 DOI: 10.3390/jpm13020248] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
(1) Background: The objective of this study was to determine whether arterial spin labeling (ASL), amide proton transfer (APT), or their combination could distinguish between patients with a low and high modified Rankin Scale (mRS) and forecast the effectiveness of the therapy; (2) Methods: Fifty-eight patients with subacute phase ischemic stroke were included in this study. Based on cerebral blood flow (CBF) and asymmetry magnetic transfer ratio (MTRasym) images, histogram analysis was performed on the ischemic area to acquire imaging biomarkers, and the contralateral area was used as a control. Imaging biomarkers were compared between the low (mRS 0-2) and high (mRS 3-6) mRS score groups using the Mann-Whitney U test. Receiver operating characteristic (ROC) curve analysis was used to evaluate the performance of the potential biomarkers in differentiating between the two groups; (3) Results: The rAPT 50th had an area under the ROC curve (AUC) of 0.728, with a sensitivity of 91.67% and a specificity of 61.76% for differentiating between patients with low and high mRS scores. Moreover, the AUC, sensitivity, and specificity of the rASL max were 0.926, 100%, and 82.4%, respectively. Combining the parameters with logistic regression could further improve the performance in predicting prognosis, leading to an AUC of 0.968, a sensitivity of 100%, and a specificity of 91.2%; (4) Conclusions: The combination of APT and ASL may be a potential imaging biomarker to reflect the effectiveness of thrombolytic therapy for stroke patients, assisting in guiding treatment approaches and identifying high-risk patients such as those with severe disability, paralysis, and cognitive impairment.
Collapse
|
25
|
Wamelink IJ, Kuijer JP, Padrela BE, Zhang Y, Barkhof F, Mutsaerts HJ, Petr J, van de Giessen E, Keil VC. Reproducibility of 3 T APT-CEST in Healthy Volunteers and Patients With Brain Glioma. J Magn Reson Imaging 2023; 57:206-215. [PMID: 35633282 PMCID: PMC10084114 DOI: 10.1002/jmri.28239] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Amide proton transfer (APT) imaging is a chemical exchange saturation transfer (CEST) technique offering potential clinical applications such as diagnosis, characterization, and treatment planning and monitoring in glioma patients. While APT-CEST has demonstrated high potential, reproducibility remains underexplored. PURPOSE To investigate whether cerebral APT-CEST with clinically feasible scan time is reproducible in healthy tissue and glioma for clinical use at 3 T. STUDY TYPE Prospective, longitudinal. SUBJECTS Twenty-one healthy volunteers (11 females; mean age ± SD: 39 ± 11 years) and 6 glioma patients (3 females; 50 ± 17 years: 4 glioblastomas, 1 oligodendroglioma, 1 radiologically suspected low-grade glioma). FIELD STRENGTH/SEQUENCE 3 T, Turbo Spin Echo - ampling perfection with application optimized contrasts using different flip angle evolution - chemical exchange saturation transfer (TSE SPACE-CEST). ASSESSMENT APT-CEST measurement reproducibility was assessed within-session (glioma patients, scan session 1; healthy volunteers scan sessions 1, 2, and 3), between-sessions (healthy volunteers scan sessions 1 and 2), and between-days (healthy volunteers, scan sessions 1 and 3). The mean APTCEST values and standard deviation of the within-subject difference (SDdiff ) were calculated in whole tumor enclosed by regions of interest (ROIs) in patients, and eight ROIs in healthy volunteers-whole-brain, cortical gray matter, putamen, thalami, orbitofrontal gyri, occipital lobes, central brain-and compared. STATISTICAL TESTS Brown-Forsythe tests and variance component analysis (VCA) were used to assess the reproducibility of ROIs for the three time intervals. Significance was set at P < 0.003 after Bonferroni correction. RESULTS Intratumoral mean APTCEST was significantly higher than APTCEST in healthy-appearing tissue in patients (0.5 ± 0.46%). The average within-session, between-sessions, and between-days SDdiff of healthy control brains was 0.2% and did not differ significantly with each other (0.76 > P > 0.22). The within-session SDdiff of whole-brain was 0.2% in both healthy volunteers and patients, and 0.21% in the segmented tumor. VCA showed that within-session factors were the most important (60%) for scanning variance. DATA CONCLUSION Cerebral APT-CEST imaging may show good scan-rescan reproducibility in healthy tissue and tumors with clinically feasible scan times at 3 T. Short-term measurement effects may be the dominant components for reproducibility. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Ivar J.H.G. Wamelink
- Department of Radiology and Nuclear MedicineCancer Center Amsterdam, Amsterdam University Medical CenterAmsterdamThe Netherlands
| | - Joost P.A. Kuijer
- Department of Radiology and Nuclear MedicineAmsterdam Neuroscience, Amsterdam University Medical CenterAmsterdamThe Netherlands
| | - Beatriz E. Padrela
- Department of Radiology and Nuclear MedicineAmsterdam Neuroscience, Amsterdam University Medical CenterAmsterdamThe Netherlands
| | - Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument ScienceZhejiang UniversityHangzhouChina
| | - Frederik Barkhof
- Department of Radiology and Nuclear MedicineAmsterdam Neuroscience, Amsterdam University Medical CenterAmsterdamThe Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image ComputingUniversity College LondonLondonUK
| | - Henk J.M.M. Mutsaerts
- Department of Radiology and Nuclear MedicineAmsterdam Neuroscience, Amsterdam University Medical CenterAmsterdamThe Netherlands
| | - Jan Petr
- Department of Radiology and Nuclear MedicineCancer Center Amsterdam, Amsterdam University Medical CenterAmsterdamThe Netherlands
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Radiopharmaceutical Cancer ResearchDresdenGermany
| | - Elsmarieke van de Giessen
- Department of Radiology and Nuclear MedicineCancer Center Amsterdam, Amsterdam University Medical CenterAmsterdamThe Netherlands
- Department of Radiology and Nuclear MedicineAmsterdam Neuroscience, Amsterdam University Medical CenterAmsterdamThe Netherlands
| | - Vera C. Keil
- Department of Radiology and Nuclear MedicineCancer Center Amsterdam, Amsterdam University Medical CenterAmsterdamThe Netherlands
| |
Collapse
|
26
|
Hou H, Diao Y, Yu J, Xu M, Wang L, Li Z, Song T, Liu Y, Yuan Z. Differentiation of true progression from treatment response in high-grade glioma treated with chemoradiation: a comparison study of 3D-APTW and 3D-PcASL imaging and DWI. NMR IN BIOMEDICINE 2023; 36:e4821. [PMID: 36031734 DOI: 10.1002/nbm.4821] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
PURPOSE To assess and compare the diagnostic performance of 3D amide proton-transfer-weighted (3D-APTW) imaging, 3D pseudocontinuous arterial spin-labeling (3D-PcASL) imaging, and diffusion-weighted imaging in distinguishing true progression (TP) from treatment response (TR) in posttreatment malignant glioma patients. MATERIALS AND METHODS Forty-eight patients with suspected tumor recurrence were prospectively enrolled. Histological or longitudinal routine MRI follow-up over six months was assessed to confirm lesion type. The apparent diffusion coefficient (ADC), relative APTWmax (rAPTW), and relative CBFmax values (rCBF) were measured in lesions with enhancing regions on post-gadolinium T1 -weighted MRI. MRI parameters between the TP and TR groups were compared using Student's t tests. In addition, a receiver operating characteristic (ROC) curve was constructed, and the area under the ROC curve (AUC) was calculated to assess the differentiation diagnostic performance of each parameter. RESULTS The TP group showed a significantly higher rAPTW and rCBF than the TR group; the AUCs of rAPTW and rCBF to distinguish between TP and TR were 0.911 (with sensitivity of 90.3% and specificity of 82.4%) and 0.852 (with sensitivity of 80.6% and specificity of 82.4%), respectively. By adding the rAPTW values to rCBF values, the diagnostic ability was improved from 0.852 to 0.951. ADC showed no significant differences between the TP and TR groups, with an AUC lower than 0.70. CONCLUSION Both 3D-PcASL and 3D-APTW imaging could distinguish TP from TR, and 3D-APTW had a better diagnostic performance. Combining the rAPTW values and rCBF values achieved a better diagnostic performance.
Collapse
Affiliation(s)
- Huimin Hou
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Radiology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Yanzhao Diao
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jinchao Yu
- Department of Radiology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Min Xu
- Department of Radiology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Liming Wang
- Department of Radiology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Zhenzhi Li
- Department of Radiology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Tao Song
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yu Liu
- Department of Pathology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhenguo Yuan
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
27
|
Koike H, Morikawa M, Ishimaru H, Ideguchi R, Uetani M, Hiu T, Matsuo T, Miyoshi M. Amide proton transfer MRI differentiates between progressive multifocal leukoencephalopathy and malignant brain tumors: a pilot study. BMC Med Imaging 2022; 22:227. [PMID: 36572873 PMCID: PMC9793649 DOI: 10.1186/s12880-022-00959-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease of the central nerve system caused by the John Cunningham virus. On MRI, PML may sometimes appear similar to primary central nervous system lymphoma (PCNSL) and glioblastoma multiforme (GBM). The purpose of this pilot study was to evaluate the potential of amide proton transfer (APT) imaging for differentiating PML from PCNSL and GBM. METHODS Patients with PML (n = 4; two men; mean age 52.3 ± 6.1 years), PCNSL (n = 7; four women; mean age 74.4 ± 5.8 years), or GBM (n = 11; 6 men; mean age 65.0 ± 15.2 years) who underwent APT-CEST MRI between January 2021 and September 2022 were retrospectively evaluated. Magnetization transfer ratio asymmetry (MTRasym) values were measured on APT imaging using a region of interest within the lesion. Receiver operating characteristics curve analysis was used to determine diagnostic cutoffs for MTRasym. RESULTS The mean MTRasym values were 0.005 ± 0.005 in the PML group, 0.025 ± 0.005 in the PCNSL group, and 0.025 ± 0.009 in the GBM group. There were significant differences in MTRasym between PML and PCNSL (P = 0.023), and between PML and GBM (P = 0.015). For differentiating PML from PCNSL, an MTRasym threshold of 0.0165 gave diagnostic sensitivity, specificity, positive predictive value, and negative predictive value of 100% (all). For differentiating PML from GBM, an MTRasym threshold of 0.015 gave diagnostic sensitivity, specificity, positive predictive value, and negative predictive value of 100%, 90.9%, 80.0%, and 100%, respectively. CONCLUSION MTRasym values obtained from APT imaging allowed patients with PML to be clearly discriminated from patients with PCNSL or GBM.
Collapse
Affiliation(s)
- Hirofumi Koike
- grid.174567.60000 0000 8902 2273Department of Radiology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
| | - Minoru Morikawa
- grid.411873.80000 0004 0616 1585Department of Radiology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
| | - Hideki Ishimaru
- grid.411873.80000 0004 0616 1585Department of Radiology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
| | - Reiko Ideguchi
- grid.174567.60000 0000 8902 2273Department of Radioisotope Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8588 Japan
| | - Masataka Uetani
- grid.174567.60000 0000 8902 2273Department of Radiology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
| | - Takeshi Hiu
- grid.174567.60000 0000 8902 2273Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
| | - Takayuki Matsuo
- grid.174567.60000 0000 8902 2273Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
| | - Mitsuharu Miyoshi
- grid.481637.f0000 0004 0377 9208MR Application and Workflow, GE Healthcare Japan, 4-7-127 Asahigaoka, Hino, Tokyo 191-8503 Japan
| |
Collapse
|
28
|
Lévy S, Herrler J, Liebert A, Tkotz K, Fabian MS, Eisen C, Grodzki D, Uder M, Dörfler A, Zaiss M, Nagel AM. Clinically compatible subject-specific dynamic parallel transmit pulse design for homogeneous fat saturation and water-excitation at 141657T: Proof-of-concept for 14165CEST MRI of the brain. Magn Reson Med 2022; 89:77-94. [PMID: 36128895 DOI: 10.1002/mrm.29412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE To evaluate the benefits and challenges of dynamic parallel transmit (pTx) pulses for fat saturation (FS) and water-excitation (WE), in the context of CEST MRI. METHODS "Universal" kT -points (for FS) and spiral non-selective (for WE) trajectories were optimized offline for flip angle (FA) homogeneity. Routines to optimize the pulse shape online, based on the subject's fields maps, were implemented (target FA of 110°/0° for FS, 0°/5° for WE at fat/water frequencies). The pulses were inserted in a CEST sequence with a pTx readout. The different fat suppression schemes and their effects on CEST contrasts were compared in 12 volunteers at 7T. RESULTS With a 25%-shorter pulse duration, pTx FS largely improved the FA homogeneity (root-mean-square-error (RMSE) = 12.3° vs. 53.4° with circularly-polarized mode, at the fat frequency). However, the spectral selectivity was degraded mainly in the cerebellum and close to the sinuses (RMSE = 5.8° vs. 0.2° at the water frequency). Similarly, pTx WE showed a trade-off between FA homogeneity and spectral selectivity compared to pTx non-selective pulses (RMSE = 0.9° and 1.1° at the fat and water frequencies, vs. 4.6° and 0.5°). In the brain, CEST metrics were reduced by up to 31.9% at -3.3 ppm with pTx FS, suggesting a mitigated lipid-induced bias. CONCLUSION This clinically compatible implementation of dynamic pTx pulses improved the fat suppression homogeneity at 7T taking into account the subject-specific B0 heterogeneities online. This study highlights the lipid-induced biases on the CEST z-spectrum. The results are promising for body applications where B0 heterogeneities and fat are more substantial.
Collapse
Affiliation(s)
- Simon Lévy
- Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Jürgen Herrler
- Institute of Neuroradiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Andrzej Liebert
- Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Katharina Tkotz
- Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Moritz S Fabian
- Institute of Neuroradiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Christian Eisen
- Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - David Grodzki
- MR Application Predevelopment, Siemens Healthcare, Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Arnd Dörfler
- Institute of Neuroradiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Moritz Zaiss
- Institute of Neuroradiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany.,High-Field Magnetic Resonance Center, Max-Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Armin M Nagel
- Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany.,Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
29
|
Koike H, Morikawa M, Ishimaru H, Ideguchi R, Uetani M, Hiu T, Matsuo T, Miyoshi M. Quantitative Chemical Exchange Saturation Transfer Imaging of Amide Proton Transfer Differentiates between Cerebellopontine Angle Schwannoma and Meningioma: Preliminary Results. Int J Mol Sci 2022; 23:ijms231710187. [PMID: 36077581 PMCID: PMC9456068 DOI: 10.3390/ijms231710187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/15/2022] [Accepted: 09/04/2022] [Indexed: 11/25/2022] Open
Abstract
Vestibular schwannomas are the most common tumor at the common cerebellopontine angle, followed by meningiomas. Differentiation of these tumors is critical because of the different surgical approaches required for treatment. Recent studies have demonstrated the utility of amide proton transfer (APT)-chemical exchange saturation transfer (CEST) imaging in evaluating malignant brain tumors. However, APT imaging has not been applied in benign tumors. Here, we explored the potential of APT in differentiating between schwannomas and meningiomas at the cerebellopontine angle. We retrospectively evaluated nine patients with schwannoma and nine patients with meningioma who underwent APT-CEST MRI from November 2020 to April 2022 pre-operation. All 18 tumors were histologically diagnosed. There was a significant difference in magnetization transfer ratio asymmetry (MTRasym) values (0.033 ± 0.012 vs. 0.021 ± 0.004; p = 0.007) between the schwannoma and meningioma groups. Receiver operative curve analysis showed that MTRasym values clearly differentiated between the schwannoma and meningioma groups. At an MTRasym value threshold of 0.024, the diagnostic sensitivity, specificity, positive predictive value, and negative predictive values for MTRasym were 88.9%, 77.8%, 80.0%, and 87.5%, respectively. Our results demonstrated the ability of MTRasym values on APT-CEST imaging to discriminate patients with schwannomas from patients with meningiomas.
Collapse
Affiliation(s)
- Hirofumi Koike
- Department of Radiology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
- Correspondence:
| | - Minoru Morikawa
- Department of Radiology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Hideki Ishimaru
- Department of Radiology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Reiko Ideguchi
- Department of Radioisotope Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Masataka Uetani
- Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Takeshi Hiu
- Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Takayuki Matsuo
- Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Mitsuharu Miyoshi
- MR Application and Workflow, GE Healthcare Japan, Hino, Tokyo 191-8503, Japan
| |
Collapse
|
30
|
Wang F, Xu Y, Xiang Y, Wu P, Shen A, Wang P. The feasibility of amide proton transfer imaging at 3 T for bladder cancer: a preliminary study. Clin Radiol 2022; 77:776-783. [PMID: 35985845 DOI: 10.1016/j.crad.2022.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/31/2022] [Accepted: 07/04/2022] [Indexed: 11/03/2022]
Abstract
AIM To investigate the optimal amide proton transfer (APT) imaging parameters for bladder cancer (BCa), the influence of different protein concentrations and pH values on APT imaging, and to establish the reliability of APT imaging in healthy volunteers and patients with BCa. MATERIALS AND METHODS The optimal APT imaging parameters for BCa were experimentally optimised using cross-linked bovine serum albumin (BSA) phantoms. BSA phantoms were scanned with different values for the saturation power, saturation duration and number of excitations. Meanwhile, BSA phantoms containing different protein concentrations and solutions of different pH levels were scanned. The interobserver agreement of the asymmetric magnetisation transfer ratio (MTRasym) was assessed in 11 healthy volunteers and 18 patients with BCa. RESULTS The optimal scanning scheme consisted of 1 excitation, a saturation power of 2 μT, and a saturation time of 2 s. The APT signal intensity increased as the protein concentration increased and as the pH decreased. The MTRasym showed good concordance for all subjects. The MTRasym of BCa tissue was significantly higher (1.81 ± 0.71) than that of bladder wall in healthy volunteers (0.34 ± 0.12) and normal bladder wall in patients with BCa (0.31 ± 0.11; p<0.001). There was no significant difference between the bladder wall of healthy volunteers and the normal bladder wall of patients with BCa. CONCLUSION APT imaging showed potential value for application in BCa.
Collapse
Affiliation(s)
- F Wang
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Y Xu
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Y Xiang
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - P Wu
- Philips Healthcare, Shanghai, 200072, China
| | - A Shen
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - P Wang
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
| |
Collapse
|
31
|
Msayib Y, Harston GWJ, Ray KJ, Larkin JR, Sutherland BA, Sheerin F, Blockley NP, Okell TW, Jezzard P, Baldwin A, Sibson NR, Kennedy J, Chappell MA. Quantitative chemical exchange saturation transfer imaging of nuclear overhauser effects in acute ischemic stroke. Magn Reson Med 2022; 88:341-356. [PMID: 35253936 PMCID: PMC9314583 DOI: 10.1002/mrm.29187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 11/07/2022]
Abstract
PURPOSE In chemical exchange saturation transfer imaging, saturation effects between - 2 to - 5 ppm (nuclear Overhauser effects, NOEs) have been shown to exhibit contrast in preclinical stroke models. Our previous work on NOEs in human stroke used an analysis model that combined NOEs and semisolid MT; however their combination might feasibly have reduced sensitivity to changes in NOEs. The aim of this study was to explore the information a 4-pool Bloch-McConnell model provides about the NOE contribution in ischemic stroke, contrasting that with an intentionally approximate 3-pool model. METHODS MRI data from 12 patients presenting with ischemic stroke were retrospectively analyzed, as well as from six animals induced with an ischemic lesion. Two Bloch-McConnell models (4 pools, and a 3-pool approximation) were compared for their ability to distinguish pathological tissue in acute stroke. The association of NOEs with pH was also explored, using pH phantoms that mimic the intracellular environment of naïve mouse brain. RESULTS The 4-pool measure of NOEs exhibited a different association with tissue outcome compared to 3-pool approximation in the ischemic core and in tissue that underwent delayed infarction. In the ischemic core, the 4-pool measure was elevated in patient white matter ( 1 . 20 ± 0 . 20 ) and in animals ( 1 . 27 ± 0 . 20 ). In the naïve brain pH phantoms, significant positive correlation between the NOE and pH was observed. CONCLUSION Associations of NOEs with tissue pathology were found using the 4-pool metric that were not observed using the 3-pool approximation. The 4-pool model more adequately captured in vivo changes in NOEs and revealed trends depending on tissue pathology in stroke.
Collapse
Affiliation(s)
- Yunus Msayib
- Institute of Biomedical Engineering, Department of Engineering ScienceUniversity of OxfordOxfordUK
| | - George W. J. Harston
- Acute Vascular Imaging Centre, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Kevin J. Ray
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - James R. Larkin
- Department of Oncology, CRUK and MRC Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUK
| | - Brad A. Sutherland
- Acute Vascular Imaging Centre, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
- School of MedicineUniversity of TasmaniaHobartTasmaniaAustralia
| | - Fintan Sheerin
- Acute Vascular Imaging Centre, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Nicholas P. Blockley
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Thomas W. Okell
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Peter Jezzard
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | | | - Nicola R. Sibson
- Department of Oncology, CRUK and MRC Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUK
| | - James Kennedy
- Acute Vascular Imaging Centre, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Michael A. Chappell
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Sir Peter Mansfield Imaging Center, School of MedicineUniversity of NottinghamNottinghamUK
- Mental Health & Clinical Neuroscience, School of Medicine, University of NottinghamNottinghamUK
| |
Collapse
|
32
|
Kamimura K, Nakajo M, Gohara M, Kawaji K, Bohara M, Fukukura Y, Uchida H, Tabata K, Iwanaga T, Akamine Y, Keupp J, Fukami T, Yoshiura T. Differentiation of hemangioblastoma from brain metastasis using MR amide proton transfer imaging. J Neuroimaging 2022; 32:920-929. [PMID: 35731178 DOI: 10.1111/jon.13019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/18/2022] [Accepted: 06/06/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Differentiation between hemangioblastoma and brain metastasis remains a challenge in neuroradiology using conventional MRI. Amide proton transfer (APT) imaging can provide unique molecular information. This study aimed to evaluate the usefulness of APT imaging in differentiating hemangioblastomas from brain metastases and compare APT imaging with diffusion-weighted imaging and dynamic susceptibility contrast perfusion-weighted imaging. METHODS This retrospective study included 11 patients with hemangioblastoma and 20 patients with brain metastases. Region-of-interest analyses were employed to obtain the mean, minimum, and maximum values of APT signal intensity, apparent diffusion coefficient (ADC), and relative cerebral blood volume (rCBV), and these indices were compared between hemangioblastomas and brain metastases using the unpaired t-test and Mann-Whitney U test. Their diagnostic performances were evaluated using receiver operating characteristic (ROC) analysis and area under the ROC curve (AUC). AUCs were compared using DeLong's method. RESULTS All MRI-derived indices were significantly higher in hemangioblastoma than in brain metastasis. ROC analysis revealed the best performance with APT-related indices (AUC = 1.000), although pairwise comparisons showed no significant difference between the mean ADC and mean rCBV. CONCLUSIONS APT imaging is a useful and robust imaging tool for differentiating hemangioblastoma from metastasis.
Collapse
Affiliation(s)
- Kiyohisa Kamimura
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Masanori Nakajo
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Misaki Gohara
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kodai Kawaji
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Manisha Bohara
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yoshihiko Fukukura
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hiroyuki Uchida
- Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kazuhiro Tabata
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takashi Iwanaga
- Department of Radiological Technology, Kagoshima University Hospital, Kagoshima, Japan
| | | | | | | | - Takashi Yoshiura
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
33
|
Zhou J, Zaiss M, Knutsson L, Sun PZ, Ahn SS, Aime S, Bachert P, Blakeley JO, Cai K, Chappell MA, Chen M, Gochberg DF, Goerke S, Heo HY, Jiang S, Jin T, Kim SG, Laterra J, Paech D, Pagel MD, Park JE, Reddy R, Sakata A, Sartoretti-Schefer S, Sherry AD, Smith SA, Stanisz GJ, Sundgren PC, Togao O, Vandsburger M, Wen Z, Wu Y, Zhang Y, Zhu W, Zu Z, van Zijl PCM. Review and consensus recommendations on clinical APT-weighted imaging approaches at 3T: Application to brain tumors. Magn Reson Med 2022; 88:546-574. [PMID: 35452155 PMCID: PMC9321891 DOI: 10.1002/mrm.29241] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 12/16/2022]
Abstract
Amide proton transfer-weighted (APTw) MR imaging shows promise as a biomarker of brain tumor status. Currently used APTw MRI pulse sequences and protocols vary substantially among different institutes, and there are no agreed-on standards in the imaging community. Therefore, the results acquired from different research centers are difficult to compare, which hampers uniform clinical application and interpretation. This paper reviews current clinical APTw imaging approaches and provides a rationale for optimized APTw brain tumor imaging at 3 T, including specific recommendations for pulse sequences, acquisition protocols, and data processing methods. We expect that these consensus recommendations will become the first broadly accepted guidelines for APTw imaging of brain tumors on 3 T MRI systems from different vendors. This will allow more medical centers to use the same or comparable APTw MRI techniques for the detection, characterization, and monitoring of brain tumors, enabling multi-center trials in larger patient cohorts and, ultimately, routine clinical use.
Collapse
Affiliation(s)
- Jinyuan Zhou
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Moritz Zaiss
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Institute of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Linda Knutsson
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Medical Radiation Physics, Lund University, Lund, Sweden.,F.M. Kirby Research Center for Functional Brain Imaging, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
| | - Phillip Zhe Sun
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Silvio Aime
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Peter Bachert
- Department of Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany.,Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Jaishri O Blakeley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kejia Cai
- Department of Radiology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Michael A Chappell
- Mental Health and Clinical Neurosciences and Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK.,Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Min Chen
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Daniel F Gochberg
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Physics, Vanderbilt University, Nashville, Tennessee, USA
| | - Steffen Goerke
- Department of Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany
| | - Hye-Young Heo
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shanshan Jiang
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tao Jin
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science and Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - John Laterra
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
| | - Daniel Paech
- Department of Radiology, German Cancer Research Center, Heidelberg, Germany.,Clinic for Neuroradiology, University Hospital Bonn, Bonn, Germany
| | - Mark D Pagel
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ji Eun Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Ravinder Reddy
- Center for Advance Metabolic Imaging in Precision Medicine, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Akihiko Sakata
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - A Dean Sherry
- Advanced Imaging Research Center and Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas, USA
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Greg J Stanisz
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Pia C Sundgren
- Department of Diagnostic Radiology/Clinical Sciences Lund, Lund University, Lund, Sweden.,Lund University Bioimaging Center, Lund University, Lund, Sweden.,Department of Medical Imaging and Physiology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Osamu Togao
- Department of Molecular Imaging and Diagnosis, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Zhibo Wen
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yin Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Peter C M van Zijl
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
| |
Collapse
|
34
|
Huang J, Chen Z, Park SW, Lai JHC, Chan KWY. Molecular Imaging of Brain Tumors and Drug Delivery Using CEST MRI: Promises and Challenges. Pharmaceutics 2022; 14:451. [PMID: 35214183 PMCID: PMC8880023 DOI: 10.3390/pharmaceutics14020451] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/10/2022] Open
Abstract
Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) detects molecules in their natural forms in a sensitive and non-invasive manner. This makes it a robust approach to assess brain tumors and related molecular alterations using endogenous molecules, such as proteins/peptides, and drugs approved for clinical use. In this review, we will discuss the promises of CEST MRI in the identification of tumors, tumor grading, detecting molecular alterations related to isocitrate dehydrogenase (IDH) and O-6-methylguanine-DNA methyltransferase (MGMT), assessment of treatment effects, and using multiple contrasts of CEST to develop theranostic approaches for cancer treatments. Promising applications include (i) using the CEST contrast of amide protons of proteins/peptides to detect brain tumors, such as glioblastoma multiforme (GBM) and low-grade gliomas; (ii) using multiple CEST contrasts for tumor stratification, and (iii) evaluation of the efficacy of drug delivery without the need of metallic or radioactive labels. These promising applications have raised enthusiasm, however, the use of CEST MRI is not trivial. CEST contrast depends on the pulse sequences, saturation parameters, methods used to analyze the CEST spectrum (i.e., Z-spectrum), and, importantly, how to interpret changes in CEST contrast and related molecular alterations in the brain. Emerging pulse sequence designs and data analysis approaches, including those assisted with deep learning, have enhanced the capability of CEST MRI in detecting molecules in brain tumors. CEST has become a specific marker for tumor grading and has the potential for prognosis and theranostics in brain tumors. With increasing understanding of the technical aspects and associated molecular alterations detected by CEST MRI, this young field is expected to have wide clinical applications in the near future.
Collapse
Affiliation(s)
- Jianpan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (J.H.); (Z.C.); (S.-W.P.); (J.H.C.L.)
| | - Zilin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (J.H.); (Z.C.); (S.-W.P.); (J.H.C.L.)
| | - Se-Weon Park
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (J.H.); (Z.C.); (S.-W.P.); (J.H.C.L.)
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Joseph H. C. Lai
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (J.H.); (Z.C.); (S.-W.P.); (J.H.C.L.)
| | - Kannie W. Y. Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (J.H.); (Z.C.); (S.-W.P.); (J.H.C.L.)
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
- Tung Biomedical Science Centre, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
35
|
Non-Invasive Monitoring of Increased Fibrotic Tissue and Hyaluronan Deposition in the Tumor Microenvironment in the Advanced Stages of Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14040999. [PMID: 35205746 PMCID: PMC8870395 DOI: 10.3390/cancers14040999] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/06/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease with a poor prognosis. A better understanding of the tumor microenvironment may help better treat the disease. Magnetic resonance imaging may be a great tool for monitoring the tumor microenvironment at different stages of tumor evolution. Here, we used multi-parametric magnetic resonance imaging techniques to monitor underlying pathophysiologic processes during the advanced stages of tumor development and correlated with histologic measurements. Abstract Pancreatic ductal adenocarcinomas are characterized by a complex and robust tumor microenvironment (TME) consisting of fibrotic tissue, excessive levels of hyaluronan (HA), and immune cells. We utilized quantitative multi-parametric magnetic resonance imaging (mp-MRI) methods at 14 Tesla in a genetically engineered KPC (KrasLSL-G12D/+, Trp53LSL-R172H/+, Cre) mouse model to assess the complex TME in advanced stages of tumor development. The whole tumor, excluding cystic areas, was selected as the region of interest for data analysis and subsequent statistical analysis. Pearson correlation was used for statistical inference. There was a significant correlation between tumor volume and T2 (r = −0.66), magnetization transfer ratio (MTR) (r = 0.60), apparent diffusion coefficient (ADC) (r = 0.48), and Glycosaminoglycan-chemical exchange saturation transfer (GagCEST) (r = 0.51). A subset of mice was randomly selected for histological analysis. There were positive correlations between tumor volume and fibrosis (0.92), and HA (r = 0.76); GagCEST and HA (r = 0.81); and MTR and CD31 (r = 0.48). We found a negative correlation between ADC low-b (perfusion) and Ki67 (r = −0.82). Strong correlations between mp-MRI and histology results suggest that mp-MRI can be used as a non-invasive tool to monitor the tumor microenvironment.
Collapse
|
36
|
Wermter FC, Bock C, Dreher W. Characterization of amine proton exchange for analyzing the specificity and intensity of the CEST effect: from humans to fish. NMR IN BIOMEDICINE 2022; 35:e4622. [PMID: 34605080 DOI: 10.1002/nbm.4622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Chemical exchange saturation transfer (CEST) at about 2.8 ppm downfield from water is characterized besides other compounds by exchanging amine protons of relatively high concentration amino acids and is determined by several physiological (pH, T) and experimental (B0 , B1 , tsat ) parameters. Although the weighting of the CEST effect observed in vivo can be attributed mainly to one compound depending on the organism and organ, there are still several other amino acids, proteins and molecules that also contribute. These contributions in turn exhibit dependences and thus can lead to possible misinterpretation of the measured changes in the CEST effect. With this in mind, this work aimed to determine the exchange rates of six important amino acids as a function of pH and temperature, and thus to create multi-pool models that allow the accurate analysis of the CEST effect concerning different physiological and experimental parameters for a wide variety of organisms. The results show that small changes in the above parameters have a significant impact on the CEST effect at about 2.8 ppm for the chosen organisms, i.e. the human brain (37 °C) and the brain of polar cod (1.5 °C), furthermore, the specificity of the CEST effect observed in vivo can be significantly affected. Based on the exchange rates ksw (pH, T) determined for six metabolites in this study, it is possible to optimize the intensity and the specificity for the CEST effect of amino acids at about 2.8 ppm for different organisms with their specific physiological characteristics. By adjusting experimental parameters accordingly, this optimization will help to avoid possible misinterpretations of CEST measurements. Furthermore, the multi-pool models can be utilized to further optimize the saturation.
Collapse
Affiliation(s)
- Felizitas C Wermter
- Department of Chemistry, in-vivo-MR group, University Bremen, Bremen, Germany
| | - Christian Bock
- Integrative Ecophysiology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Wolfgang Dreher
- Department of Chemistry, in-vivo-MR group, University Bremen, Bremen, Germany
| |
Collapse
|
37
|
Bie C, Li Y, Zhou Y, Bhujwalla ZM, Song X, Liu G, van Zijl PCM, Yadav NN. Deep learning-based classification of preclinical breast cancer tumor models using chemical exchange saturation transfer magnetic resonance imaging. NMR IN BIOMEDICINE 2022; 35:e4626. [PMID: 34668251 PMCID: PMC8876537 DOI: 10.1002/nbm.4626] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/31/2021] [Accepted: 09/11/2021] [Indexed: 05/08/2023]
Abstract
Chemical exchange saturation transfer (CEST) magnetic resonance imaging has shown promise for classifying tumors based on their aggressiveness, but CEST contrast is complicated by multiple signal sources and thus prolonged acquisition times are often required to extract the signal of interest. We investigated whether deep learning could help identify pertinent Z-spectral features for distinguishing tumor aggressiveness as well as the possibility of acquiring only the pertinent spectral regions for more efficient CEST acquisition. Human breast cancer cells, MDA-MB-231 and MCF-7, were used to establish bi-lateral tumor xenografts in mice to represent higher and lower aggressive tumors, respectively. A convolutional neural network (CNN)-based classification model, trained on simulated data, utilized Z-spectral features as input to predict labels of different tissue types, including MDA-MB-231, MCF-7, and muscle tissue. Saliency maps reported the influence of Z-spectral regions on classifying tissue types. The model was robust to noise with an accuracy of more than 91.5% for low and moderate noise levels in simulated testing data (SD of noise less than 2.0%). For in vivo CEST data acquired with a saturation pulse amplitude of 2.0 μT, the model had a superior ability to delineate tissue types compared with Lorentzian difference (LD) and magnetization transfer ratio asymmetry (MTRasym ) analysis, classifying tissues to the correct types with a mean accuracy of 85.7%, sensitivity of 81.1%, and specificity of 94.0%. The model's performance did not improve substantially when using data acquired at multiple saturation pulse amplitudes or when adding LD or MTRasym spectral features, and did not change when using saliency map-based partial or downsampled Z-spectra. This study demonstrates the potential of CNN-based classification to distinguish between different tumor types and muscle tissue, and speed up CEST acquisition protocols.
Collapse
Affiliation(s)
- Chongxue Bie
- Department of Information Science and Technology, Northwest University, Xi'an, Shaanxi, China
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Yuguo Li
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Yang Zhou
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Zaver M Bhujwalla
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xiaolei Song
- Department of Information Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Guanshu Liu
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Peter C M van Zijl
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Nirbhay N Yadav
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
38
|
Amide proton transfer and chemical exchange saturation transfer MRI differentiates between growing and non-growing intracranial meningiomas: a pilot study. Clin Radiol 2022; 77:e295-e301. [DOI: 10.1016/j.crad.2021.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/24/2021] [Indexed: 11/17/2022]
|
39
|
GlyCEST: Magnetic Resonance Imaging of Glycine—Distribution in the Normal Murine Brain and Alterations in 5xFAD Mice. CONTRAST MEDIA & MOLECULAR IMAGING 2021; 2021:8988762. [PMID: 35046756 PMCID: PMC8739925 DOI: 10.1155/2021/8988762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/14/2021] [Indexed: 11/24/2022]
Abstract
The glycine level in the brain is known to be altered in neuropsychiatric disorders, such as schizophrenia and Alzheimer's disease (AD). Several studies have reported the in vivo measurement of glycine concentrations in the brain using proton magnetic resonance spectroscopy (1H-MRS), but 1H-MRS is not capable of imaging the distribution of glycine concentration with high spatial resolution. Chemical exchange saturation transfer magnetic resonance imaging (CEST-MRI) is a new technology that can detect specific molecules, including amino acids, in tissues. To validate the measurements of glycine concentrations in living tissues using CEST from glycine to water (GlyCEST), we extracted the brain tissues from mice and performed biochemical tests. In wild-type C57BL/6 mice, GlyCEST effects were found to be higher in the thalamus than in the cerebral cortex (P < 0.0001, paired t-test), and this result was in good agreement with the biochemical results. In 5xFAD mice, an animal model of AD, GlyCEST measurements demonstrated that glycine concentrations in the cerebral cortex (P < 0.05, unpaired t-test) and thalamus (P < 0.0001, unpaired t-test), but not in the hippocampus, were decreased compared to those in wild-type mice. These findings suggest that we have successfully applied the CEST-MRI technique to map the distribution of glycine concentrations in the murine brain. The present method also captured the changes in cerebral glycine concentrations in mice with AD. Imaging the distribution of glycine concentrations in the brain can be useful in investigating and elucidating the pathological mechanisms of neuropsychiatric disorders.
Collapse
|
40
|
Han P, Cheema K, Lee HL, Zhou Z, Cao T, Ma S, Wang N, Han H, Christodoulou AG, Li D. Whole-brain steady-state CEST at 3 T using MR Multitasking. Magn Reson Med 2021; 87:2363-2371. [PMID: 34843114 DOI: 10.1002/mrm.29109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE To perform fast 3D steady-state CEST (ss-CEST) imaging using MR Multitasking. METHODS A continuous acquisition sequence with repetitive ss-CEST modules was developed. Each ss-CEST module contains a single-lobe Gaussian saturation pulse, followed by a spoiler gradient and eight FLASH readouts (one "training line" + seven "imaging lines"). Three-dimensional Cartesian encoding was used for k-space acquisition. Reconstructed CEST images were quantified with four-pool Lorentzian fitting. RESULTS Steady-state CEST with whole-brain coverage was performed in 5.6 s per saturation frequency offset at the spatial resolution of 1.7 × 1.7 × 3.0 mm3 . The total scan time was 5.5 min for 55 different frequency offsets. Quantitative CEST maps from multipool fitting showed consistent image quality across the volume. CONCLUSION Three-dimensional ss-CEST with whole-brain coverage can be done at 3 T within 5.5 min using MR Multitasking.
Collapse
Affiliation(s)
- Pei Han
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Karandeep Cheema
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Hsu-Lei Lee
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Zhengwei Zhou
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Tianle Cao
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Sen Ma
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Nan Wang
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Hui Han
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Anthony G Christodoulou
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Bioengineering, University of California, Los Angeles, California, USA
| |
Collapse
|
41
|
Huang J, Lai JHC, Tse KH, Cheng GWY, Liu Y, Chen Z, Han X, Chen L, Xu J, Chan KWY. Deep neural network based CEST and AREX processing: Application in imaging a model of Alzheimer's disease at 3 T. Magn Reson Med 2021; 87:1529-1545. [PMID: 34657318 DOI: 10.1002/mrm.29044] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/26/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE To optimize and apply deep neural network based CEST (deepCEST) and apparent exchange dependent-relaxation (deepAREX) for imaging the mouse brain with Alzheimer's disease (AD) at 3T MRI. METHODS CEST and T1 data of central and anterior brain slices of 10 AD mice and 10 age-matched wild type (WT) mice were acquired at a 3T animal MRI scanner. The networks of deepCEST/deepAREX were optimized and trained on the WT data. The CEST/AREX contrasts of AD and WT mice predicted by the networks were analyzed and further validated by immunohistochemistry. RESULTS After optimization and training on CEST data of WT mice, deepCEST/deepAREX could rapidly (~1 s) generate precise CEST and AREX results for unseen CEST data of AD mice, indicating the accuracy and generalization of the networks. Significant lower amide weighted (3.5 ppm) signal related to amyloid β-peptide (Aβ) plaque depositions, which was validated by immunohistochemistry results, was detected in both central and anterior brain slices of AD mice compared to WT mice. Decreased magnetization transfer (MT) signal was also found in AD mice especially in the anterior slice. CONCLUSION DeepCEST/deepAREX could rapidly generate accurate CEST/AREX contrasts in animal study. The well-optimized deepCEST/deepAREX have potential for AD differentiation at 3T MRI.
Collapse
Affiliation(s)
- Jianpan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Joseph H C Lai
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Kai-Hei Tse
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Gerald W Y Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yang Liu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China.,Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Zilin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xiongqi Han
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Lin Chen
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA.,Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA.,Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kannie W Y Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China.,Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China.,Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
42
|
Herz K, Mueller S, Perlman O, Zaitsev M, Knutsson L, Sun PZ, Zhou J, van Zijl P, Heinecke K, Schuenke P, Farrar CT, Schmidt M, Dörfler A, Scheffler K, Zaiss M. Pulseq-CEST: Towards multi-site multi-vendor compatibility and reproducibility of CEST experiments using an open-source sequence standard. Magn Reson Med 2021; 86:1845-1858. [PMID: 33961312 PMCID: PMC9149651 DOI: 10.1002/mrm.28825] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 01/13/2023]
Abstract
PURPOSE As the field of CEST grows, various novel preparation periods using different parameters are being introduced. At the same time, large, multisite clinical studies require clearly defined protocols, especially across different vendors. Here, we propose a CEST definition standard using the open Pulseq format for a shareable, simple, and exact definition of CEST protocols. METHODS We present the benefits of such a standard in three ways: (1) an open database on GitHub, where fully defined, human-readable CEST protocols can be shared; (2) an open-source Bloch-McConnell simulation to test and optimize CEST preparation periods in silico; and (3) a hybrid MR sequence that plays out the CEST preparation period and can be combined with any existing readout module. RESULTS The exact definition of the CEST preparation period, in combination with the flexible simulation, leads to a good match between simulations and measurements. The standard allowed finding consensus on three amide proton transfer-weighted protocols that could be compared in healthy subjects and a tumor patient. In addition, we could show coherent multisite results for a sophisticated CEST method, highlighting the benefits regarding protocol sharing and reproducibility. CONCLUSION With Pulseq-CEST, we provide a straightforward approach to standardize, share, simulate, and measure different CEST preparation schemes, which are inherently completely defined.
Collapse
Affiliation(s)
- Kai Herz
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Biomedical Magnetic Resonance, University of Tuebingen, Tuebingen, Germany
| | - Sebastian Mueller
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Biomedical Magnetic Resonance, University of Tuebingen, Tuebingen, Germany
| | - Or Perlman
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Maxim Zaitsev
- High Field MR Center, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Linda Knutsson
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, US
| | - Phillip Zhe Sun
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Jinyuan Zhou
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, US
| | - Peter van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, US
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Kerstin Heinecke
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, 10587, Germany
| | - Patrick Schuenke
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, 10587, Germany
| | - Christian T. Farrar
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Manuel Schmidt
- Department of Neuroradiology, Friedrich‐Alexander Universität Erlangen‐Nürnberg, University Hospital Erlangen, Erlangen, Germany
| | - Arnd Dörfler
- Department of Neuroradiology, Friedrich‐Alexander Universität Erlangen‐Nürnberg, University Hospital Erlangen, Erlangen, Germany
| | - Klaus Scheffler
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Biomedical Magnetic Resonance, University of Tuebingen, Tuebingen, Germany
| | - Moritz Zaiss
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Neuroradiology, Friedrich‐Alexander Universität Erlangen‐Nürnberg, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
43
|
Morrison MA, Lupo JM. 7-T Magnetic Resonance Imaging in the Management of Brain Tumors. Magn Reson Imaging Clin N Am 2021; 29:83-102. [PMID: 33237018 DOI: 10.1016/j.mric.2020.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This article provides an overview of the current status of ultrahigh-field 7-T magnetic resonance (MR) imaging in neuro-oncology, specifically for the management of patients with brain tumors. It includes a discussion of areas across the pretherapeutic, peritherapeutic, and posttherapeutic stages of patient care where 7-T MR imaging is currently being exploited and holds promise. This discussion includes existing technical challenges, barriers to clinical integration, as well as our impression of the future role of 7-T MR imaging as a clinical tool in neuro-oncology.
Collapse
Affiliation(s)
- Melanie A Morrison
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Janine M Lupo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA.
| |
Collapse
|
44
|
Martín-Noguerol T, Mohan S, Santos-Armentia E, Cabrera-Zubizarreta A, Luna A. Advanced MRI assessment of non-enhancing peritumoral signal abnormality in brain lesions. Eur J Radiol 2021; 143:109900. [PMID: 34412007 DOI: 10.1016/j.ejrad.2021.109900] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/24/2021] [Accepted: 08/03/2021] [Indexed: 12/30/2022]
Abstract
Evaluation of Central Nervous System (CNS) focal lesions has been classically made focusing on the assessment solid or enhancing component. However, the assessment of solitary peripherally enhancing lesions where the differential diagnosis includes High-Grade Gliomas (HGG) and metastasis, is usually challenging. Several studies have tried to address the characteristics of peritumoral non-enhancing areas, for better characterization of these lesions. Peritumoral hyperintense T2/FLAIR signal abnormality predominantly contains infiltrating tumor cells in HGG whereas CNS metastasis induce pure vasogenic edema. In addition, the accurate determination of the real extension of HGG is critical for treatment selection and outcome. Conventional MRI sequences are limited in distinguishing infiltrating neoplasm from vasogenic edema. Advanced MRI sequences like Diffusion Weighted Imaging (DWI), Diffusion Tensor Imaging (DTI), Perfusion Weighted Imaging (PWI) and MR spectroscopy (MRS) have all been utilized for this aim with acceptable results. Other advanced MRI approaches, less explored for this task such as Arterial Spin Labelling (ASL), Diffusion Kurtosis Imaging (DKI), T2 relaxometry or Amide Proton Transfer (APT) are also showning promising results in this scenario. In this article, we will discuss the physiopathological basis of peritumoral T2/FLAIR signal abnormality and review potential applications of advanced MRI sequences for its evaluation.
Collapse
Affiliation(s)
| | - Suyash Mohan
- Division of Neuroradiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
| | | | | | - Antonio Luna
- MRI Unit, Radiology Department, HT Medica, Jaén, Spain.
| |
Collapse
|
45
|
Su C, Xu S, Lin D, He H, Chen Z, Damen FC, Ke C, Lv X, Cai K. Multi-parametric Z-spectral MRI may have a good performance for glioma stratification in clinical patients. Eur Radiol 2021; 32:101-111. [PMID: 34272981 DOI: 10.1007/s00330-021-08175-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/13/2021] [Accepted: 06/28/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVES To comprehensively and noninvasively risk-stratify glioma grade, isocitrate dehydrogenase (IDH) genotype, and 1p/19q codeletion status using multi-contrast Z-spectral magnetic resonance imaging (MRI). METHODS One hundred and thirteen patients with glioma were retrospectively included. Multiple contrasts contributing to Z-spectra, including direct saturation of water (DSW), semi-solid magnetization transfer contrast (MTC), amide proton transfer (APT) effect, aliphatic nuclear Overhauser effect, and the 2-ppm chemical exchange saturation transfer peak (CEST@2ppm), were fitted with five individual Lorentzian functions. Z-spectral contrasts were compared according to the three most important risk stratifications: tumor grade, IDH genotype, and 1p/19q codeletion status. We further investigated the differentiation of 1p/19q codeletion status within IDH mutant gliomas. The stratification performance of individual Z-spectral contrasts and their combination was quantified using receiver operating characteristic (ROC) analyses. RESULTS DSW was significantly different within grade, IDH genotypes, and 1p/19q codeletion status. APT was significantly different with grade and IDH mutation, but not with 1p/19q subtypes. CEST@2ppm was only significantly different with 1p/19q codeletion subtypes. DSW and CEST@2ppm were the two Z-spectral contrasts able to differentiate 1p/19q codeletion subtypes within IDH mutant gliomas. For differentiating glioma grades using ROC analyses, DSW achieved the largest AUC. For differentiating IDH genotypes, DSW and APT achieved comparable AUCs. DSW was the best metric for differentiating 1p/19q codeletion status within all patients and within the IDH mutant patients. Combining all Z-spectral contrasts improved sensitivity and specificity for all risk stratifications. CONCLUSIONS Multi-parametric Z-spectral MRI serves as a useful, comprehensive, and noninvasive imaging technique for glioma stratification in clinical patients. KEY POINTS • Multiple contrasts contributing to Z-spectra were separately fitted with Lorentzian functions. • Z-spectral contrasts were compared within the three most important and common tumor risk stratifications for gliomas: tumor grade, IDH genotype, and 1p/19q codeletion status. • The stratification performance of individual Z-spectral contrasts and their combination was quantified using receiver operating characteristic analyses, which found Z-spectral MRI to be a useful and comprehensive imaging biomarker for glioma stratification.
Collapse
Affiliation(s)
- Changliang Su
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, 510060, Guangzhou, China
| | - Shijie Xu
- Department of Neurosurgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, 510060, Guangzhou, China
| | - Danlin Lin
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, 510060, Guangzhou, China
| | - Haoqiang He
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, 510060, Guangzhou, China
| | - Zhenghe Chen
- Department of Neurosurgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, 510060, Guangzhou, China
| | - Frederick C Damen
- Department of Radiology College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Chao Ke
- Department of Neurosurgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, 510060, Guangzhou, China.
| | - Xiaofei Lv
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, 510060, Guangzhou, China.
| | - Kejia Cai
- Department of Radiology College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
46
|
Chan RW, Lawrence LSP, Oglesby RT, Chen H, Stewart J, Theriault A, Campbell M, Ruschin M, Myrehaug S, Atenafu EG, Keller B, Chugh B, MacKenzie S, Tseng CL, Detsky J, Maralani PJ, Czarnota GJ, Stanisz GJ, Sahgal A, Lau AZ. Chemical exchange saturation transfer MRI in central nervous system tumours on a 1.5 T MR-Linac. Radiother Oncol 2021; 162:140-149. [PMID: 34280403 DOI: 10.1016/j.radonc.2021.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE To describe the implementation and initial results of using Chemical Exchange Saturation Transfer (CEST) for monitoring patients with central nervous system (CNS) tumours treated using a 1.5 tesla MR-guided radiotherapy system. METHODS CNS patients were treated with up to 30 fractions (total dose up to 60 Gy) using a 1.5 T Elekta Unity MR-Linac. CEST scans were obtained in 54 subjects at one or more time points during treatment. CEST metrics, including the amide magnetization transfer ratio (MTRAmide), nuclear Overhauser effect (NOE) MTR (MTRNOE) and asymmetry, were quantified in phantoms and CNS patients. The signal was investigated between tumour and white matter, across time, and across disease categories including high- and low-grade tumours. RESULTS The gross tumour volume (GTV) exhibited lower MTRAmide and MTRNOE and higher asymmetry compared to contralateral normal appearing white matter. Signal changes in the GTV during fractionated radiotherapy were observed. There were differences between high- and low-grade tumours, with higher CEST asymmetry associated with higher grade disease. CONCLUSION CEST MRI using a 1.5 T MR-Linac was demonstrated to be feasible for in vivo imaging of CNS tumours. CEST images showed tumour/white-matter contrast, temporal CEST signal changes, and associations with tumour grade. These results show promise for the eventual goal of using metabolic imaging to inform the design of adaptive radiotherapy protocols.
Collapse
Affiliation(s)
- Rachel W Chan
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada.
| | - Liam S P Lawrence
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Ryan T Oglesby
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Hanbo Chen
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - James Stewart
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Aimee Theriault
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Mikki Campbell
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Mark Ruschin
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Sten Myrehaug
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Eshetu G Atenafu
- Department of Biostatistics, University Health Network, University of Toronto, Toronto, Canada
| | - Brian Keller
- Department of Biostatistics, University Health Network, University of Toronto, Toronto, Canada
| | - Brige Chugh
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada; Department of Physics, Ryerson University, Toronto, Canada
| | - Scott MacKenzie
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Chia-Lin Tseng
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Jay Detsky
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Pejman J Maralani
- Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Greg J Czarnota
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada; Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Greg J Stanisz
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada; Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Lublin, Poland
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Angus Z Lau
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
47
|
Nakajo M, Bohara M, Kamimura K, Higa N, Yoshiura T. Correlation between amide proton transfer-related signal intensity and diffusion and perfusion magnetic resonance imaging parameters in high-grade glioma. Sci Rep 2021; 11:11223. [PMID: 34045633 PMCID: PMC8159950 DOI: 10.1038/s41598-021-90841-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/18/2021] [Indexed: 12/05/2022] Open
Abstract
Amide proton transfer (APT) imaging is a magnetic resonance (MR) molecular imaging technique that is sensitive to mobile proteins and peptides in living tissue. Studies have shown that APT-related signal intensity (APTSI) parallels with the malignancy grade of gliomas, allowing the preoperative assessment of tumor grades. An increased APTSI in malignant gliomas has been attributed to cytosolic proteins and peptides in proliferating tumor cells; however, the exact underlying mechanism is poorly understood. To get an insight into the mechanism of high APTSI in malignant gliomas, we investigated the correlations between APTSI and several MR imaging parameters including apparent diffusion coefficient (ADC), relative cerebral blood volume and pharmacokinetic parameters obtained in the same regions-of-interest in 22 high-grade gliomas. We found a significant positive correlation between APTSI and ADC (ρ = 0.625 and 0.490 for observers 1 and 2, respectively; p < 0.001 for both), which is known to be inversely correlated with cell density. Multiple regression analysis revealed that ADC was significantly associated with APTSI (p < 0.001 for both observers). Our results suggest possible roles of extracellular proteins and peptides in high APTSI in malignant gliomas.
Collapse
Affiliation(s)
- Masanori Nakajo
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Manisha Bohara
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Kiyohisa Kamimura
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Nayuta Higa
- Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Takashi Yoshiura
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
| |
Collapse
|
48
|
Mamoune KE, Barantin L, Adriaensen H, Tillet Y. Application of Chemical Exchange Saturation Transfer (CEST) in neuroimaging. J Chem Neuroanat 2021; 114:101944. [PMID: 33716103 DOI: 10.1016/j.jchemneu.2021.101944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/14/2022]
Abstract
Since the early eighties MRI has become the most powerful technic for in-vivo imaging particularly in the field of brain research. This non-invasive method allows acute anatomical observations of the living brain similar to post-mortem dissected tissues. However, one of the main limitation of MRI is that it does not make possible the neurochemical identification of the tissues conversely to positron emission tomography scanner which can provide a specific molecular characterization of tissue, in spite of poor anatomical definition. To gain neurochemical information using MRI, new categories of contrast agents were developed from the beginning of the 2000's, particularly using the chemical-exchange saturation transfer (CEST) method. This method induces a significant change in the magnitude of the water proton signal and allows the detection of specific molecules within the tissues like sugars, amino acids, transmitters, and nucleosides. This short review presents several CEST contrast agents and their recent developments for in vivo detection of metabolites and neurotransmitters in the brain for research and clinical purposes.
Collapse
Affiliation(s)
- Kahina El Mamoune
- Physiologie de la Reproduction et des Comportements, UMR 085 INRAE, CNRS 7247, Université de Tours, IFCE, Centre INRAE Val de Loire, 37380 Nouzilly, France; Siemens Healthcare SAS, Saint Denis, France; SFR FED 4226, Université de Tours, 2 Bd Tonnellé, 37032 Tours, France
| | - Laurent Barantin
- iBrain, UMR 1253 INSERM, Université de Tours, 10 Bd Tonnellé, 37032 Tours, France; SFR FED 4226, Université de Tours, 2 Bd Tonnellé, 37032 Tours, France
| | - Hans Adriaensen
- Physiologie de la Reproduction et des Comportements, UMR 085 INRAE, CNRS 7247, Université de Tours, IFCE, Centre INRAE Val de Loire, 37380 Nouzilly, France; CIRE UMR 085 INRAE, CNRS 7247, Université de Tours, IFCE, Centre INRAE Val de Loire, 37380 Nouzilly, France; SFR FED 4226, Université de Tours, 2 Bd Tonnellé, 37032 Tours, France
| | - Yves Tillet
- Physiologie de la Reproduction et des Comportements, UMR 085 INRAE, CNRS 7247, Université de Tours, IFCE, Centre INRAE Val de Loire, 37380 Nouzilly, France; SFR FED 4226, Université de Tours, 2 Bd Tonnellé, 37032 Tours, France.
| |
Collapse
|
49
|
Bo S, Sedaghat F, Pavuluri K, Rowe SP, Cohen A, Kates M, McMahon MT. Dynamic Contrast Enhanced-MR CEST Urography: An Emerging Tool in the Diagnosis and Management of Upper Urinary Tract Obstruction. Tomography 2021; 7:80-94. [PMID: 33801533 PMCID: PMC8103243 DOI: 10.3390/tomography7010008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/16/2021] [Indexed: 02/04/2023] Open
Abstract
Upper urinary tract obstructions (UTOs) are blockages that inhibit the flow of urine through its normal course, leading to impaired kidney function. Imaging plays a significant role in the initial diagnosis of UTO, with anatomic imaging (primarily ultrasound (US) and non-contrast computed tomography (CT)) serving as screening tools for the detection of the dilation of the urinary collecting systems (i.e., hydronephrosis). Whether hydronephrosis represents UTO or a non-obstructive process is determined by functional imaging (typically nuclear medicine renal scintigraphy). If these exams reveal evidence of UTO but no discernable source, multiphase contrast enhanced CT urography and/or dynamic contrast enhanced MR urography (DCE-MRU) may be performed to delineate a cause. These are often performed in conjunction with direct ureteroscopic evaluation. While contrast-enhanced CT currently predominates, it can induce renal injury due to contrast induced nephropathy (CIN), subject patients to ionizing radiation and is limited in quantifying renal function (traditionally assessed by renal scintigraphy) and establishing the extent to which hydronephrosis is due to functional obstruction. Traditional MRI is similarly limited in its ability to quantify function. DCE-MRU presents concerns regarding nephrogenic systemic fibrosis (NSF), although decreased with newer gadolinium-based contrast agents, and regarding cumulative gadolinium deposition in the basal ganglia. DCE-MR CEST urography is a promising alternative, employing new MRI contrast agents and imaging schemes and allowing for concurrent assessment of renal anatomy and functional parameters. In this review we highlight clinical challenges in the diagnosis and management of UTO, identify key advances in imaging agents and techniques for DCE-MR CEST urography and provide perspective on how this technique may evolve in clinical importance.
Collapse
Affiliation(s)
- Shaowei Bo
- The Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, The Johns Hopkins University, Baltimore, MD 21205, USA; (S.B.); (F.S.); (K.P.); (S.P.R.)
| | - Farzad Sedaghat
- The Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, The Johns Hopkins University, Baltimore, MD 21205, USA; (S.B.); (F.S.); (K.P.); (S.P.R.)
| | - KowsalyaDevi Pavuluri
- The Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, The Johns Hopkins University, Baltimore, MD 21205, USA; (S.B.); (F.S.); (K.P.); (S.P.R.)
| | - Steven P. Rowe
- The Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, The Johns Hopkins University, Baltimore, MD 21205, USA; (S.B.); (F.S.); (K.P.); (S.P.R.)
- The James Buchanan Brady Urological Institute, Department of Urology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (A.C.); (M.K.)
| | - Andrew Cohen
- The James Buchanan Brady Urological Institute, Department of Urology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (A.C.); (M.K.)
| | - Max Kates
- The James Buchanan Brady Urological Institute, Department of Urology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (A.C.); (M.K.)
| | - Michael T. McMahon
- The Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, The Johns Hopkins University, Baltimore, MD 21205, USA; (S.B.); (F.S.); (K.P.); (S.P.R.)
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| |
Collapse
|
50
|
Overcast WB, Davis KM, Ho CY, Hutchins GD, Green MA, Graner BD, Veronesi MC. Advanced imaging techniques for neuro-oncologic tumor diagnosis, with an emphasis on PET-MRI imaging of malignant brain tumors. Curr Oncol Rep 2021; 23:34. [PMID: 33599882 PMCID: PMC7892735 DOI: 10.1007/s11912-021-01020-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW This review will explore the latest in advanced imaging techniques, with a focus on the complementary nature of multiparametric, multimodality imaging using magnetic resonance imaging (MRI) and positron emission tomography (PET). RECENT FINDINGS Advanced MRI techniques including perfusion-weighted imaging (PWI), MR spectroscopy (MRS), diffusion-weighted imaging (DWI), and MR chemical exchange saturation transfer (CEST) offer significant advantages over conventional MR imaging when evaluating tumor extent, predicting grade, and assessing treatment response. PET performed in addition to advanced MRI provides complementary information regarding tumor metabolic properties, particularly when performed simultaneously. 18F-fluoroethyltyrosine (FET) PET improves the specificity of tumor diagnosis and evaluation of post-treatment changes. Incorporation of radiogenomics and machine learning methods further improve advanced imaging. The complementary nature of combining advanced imaging techniques across modalities for brain tumor imaging and incorporating technologies such as radiogenomics has the potential to reshape the landscape in neuro-oncology.
Collapse
Affiliation(s)
- Wynton B. Overcast
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 550 N University Blvd. Room 0663, Indianapolis, IN 46202 USA
| | - Korbin M. Davis
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 550 N University Blvd. Room 0663, Indianapolis, IN 46202 USA
| | - Chang Y. Ho
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Goodman Hall, 355 West 16th Street, Suite 4100, Indianapolis, IN 46202 USA
| | - Gary D. Hutchins
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Research 2 Building (R2), Room E124, 920 W. Walnut Street, Indianapolis, IN 46202-5181 USA
| | - Mark A. Green
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Research 2 Building (R2), Room E124, 920 W. Walnut Street, Indianapolis, IN 46202-5181 USA
| | - Brian D. Graner
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Goodman Hall, 355 West 16th Street, Suite 4100, Indianapolis, IN 46202 USA
| | - Michael C. Veronesi
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Research 2 Building (R2), Room E174, 920 W. Walnut Street, Indianapolis, IN 46202-5181 USA
| |
Collapse
|