1
|
Glutathione-depleted and cancer-targeted nanocapsules encapsulating bimetallic oxide nanoparticles for enhanced chemo-sonodynamic therapy. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
2
|
Arkaban H, Karimi Shervedani R, Yaghoobi F, Kefayat A, Ghahremani F. Imaging and therapeutic capabilities of the AuNPs@MnCO3/Mn3O4, coated with PAA and integrated with folic acid, doxorubicin and propidium iodide for murine breast cancer. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102818] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
3
|
Arkaban H, Karimi Shervedani R, Yaghoobi F, Kefayat A. A nanocomposite theranostic system, consisting of AuNPs@MnCO3/Mn3O4 coated with PAA and integrated with folic acid, doxorubicin, and propidium iodide: Synthesis, characterization and examination for capturing of cancer cells. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Fu S, Cai Z, Ai H. Stimulus-Responsive Nanoparticle Magnetic Resonance Imaging Contrast Agents: Design Considerations and Applications. Adv Healthc Mater 2021; 10:e2001091. [PMID: 32875751 DOI: 10.1002/adhm.202001091] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/04/2020] [Indexed: 02/05/2023]
Abstract
Magnetic resonance imaging (MRI) has been widely used for disease diagnosis because it can noninvasively obtain anatomical details of various diseases through accurate contrast between soft tissues. Over one-third of MRI examinations are performed with the assistance of contrast agents. Traditional contrast agents typically display an unchanging signal, thus exhibiting relatively low sensitivity and poor specificity. Currently, advances in stimulus-responsive contrast agents which can alter the relaxation signal in response to a specific change in their surrounding environment provide new opportunities to overcome such limitation. The signal changes based on stimulus also reflects the physiological and pathological conditions of the site of interests. In this review, how to design stimulus-responsive nanoparticle MRI contrast agents from the perspective of theory and surface design is comprehensively discussed. Key structural features including size, clusters, shell features, and surface properties are used for tuning the T1 and T2 relaxation properties. The reversible or non-reversible signal changes highlight the contrast agents have undergone structural changes based on certain stimulus, as an indication for disease diagnosis or therapeutic efficacy.
Collapse
Affiliation(s)
- Shengxiang Fu
- National Engineering Research Center for Biomaterials Sichuan University Chengdu 610065 China
| | - Zhongyuan Cai
- National Engineering Research Center for Biomaterials Sichuan University Chengdu 610065 China
| | - Hua Ai
- National Engineering Research Center for Biomaterials Sichuan University Chengdu 610065 China
- Department of Radiology West China Hospital Sichuan University Chengdu 610041 China
| |
Collapse
|
5
|
Martinez de la Torre C, Grossman JH, Bobko AA, Bennewitz MF. Tuning the size and composition of manganese oxide nanoparticles through varying temperature ramp and aging time. PLoS One 2020; 15:e0239034. [PMID: 32946514 PMCID: PMC7500698 DOI: 10.1371/journal.pone.0239034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 08/29/2020] [Indexed: 11/29/2022] Open
Abstract
Manganese oxide (MnO) nanoparticles (NPs) can serve as robust pH-sensitive contrast agents for magnetic resonance imaging (MRI) due to Mn2+ release at low pH, which generates a ~30 fold change in T1 relaxivity. Strategies to control NP size, composition, and Mn2+ dissolution rates are essential to improve diagnostic performance of pH-responsive MnO NPs. We are the first to demonstrate that MnO NP size and composition can be tuned by the temperature ramping rate and aging time used during thermal decomposition of manganese(II) acetylacetonate. Two different temperature ramping rates (10°C/min and 20°C/min) were applied to reach 300°C and NPs were aged at that temperature for 5, 15, or 30 min. A faster ramping rate and shorter aging time produced the smallest NPs of ~23 nm. Shorter aging times created a mixture of MnO and Mn3O4 NPs, whereas longer aging times formed MnO. Our results indicate that a 20°C/min ramp rate with an aging time of 30 min was the ideal temperature condition to form the smallest pure MnO NPs of ~32 nm. However, Mn2+ dissolution rates at low pH were unaffected by synthesis conditions. Although Mn2+ production was high at pH 5 mimicking endosomes inside cells, minimal Mn2+ was released at pH 6.5 and 7.4, which mimic the tumor extracellular space and blood, respectively. To further elucidate the effects of NP composition and size on Mn2+ release and MRI contrast, the ideal MnO NP formulation (~32 nm) was compared with smaller MnO and Mn3O4 NPs. Small MnO NPs produced the highest amount of Mn2+ at acidic pH with maximum T1 MRI signal; Mn3O4 NPs generated the lowest MRI signal. MnO NPs encapsulated within poly(lactide-co-glycolide) (PLGA) retained significantly higher Mn2+ release and MRI signal compared to PLGA Mn3O4 NPs. Therefore, MnO instead of Mn3O4 should be targeted intracellularly to maximize MRI contrast.
Collapse
Affiliation(s)
- Celia Martinez de la Torre
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, United States of America
| | - Jasmine H. Grossman
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, United States of America
| | - Andrey A. Bobko
- Department of Biochemistry and In Vivo Multifunctional Magnetic Resonance Center, West Virginia University, Morgantown, WV, United States of America
| | - Margaret F. Bennewitz
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, United States of America
| |
Collapse
|
6
|
Mohanta Z, Gaonkar SK, Kumar M, Saini J, Tiwari V, Srivastava C, Atreya HS. Influence of Oxidation Degree of Graphene Oxide on Its Nuclear Relaxivity and Contrast in MRI. ACS OMEGA 2020; 5:22131-22139. [PMID: 32923771 PMCID: PMC7482091 DOI: 10.1021/acsomega.0c02220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
Graphene oxide (GO) serves as a versatile platform for various applications, with the oxygen content of GO playing an important role in governing its properties. In the present study, different GO types covering a wide range of oxidation degree were prepared using our newly developed two-step method involving ball milling of graphite followed by its oxidation to GO. In addition to the variations in their physicochemical properties, the different GO types exhibited differences in proton relaxivity due to their paramagnetic nature. Nuclear magnetic resonance spectroscopy studies showed that the degree of oxidation of GO perturbs its nuclear relaxation properties and, together with intercalated Mn2+ ions, provides large contrast variation in magnetic resonance imaging (MRI). The study for the first time reveals that the surface chemistry of GO affects its relaxivity and opens up new avenues for developing tunable GO-based contrast agents in magnetic resonance imaging for diagnostics and therapies.
Collapse
Affiliation(s)
- Zinia Mohanta
- Centre
for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Sumana K. Gaonkar
- Nuclear
Magnetic Resonance Research Centre, Indian
Institute of Science, Bengaluru 560012, India
| | - Manoj Kumar
- Department
of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru 560029, India
| | - Jitender Saini
- Department
of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru 560029, India
| | - Vivek Tiwari
- Centre
for Brain Research, Indian Institute of
Science, Bengaluru 560012, India
| | - Chandan Srivastava
- Department
of Materials Engineering, Indian Institute
of Science, Bengaluru 560012, India
| | - Hanudatta S. Atreya
- Nuclear
Magnetic Resonance Research Centre, Indian
Institute of Science, Bengaluru 560012, India
| |
Collapse
|
7
|
Zhan Y, Ehlerding EB, Shi S, Graves SA, Goel S, Engle JW, Liang J, Cai W. Intrinsically Zirconium-89-Labeled Manganese Oxide Nanoparticles for In Vivo Dual-Modality Positron Emission Tomography and Magnetic Resonance Imaging. J Biomed Nanotechnol 2019; 14:900-909. [PMID: 29883560 DOI: 10.1166/jbn.2018.2498] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Manganese-based nanoparticles (NPs) have recently attracted much attention in the field of biomedical imaging due to their impressive enhanced T1 contrast ability. Although the reported manganese-based NPs have exhibited good imaging capabilities as contrast agents, it is still urgent to develop novel multifunctional manganese-based imaging probes for future biomedical imaging, especially PET/MRI probes. Herein, we present chelator-free zirconium-89 (89Zr, t1/2: 78.4 h) labeling of manganese oxide NPs (Mn3O4@PEG) with ∼78% labeling yield and good stability. Serial positron emission tomography (PET) and magnetic resonance imaging (MRI) studies non-invasively assessed the biodistribution patterns of the NPs and the feasibility of in vivo dual-modality imaging and lymph-node mapping. Since Mn3O4 NPs exhibited desirable properties for enhanced T1 imaging and the simplicity of chelator-free radiolabeling, [89Zr]Mn3O4@PEG NPs offer a novel, simple, safe and accurate nanoplatforms for future precise cancer imaging and diagnosis.
Collapse
|
8
|
Wang L, Habib AA, Mintz A, Li KC, Zhao D. Phosphatidylserine-Targeted Nanotheranostics for Brain Tumor Imaging and Therapeutic Potential. Mol Imaging 2018; 16:1536012117708722. [PMID: 28654387 PMCID: PMC5470144 DOI: 10.1177/1536012117708722] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Phosphatidylserine (PS), the most abundant anionic phospholipid in cell membrane, is strictly confined to the inner leaflet in normal cells. However, this PS asymmetry is found disruptive in many tumor vascular endothelial cells. We discuss the underlying mechanisms for PS asymmetry maintenance in normal cells and its loss in tumor cells. The specificity of PS exposure in tumor vasculature but not normal blood vessels may establish it a useful biomarker for cancer molecular imaging. Indeed, utilizing PS-targeting antibodies, multiple imaging probes have been developed and multimodal imaging data have shown their high tumor-selective targeting in various cancers. There is a critical need for improved diagnosis and therapy for brain tumors. We have recently established PS-targeted nanoplatforms, aiming to enhance delivery of imaging contrast agents across the blood-brain barrier to facilitate imaging of brain tumors. Advantages of using the nanodelivery system, in particular, lipid-based nanocarriers, are discussed here. We also describe our recent research interest in developing PS-targeted nanotheranostics for potential image-guided drug delivery to treat brain tumors.
Collapse
Affiliation(s)
- Lulu Wang
- 1 Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Amyn A Habib
- 2 Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,3 North Texas VA Medical Center, Dallas, TX, USA
| | - Akiva Mintz
- 4 Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA.,5 Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - King C Li
- 4 Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA.,6 Clinical and Translational Science Institute, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Dawen Zhao
- 1 Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC, USA.,3 North Texas VA Medical Center, Dallas, TX, USA
| |
Collapse
|
9
|
Omelianchik A, Singh G, McDonagh BH, Rodionova V, Fiorani D, Peddis D, Laureti S. From Mn 3O 4/MnO core-shell nanoparticles to hollow MnO: evolution of magnetic properties. NANOTECHNOLOGY 2018; 29:055703. [PMID: 29188789 DOI: 10.1088/1361-6528/aa9e59] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Manganese oxide nanoparticles (MNOPs), when dispersed in a water solution, show a magnetic behavior that drastically changes after an aging process. In this paper, the variation in the magnetic properties has been correlated with the structural evolution of the nanoparticles: in particular, the as prepared Mn3O4/MnO core/shell system manifests a low temperature magnetization reversal that is strongly affected by the presence of the MnO shell and, in particular, by the existence of a frustrated interfacial region playing a key role in determining the low temperature irreversibility, the finite coercivity slightly above the Curie temperature of the Mn3O4 phase and the horizontal displacement of the FC-hysteresis loop. On the other hand, the magnetic behavior of the aged system results dominated by the presence of Mn3O4 whose highly anisotropic character (i.e. high coercivity and high magnetization remanence) is attributed to the presence of a large fraction of surface spins. Such a result is consistent with the structural evolution, from core/shell to hollow nanoparticles, as shown by TEM observation.
Collapse
Affiliation(s)
- A Omelianchik
- Center for Functionalized Magnetic Materials (FunMagMa), Immanuel Kant Baltic Federal University, 236041, Kaliningrad, Russia. Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), nM2-lab, Via Salaria km 29300, Monterotondo Scalo, I-00015 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
10
|
Savla R, Minko T. Nanoparticle design considerations for molecular imaging of apoptosis: Diagnostic, prognostic, and therapeutic value. Adv Drug Deliv Rev 2017; 113:122-140. [PMID: 27374457 DOI: 10.1016/j.addr.2016.06.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 06/21/2016] [Indexed: 12/13/2022]
Abstract
The present review analyzes various approaches for the design and synthesis of different nanoparticles for imaging and therapy. Nanoparticles for computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET) and optical imaging are discussed. The influence of nanoparticle size, shape, surface charge, composition, surface functionalization, active targeting and other factors on imaging and therapeutic efficacy is analyzed. Cyto- and genotoxicity of nanoparticles are also discussed. Special attention in the review is paid to the imaging of apoptotic tissues and cells in different diseases.
Collapse
Affiliation(s)
- Ronak Savla
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, United States; Environmental and Occupational Health Sciences Institute, Piscataway, NJ 08854, United States.
| |
Collapse
|
11
|
Liu K, Shi X, Wang T, Ai P, Gu W, Ye L. Terbium-doped manganese carbonate nanoparticles with intrinsic photoluminescence and magnetic resonance imaging capacity. J Colloid Interface Sci 2017; 485:25-31. [DOI: 10.1016/j.jcis.2016.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 10/21/2022]
|
12
|
Gong M, Yang H, Zhang S, Yang Y, Zhang D, Li Z, Zou L. Targeting T1 and T2 dual modality enhanced magnetic resonance imaging of tumor vascular endothelial cells based on peptides-conjugated manganese ferrite nanomicelles. Int J Nanomedicine 2016; 11:4051-63. [PMID: 27578974 PMCID: PMC4998025 DOI: 10.2147/ijn.s104686] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Tumor angiogenesis plays very important roles for tumorigenesis, tumor development, metastasis, and prognosis. Targeting T1/T2 dual modality magnetic resonance (MR) imaging of the tumor vascular endothelial cells (TVECs) with MR molecular probes can greatly improve diagnostic sensitivity and specificity, as well as helping to make an early diagnosis of tumor at the preclinical stage. In this study, a new T1 and T2 dual modality nanoprobe was successfully fabricated. The prepared nanoprobe comprise peptides CL 1555, poly(ε-caprolactone)-block-poly(ethylene glycol) amphiphilic copolymer shell, and dozens of manganese ferrite (MnFe2O4) nanoparticle core. The results showed that the hydrophobic MnFe2O4 nanoparticles were of uniform spheroidal appearance and narrow size distribution. Due to the self-assembled nanomicelles structure, the prepared probes were of high relaxivity of 281.7 mM−1 s−1, which was much higher than that of MnFe2O4 nanoparticles (67.5 mM 1 s−1). After being grafted with the targeted CD105 peptide CL 1555, the nanomicelles can combine TVECs specifically and make the labeled TVECs dark in T2-weighted MR imaging. With the passage on, the Mn2+ ions were released from MnFe2O4 and the size decreased gradually, making the signal intensity of the second and third passage of labeled TVECs increased in T1-weighted MR imaging. Our results demonstrate that CL-poly(ethylene glycol)-MnFe2O4 can conjugate TVECs and induce dark and bright contrast in MR imaging, and act as a novel molecular probe for T1- and T2-enhanced MR imaging of tumor angiogenesis.
Collapse
Affiliation(s)
- Mingfu Gong
- Department of Radiology, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Hua Yang
- Department of Radiology, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China; Department of Radiology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, People's Republic of China
| | - Song Zhang
- Department of Radiology, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Yan Yang
- Department of Radiology, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Dong Zhang
- Department of Radiology, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Zhaohui Li
- Geosciences Department, University of Wisconsin-Parkside, Kenosha, WI, USA
| | - Liguang Zou
- Department of Radiology, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| |
Collapse
|
13
|
McDonagh BH, Singh G, Hak S, Bandyopadhyay S, Augestad IL, Peddis D, Sandvig I, Sandvig A, Glomm WR. L-DOPA-Coated Manganese Oxide Nanoparticles as Dual MRI Contrast Agents and Drug-Delivery Vehicles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:301-306. [PMID: 26619158 DOI: 10.1002/smll.201502545] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 09/28/2015] [Indexed: 06/05/2023]
Abstract
Manganese oxide nanoparticles (MONPs) are capable of time-dependent magnetic resonance imaging contrast switching as well as releasing a surface-bound drug. MONPs give T2/T2* contrast, but dissolve and release T1-active Mn(2+) and L-3,4-dihydroxyphenylalanine. Complementary images are acquired with a single contrast agent, and applications toward Parkinson's disease are suggested.
Collapse
Affiliation(s)
- Birgitte Hjelmeland McDonagh
- Uglestad Laboratory, Department of Chemical Engineering, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Gurvinder Singh
- Department of Materials Science and Engineering, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Sjoerd Hak
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Sulalit Bandyopadhyay
- Uglestad Laboratory, Department of Chemical Engineering, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Ingrid Lovise Augestad
- Department of Neuroscience, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Davide Peddis
- Institute of Structure and Matter, National Research Council, 00015, Monterotondo, Scalo, Italy
| | - Ioanna Sandvig
- Department of Neuroscience, Norwegian University of Science and Technology, 7491, Trondheim, Norway
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, CB2 OPY, Cambridge, UK
| | - Axel Sandvig
- Department of Neuroscience, Norwegian University of Science and Technology, 7491, Trondheim, Norway
- Division of Pharmacology and Clinical Neurosciences, Department of Neurosurgery, Umeå University, 901 87, Umeå, Sweden
| | - Wilhelm Robert Glomm
- Uglestad Laboratory, Department of Chemical Engineering, Norwegian University of Science and Technology, 7491, Trondheim, Norway
- Sector for Biotechnology and Nanomedicine, SINTEF Materials and Chemistry, 7465, Trondheim, Norway
| |
Collapse
|
14
|
Shao C, Li S, Gu W, Gong N, Zhang J, Chen N, Shi X, Ye L. Multifunctional Gadolinium-Doped Manganese Carbonate Nanoparticles for Targeted MR/Fluorescence Imaging of Tiny Brain Gliomas. Anal Chem 2015; 87:6251-7. [DOI: 10.1021/acs.analchem.5b01639] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chen Shao
- School
of Chemical Biology and Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China
| | - Shuai Li
- School
of Chemical Biology and Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China
| | - Wei Gu
- School
of Chemical Biology and Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China
| | - Ningqiang Gong
- School
of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, P. R. China
| | - Juan Zhang
- School
of Chemical Biology and Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China
| | - Ning Chen
- Department
of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P. R. China
| | - Xiangyang Shi
- College
of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 210620, P. R. China
| | - Ling Ye
- School
of Chemical Biology and Pharmaceutical Sciences, Capital Medical University, Beijing 100069, P. R. China
| |
Collapse
|
15
|
Zhang L, Zhang Z, Mason RP, Sarkaria JN, Zhao D. Convertible MRI contrast: Sensing the delivery and release of anti-glioma nano-drugs. Sci Rep 2015; 5:9874. [PMID: 25962872 PMCID: PMC4428068 DOI: 10.1038/srep09874] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/19/2015] [Indexed: 12/27/2022] Open
Abstract
There is considerable interest in developing nanohybrids of imaging contrast agents and drugs for image-guided drug delivery. We have developed a strategy of utilizing manganese (Mn) to enhance the nano-encapsulation of arsenic trioxide (ATO). Formation of arsenite (As3+)-Mn precipitates in liposomes generates magnetic susceptibility effects, reflected as dark contrast on T2-weighted MRI. Intriguingly, following cell uptake, the As-Mn complex decomposes in response to low pH in endosome-lysosome releasing ionic As3+, the active form of ATO, and Mn2+, the T1 contrast agent that gives a bright signal. Glioblastoma (GBM) is well known for its high resistance to chemotherapy, e.g., temozolomide (TMZ). Building upon the previously established phosphatidylserine (PS)-targeted nanoplatform that has excellent GBM-targeting specificity, we now demonstrate the effectiveness of the targeted nanoformulated ATO for treating TMZ-resistant GBM cells and the ability of the convertible Mn contrast as a surrogate revealing the delivery and release of ATO.
Collapse
Affiliation(s)
- Liang Zhang
- Radiology, UT Southwestern Medical Center, Dallas, TX
| | | | - Ralph P Mason
- Radiology, UT Southwestern Medical Center, Dallas, TX
| | | | - Dawen Zhao
- Radiology, UT Southwestern Medical Center, Dallas, TX
| |
Collapse
|
16
|
Kaittanis C, Shaffer TM, Thorek DLJ, Grimm J. Dawn of advanced molecular medicine: nanotechnological advancements in cancer imaging and therapy. Crit Rev Oncog 2014; 19:143-76. [PMID: 25271430 DOI: 10.1615/critrevoncog.2014011601] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nanotechnology plays an increasingly important role not only in our everyday life (with all its benefits and dangers) but also in medicine. Nanoparticles are to date the most intriguing option to deliver high concentrations of agents specifically and directly to cancer cells; therefore, a wide variety of these nanomaterials has been developed and explored. These span the range from simple nanoagents to sophisticated smart devices for drug delivery or imaging. Nanomaterials usually provide a large surface area, allowing for decoration with a large amount of moieties on the surface for either additional functionalities or targeting. Besides using particles solely for imaging purposes, they can also carry as a payload a therapeutic agent. If both are combined within the same particle, a theranostic agent is created. The sophistication of highly developed nanotechnology targeting approaches provides a promising means for many clinical implementations and can provide improved applications for otherwise suboptimal formulations. In this review we will explore nanotechnology both for imaging and therapy to provide a general overview of the field and its impact on cancer imaging and therapy.
Collapse
Affiliation(s)
- Charalambos Kaittanis
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Travis M Shaffer
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Daniel L J Thorek
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Jan Grimm
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| |
Collapse
|
17
|
Gao X, Li C. Nanoprobes visualizing gliomas by crossing the blood brain tumor barrier. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:426-440. [PMID: 24106064 DOI: 10.1002/smll.201301673] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/04/2013] [Indexed: 06/02/2023]
Abstract
The difficulty in delineating the glioma margins in brain is a major obstacle for its completed resection, which leads to the disproportionately high recurrence and mortality. Besides the fast exertion rate, inadequate sensitivity and non-targeting specificity, the main reason leading to failure of small molecular probes to define gliomas is their incapability to efficiently cross the blood brain tumor barrier (BBTB). Nanoprobes (NPs) show promise to precisely delineate the geographically irregular tumor margins due to their tunable size/circulation lifetime that maximize their passive intratumoral accumulation and their convenience for surface modification that increases the BBTB transcytosis efficacy, imaging sensitivity and receptor targeting specificity. In this work, the characteristics of the BBTB are addressed from biological and physiological perspectives, strategies are presented to deliver NPs across the BBTB, recent developments of NPs are reviewed for glioma visualization and finally the difficulty and promise for clinical translation of NPs are described. Overall, NPs hold great potential for glioma imaging and treatment by pre-surgically delineating tumor margins and intra-operatively guiding tumor excision.
Collapse
Affiliation(s)
- Xihui Gao
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University 826 Zhangheng Rd., Shanghai, 201203, China
| | | |
Collapse
|
18
|
Song XX, Xu XZ, Wan HP, Tang Q. Development of biocompatible nanocubes as a T1-contrast enhancer for MR imaging of primary and metastatic liver cancer. RSC Adv 2014. [DOI: 10.1039/c4ra09554e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A biocompatible KMnF3 nanocube was developed as a hepatic MRI contrast agent to enhance visibility of liver cancer lesions.
Collapse
Affiliation(s)
- Xiao-xia Song
- Institute for Advanced Study
- Nanchang University
- Nanchang 330031, China
| | - Xian-zhu Xu
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education and College of Life Science
- Jiangxi Normal University
- Nanchang 330031, China
| | - Hong-ping Wan
- Institute for Advanced Study
- Nanchang University
- Nanchang 330031, China
| | - Qun Tang
- Institute for Advanced Study
- Nanchang University
- Nanchang 330031, China
| |
Collapse
|
19
|
Pothayee N, Chen DY, Aronova MA, Qian C, Bouraoud N, Dodd S, Leapman RD, Koretsky AP. Self-organized Mn 2+-Block Copolymer Complexes and Their Use for In Vivo MR Imaging of Biological Processes. J Mater Chem B 2014; 2:7055-7064. [PMID: 25364506 PMCID: PMC4213148 DOI: 10.1039/c4tb00911h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Manganese-block copolymer complexes (MnBCs) that contain paramagnetic Mn ions complexed with ionic-nonionic poly(ethylene oxide-b-poly(methacrylate) have been developed for use as a T1-weighted MRI contrast agent. By encasing Mn ion within ionized polymer matrices, r1 values could be increased by 250-350 % in comparison with free Mn ion at relative high fields of 4.7 to 11.7 T. MnBCs were further manipulated by treatment with NaOH to achieve more stable complexes (iMnBCs). iMnBCs delayed release of Mn2+ which could be accelerated by low pH, indeed by cellular uptake via endocytosis into acidic compartments. Both complexes exhibited good T1 contrast signal enhancement in liver following intravenous infusion. The contrast was observed in gallbladder due to the clearance of Mn ion from liver to biliary process. iMnBCs, notably, showed a delayed contrast enhancement profile in gallbladder, which was interpreted to be due to degradation and excretion of Mn2+ ions into the gallbladder. Intracortical injection of iMnBCs into the rat brain also led to delayed neuronal transport to thalamus. The delayed enhancement feature may have benefits for targeting MRI contrast to specific cells and surface receptors that are known to be internalized by endocytosis.
Collapse
Affiliation(s)
- Nikorn Pothayee
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Der-Yow Chen
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Maria A Aronova
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
| | - Chunqi Qian
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Nadia Bouraoud
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Stephen Dodd
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Richard D Leapman
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
| | - Alan P Koretsky
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
20
|
Chen W, Lu F, Chen CCV, Mo KC, Hung Y, Guo ZX, Lin CH, Lin MH, Lin YH, Chang C, Mou CY. Manganese-enhanced MRI of rat brain based on slow cerebral delivery of manganese(II) with silica-encapsulated Mn x Fe(1-x) O nanoparticles. NMR IN BIOMEDICINE 2013; 26:1176-1185. [PMID: 23526743 DOI: 10.1002/nbm.2932] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 01/10/2013] [Accepted: 01/23/2013] [Indexed: 06/02/2023]
Abstract
In this work, we report a monodisperse bifunctional nanoparticle system, MIO@SiO2 -RITC, as an MRI contrast agent [core, manganese iron oxide (MIO); shell, amorphous silica conjugated with rhodamine B isothiocyanate (RITC)]. It was prepared by thermal decomposition and modified microemulsion methods. The nanoparticles with varying iron to manganese ratios displayed different saturated magnetizations and relaxivities. In vivo MRI of rats injected intravenously with MIO@SiO2-RITC nanoparticles exhibited enhancement of the T1 contrast in brain tissue, in particular a time-delayed enhancement in the hippocampus, pituitary gland, striatum and cerebellum. This is attributable to the gradual degradation of MIO@SiO2-RITC nanoparticles in the liver, resulting in the slow release of manganese(II) [Mn(II)] into the blood pool and, subsequently, accumulation in the brain tissue. Thus, T1-weighted contrast enhancement was clearly detected in the anatomic structure of the brain as time progressed. In addition, T2*-weighted images of the liver showed a gradual darkening effect. Here, we demonstrate the concept of the slow release of Mn(II) for neuroimaging. This new nanoparticle-based manganese contrast agent allows one simple intravenous injection (rather than multiple infusions) of Mn(II) precursor, and results in delineation of the detailed anatomic neuroarchitecture in MRI; hence, this provides the advantage of the long-term study of neural function.
Collapse
Affiliation(s)
- Wei Chen
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kim SM, Im GH, Lee DG, Lee JH, Lee WJ, Lee IS. Mn(2+)-doped silica nanoparticles for hepatocyte-targeted detection of liver cancer in T1-weighted MRI. Biomaterials 2013; 34:8941-8. [PMID: 23973173 DOI: 10.1016/j.biomaterials.2013.08.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 08/02/2013] [Indexed: 10/26/2022]
Abstract
With an aim to examine the possibility of developing a liver-specific MRI contrast agent that takes advantages of brightly enhanced MR images by Mn²⁺ whilst making up the limitations of the pre-developed contrast agent, the Mn²⁺-doped SiO₂ nanoparticles (Mn-SiO₂) were synthesized and their characteristics as MR contrast agents were investigated. The in vitro and in vivo investigations showed that Mn-SiO₂ has unique MR contrast-enhancing characteristics that activate positive contrast enhancement in T1-weighted MR images only under low pH conditions by liberating Mn²⁺ ions from MR inactive nanoparticles. The administration of Mn-SiO₂ to an orthotopic xenograft model of human hepatocellular carcinoma (HCC) resulted in a differentiation of enhancement periods between HCC and normal parenchyma tissues on T1-weighted MR images and consequently presented the duplicates of the highly contrast-enhanced liver image with an equal liver-to-HCC contrast ratio but opposite contrast. The Mn-SiO₂-enhanced MR imaging therefore allowed for the repetitive detection of the HCC within a single MR imaging session, which can help us to achieve more reliable diagnosis and characterization of liver lesions than is possible with any currently used Mn²⁺-based contrast agent. In addition, the in vivo biodistribution study also supported the effectiveness of Mn-SiO₂ nanoparticles as a liver-specific MRI contrast agent, which efficiently delivers and releases the T1-contrasting Mn²⁺ ions to targeted hepatocytes.
Collapse
Affiliation(s)
- Soo Min Kim
- Department of Chemistry, Pohang University of Science and Technology, Gyeongbuk 790-784, Republic of Korea
| | | | | | | | | | | |
Collapse
|
22
|
Li Z, Wang SX, Sun Q, Zhao HL, Lei H, Lan MB, Cheng ZX, Wang XL, Dou SX, Max Lu GQ. Ultrasmall manganese ferrite nanoparticles as positive contrast agent for magnetic resonance imaging. Adv Healthc Mater 2013; 2:958-64. [PMID: 23322490 DOI: 10.1002/adhm.201200340] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Indexed: 12/21/2022]
Affiliation(s)
- Zhen Li
- Institute of Superconducting & Electronic Materials, The University of Wollongong, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Avti PK, Caparelli ED, Sitharaman B. Cytotoxicity, cytocompatibility, cell-labeling efficiency, and in vitro cellular magnetic resonance imaging of gadolinium-catalyzed single-walled carbon nanotubes. J Biomed Mater Res A 2013; 101:3580-91. [PMID: 23686792 DOI: 10.1002/jbm.a.34643] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 11/22/2012] [Accepted: 01/09/2013] [Indexed: 12/17/2022]
Abstract
Cell tracking by magnetic resonance imaging (MRI) is an emerging technique that typically requires the use of MRI contrast agents (CAs). A MRI CA for cellular imaging should label cells efficiently at potentially safe concentrations, have high relaxivity, and not affect the cellular machinery. In this article, we report the cytotoxicity, cytocompatibility, and cell labeling efficiency in NIH/3T3 fibroblasts of novel, single-walled carbon nanotubes synthesized using gadolinium nanoparticles as catalysts (Gd-SWCNTs). Cells incubated with the Gd-SWCNT showed a dose- (50-100 µg/mL nanotube concentration) and time- (12-48 h) dependent decrease in viability. 30% cell death was observed for cells incubated with Gd-SWCNTs at the maximum dose of 100 µg/mL for 48 h. Cells incubated with the Gd-SWCNTs at concentrations between 1-10 μg/mL for 48 h showed no change in viability or proliferation compared to untreated controls. Additionally, at these potentially safe concentrations, up to 48 h, the cells showed no phosphatidyl serine externalization (pre-apoptotic condition), caspase-3 activity (point of no return for apoptosis), genetic damage, or changes in their division cycle. Localization of Gd-SWCNTs within the cells was confirmed by transmission electron microscopy (TEM) and Raman microscopy, and these results show 100% cell labeling efficiency. Elemental analysis also indicates significant uptake of Gd-SWCNTs by the cells (10(8) -10(9) Gd(3+) ions per cell). Finally, T1 -weighted MRI at 3 T of Gd-SWCNT-labelled cells show up to a four-fold increase in MR signal intensities as compared to untreated cells. These results indicate that Gd-SWCNTs label cells efficiently at potentially safe concentrations, and enhance MRI contrast without any structural damage to the cells.
Collapse
Affiliation(s)
- Pramod K Avti
- Department of Biomedical Engineering, Rm #115, Bioengineering Building, Stony Brook University, Stony Brook, New York 11794-5281
| | | | | |
Collapse
|
24
|
Dekaban GA, Hamilton AM, Fink CA, Au B, de Chickera SN, Ribot EJ, Foster PJ. Tracking and evaluation of dendritic cell migration by cellular magnetic resonance imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 5:469-83. [PMID: 23633389 DOI: 10.1002/wnan.1227] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/28/2013] [Accepted: 03/19/2013] [Indexed: 01/15/2023]
Abstract
Cellular magnetic resonance imaging (MRI) is a means by which cells labeled ex vivo with a contrast agent can be detected and tracked over time in vivo. This technology provides a noninvasive method with which to assess cell-based therapies in vivo. Dendritic cell (DC)-based vaccines are a promising cancer immunotherapy, but its success is highly dependent on the injected DC migrating to a secondary lymphoid organ such as a nearby lymph node. There the DC can interact with T cells to elicit a tumor-specific immune response. It is important to verify DC migration in vivo using a noninvasive imaging modality, such as cellular MRI, so that important information regarding the anatomical location and persistence of the injected DC in a targeted lymph node can be provided. An understanding of DC biology is critical in ascertaining how to label DC with sufficient contrast agent to render them detectable by MRI. While iron oxide nanoparticles provide the best sensitivity for detection of DC in vivo, a clinical grade iron oxide agent is not currently available. A clinical grade (19) Fluorine-based perfluorcarbon nanoemulsion is available but is less sensitive, and its utility to detect DC migration in humans remains to be demonstrated using clinical scanners presently available. The ability to quantitatively track DC migration in vivo can provide important information as to whether different DC maturation and activation protocols result in improved DC migration efficiency which will determine the vaccine's immunogenicity and ultimately the tumor immunotherapy's outcome in humans.
Collapse
Affiliation(s)
- Gregory A Dekaban
- BioTherapeutics Research Laboratories, Robarts Research Institute and Department of Microbiology & Immunology, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
25
|
Fe3O4/MnO hybrid nanocrystals as a dual contrast agent for both T1- and T2-weighted liver MRI. Biomaterials 2013; 34:2069-76. [DOI: 10.1016/j.biomaterials.2012.11.054] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 11/27/2012] [Indexed: 11/20/2022]
|
26
|
Puppi J, Modo M, Dhawan A, Lehec SC, Mitry RR, Hughes RD. Ex vivo magnetic resonance imaging of transplanted hepatocytes in a rat model of acute liver failure. Cell Transplant 2013; 23:329-43. [PMID: 23394812 DOI: 10.3727/096368913x663596] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hepatocyte transplantation is being evaluated as an alternative to liver transplantation. However, the fate of hepatocytes after transplantation is not well defined. The aims of the study were to improve hepatocyte labeling in vitro using superparamagnetic iron oxide nanoparticles (SPIOs) and to perform in vivo experiments on tracking labeled cells by magnetic resonance imaging (MRI). Human and rat hepatocytes were labeled in vitro for 16 h with clinically approved SPIOs (12.5 µg Fe/ml) and protamine sulfate (3 µg/ml) as a transfection agent. Increased cellular iron uptake was obtained, and cell viability and function were shown not to be affected by labeling. Labeled cells (2,000/µl) could be detected on T2-weighted images in vitro using a 7T MR scanner. In a rat model of acute liver failure (ALF), female recipients received intrasplenic transplantation of 2 × 10(7) male rat hepatocytes 28-30 h after intraperitoneal injection of d-galactosamine (1.2 g/kg). There were four groups (n = 4 each): vehicle injection, injection of freshly isolated cells labeled with CM-DiI, injection of cultured cells labeled with CM-DiI, and injection of cultured cells labeled with both SPIOs and CM-DiI. Ex vivo T2*-weighted gradient-echo images at 7T MRI were acquired at day 7 post-ALF induction. Six days after transplantation, SPIOs were detected in the rat liver as a decrease in the MRI signal intensity in the surviving animals. Histologically, most of the SPIOs were located in Kupffer cells, indicating clearance of labeled hepatocytes. Furthermore, labeled cells could not be detected in the liver by the fluorescent dye or by PCR for the Y-chromosome (Sry-2 gene). In conclusion, optimum conditions to label human hepatocytes with SPIOs were established and did not affect cell viability or metabolic function and were sufficient for in vitro MRI detection. However, the clearance of hepatocytes after transplantation limits the value of MRI for assessing long-term hepatocyte engraftment.
Collapse
Affiliation(s)
- Juliana Puppi
- Institute of Liver Studies, King's College London School of Medicine at King's College Hospital, London, UK
| | | | | | | | | | | |
Collapse
|
27
|
Sandvig I, Thuen M, Hoang L, Olsen Ø, Sardella TCP, Brekken C, Tvedt KE, Barnett SC, Haraldseth O, Berry M, Sandvig A. In vivo MRI of olfactory ensheathing cell grafts and regenerating axons in transplant mediated repair of the adult rat optic nerve. NMR IN BIOMEDICINE 2012; 25:620-631. [PMID: 22447732 DOI: 10.1002/nbm.1778] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 06/23/2011] [Accepted: 07/09/2011] [Indexed: 05/31/2023]
Abstract
The purpose of the present study was to use magnetic resonance imaging (MRI) as a tool for monitoring transplant-mediated repair of the adult rat visual pathway. We labelled rat olfactory ensheathing cells (OECs) using micron-sized particles of iron oxide (MPIO) and transplanted them by: i) intravitreal injection (ivit) and ii) intra-optic nerve (ON) injection (iON) in adult rats with ON crush (ONC) injury. We applied T(2)-weighted MRI and manganese-enhanced MRI (MEMRI) to visualise transplanted cells and ON axons at specific times after injury and cell engraftment. Our findings demonstrate that ivit MPIO-labelled OECs are unequivocally detected by T(2)-weighted MRI in vivo and that the T(1)-weighted 3D FLASH sequence applied for MEMRI facilitates simultaneous visualisation of Mn(2+-) enhanced regenerating retinal ganglion cell (RGC) axons and MPIO-labelled OEC grafts. Furthermore, analysis of MRI data and ultrastructural findings supports the hypothesis that iON OEC transplants mediate regeneration and remyelination of RGC axons post injury.
Collapse
Affiliation(s)
- Ioanna Sandvig
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Delattre BMA, Braunersreuther V, Gardier S, Hyacinthe JN, Crowe LA, Mach F, Vallée JP. Manganese kinetics demonstrated double contrast in acute but not in chronic infarction in a mouse model of myocardial occlusion reperfusion. NMR IN BIOMEDICINE 2012; 25:489-497. [PMID: 21796712 DOI: 10.1002/nbm.1759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 04/11/2011] [Accepted: 05/10/2011] [Indexed: 05/31/2023]
Abstract
Manganese (Mn(2+)) is considered as a specific MRI contrast agent that enters viable cardiomyocytes through calcium pathways. Compared to extracellular gadolinium based contrast agents, it has the potential to assess cell viability. To date, only information from the washout phase after recirculation has been used for the detection and characterization of myocardial infarct. This study showed for the first time that in a mouse model of coronary occlusion-reperfusion, Mn(2+) wash-in kinetics are different at 24 h after surgery (acute infarction) than at eight days after surgery (chronic infarction). A fast but transient entry of Mn(2+) into the acute infarct area led to a double contrast between infarct and remote areas, whereas entry of Mn(2+) into the chronic infarct area remained reduced compared to remote regions during both wash-in and washout phases. The main hypothesis is that extracellular space is largely enhanced in acute infarction due to cell membrane rupture and interstitial edema, whereas scar tissue is densely composed of collagen fibers that reduce the distribution volume of free Mn(2+) ions. In addition to its ability to accurately depict the infarct area during the redistribution phase, Mn(2+) is also able to discriminate acute versus chronic injury by the observation of double-contrast kinetics in a mouse model of ischemia reperfusion.
Collapse
Affiliation(s)
- Bénédicte M A Delattre
- Division of Radiology, Geneva University Hospital, University of Geneva, Faculty of Medicine, Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
29
|
Kueny-Stotz M, Garofalo A, Felder-Flesch D. Manganese-Enhanced MRI Contrast Agents: From Small Chelates to Nanosized Hybrids. Eur J Inorg Chem 2012. [DOI: 10.1002/ejic.201101163] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Is there a path beyond BOLD? Molecular imaging of brain function. Neuroimage 2012; 62:1208-15. [PMID: 22406355 DOI: 10.1016/j.neuroimage.2012.02.076] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/18/2012] [Accepted: 02/27/2012] [Indexed: 12/20/2022] Open
Abstract
The dependence of BOLD on neuro-vascular coupling leaves it many biological steps removed from direct monitoring of neural function. MRI based approaches have been developed aimed at reporting more directly on brain function. These include: manganese enhanced MRI as a surrogate for calcium ion influx; agents responsive to calcium concentrations; approaches to measure membrane potential; agents to measure neurotransmitters; and strategies to measure gene expression. This work has led to clever design of molecular imaging tools and many contributions to studies of brain function in animal models. However, a robust approach that has potential to get MRI closer to neurons in the human brain has not yet emerged.
Collapse
|
31
|
Lee YC, Chen DY, Dodd SJ, Bouraoud N, Koretsky AP, Krishnan KM. The use of silica coated MnO nanoparticles to control MRI relaxivity in response to specific physiological changes. Biomaterials 2012; 33:3560-7. [PMID: 22341582 DOI: 10.1016/j.biomaterials.2012.01.062] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 01/31/2012] [Indexed: 12/27/2022]
Abstract
MnO nanoparticles have been tested to engineer a delayed increase in MRI T(1) relaxivity caused by cellular uptake via endocytosis into acidic compartments. Various coatings on core-shell structured MnO nanoparticles were tested for those that had the lowest T(1) relaxivity at pH 7.4, a pH where MnO does not dissolve into Mn(2+) ions. The rate of dissolution and release of Mn(2+) of the different coated MnO particles as well as changes in T(1) relaxivity were measured at pH 5, a pH routinely obtained in the endosomal-lysosomal pathway. Of a number of coatings, silica coated MnO (MnO@SiO(2)) had the lowest relaxivity at pH 7.4 (0.29 mm(-1) sec(-1)). About one third of the MnO dissolved within 20 min and the T(1) relaxivity increased to that of free Mn(2+) (6.10 mm(-1) sec(-1)) after three days at pH 5. MRI of MnO@SiO(2) particles injected into the rat brain showed time-dependent signal changes consistent with the in vitro rates. Thalamocortical tract-tracing could be observed due to the released Mn(2+). Intravenous infusion of MnO@SiO(2) particles showed little enhancement in any tissue except gallbladder. The gallbladder enhancement was interpreted to be due to endocytosis by liver cells and excretion of Mn(2+) ions into the gallbladder. The MnO@SiO(2) core-shell nanoparticles show the best potential for delaying the release of MRI contrast until endocytosis into low pH compartments activate MRI contrast. The delayed enhancement may have benefits for targeting MRI contrast to specific cells and surface receptors that are known to be recycled by endocytosis.
Collapse
Affiliation(s)
- Yi-Cheng Lee
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
32
|
Pan D, Schmieder AH, Wickline SA, Lanza GM. Manganese-based MRI contrast agents: past, present and future. Tetrahedron 2011; 67:8431-8444. [PMID: 22043109 PMCID: PMC3203535 DOI: 10.1016/j.tet.2011.07.076] [Citation(s) in RCA: 268] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Paramagnetic and superparamagnetic metals are used as contrast materials for magnetic resonance (MR) based techniques. Lanthanide metal gadolinium (Gd) has been the most widely explored, predominant paramagnetic contrast agent until the discovery and association of the metal with nephrogenic systemic fibrosis (NSF), a rare but serious side effects in patients with renal or kidney problems. Manganese was one of the earliest reported examples of paramagnetic contrast material for MRI because of its efficient positive contrast enhancement. In this review, manganese based contrast agent approaches are discussed with a particular emphasis on their synthetic approaches. Both small molecules based typical blood pool contrast agents and more recently developed novel nanometer sized materials are reviewed focusing on a number of successful molecular imaging examples.
Collapse
Affiliation(s)
- Dipanjan Pan
- Division of Cardiology and C-TRAIN, Washington University School of Medicine, St. Louis, MO 63108 USA
| | - Anne H. Schmieder
- Division of Cardiology and C-TRAIN, Washington University School of Medicine, St. Louis, MO 63108 USA
| | - Samuel A. Wickline
- Division of Cardiology and C-TRAIN, Washington University School of Medicine, St. Louis, MO 63108 USA
| | - Gregory M. Lanza
- Division of Cardiology and C-TRAIN, Washington University School of Medicine, St. Louis, MO 63108 USA
| |
Collapse
|
33
|
Bennewitz MF, Lobo TL, Nkansah MK, Ulas G, Brudvig GW, Shapiro EM. Biocompatible and pH-sensitive PLGA encapsulated MnO nanocrystals for molecular and cellular MRI. ACS NANO 2011; 5:3438-46. [PMID: 21495676 PMCID: PMC3102302 DOI: 10.1021/nn1019779] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Inorganic manganese-based particles are becoming attractive for molecular and cellular imaging, due to their ability to provide bright contrast on MRI, as opposed to the dark contrast generated from iron-based particles. Using a single emulsion technique, we have successfully fabricated pH-sensitive poly(lactic-co-glycolic acid) (PLGA)-encapsulated manganese oxide (MnO) nanocrystals. Two classes of particles were fabricated at ∼140 nm and 1.7 μm and incorporated 15 to 20 nm MnO nanocrystals with high encapsulation efficiencies. Intact particles at physiological pH cause little contrast in MRI, but following endocytosis into low pH compartments within the cells, the particles erode and MnO dissolves to release Mn(2+). This causes the cells to appear bright on MR images. The magnitude of the change in MRI properties is as high as 35-fold, making it the most dynamic "smart" MRI contrast agent yet reported. Possible applications of these MnO particles include slow release Mn(2+), tumor targeting, and confirmation of cell uptake.
Collapse
Affiliation(s)
| | - Tricia L. Lobo
- Magnetic Resonance Research Center Department of Diagnostic Radiology Yale University School of Medicine New Haven, CT 06510
| | | | - Gözde Ulas
- Department of Chemistry, Yale University
| | | | - Erik M. Shapiro
- Department of Biomedical Engineering, Yale University
- Magnetic Resonance Research Center Department of Diagnostic Radiology Yale University School of Medicine New Haven, CT 06510
- Corresponding author: , Ph: 203-785-2899, Fx: 203-785-6643
| |
Collapse
|
34
|
Howles GP, Bing KF, Qi Y, Rosenzweig SJ, Nightingale KR, Johnson GA. Contrast-enhanced in vivo magnetic resonance microscopy of the mouse brain enabled by noninvasive opening of the blood-brain barrier with ultrasound. Magn Reson Med 2011; 64:995-1004. [PMID: 20740666 DOI: 10.1002/mrm.22411] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The use of contrast agents for neuroimaging is limited by the blood-brain barrier (BBB), which restricts entry into the brain. To administer imaging agents to the brain of rats, intracarotid infusions of hypertonic mannitol have been used to open the BBB. However, this technically challenging approach is invasive, opens only a limited region of the BBB, and is difficult to extend to mice. In this work, the BBB was opened in mice, using unfocused ultrasound combined with an injection of microbubbles. This technique has several notable features: it (a) can be performed transcranially in mice; (b) takes only 3 min and uses only commercially available components; (c) opens the BBB throughout the brain; (d) causes no observed histologic damage or changes in behavior (with peak-negative acoustic pressures of 0.36 MPa); and (e) allows recovery of the BBB within 4 h. Using this technique, Gadopentetate Dimeglumine (Gd-DTPA) was administered to the mouse brain parenchyma, thereby shortening T(1) and enabling the acquisition of high-resolution (52 × 52 × 100 micrometers(3)) images in 51 min in vivo. By enabling the administration of both existing anatomic contrast agents and the newer molecular/sensing contrast agents, this technique may be useful for the study of mouse models of neurologic function and pathology with MRI.
Collapse
Affiliation(s)
- Gabriel P Howles
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
35
|
Schladt TD, Schneider K, Schild H, Tremel W. Synthesis and bio-functionalization of magnetic nanoparticles for medical diagnosis and treatment. Dalton Trans 2011; 40:6315-43. [DOI: 10.1039/c0dt00689k] [Citation(s) in RCA: 222] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
36
|
Ottobrini L, Martelli C, Trabattoni DL, Clerici M, Lucignani G. In vivo imaging of immune cell trafficking in cancer. Eur J Nucl Med Mol Imaging 2010; 38:949-68. [PMID: 21170525 DOI: 10.1007/s00259-010-1687-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Accepted: 11/15/2010] [Indexed: 12/14/2022]
Abstract
Tumour establishment, progression and regression can be studied in vivo using an array of imaging techniques ranging from MRI to nuclear-based and optical techniques that highlight the intrinsic behaviour of different cell populations in the physiological context. Clinical in vivo imaging techniques and preclinical specific approaches have been used to study, both at the macroscopic and microscopic level, tumour cells, their proliferation, metastasisation, death and interaction with the environment and with the immune system. Fluorescent, radioactive or paramagnetic markers were used in direct protocols to label the specific cell population and reporter genes were used for genetic, indirect labelling protocols to track the fate of a given cell subpopulation in vivo. Different protocols have been proposed to in vivo study the interaction between immune cells and tumours by different imaging techniques (intravital and whole-body imaging). In particular in this review we report several examples dealing with dendritic cells, T lymphocytes and macrophages specifically labelled for different imaging procedures both for the study of their physiological function and in the context of anti-neoplastic immunotherapies in the attempt to exploit imaging-derived information to improve and optimise anti-neoplastic immune-based treatments.
Collapse
Affiliation(s)
- Luisa Ottobrini
- Department of Biomedical Sciences and Technologies, University of Milan, Milan, Italy
| | | | | | | | | |
Collapse
|
37
|
Pan D, Caruthers SD, Senpan A, Schmieder AH, Wickline SA, Lanza GM. Revisiting an old friend: manganese-based MRI contrast agents. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2010; 3:162-73. [PMID: 20860051 DOI: 10.1002/wnan.116] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Non-invasive cellular and molecular imaging techniques are emerging as a multidisciplinary field that offers promise in understanding the components, processes, dynamics and therapies of disease at a molecular level. Magnetic resonance imaging (MRI) is an attractive technique due to the absence of radiation and high spatial resolution which makes it advantageous over techniques involving radioisotopes. Typically paramagnetic and superparamagnetic metals are used as contrast materials for MR based techniques. Gadolinium has been the predominant paramagnetic contrast metal until the discovery and association of the metal with nephrogenic systemic fibrosis (NSF) in some patients with severe renal or kidney disease. Manganese was one of the earliest reported examples of paramagnetic contrast material for MRI because of its efficient positive contrast enhancement. In this review manganese based contrast agent approaches will be presented with a particular emphasis on nanoparticulate agents. We have discussed both classically used small molecule based blood pool contrast agents and recently developed innovative nanoparticle-based strategies highlighting a number of successful molecular imaging examples.
Collapse
Affiliation(s)
- Dipanjan Pan
- Division of Cardiology and C-TRAIN, Washington University School of Medicine, St. Louis, MO, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Krishnan KM. Biomedical Nanomagnetics: A Spin Through Possibilities in Imaging, Diagnostics, and Therapy. IEEE TRANSACTIONS ON MAGNETICS 2010; 46:2523-2558. [PMID: 20930943 PMCID: PMC2949969 DOI: 10.1109/tmag.2010.2046907] [Citation(s) in RCA: 341] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Biomedical nanomagnetics is a multidisciplinary area of research in science, engineering and medicine with broad applications in imaging, diagnostics and therapy. Recent developments offer exciting possibilities in personalized medicine provided a truly integrated approach, combining chemistry, materials science, physics, engineering, biology and medicine, is implemented. Emphasizing this perspective, here we address important issues for the rapid development of the field, i.e., magnetic behavior at the nanoscale with emphasis on the relaxation dynamics, synthesis and surface functionalization of nanoparticles and core-shell structures, biocompatibility and toxicity studies, biological constraints and opportunities, and in vivo and in vitro applications. Specifically, we discuss targeted drug delivery and triggered release, novel contrast agents for magnetic resonance imaging, cancer therapy using magnetic fluid hyperthermia, in vitro diagnostics and the emerging magnetic particle imaging technique, that is quantitative and sensitive enough to compete with established imaging methods. In addition, the physics of self-assembly, which is fundamental to both biology and the future development of nanoscience, is illustrated with magnetic nanoparticles. It is shown that various competing energies associated with self-assembly converge on the nanometer length scale and different assemblies can be tailored by varying particle size and size distribution. Throughout this paper, while we discuss our recent research in the broad context of the multidisciplinary literature, we hope to bridge the gap between related work in physics/chemistry/engineering and biology/medicine and, at the same time, present the essential concepts in the individual disciplines. This approach is essential as biomedical nanomagnetics moves into the next phase of innovative translational research with emphasis on development of quantitative in vivo imaging, targeted and triggered drug release, and image guided therapy including validation of delivery and therapy response.
Collapse
Affiliation(s)
- Kannan M Krishnan
- Department of Materials Science, University of Washington, Seattle, WA 98195-2120 USA
| |
Collapse
|
39
|
|
40
|
Future directions: use of interventional MRI for cell-based therapy of Parkinson disease. Neurosurg Clin N Am 2009; 20:211-8. [PMID: 19555884 DOI: 10.1016/j.nec.2009.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transplantation of neural cells for the treatment of neurologic disorders has garnered much attention and considerable enthusiasm from patients and physicians alike. Cell-based therapies have been proposed for a wide range of central nervous system pathologies ranging from stroke and trauma to demyelinating disorders and neurodegenerative diseases. Notably, cell transplantation for Parkinson disease (PD) has become even more attractive with the rapid advances in derivation of dopaminergic neurons from human embryonic stem cells. This article briefly reviews some of the relevant issues regarding the transplantation of cells for treatment of PD and hypothesizes how interventional MRI may be useful to optimize the surgical delivery of cells for PD and other central nervous system disorders.
Collapse
|
41
|
Pan D, Lanza GM, Wickline SA, Caruthers SD. Nanomedicine: perspective and promises with ligand-directed molecular imaging. Eur J Radiol 2009; 70:274-85. [PMID: 19268515 DOI: 10.1016/j.ejrad.2009.01.042] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 01/14/2009] [Indexed: 01/01/2023]
Abstract
Molecular imaging and targeted drug delivery play an important role toward personalized medicine, which is the future of patient management. Of late, nanoparticle-based molecular imaging has emerged as an interdisciplinary area, which shows promises to understand the components, processes, dynamics and therapies of a disease at a molecular level. The unprecedented potential of nanoplatforms for early detection, diagnosis and personalized treatment of diseases, have found application in every biomedical imaging modality. Biological and biophysical barriers are overcome by the integration of targeting ligands, imaging agents and therapeutics into the nanoplatform which allow for theranostic applications. In this article, we have discussed the opportunities and potential of targeted molecular imaging with various modalities putting a particular emphasis on perfluorocarbon nanoemulsion-based platform technology.
Collapse
Affiliation(s)
- Dipanjan Pan
- Department of Medicine, Washington University Medical School, St Louis, MO, USA.
| | | | | | | |
Collapse
|
42
|
Arbab AS, Janic B, Haller J, Pawelczyk E, Liu W, Frank JA. In Vivo Cellular Imaging for Translational Medical Research. Curr Med Imaging 2009; 5:19-38. [PMID: 19768136 DOI: 10.2174/157340509787354697] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Personalized treatment using stem, modified or genetically engineered, cells is becoming a reality in the field of medicine, in which allogenic or autologous cells can be used for treatment and possibly for early diagnosis of diseases. Hematopoietic, stromal and organ specific stem cells are under evaluation for cell-based therapies for cardiac, neurological, autoimmune and other disorders. Cytotoxic or genetically altered T-cells are under clinical trial for the treatment of hematopoietic or other malignant diseases. Before using stem cells in clinical trials, translational research in experimental animal models are essential, with a critical emphasis on developing noninvasive methods for tracking the temporal and spatial homing of these cells to target tissues. Moreover, it is necessary to determine the transplanted cell's engraftment efficiency and functional capability. Various in vivo imaging modalities are in use to track the movement and incorporation of administered cells. Tagging cells with reporter genes, fluorescent dyes or different contrast agents transforms them into cellular probes or imaging agents. Recent reports have shown that magnetically labeled cells can be used as cellular magnetic resonance imaging (MRI) probes, demonstrating the cell trafficking to target tissues. In this review, we will discuss the methods to transform cells into probes for in vivo imaging, along with their advantages and disadvantages as well as the future clinical applicability of cellular imaging method and corresponding imaging modality.
Collapse
Affiliation(s)
- Ali S Arbab
- Cellular and Molecular Imaging Laboratory, Department of Radiology, Henry Ford Hospital, Detroit, MI
| | | | | | | | | | | |
Collapse
|