1
|
Wang R, Chen Y, Yan F, Yang GZ, Feng Y. A 3D fast MR elastography sequence with interleaved multislab acquisition and Hadamard encoding. Magn Reson Med 2025; 93:1163-1175. [PMID: 39428691 DOI: 10.1002/mrm.30342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/22/2024]
Abstract
PURPOSES To enhance the functional capability of MRI, this study aims to develop a novel MR elastography (MRE) sequence that achieves rapid acquisition without distortion artifacts. METHODS A displacement-encoded stimulated echo (DENSE) with multiphase acquisition scheme was used to capture wave images. A center-out golden-angle stack-of-stars sampling pattern was introduced for improved SNR and data incoherence. A combination of Hadamard encoding and interleaved multislab acquisition schemes was used to increase the acquisition efficiency of MRE data with multiple directions and phase offsets. A generalized parallel-imaging and compressed-sensing method was further applied to accelerate the acquisition process. The imaging results of the proposed sequence were compared with those from six gradient echo (GRE)/EPI/DENSE-based MRE sequences via phantom and brain acquisitions. RESULTS The proposed sequence achieved a 6-fold acceleration compared with GRE MRE. With the application of a conventional parallel-imaging and compressed-sensing algorithm, the scanning speed was further accelerated by 8-fold, matching the speed of EPI-based MRE. Phantom tests revealed small variances in stiffness measurements across the seven sequences (< 9.23%). The proposed sequence exhibited a higher contrast-to-noise ratio (1.38) than the two EPI-based sequences (0.61/0.76) and similar to GRE-based sequences (1.34/1.22/1.58). Brain imaging validated the effectiveness of the proposed sequence in accurate stiffness estimation and distortion artifact avoidance. CONCLUSION A rapid DENSE-based MRE sequence with interleaved multislab acquisition and Hadamard encoding was developed at a speed matching EPI-based sequences, without compromising SNR or introducing distortion artifacts.
Collapse
Affiliation(s)
- Runke Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, Shanghai Jiao Tong University, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Faculty of Medical Imaging Technology, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang-Zhong Yang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Feng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, Shanghai Jiao Tong University, Shanghai, China
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Bhuiyan E, Chowdhury M, Glover P. Tracking head movement inside an MR scanner using electromagnetic coils. Heliyon 2024; 10:e32199. [PMID: 39670227 PMCID: PMC11637216 DOI: 10.1016/j.heliyon.2024.e32199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/04/2023] [Accepted: 05/29/2024] [Indexed: 12/14/2024] Open
Abstract
Prospective motion corrections in brain imaging for MRI are fairly challenging. Monitoring involuntary head movement inside MR scanner is crucial for prospective motion correction. This initial study delves into utilizing simulations to track the head's movements within an MRI scanner, achieved by measuring induced voltage changes from time-varying magnetic field gradients in head-mounted coils. The ultimate aim is to create an inventive approach for prospective motion corrections. The voltage induced in a circular coil of wire that is exposed to time-varying x-, y- and z-magnetic field gradients, is calculated for varying positions and orientations (POSE) of the coils. Similar steps are taken for a system of five coils confined to faces of a cube and it is established whether the voltage changes due to gradient pulses applied along three directions can be used to calculate the change in POSE of the set of coils. This induced voltage led to form a system of linear equations and then find a calibration matrix. Inverting the calibration matrix enables the estimation of movement parameters from the calculated voltage in the coils. Our software gives robust measurement of the six degrees of freedoms to monitor head movement accurately so far ≈0.3 mm and ≈ 0.05 ∘ . By using this standard method one can identify the POSE of the coils as well head within an MR scanner. Even after, addition of noise voltage (up to 20 μV) estimated parameters does not blow up. This electromagnetic field based real-time tracking is highly accurate, non-invasive and compatible with standard MRI hardware.
Collapse
Affiliation(s)
- E.H. Bhuiyan
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
- Center for Magnetic Resonance Research, University of Illinois Chicago, Chicago, IL 60612, USA
| | - M.E.H. Chowdhury
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
- Electrical Engineering, Qatar University, Doha 2713, Qatar
| | - P.M. Glover
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
3
|
Abdi M, Bilchick KC, Epstein FH. Compensation for respiratory motion-induced signal loss and phase corruption in free-breathing self-navigated cine DENSE using deep learning. Magn Reson Med 2023; 89:1975-1989. [PMID: 36602032 PMCID: PMC9992273 DOI: 10.1002/mrm.29582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/25/2022] [Accepted: 12/26/2022] [Indexed: 01/06/2023]
Abstract
PURPOSE To introduce a model that describes the effects of rigid translation due to respiratory motion in displacement encoding with stimulated echoes (DENSE) and to use the model to develop a deep convolutional neural network to aid in first-order respiratory motion compensation for self-navigated free-breathing cine DENSE of the heart. METHODS The motion model includes conventional position shifts of magnetization and further describes the phase shift of the stimulated echo due to breathing. These image-domain effects correspond to linear and constant phase errors, respectively, in k-space. The model was validated using phantom experiments and Bloch-equation simulations and was used along with the simulation of respiratory motion to generate synthetic images with phase-shift artifacts to train a U-Net, DENSE-RESP-NET, to perform motion correction. DENSE-RESP-NET-corrected self-navigated free-breathing DENSE was evaluated in human subjects through comparisons with signal averaging, uncorrected self-navigated free-breathing DENSE, and breath-hold DENSE. RESULTS Phantom experiments and Bloch-equation simulations showed that breathing-induced constant phase errors in segmented DENSE leads to signal loss in magnitude images and phase corruption in phase images of the stimulated echo, and that these artifacts can be corrected using the known respiratory motion and the model. For self-navigated free-breathing DENSE where the respiratory motion is not known, DENSE-RESP-NET corrected the signal loss and phase-corruption artifacts and provided reliable strain measurements for systolic and diastolic parameters. CONCLUSION DENSE-RESP-NET is an effective method to correct for breathing-associated constant phase errors. DENSE-RESP-NET used in concert with self-navigation methods provides reliable free-breathing DENSE myocardial strain measurement.
Collapse
Affiliation(s)
- Mohamad Abdi
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Kenneth C. Bilchick
- Department of Cardiovascular Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Frederick H. Epstein
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
- Department of Radiology, University of Virginia Health System, Charlottesville, Virginia
| |
Collapse
|
4
|
Barbaroux H, Kunze KP, Neji R, Nazir MS, Pennell DJ, Nielles-Vallespin S, Scott AD, Young AA. Automated segmentation of long and short axis DENSE cardiovascular magnetic resonance for myocardial strain analysis using spatio-temporal convolutional neural networks. J Cardiovasc Magn Reson 2023; 25:16. [PMID: 36991474 PMCID: PMC10061808 DOI: 10.1186/s12968-023-00927-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/01/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Cine Displacement Encoding with Stimulated Echoes (DENSE) facilitates the quantification of myocardial deformation, by encoding tissue displacements in the cardiovascular magnetic resonance (CMR) image phase, from which myocardial strain can be estimated with high accuracy and reproducibility. Current methods for analyzing DENSE images still heavily rely on user input, making this process time-consuming and subject to inter-observer variability. The present study sought to develop a spatio-temporal deep learning model for segmentation of the left-ventricular (LV) myocardium, as spatial networks often fail due to contrast-related properties of DENSE images. METHODS 2D + time nnU-Net-based models have been trained to segment the LV myocardium from DENSE magnitude data in short- and long-axis images. A dataset of 360 short-axis and 124 long-axis slices was used to train the networks, from a combination of healthy subjects and patients with various conditions (hypertrophic and dilated cardiomyopathy, myocardial infarction, myocarditis). Segmentation performance was evaluated using ground-truth manual labels, and a strain analysis using conventional methods was performed to assess strain agreement with manual segmentation. Additional validation was performed using an externally acquired dataset to compare the inter- and intra-scanner reproducibility with respect to conventional methods. RESULTS Spatio-temporal models gave consistent segmentation performance throughout the cine sequence, while 2D architectures often failed to segment end-diastolic frames due to the limited blood-to-myocardium contrast. Our models achieved a DICE score of 0.83 ± 0.05 and a Hausdorff distance of 4.0 ± 1.1 mm for short-axis segmentation, and 0.82 ± 0.03 and 7.9 ± 3.9 mm respectively for long-axis segmentations. Strain measurements obtained from automatically estimated myocardial contours showed good to excellent agreement with manual pipelines, and remained within the limits of inter-user variability estimated in previous studies. CONCLUSION Spatio-temporal deep learning shows increased robustness for the segmentation of cine DENSE images. It provides excellent agreement with manual segmentation for strain extraction. Deep learning will facilitate the analysis of DENSE data, bringing it one step closer to clinical routine.
Collapse
Affiliation(s)
- Hugo Barbaroux
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
- Cardiovascular Magnetic Resonance Unit, The Royal Brompton Hospital (Guy's and St Thomas' NHS Foundation Trust), London, UK.
| | - Karl P Kunze
- MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK
| | - Radhouene Neji
- MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK
| | - Muhummad Sohaib Nazir
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Dudley J Pennell
- Cardiovascular Magnetic Resonance Unit, The Royal Brompton Hospital (Guy's and St Thomas' NHS Foundation Trust), London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Sonia Nielles-Vallespin
- Cardiovascular Magnetic Resonance Unit, The Royal Brompton Hospital (Guy's and St Thomas' NHS Foundation Trust), London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Andrew D Scott
- Cardiovascular Magnetic Resonance Unit, The Royal Brompton Hospital (Guy's and St Thomas' NHS Foundation Trust), London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Alistair A Young
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
5
|
Ghadimi S, Abdi M, Epstein FH. Improved computation of Lagrangian tissue displacement and strain for cine DENSE MRI using a regularized spatiotemporal least squares method. Front Cardiovasc Med 2023; 10:1095159. [PMID: 37008315 PMCID: PMC10061004 DOI: 10.3389/fcvm.2023.1095159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/06/2023] [Indexed: 03/18/2023] Open
Abstract
IntroductionIn displacement encoding with stimulated echoes (DENSE), tissue displacement is encoded in the signal phase such that the phase of each pixel in space and time provides an independent measurement of absolute tissue displacement. Previously for DENSE, estimation of Lagrangian displacement used two steps: first a spatial interpolation and, second, least squares fitting through time to a Fourier or polynomial model. However, there is no strong rationale for such a through-time model,MethodsTo compute the Lagrangian displacement field from DENSE phase data, a minimization problem is introduced to enforce fidelity with the acquired Eulerian displacement data while simultaneously providing model-independent regularization in space and time, enforcing only spatiotemporal smoothness. A regularized spatiotemporal least squares (RSTLS) method is used to solve the minimization problem, and RSTLS was tested using two-dimensional DENSE data from 71 healthy volunteers.ResultsThe mean absolute percent error (MAPE) between the Lagrangian displacements and the corresponding Eulerian displacements was significantly lower for the RSTLS method vs. the two-step method for both x- and y-directions (0.73±0.59 vs 0.83 ±0.1, p < 0.05) and (0.75±0.66 vs 0.82 ±0.1, p < 0.05), respectively. Also, peak early diastolic strain rate (PEDSR) was higher (1.81±0.58 (s-1) vs. 1.56±0. 63 (s-1), p<0.05) and the strain rate during diastasis was lower (0.14±0.18 (s-1) vs 0.35±0.2 (s-1), p < 0.05) for the RSTLS vs. the two-step method, with the former suggesting that the two-step method was over-regularized.DiscussionThe proposed RSTLS method provides more realistic measurements of Lagrangian displacement and strain from DENSE images without imposing arbitrary motion models.
Collapse
|
6
|
Auger DA, Ghadimi S, Cai X, Reagan CE, Sun C, Abdi M, Cao JJ, Cheng JY, Ngai N, Scott AD, Ferreira PF, Oshinski JN, Emamifar N, Ennis DB, Loecher M, Liu ZQ, Croisille P, Viallon M, Bilchick KC, Epstein FH. Reproducibility of global and segmental myocardial strain using cine DENSE at 3 T: a multicenter cardiovascular magnetic resonance study in healthy subjects and patients with heart disease. J Cardiovasc Magn Reson 2022. [PMID: 35369885 DOI: 10.1186/s12968-022-00851-7/figures/6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND While multiple cardiovascular magnetic resonance (CMR) methods provide excellent reproducibility of global circumferential and global longitudinal strain, achieving highly reproducible segmental strain is more challenging. Previous single-center studies have demonstrated excellent reproducibility of displacement encoding with stimulated echoes (DENSE) segmental circumferential strain. The present study evaluated the reproducibility of DENSE for measurement of whole-slice or global circumferential (Ecc), longitudinal (Ell) and radial (Err) strain, torsion, and segmental Ecc at multiple centers. METHODS Six centers participated and a total of 81 subjects were studied, including 60 healthy subjects and 21 patients with various types of heart disease. CMR utilized 3 T scanners, and cine DENSE images were acquired in three short-axis planes and in the four-chamber long-axis view. During one imaging session, each subject underwent two separate DENSE scans to assess inter-scan reproducibility. Each subject was taken out of the scanner and repositioned between the scans. Intra-user, inter-user-same-site, inter-user-different-site, and inter-user-Human-Deep-Learning (DL) comparisons assessed the reproducibility of different users analyzing the same data. Inter-scan comparisons assessed the reproducibility of DENSE from scan to scan. The reproducibility of whole-slice or global Ecc, Ell and Err, torsion, and segmental Ecc were quantified using Bland-Altman analysis, the coefficient of variation (CV), and the intraclass correlation coefficient (ICC). CV was considered excellent for CV ≤ 10%, good for 10% < CV ≤ 20%, fair for 20% < CV ≤ 40%, and poor for CV > 40. ICC values were considered excellent for ICC > 0.74, good for ICC 0.6 < ICC ≤ 0.74, fair for ICC 0.4 < ICC ≤ 0.59, poor for ICC < 0.4. RESULTS Based on CV and ICC, segmental Ecc provided excellent intra-user, inter-user-same-site, inter-user-different-site, inter-user-Human-DL reproducibility and good-excellent inter-scan reproducibility. Whole-slice Ecc and global Ell provided excellent intra-user, inter-user-same-site, inter-user-different-site, inter-user-Human-DL and inter-scan reproducibility. The reproducibility of torsion was good-excellent for all comparisons. For whole-slice Err, CV was in the fair-good range, and ICC was in the good-excellent range. CONCLUSIONS Multicenter data show that 3 T CMR DENSE provides highly reproducible whole-slice and segmental Ecc, global Ell, and torsion measurements in healthy subjects and heart disease patients.
Collapse
Affiliation(s)
- Daniel A Auger
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA, 22908, USA
| | - Sona Ghadimi
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA, 22908, USA
| | - Xiaoying Cai
- Siemens Healthineers, Boston, Massachusetts, USA
| | - Claire E Reagan
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA, 22908, USA
| | - Changyu Sun
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA, 22908, USA
| | - Mohamad Abdi
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA, 22908, USA
| | - Jie Jane Cao
- St. Francis Hospital, The Heart Center, Long Island, NY, USA
| | - Joshua Y Cheng
- St. Francis Hospital, The Heart Center, Long Island, NY, USA
| | - Nora Ngai
- St. Francis Hospital, The Heart Center, Long Island, NY, USA
| | - Andrew D Scott
- Cardiovascular Magnetic Resonance Unit, The Royal Brompton Hospital and National Heart and Lung Institute, Imperial College London, London, UK
| | - Pedro F Ferreira
- Cardiovascular Magnetic Resonance Unit, The Royal Brompton Hospital and National Heart and Lung Institute, Imperial College London, London, UK
| | - John N Oshinski
- Department of Radiology & Imaging Sciences and Biomedical Engineering, Emory University, Atlanta, Georgia
| | - Nick Emamifar
- Department of Radiology & Imaging Sciences and Biomedical Engineering, Emory University, Atlanta, Georgia
| | - Daniel B Ennis
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Michael Loecher
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Zhan-Qiu Liu
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Pierre Croisille
- University of Lyon, UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, Saint-Etienne, France
- Department of Radiology, University Hospital Saint-Etienne, Saint-Etienne, France
| | - Magalie Viallon
- University of Lyon, UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, Saint-Etienne, France
| | - Kenneth C Bilchick
- Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA
| | - Frederick H Epstein
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA, 22908, USA.
- Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA.
| |
Collapse
|
7
|
Auger DA, Ghadimi S, Cai X, Reagan CE, Sun C, Abdi M, Cao JJ, Cheng JY, Ngai N, Scott AD, Ferreira PF, Oshinski JN, Emamifar N, Ennis DB, Loecher M, Liu ZQ, Croisille P, Viallon M, Bilchick KC, Epstein FH. Reproducibility of global and segmental myocardial strain using cine DENSE at 3 T: a multicenter cardiovascular magnetic resonance study in healthy subjects and patients with heart disease. J Cardiovasc Magn Reson 2022; 24:23. [PMID: 35369885 PMCID: PMC8978361 DOI: 10.1186/s12968-022-00851-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/07/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND While multiple cardiovascular magnetic resonance (CMR) methods provide excellent reproducibility of global circumferential and global longitudinal strain, achieving highly reproducible segmental strain is more challenging. Previous single-center studies have demonstrated excellent reproducibility of displacement encoding with stimulated echoes (DENSE) segmental circumferential strain. The present study evaluated the reproducibility of DENSE for measurement of whole-slice or global circumferential (Ecc), longitudinal (Ell) and radial (Err) strain, torsion, and segmental Ecc at multiple centers. METHODS Six centers participated and a total of 81 subjects were studied, including 60 healthy subjects and 21 patients with various types of heart disease. CMR utilized 3 T scanners, and cine DENSE images were acquired in three short-axis planes and in the four-chamber long-axis view. During one imaging session, each subject underwent two separate DENSE scans to assess inter-scan reproducibility. Each subject was taken out of the scanner and repositioned between the scans. Intra-user, inter-user-same-site, inter-user-different-site, and inter-user-Human-Deep-Learning (DL) comparisons assessed the reproducibility of different users analyzing the same data. Inter-scan comparisons assessed the reproducibility of DENSE from scan to scan. The reproducibility of whole-slice or global Ecc, Ell and Err, torsion, and segmental Ecc were quantified using Bland-Altman analysis, the coefficient of variation (CV), and the intraclass correlation coefficient (ICC). CV was considered excellent for CV ≤ 10%, good for 10% < CV ≤ 20%, fair for 20% < CV ≤ 40%, and poor for CV > 40. ICC values were considered excellent for ICC > 0.74, good for ICC 0.6 < ICC ≤ 0.74, fair for ICC 0.4 < ICC ≤ 0.59, poor for ICC < 0.4. RESULTS Based on CV and ICC, segmental Ecc provided excellent intra-user, inter-user-same-site, inter-user-different-site, inter-user-Human-DL reproducibility and good-excellent inter-scan reproducibility. Whole-slice Ecc and global Ell provided excellent intra-user, inter-user-same-site, inter-user-different-site, inter-user-Human-DL and inter-scan reproducibility. The reproducibility of torsion was good-excellent for all comparisons. For whole-slice Err, CV was in the fair-good range, and ICC was in the good-excellent range. CONCLUSIONS Multicenter data show that 3 T CMR DENSE provides highly reproducible whole-slice and segmental Ecc, global Ell, and torsion measurements in healthy subjects and heart disease patients.
Collapse
Affiliation(s)
- Daniel A. Auger
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA 22908 USA
| | - Sona. Ghadimi
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA 22908 USA
| | | | - Claire E. Reagan
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA 22908 USA
| | - Changyu Sun
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA 22908 USA
| | - Mohamad Abdi
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA 22908 USA
| | - Jie Jane Cao
- St. Francis Hospital, The Heart Center, Long Island, NY USA
| | | | - Nora Ngai
- St. Francis Hospital, The Heart Center, Long Island, NY USA
| | - Andrew D. Scott
- Cardiovascular Magnetic Resonance Unit, The Royal Brompton Hospital and National Heart and Lung Institute, Imperial College London, London, UK
| | - Pedro F. Ferreira
- Cardiovascular Magnetic Resonance Unit, The Royal Brompton Hospital and National Heart and Lung Institute, Imperial College London, London, UK
| | - John N. Oshinski
- Department of Radiology & Imaging Sciences and Biomedical Engineering, Emory University, Atlanta, Georgia
| | - Nick Emamifar
- Department of Radiology & Imaging Sciences and Biomedical Engineering, Emory University, Atlanta, Georgia
| | - Daniel B. Ennis
- Department of Radiology, Stanford University, Stanford, CA USA
| | - Michael Loecher
- Department of Radiology, Stanford University, Stanford, CA USA
| | - Zhan-Qiu Liu
- Department of Radiology, Stanford University, Stanford, CA USA
| | - Pierre Croisille
- University of Lyon, UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, Saint-Etienne, France
- Department of Radiology, University Hospital Saint-Etienne, Saint-Etienne, France
| | - Magalie Viallon
- University of Lyon, UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, Saint-Etienne, France
| | - Kenneth C. Bilchick
- Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA USA
| | - Frederick H. Epstein
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA 22908 USA
- Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA USA
| |
Collapse
|
8
|
Wang R, Chen Y, Li R, Qiu S, Zhang Z, Yan F, Feng Y. Fast magnetic resonance elastography with multiphase radial encoding and harmonic motion sparsity based reconstruction. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac4a42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/11/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. To achieve fast magnetic resonance elastography (MRE) at a low frequency for better shear modulus estimation of the brain. Approach. We proposed a multiphase radial DENSE MRE (MRD-MRE) sequence and an improved GRASP algorithm utilizing the sparsity of the harmonic motion (SH-GRASP) for fast MRE at 20 Hz. For the MRD-MRE sequence, the initial position encoded by spatial modulation of magnetization (SPAMM) was decoded by an arbitrary number of readout blocks without increasing the number of phase offsets. Based on the harmonic motion, a modified total variation and temporal Fourier transform were introduced to utilize the sparsity in the temporal domain. Both phantom and brain experiments were carried out and compared with that from multiphase Cartesian DENSE-MRE (MCD-MRE), and conventional gradient echo sequence (GRE-MRE). Reconstruction performance was also compared with GRASP and compressed sensing. Main results. Results showed the scanning time of a fully sampled image with four phase offsets for MRD-MRE was only 1/5 of that from GRE-MRE. The wave patterns and estimated stiffness maps were similar to those from MCD-MRE and GRE-MRE. With SH-GRASP, the total scan time could be shortened by additional 4 folds, achieving a total acceleration factor of 20. Better metric values were also obtained using SH-GRASP for reconstruction compared with other algorithms. Significance. The MRD-MRE sequence and SH-GRASP algorithm can be used either in combination or independently to accelerate MRE, showing the potentials for imaging the brain as well as other organs.
Collapse
|
9
|
Abdi M, Feng X, Sun C, Bilchick KC, Meyer CH, Epstein FH. Suppression of artifact-generating echoes in cine DENSE using deep learning. Magn Reson Med 2021; 86:2095-2104. [PMID: 34021628 PMCID: PMC8295221 DOI: 10.1002/mrm.28832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/21/2021] [Accepted: 04/17/2021] [Indexed: 11/11/2022]
Abstract
PURPOSE To use deep learning for suppression of the artifact-generating T1 -relaxation echo in cine displacement encoding with stimulated echoes (DENSE) for the purpose of reducing the scan time. METHODS A U-Net was trained to suppress the artifact-generating T1 -relaxation echo using complementary phase-cycled data as the ground truth. A data-augmentation method was developed that generates synthetic DENSE images with arbitrary displacement-encoding frequencies to suppress the T1 -relaxation echo modulated for a range of frequencies. The resulting U-Net (DAS-Net) was compared with k-space zero-filling as an alternative method. Non-phase-cycled DENSE images acquired in shorter breath-holds were processed by DAS-Net and compared with DENSE images acquired with phase cycling for the quantification of myocardial strain. RESULTS The DAS-Net method effectively suppressed the T1 -relaxation echo and its artifacts, and achieved root Mean Square(RMS) error = 5.5 ± 0.8 and structural similarity index = 0.85 ± 0.02 for DENSE images acquired with a displacement encoding frequency of 0.10 cycles/mm. The DAS-Net method outperformed zero-filling (root Mean Square error = 5.8 ± 1.5 vs 13.5 ± 1.5, DAS-Net vs zero-filling, P < .01; and structural similarity index = 0.83 ± 0.04 vs 0.66 ± 0.03, DAS-Net vs zero-filling, P < .01). Strain data for non-phase-cycled DENSE images with DAS-Net showed close agreement with strain from phase-cycled DENSE. CONCLUSION The DAS-Net method provides an effective alternative approach for suppression of the artifact-generating T1 -relaxation echo in DENSE MRI, enabling a 42% reduction in scan time compared to DENSE with phase-cycling.
Collapse
Affiliation(s)
- Mohamad Abdi
- Departments of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Xue Feng
- Departments of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Changyu Sun
- Departments of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Kenneth C. Bilchick
- Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Craig H. Meyer
- Departments of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
- Departments of Radiology, University of Virginia Health System, Charlottesville, Virginia
| | - Frederick H. Epstein
- Departments of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
- Departments of Radiology, University of Virginia Health System, Charlottesville, Virginia
| |
Collapse
|
10
|
Development, calibration, and testing of 3D amplified MRI (aMRI) for the quantification of intrinsic brain motion. BRAIN MULTIPHYSICS 2021. [DOI: 10.1016/j.brain.2021.100022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
11
|
Ghadimi S, Auger DA, Feng X, Sun C, Meyer CH, Bilchick KC, Cao JJ, Scott AD, Oshinski JN, Ennis DB, Epstein FH. Fully-automated global and segmental strain analysis of DENSE cardiovascular magnetic resonance using deep learning for segmentation and phase unwrapping. J Cardiovasc Magn Reson 2021; 23:20. [PMID: 33691739 PMCID: PMC7949250 DOI: 10.1186/s12968-021-00712-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 01/26/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Cardiovascular magnetic resonance (CMR) cine displacement encoding with stimulated echoes (DENSE) measures heart motion by encoding myocardial displacement into the signal phase, facilitating high accuracy and reproducibility of global and segmental myocardial strain and providing benefits in clinical performance. While conventional methods for strain analysis of DENSE images are faster than those for myocardial tagging, they still require manual user assistance. The present study developed and evaluated deep learning methods for fully-automatic DENSE strain analysis. METHODS Convolutional neural networks (CNNs) were developed and trained to (a) identify the left-ventricular (LV) epicardial and endocardial borders, (b) identify the anterior right-ventricular (RV)-LV insertion point, and (c) perform phase unwrapping. Subsequent conventional automatic steps were employed to compute strain. The networks were trained using 12,415 short-axis DENSE images from 45 healthy subjects and 19 heart disease patients and were tested using 10,510 images from 25 healthy subjects and 19 patients. Each individual CNN was evaluated, and the end-to-end fully-automatic deep learning pipeline was compared to conventional user-assisted DENSE analysis using linear correlation and Bland Altman analysis of circumferential strain. RESULTS LV myocardial segmentation U-Nets achieved a DICE similarity coefficient of 0.87 ± 0.04, a Hausdorff distance of 2.7 ± 1.0 pixels, and a mean surface distance of 0.41 ± 0.29 pixels in comparison with manual LV myocardial segmentation by an expert. The anterior RV-LV insertion point was detected within 1.38 ± 0.9 pixels compared to manually annotated data. The phase-unwrapping U-Net had similar or lower mean squared error vs. ground-truth data compared to the conventional path-following method for images with typical signal-to-noise ratio (SNR) or low SNR (p < 0.05), respectively. Bland-Altman analyses showed biases of 0.00 ± 0.03 and limits of agreement of - 0.04 to 0.05 or better for deep learning-based fully-automatic global and segmental end-systolic circumferential strain vs. conventional user-assisted methods. CONCLUSIONS Deep learning enables fully-automatic global and segmental circumferential strain analysis of DENSE CMR providing excellent agreement with conventional user-assisted methods. Deep learning-based automatic strain analysis may facilitate greater clinical use of DENSE for the quantification of global and segmental strain in patients with cardiac disease.
Collapse
Affiliation(s)
- Sona Ghadimi
- Department of Biomedical Engineering, University of Virginia, Health System, Box 800759, Charlottesville, VA 22908 USA
| | - Daniel A. Auger
- Department of Biomedical Engineering, University of Virginia, Health System, Box 800759, Charlottesville, VA 22908 USA
| | - Xue Feng
- Department of Biomedical Engineering, University of Virginia, Health System, Box 800759, Charlottesville, VA 22908 USA
| | - Changyu Sun
- Department of Biomedical Engineering, University of Virginia, Health System, Box 800759, Charlottesville, VA 22908 USA
| | - Craig H. Meyer
- Department of Biomedical Engineering, University of Virginia, Health System, Box 800759, Charlottesville, VA 22908 USA
| | - Kenneth C. Bilchick
- Department of Medicine, University of Virginia Health System, Charlottesville, VA USA
| | - Jie Jane Cao
- Department of Cardiology, St. Francis Hospital, New York, NY USA
| | - Andrew D. Scott
- Cardiovascular Magnetic Resonance Unit, The Royal Brompton Hospital, London, United Kingdom
| | - John N. Oshinski
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA USA
| | - Daniel B. Ennis
- Department of Radiology, Stanford University, Stanford, CA USA
| | - Frederick H. Epstein
- Department of Biomedical Engineering, University of Virginia, Health System, Box 800759, Charlottesville, VA 22908 USA
| |
Collapse
|
12
|
Perotti LE, Verzhbinsky IA, Moulin K, Cork TE, Loecher M, Balzani D, Ennis DB. Estimating cardiomyofiber strain in vivo by solving a computational model. Med Image Anal 2021; 68:101932. [PMID: 33383331 PMCID: PMC7956226 DOI: 10.1016/j.media.2020.101932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 11/22/2020] [Accepted: 11/27/2020] [Indexed: 11/19/2022]
Abstract
Since heart contraction results from the electrically activated contraction of millions of cardiomyocytes, a measure of cardiomyocyte shortening mechanistically underlies cardiac contraction. In this work we aim to measure preferential aggregate cardiomyocyte ("myofiber") strains based on Magnetic Resonance Imaging (MRI) data acquired to measure both voxel-wise displacements through systole and myofiber orientation. In order to reduce the effect of experimental noise on the computed myofiber strains, we recast the strains calculation as the solution of a boundary value problem (BVP). This approach does not require a calibrated material model, and consequently is independent of specific myocardial material properties. The solution to this auxiliary BVP is the displacement field corresponding to assigned values of myofiber strains. The actual myofiber strains are then determined by minimizing the difference between computed and measured displacements. The approach is validated using an analytical phantom, for which the ground-truth solution is known. The method is applied to compute myofiber strains using in vivo displacement and myofiber MRI data acquired in a mid-ventricular left ventricle section in N=8 swine subjects. The proposed method shows a more physiological distribution of myofiber strains compared to standard approaches that directly differentiate the displacement field.
Collapse
Affiliation(s)
- Luigi E Perotti
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA.
| | - Ilya A Verzhbinsky
- Department of Radiology, Stanford University, Stanford, CA, USA; Medical Scientist Training Program, University of California, San Diego, La Jolla, USA
| | - Kévin Moulin
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Tyler E Cork
- Department of Radiology, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Michael Loecher
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Daniel Balzani
- Chair of Continuum Mechanics, Ruhr University Bochum, Bochum, Germany
| | - Daniel B Ennis
- Department of Radiology, Stanford University, Stanford, CA, USA
| |
Collapse
|
13
|
Abderezaei J, Martinez J, Terem I, Fabris G, Pionteck A, Yang Y, Holdsworth SJ, Nael K, Kurt M. Amplified Flow Imaging (aFlow): A Novel MRI-Based Tool to Unravel the Coupled Dynamics Between the Human Brain and Cerebrovasculature. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:4113-4123. [PMID: 32746150 DOI: 10.1109/tmi.2020.3012932] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
With each heartbeat, periodic variations in arterial blood pressure are transmitted along the vasculature, resulting in localized deformations of the arterial wall and its surrounding tissue. Quantification of such motions may help understand various cerebrovascular conditions, yet it has proven technically challenging thus far. We introduce a new image processing algorithm called amplified Flow (aFlow) which allows to study the coupled brain-blood flow motion by combining the amplification of cine and 4D flow MRI. By incorporating a modal analysis technique known as dynamic mode decomposition into the algorithm, aFlow is able to capture the characteristics of transient events present in the brain and arterial wall deformation. Validating aFlow, we tested it on phantom simulations mimicking arterial walls motion and observed that aFlow displays almost twice higher SNR than its predecessor amplified MRI (aMRI). We then applied aFlow to 4D flow and cine MRI datasets of 5 healthy subjects, finding high correlations between blood flow velocity and tissue deformation in selected brain regions, with correlation values r = 0.61 , 0.59, 0.52 for the pons, frontal and occipital lobe ( ). Finally, we explored the potential diagnostic applicability of aFlow by studying intracranial aneurysm dynamics, which seems to be indicative of rupture risk. In two patients, aFlow successfully visualized the imperceptible aneurysm wall motion, additionally quantifying the increase in the high frequency wall displacement after a one-year follow-up period (20%, 76%). These preliminary data suggest that aFlow may provide a novel imaging biomarker for the assessment of aneurysms evolution, with important potential diagnostic implications.
Collapse
|
14
|
Kar J, Cohen MV, McQuiston SA, Malozzi CM. Comprehensive enhanced methodology of an MRI-based automated left-ventricular chamber quantification algorithm and validation in chemotherapy-related cardiotoxicity. J Med Imaging (Bellingham) 2020; 7:064002. [DOI: 10.1117/1.jmi.7.6.064002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/23/2020] [Indexed: 11/14/2022] Open
Affiliation(s)
- Julia Kar
- University of South Alabama, Department of Mechanical Engineering, Mobile, Alabama
| | - Michael V. Cohen
- University of South Alabama, Department of Cardiology, Mobile, Alabama
| | | | | |
Collapse
|
15
|
Naresh NK, Misener S, Zhang Z, Yang C, Ruh A, Bertolino N, Epstein FH, Collins JD, Markl M, Procissi D, Carr JC, Allen BA. Cardiac MRI Myocardial Functional and Tissue Characterization Detects Early Cardiac Dysfunction in a Mouse Model of Chemotherapy-Induced Cardiotoxicity. NMR IN BIOMEDICINE 2020; 33:e4327. [PMID: 32567177 DOI: 10.1002/nbm.4327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/14/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Doxorubicin and doxorubicin-trastuzumab combination chemotherapy have been associated with cardiotoxicity that eventually leads to heart failure and may limit dose-effective cancer treatment. Current diagnostic strategies rely on decreased ejection fraction (EF) to diagnose cardiotoxicity. PURPOSE The aim of this study is to explore the potential of cardiac MR (CMR) imaging to identify imaging biomarkers in a mouse model of chemotherapy-induced cardiotoxicity. METHODS A cumulative dose of 25 mg/kg doxorubicin was administered over three weeks using subcutaneous pellets (n = 9, Dox). Another group (n = 9) received same dose of Dox and a total of 10 mg/kg trastuzumab (DT). Mice were imaged at baseline, 5/6 weeks and 10 weeks post-treatment on a 7T MRI system. The protocol included short-axis cine MRI covering the left ventricle (LV) and mid-ventricular short-axis tissue phase mapping (TPM), pre- and post-contrast T1 mapping, T2 mapping and Displacement Encoding with Stimulated Echoes (DENSE) strain encoded MRI. EF, peak myocardial velocities, native T1, T2, extracellular volume (ECV), and myocardial strain were quantified. N = 7 mice were sacrificed for histopathologic assessment of apoptosis at 5/6 weeks. RESULTS Global peak systolic longitudinal velocity was reduced at 5/6 weeks in Dox (0.6 ± 0.3 vs 0.9 ± 0.3, p = 0.02). In the Dox group, native T1 was reduced at 5/6 weeks (1.3 ± 0.2 ms vs 1.6 ± 0.2 ms, p = 0.02), and relatively normalized at week 10 (1.4 ± 0.1 ms vs 1.6 ± 0.2 ms, p > 0.99). There was no change in EF and other MRI parameters and histopathologic results demonstrated minimal apoptosis in all mice (~1-2 apoptotic cell/high power field), suggesting early-stage cardiotoxicity. CONCLUSIONS In a mouse model of chemotherapy-induced cardiotoxicity using doxorubicin and trastuzumab, advanced CMR shows promise in identifying treatment-related decrease in myocardial velocity and native T1 prior to the onset of cardiomyocyte apoptosis and reduction of EF.
Collapse
Affiliation(s)
- Nivedita K Naresh
- Department of Radiology, Northwestern University, 737 N. Michigan Ave, Chicago, IL, USA
| | - Sol Misener
- Department of Radiology, Northwestern University, 737 N. Michigan Ave, Chicago, IL, USA
| | - Zhouli Zhang
- Department of Radiology, Northwestern University, 737 N. Michigan Ave, Chicago, IL, USA
| | - Cynthia Yang
- Department of Radiology, Northwestern University, 737 N. Michigan Ave, Chicago, IL, USA
| | - Alexander Ruh
- Department of Radiology, Northwestern University, 737 N. Michigan Ave, Chicago, IL, USA
| | - Nicola Bertolino
- Department of Radiology, Northwestern University, 737 N. Michigan Ave, Chicago, IL, USA
| | - Frederick H Epstein
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Jeremy D Collins
- Department of Radiology, Northwestern University, 737 N. Michigan Ave, Chicago, IL, USA
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Michael Markl
- Department of Radiology, Northwestern University, 737 N. Michigan Ave, Chicago, IL, USA
- McCormick School of Engineering, Northwestern University, Chicago, IL, USA
| | - Daniele Procissi
- Department of Radiology, Northwestern University, 737 N. Michigan Ave, Chicago, IL, USA
| | - James C Carr
- Department of Radiology, Northwestern University, 737 N. Michigan Ave, Chicago, IL, USA
| | - Bradley A Allen
- Department of Radiology, Northwestern University, 737 N. Michigan Ave, Chicago, IL, USA
| |
Collapse
|
16
|
Mangion K, Loughrey CM, Auger DA, McComb C, Lee MM, Corcoran D, McEntegart M, Davie A, Good R, Lindsay M, Eteiba H, Rocchiccioli P, Watkins S, Hood S, Shaukat A, Haig C, Epstein FH, Berry C. Displacement Encoding With Stimulated Echoes Enables the Identification of Infarct Transmurality Early Postmyocardial Infarction. J Magn Reson Imaging 2020; 52:1722-1731. [PMID: 32720405 DOI: 10.1002/jmri.27295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Segmental extent of infarction assessed by late gadolinium enhancement (LGE) imaging early post-ST-segment elevation myocardial infarction (STEMI) has utility in predicting left ventricular functional recovery. HYPOTHESIS We hypothesized that segmental circumferential strain with displacement encoding with stimulated echoes (DENSE) would be a stronger predictor of infarct transmurality than feature-tracking strain, and noninferior to extracellular volume fraction (ECV). STUDY TYPE Prospective. POPULATION Fifty participants (mean ± SD, 59 ± 9 years, 40 [80%] male) underwent cardiac MRI on day 1 post-STEMI. FIELD-STRENGTH/SEQUENCES 1.5T/cine, DENSE, T1 mapping, ECV, LGE. ASSESSMENT Two observers assessed segmental percentage LGE extent, presence of microvascular obstruction (MVO), circumferential and radial strain with DENSE and feature-tracking, T1 relaxation times, and ECV. STATISTICAL TESTS Normality was tested using the Shapiro-Wilk test. Skewed distributions were analyzed utilizing Mann-Whitney or Kruskal-Wallis tests and normal distributed data using independent t-tests. Diagnostic cutoff values were identified using the Youden index. The difference in area under the curve was compared using the z-statistic. RESULTS Segmental circumferential strain with DENSE was associated with the extent of infarction ≥50% (AUC [95% CI], cutoff value = 0.9 [0.8, 0.9], -10%) similar to ECV (AUC = 0.8 [0.8, 0.9], 37%) (P = 0.117) and superior to feature-tracking circumferential strain (AUC = 0.7[0.7, 0.8], -19%) (P < 0.05). For the detection of segmental infarction ≥75%, circumferential strain with DENSE (AUC = 0.9 [0.8, 0.9], -10%) was noninferior to ECV (AUC = 0.8 [0.7, 0.9], 42%) (P = 0.132) and superior to feature-tracking (AUC = 0.7 [0.7, 0.8], -13%) (P < 0.05). For MVO detection, circumferential strain with DENSE (AUC = 0.8 [0.8, 0.9], -12%) was superior to ECV (AUC = 0.8 [0.7, 0.8] 34%) (P < 0.05) and feature-tracking (AUC = 0.7 [0.6, 0.7] -21%) (P < 0.05). DATA CONCLUSION Circumferential strain with DENSE is a functional measure of infarct severity and may remove the need for gadolinium contrast agents in some circumstances. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY STAGE: 5 J. MAGN. RESON. IMAGING 2020;52:1722-1731.
Collapse
Affiliation(s)
- Kenneth Mangion
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK.,West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow, UK
| | - Christopher M Loughrey
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Daniel A Auger
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Christie McComb
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK.,Clinical Physics, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Matthew M Lee
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK.,West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow, UK
| | - David Corcoran
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK.,West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow, UK
| | - Margaret McEntegart
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK.,West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow, UK
| | - Andrew Davie
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow, UK
| | - Richard Good
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow, UK
| | - Mitchell Lindsay
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow, UK
| | - Hany Eteiba
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK.,West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow, UK
| | - Paul Rocchiccioli
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK.,West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow, UK
| | - Stuart Watkins
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow, UK
| | - Stuart Hood
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow, UK
| | - Aadil Shaukat
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow, UK
| | - Caroline Haig
- Robertson Centre for Biostatistics, University of Glasgow, Glasgow, UK
| | - Frederick H Epstein
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Colin Berry
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK.,West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow, UK
| |
Collapse
|
17
|
Verzhbinsky IA, Perotti LE, Moulin K, Cork TE, Loecher M, Ennis DB. Estimating Aggregate Cardiomyocyte Strain Using In Vivo Diffusion and Displacement Encoded MRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:656-667. [PMID: 31398112 PMCID: PMC7325525 DOI: 10.1109/tmi.2019.2933813] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Changes in left ventricular (LV) aggregate cardiomyocyte orientation and deformation underlie cardiac function and dysfunction. As such, in vivo aggregate cardiomyocyte "myofiber" strain ( [Formula: see text]) has mechanistic significance, but currently there exists no established technique to measure in vivo [Formula: see text]. The objective of this work is to describe and validate a pipeline to compute in vivo [Formula: see text] from magnetic resonance imaging (MRI) data. Our pipeline integrates LV motion from multi-slice Displacement ENcoding with Stimulated Echoes (DENSE) MRI with in vivo LV microstructure from cardiac Diffusion Tensor Imaging (cDTI) data. The proposed pipeline is validated using an analytical deforming heart-like phantom. The phantom is used to evaluate 3D cardiac strains computed from a widely available, open-source DENSE Image Analysis Tool. Phantom evaluation showed that a DENSE MRI signal-to-noise ratio (SNR) ≥20 is required to compute [Formula: see text] with near-zero median strain bias and within a strain tolerance of 0.06. Circumferential and longitudinal strains are also accurately measured under the same SNR requirements, however, radial strain exhibits a median epicardial bias of -0.10 even in noise-free DENSE data. The validated framework is applied to experimental DENSE MRI and cDTI data acquired in eight ( N=8 ) healthy swine. The experimental study demonstrated that [Formula: see text] has decreased transmural variability compared to radial and circumferential strains. The spatial uniformity and mechanistic significance of in vivo [Formula: see text] make it a compelling candidate for characterization and early detection of cardiac dysfunction.
Collapse
|
18
|
Kar J, Cohen MV, McQuiston SA, Figarola MS, Malozzi CM. Can post-chemotherapy cardiotoxicity be detected in long-term survivors of breast cancer via comprehensive 3D left-ventricular contractility (strain) analysis? Magn Reson Imaging 2019; 62:94-103. [PMID: 31254595 DOI: 10.1016/j.mri.2019.06.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/15/2019] [Accepted: 06/23/2019] [Indexed: 01/03/2023]
Abstract
PURPOSE This study applied a novel and automated contractility analysis tool to investigate possible cardiotoxicity-related left-ventricular (LV) dysfunction in breast cancer patients following treatment with anti-neoplastic chemotherapy agents (CTA). Subclinical dysfunction otherwise undetected via LV ejection fraction (LVEF) was determined. METHODS Deformation data were acquired with the Displacement Encoding with Stimulated Echoes (DENSE) MRI sequence on 16 female patients who had CTA-based treatment. The contractility analysis tool consisting of image quantization-based boundary detection and the meshfree Radial Point Interpolation Method was used to compare chamber quantifications, 3D regional strains and torsion between patients and healthy subjects (N = 26 females with N = 14 age-matched). Quantifications of patient LVEFs from DENSE and Steady-State Free Precession (SSFP) acquisitions were compared, Bland-Altman interobserver agreements measured on their strain results and differences in contractile parameters with healthy subjects determined via Student's t-tests. RESULTS A significant difference was not found between DENSE and SSFP-based patient LVEFs at 58 ± 7% vs 57 ± 9%, p = 0.6. Bland-Altman agreements were - 0.01 ± 0.05 for longitudinal strain and 0.1 ± 1.3° for torsion. Differences in basal diameter indicating enlargement, 5.2 ± 0.5 cm vs 4.5 ± 0.5 cm, p < 0.01, and torsion, 4.7 ± 1.0° vs 8.1 ± 1.1°, p < 0.001 in the mid-ventricle and 5.9 ± 1.2° vs 10.2 ± 0.9°, p < 0.001 apically, were seen between patients and age-matched healthy subjects and similarly in longitudinal strain, but not in LVEF. CONCLUSIONS Results from the statistical analysis reveal the likelihood of LV remodeling in this patient subpopulation otherwise not indicated by LVEF measurements.
Collapse
Affiliation(s)
- Julia Kar
- Departments of Mechanical Engineering and Pharmacology, University of South Alabama, 150 Jaguar Drive, Mobile, AL 36688, United States of America.
| | - Michael V Cohen
- Department of Cardiology, College of Medicine, University of South Alabama, 1700 Center Street, Mobile, AL 36604, United States of America
| | - Samuel A McQuiston
- Department of Radiology, University of South Alabama, 2451 USA Medical Center Drive, Mobile, AL 36617, United States of America
| | - Maria S Figarola
- Department of Radiology, University of South Alabama, 2451 USA Medical Center Drive, Mobile, AL 36617, United States of America
| | - Christopher M Malozzi
- Department of Cardiology, College of Medicine, University of South Alabama, 1700 Center Street, Mobile, AL 36604, United States of America
| |
Collapse
|
19
|
Adams AL, Kuijf HJ, Viergever MA, Luijten PR, Zwanenburg JJ. Quantifying cardiac-induced brain tissue expansion using DENSE. NMR IN BIOMEDICINE 2019; 32:e4050. [PMID: 30575151 PMCID: PMC6519010 DOI: 10.1002/nbm.4050] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/16/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
Brain tissue undergoes viscoelastic deformation and volumetric strain as it expands over the cardiac cycle due to blood volume changes within the underlying microvasculature. Volumetric strain measurements may therefore provide insights into small vessel function and tissue viscoelastic properties. Displacement encoding via stimulated echoes (DENSE) is an MRI technique that can quantify the submillimetre displacements associated with brain tissue motion. Despite previous studies reporting brain tissue displacements using DENSE and other MRI techniques, a complete picture of brain tissue volumetric strain over the cardiac cycle has not yet been obtained. To address this need we implemented 3D cine-DENSE at 7 T and 3 T to investigate the feasibility of measuring cardiac-induced volumetric strain as a marker for small vessel blood volume changes. Volumetric strain over the entire cardiac cycle was computed for the whole brain and for grey and white matter tissue separately in six healthy human subjects. Signal-to-noise ratio (SNR) measurements were used to determine the voxel-wise volumetric strain noise. Mean peak whole brain volumetric strain at 7 T (mean ± SD) was (4.5 ± 1.0) × 10-4 (corresponding to a volume expansion of 0.48 ± 0.1 mL), which is in agreement with literature values for cerebrospinal fluid that is displaced into the spinal canal to maintain a stable intracranial pressure. The peak volumetric strain ratio of grey to white matter was 4.4 ± 2.8, reflecting blood volume and tissue stiffness differences between these tissue types. The mean peak volumetric strains of grey and white matter tissue were found to be significantly different (p < 0.001). The mean SNR at 7 T and 3 T of the DENSE measurements was 22.0 ± 7.3 and 7.0 ± 2.8 respectively, which currently limits a voxel-wise strain analysis at both field strengths. We demonstrate that tissue specific quantification of volumetric strain is feasible with DENSE. This metric holds potential for studying blood volume pulsations in the ageing brain in healthy and diseased states.
Collapse
Affiliation(s)
- Ayodeji L. Adams
- Department of RadiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Hugo J. Kuijf
- Image Sciences InstituteUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Max A. Viergever
- Image Sciences InstituteUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Peter R. Luijten
- Department of RadiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | |
Collapse
|
20
|
Terem I, Ni WW, Goubran M, Rahimi MS, Zaharchuk G, Yeom KW, Moseley ME, Kurt M, Holdsworth SJ. Revealing sub-voxel motions of brain tissue using phase-based amplified MRI (aMRI). Magn Reson Med 2018; 80:2549-2559. [PMID: 29845645 PMCID: PMC6269230 DOI: 10.1002/mrm.27236] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 03/28/2018] [Accepted: 04/05/2018] [Indexed: 01/15/2023]
Abstract
PURPOSE Amplified magnetic resonance imaging (aMRI) was recently introduced as a new brain motion detection and visualization method. The original aMRI approach used a video-processing algorithm, Eulerian video magnification (EVM), to amplify cardio-ballistic motion in retrospectively cardiac-gated MRI data. Here, we strive to improve aMRI by incorporating a phase-based motion amplification algorithm. METHODS Phase-based aMRI was developed and tested for correct implementation and ability to amplify sub-voxel motions using digital phantom simulations. The image quality of phase-based aMRI was compared with EVM-based aMRI in healthy volunteers at 3T, and its amplified motion characteristics were compared with phase-contrast MRI. Data were also acquired on a patient with Chiari I malformation, and qualitative displacement maps were produced using free form deformation (FFD) of the aMRI output. RESULTS Phantom simulations showed that phase-based aMRI has a linear dependence of amplified displacement on true displacement. Amplification was independent of temporal frequency, varying phantom intensity, Rician noise, and partial volume effect. Phase-based aMRI supported larger amplification factors than EVM-based aMRI and was less sensitive to noise and artifacts. Abnormal biomechanics were seen on FFD maps of the Chiari I malformation patient. CONCLUSION Phase-based aMRI might be used in the future for quantitative analysis of minute changes in brain motion and may reveal subtle physiological variations of the brain as a result of pathology using processing of the fundamental harmonic or by selectively varying temporal harmonics. Preliminary data shows the potential of phase-based aMRI to qualitatively assess abnormal biomechanics in Chiari I malformation.
Collapse
Affiliation(s)
- Itamar Terem
- Department of Radiology, Stanford University, Stanford, California
| | - Wendy W Ni
- Department of Radiology, Stanford University, Stanford, California
| | - Maged Goubran
- Department of Radiology, Stanford University, Stanford, California
| | | | - Greg Zaharchuk
- Department of Radiology, Stanford University, Stanford, California
| | - Kristen W Yeom
- Department of Radiology, Stanford University, Stanford, California
| | | | - Mehmet Kurt
- Stevens Institute of Technology, Hoboken, New Jersey
| | - Samantha J Holdsworth
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
21
|
Cai X, Epstein FH. Free-breathing cine DENSE MRI using phase cycling with matchmaking and stimulated-echo image-based navigators. Magn Reson Med 2018; 80:1907-1921. [PMID: 29607538 PMCID: PMC6107388 DOI: 10.1002/mrm.27199] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/19/2018] [Accepted: 03/06/2018] [Indexed: 01/17/2023]
Abstract
PURPOSE This study aimed to develop a self-navigated method for free-breathing spiral cine displacement encoding with stimulated echoes (DENSE), a myocardial strain imaging technique that uses phase-cycling for artifact suppression. The method needed to address 2 consequences of motion for DENSE: striping artifacts from incomplete suppression of the T1 -relaxation echo and blurring. METHODS The method identifies phase-cycled spiral interleaves at matched respiratory phases by minimizing the residual signal due to T1 relaxation after phase-cycling subtraction. Next, the method reconstructs image-based navigators from matched phase-cycled interleaves that are comprised of the stimulated echo (ste-iNAVs). Ste-iNAVs are used for motion estimation and compensation of k-space data. The method was demonstrated in phantoms and compared to diaphragm-based navigator (dNAV) and conventional iNAV (c-iNAV) methods for the reconstruction of free-breathing volunteer data sets (N = 10). RESULTS Phantom experiments demonstrated that the proposed method removes striping artifacts and blurring due to motion. Volunteer results showed that respiratory motion measured by ste-iNAVs was better correlated than c-iNAVs to dNAV data (R2 = 0.82 ± 0.03 vs. 0.70 ± 0.05, P < 0.05). Match-making reconstructions of free-breathing data sets achieved lower residual T1 -relaxation echo energy (1.04 ± 0.01 vs. 1.18 ± 0.04 for dNAV and 1.18 ± 0.03 for c-iNAV, P < 0.05), higher apparent SNR (11.93 ± 1.05 vs. 10.68 ± 1.06 for dNAV and 10.66 ± 0.99 for c-iNAV, P < 0.05), and better phase quality (0.147 ± 0.012 vs. 0.166 ± 0.017 for dNAV, P = 0.06, and 0.168 ± 0.015 for c-iNAV, P < 0.05) than dNAV and c-iNAV methods. CONCLUSION For free-breathing cine DENSE, the proposed method addresses both types of breathing-induced artifacts and provides better quality images than conventional dNAV and iNAV methods.
Collapse
Affiliation(s)
- Xiaoying Cai
- Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Frederick H. Epstein
- Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
- Radiology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
22
|
Wehner GJ, Jing L, Haggerty CM, Suever JD, Chen J, Hamlet SM, Feindt JA, Dimitri Mojsejenko W, Fogel MA, Fornwalt BK. Comparison of left ventricular strains and torsion derived from feature tracking and DENSE CMR. J Cardiovasc Magn Reson 2018; 20:63. [PMID: 30208894 PMCID: PMC6136226 DOI: 10.1186/s12968-018-0485-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 08/20/2018] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Cardiovascular magnetic resonance (CMR) feature tracking is increasingly used to quantify cardiac mechanics from cine CMR imaging, although validation against reference standard techniques has been limited. Furthermore, studies have suggested that commonly-derived metrics, such as peak global strain (reported in 63% of feature tracking studies), can be quantified using contours from just two frames - end-diastole (ED) and end-systole (ES) - without requiring tracking software. We hypothesized that mechanics derived from feature tracking would not agree with those derived from a reference standard (displacement-encoding with stimulated echoes (DENSE) imaging), and that peak strain from feature tracking would agree with that derived using simple processing of only ED and ES contours. METHODS We retrospectively identified 88 participants with 186 pairs of DENSE and balanced steady state free precession (bSSFP) image slices acquired at the same locations across two institutions. Left ventricular (LV) strains, torsion, and dyssynchrony were quantified from both feature tracking (TomTec Imaging Systems, Circle Cardiovascular Imaging) and DENSE. Contour-based strains from bSSFP images were derived from ED and ES contours. Agreement was assessed with Bland-Altman analyses and coefficients of variation (CoV). All biases are reported in absolute percentage. RESULTS Comparison results were similar for both vendor packages (TomTec and Circle), and thus only TomTec Imaging System data are reported in the abstract for simplicity. Compared to DENSE, mid-ventricular circumferential strain (Ecc) from feature tracking had acceptable agreement (bias: - 0.4%, p = 0.36, CoV: 11%). However, feature tracking significantly overestimated the magnitude of Ecc at the base (bias: - 4.0% absolute, p < 0.001, CoV: 18%) and apex (bias: - 2.4% absolute, p = 0.01, CoV: 15%), underestimated torsion (bias: - 1.4 deg/cm, p < 0.001, CoV: 41%), and overestimated dyssynchrony (bias: 26 ms, p < 0.001, CoV: 76%). Longitudinal strain (Ell) had borderline-acceptable agreement (bias: - 0.2%, p = 0.77, CoV: 19%). Contour-based strains had excellent agreement with feature tracking (biases: - 1.3-0.2%, CoVs: 3-7%). CONCLUSION Compared to DENSE as a reference standard, feature tracking was inaccurate for quantification of apical and basal LV circumferential strains, longitudinal strain, torsion, and dyssynchrony. Feature tracking was only accurate for quantification of mid LV circumferential strain. Moreover, feature tracking is unnecessary for quantification of whole-slice strains (e.g. base, apex), since simplified processing of only ED and ES contours yields very similar results to those derived from feature tracking. Current feature tracking technology therefore has limited utility for quantification of cardiac mechanics.
Collapse
Affiliation(s)
- Gregory J. Wehner
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY USA
| | - Linyuan Jing
- Department of Imaging Science and Innovation, Geisinger, 100 North Academy Avenue, Danville, PA 17822-4400 USA
- Department of Pediatrics, University of Kentucky, Lexington, KY USA
| | - Christopher M. Haggerty
- Department of Imaging Science and Innovation, Geisinger, 100 North Academy Avenue, Danville, PA 17822-4400 USA
- Department of Pediatrics, University of Kentucky, Lexington, KY USA
| | - Jonathan D. Suever
- Department of Imaging Science and Innovation, Geisinger, 100 North Academy Avenue, Danville, PA 17822-4400 USA
- Department of Pediatrics, University of Kentucky, Lexington, KY USA
| | - Jing Chen
- Department of Imaging Science and Innovation, Geisinger, 100 North Academy Avenue, Danville, PA 17822-4400 USA
| | - Sean M. Hamlet
- Department of Electrical Engineering, University of Kentucky, Lexington, KY USA
| | - Jared A. Feindt
- Department of Imaging Science and Innovation, Geisinger, 100 North Academy Avenue, Danville, PA 17822-4400 USA
| | | | - Mark A. Fogel
- Division of Cardiology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | - Brandon K. Fornwalt
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY USA
- Department of Imaging Science and Innovation, Geisinger, 100 North Academy Avenue, Danville, PA 17822-4400 USA
- Department of Pediatrics, University of Kentucky, Lexington, KY USA
- Department of Electrical Engineering, University of Kentucky, Lexington, KY USA
- Department of Radiology, Geisinger, Danville, PA USA
| |
Collapse
|
23
|
Wehner GJ, Suever JD, Fielden SW, Powell DK, Hamlet SM, Vandsburger MH, Haggerty CM, Zhong X, Fornwalt BK. Typical readout durations in spiral cine DENSE yield blurred images and underestimate cardiac strains at both 3.0 T and 1.5 T. Magn Reson Imaging 2018; 54:90-100. [PMID: 30099059 DOI: 10.1016/j.mri.2018.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/10/2018] [Accepted: 08/08/2018] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Displacement encoding with stimulated echoes (DENSE) is a phase contrast technique that encodes tissue displacement into phase images, which are typically processed into measures of cardiac function such as strains. For improved signal to noise ratio and spatiotemporal resolution, DENSE is often acquired with a spiral readout using an 11.1 ms readout duration. However, long spiral readout durations are prone to blurring due to common phenomena such as off-resonance and T2* decay, which may alter the resulting quantifications of strain. We hypothesized that longer readout durations would reduce image quality and underestimate cardiac strains at both 3.0 T and 1.5 T and that using short readout durations could overcome these limitations. MATERIAL AND METHODS Computational simulations were performed to investigate the relationship between off-resonance and T2* decay, the spiral cine DENSE readout duration, and measured radial and circumferential strain. Five healthy participants subsequently underwent 2D spiral cine DENSE at both 3.0 T and 1.5 T with several different readout durations 11.1 ms and shorter. Pearson correlations were used to assess the relationship between cardiac strains and the spiral readout duration. RESULTS Simulations demonstrated that long readout durations combined with off-resonance and T2* decay yield blurred images and underestimate strains. With the typical 11.1 ms DENSE readout, blurring was present in the anterior and lateral left ventricular segments of participants and was markedly improved with shorter readout durations. Radial and circumferential strains from those segments were significantly correlated with the readout duration. Compared to the 1.9 ms readout, the 11.1 ms readout underestimated radial and circumferential strains in those segments at both field strengths by up to 19.6% and 1.5% (absolute), or 42% and 7% (relative), respectively. CONCLUSIONS Blurring is present in spiral cine DENSE images acquired at both 3.0 T and 1.5 T using the typical 11.1 ms readout duration, which yielded substantially reduced radial strains and mildly reduced circumferential strains. Clinical studies using spiral cine DENSE should consider these limitations, while future technical advances may need to leverage accelerated techniques to improve the robustness and accuracy of the DENSE acquisition rather than focusing solely on reduced acquisition time.
Collapse
Affiliation(s)
- Gregory J Wehner
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, United States.
| | - Jonathan D Suever
- Department of Imaging Science and Innovation, Geisinger, Danville, PA, United States.
| | - Samuel W Fielden
- Department of Imaging Science and Innovation, Geisinger, Danville, PA, United States; Department of Medical & Health Physics, Geisinger, Danville, PA, United States.
| | - David K Powell
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, United States.
| | - Sean M Hamlet
- Department of Electrical Engineering, University of Kentucky, Lexington, KY, United States.
| | - Moriel H Vandsburger
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, United States; Department of Physiology, University of Kentucky, Lexington, KY, United States.
| | | | - Xiaodong Zhong
- MR R&D Collaborations, Siemens Healthcare, Atlanta, GA, United States.
| | - Brandon K Fornwalt
- Department of Imaging Science and Innovation, Geisinger, Danville, PA, United States; Department of Radiology, Geisinger, Danville, PA, United States.
| |
Collapse
|
24
|
Zhang X, Liu ZQ, Singh D, Powell DK, Chung CS, Campbell KS, Wenk JF. Differential Effects of Isoproterenol on Regional Myocardial Mechanics in Rat using 3D cine DENSE Cardiovascular Magnetic Resonance. J Biomech Eng 2018; 141:2696750. [PMID: 30098173 DOI: 10.1115/1.4041042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Indexed: 01/03/2023]
Abstract
The present study assessed the acute effects of isoproterenol on left ventricular (LV) mechanics in healthy rats with the hypothesis that ß-adrenergic stimulation influences the mechanics of different myocardial regions of the LV wall in different ways. To accomplish this, magnetic resonance images were obtained in the LV of healthy rats with or without isoproterenol infusion. The LV contours were divided into basal, mid-ventricular, and apical regions. Additionally, the mid-ventricular myocardium was divided into three transmural layers with each layer partitioned into four segments (i.e., septal, inferior, lateral, and anterior). Peak systolic strains and torsion were quantified for each region. Isoproterenol significantly increased peak systolic radial strain and circumferential-longitudinal shear strain, as well as ventricular torsion, throughout the basal, mid-ventricle, and apical regions. In the mid-ventricle, isoproterenol significantly increased peak systolic radial strain, and induced significant increases in peak systolic circumferential strain and longitudinal strain in the septum. Isoproterenol consistently increased peak systolic circumferential-longitudinal shear strain in all mid-ventricular segments. Ventricular torsion was significantly increased in nearly all segments except the inferior sub-endocardium. The effects of isoproterenol on LV systolic mechanics (i.e., 3D strains and torsion) in healthy rats depend on the region. This region-dependency is also strain component-specific. These results provide insight into the regional response of LV mechanics to ß-adrenergic stimulation in rats, and could act as a baseline for future studies on subclinical abnormalities associated with the inotropic response in heart disease.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Mechanical Engineering, University of Kentucky, Lexington, KY, USA
| | - Zhan-Qiu Liu
- Department of Mechanical Engineering, University of Kentucky, Lexington, KY, USA
| | - Dara Singh
- Department of Mechanical Engineering, University of Kentucky, Lexington, KY, USA
| | - David K Powell
- Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY, USA
| | - Charles S Chung
- Department of Physiology, Wayne State University, Detroit, MI, USA; Department of Physiology, University of Kentucky, Lexington, KY, USA
| | | | - Jonathan F Wenk
- Department of Surgery, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
25
|
Haggerty CM, Suever JD, Pulenthiran A, Mejia-Spiegeler A, Wehner GJ, Jing L, Charnigo RJ, Fornwalt BK, Fogel MA. Association between left ventricular mechanics and diffuse myocardial fibrosis in patients with repaired Tetralogy of Fallot: a cross-sectional study. J Cardiovasc Magn Reson 2017; 19:100. [PMID: 29228952 PMCID: PMC5724335 DOI: 10.1186/s12968-017-0410-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 11/20/2017] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Patients with repaired tetralogy of Fallot (TOF) have progressive, adverse biventricular remodeling, leading to abnormal contractile mechanics. Defining the mechanisms underlying this dysfunction, such as diffuse myocardial fibrosis, may provide insights into poor long-term outcomes. We hypothesized that left ventricular (LV) diffuse fibrosis is related to impaired LV mechanics. METHODS Patients with TOF were evaluated with cardiac magnetic resonance in which modified Look-Locker (MOLLI) T1-mapping and spiral cine Displacement encoding (DENSE) sequences were acquired at three LV short-axis positions. Linear mixed modeling was used to define the association between regional LV mechanics from DENSE based on regional T1-derived diffuse fibrosis measures, such as extracellular volume fraction (ECV). RESULTS Forty patients (26 ± 11 years) were included. LV ECV was generally within normal range (0.24 ± 0.05). For LV mechanics, peak circumferential strains (-15 ± 3%) and dyssynchrony indices (16 ± 8 ms) were moderately impaired, while peak radial strains (29 ± 8%) were generally normal. After adjusting for patient age, sex, and regional LV differences, ECV was associated with log-adjusted LV dyssynchrony index (β = 0.67) and peak LV radial strain (β = -0.36), but not LV circumferential strain. Moreover, post-contrast T1 was associated with log-adjusted LV diastolic circumferential strain rate (β = 0.37). CONCLUSIONS We observed several moderate associations between measures of fibrosis and impaired mechanics, particularly the LV dyssynchrony index and peak radial strain. Diffuse fibrosis may therefore be a causal factor in some ventricular dysfunction in TOF.
Collapse
Affiliation(s)
- Christopher M. Haggerty
- Department of Imaging Science and Innovation, Geisinger, 100 North Academy Avenue, Danville, PA 17822-4400 USA
- Biomedical and Translational Informatics Institute, Geisinger, Danville, PA USA
| | - Jonathan D. Suever
- Department of Imaging Science and Innovation, Geisinger, 100 North Academy Avenue, Danville, PA 17822-4400 USA
- Biomedical and Translational Informatics Institute, Geisinger, Danville, PA USA
| | - Arichanah Pulenthiran
- Department of Imaging Science and Innovation, Geisinger, 100 North Academy Avenue, Danville, PA 17822-4400 USA
- Biomedical and Translational Informatics Institute, Geisinger, Danville, PA USA
| | - Abba Mejia-Spiegeler
- Department of Imaging Science and Innovation, Geisinger, 100 North Academy Avenue, Danville, PA 17822-4400 USA
- Biomedical and Translational Informatics Institute, Geisinger, Danville, PA USA
| | - Gregory J. Wehner
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY USA
| | - Linyuan Jing
- Department of Imaging Science and Innovation, Geisinger, 100 North Academy Avenue, Danville, PA 17822-4400 USA
- Biomedical and Translational Informatics Institute, Geisinger, Danville, PA USA
| | | | - Brandon K. Fornwalt
- Department of Imaging Science and Innovation, Geisinger, 100 North Academy Avenue, Danville, PA 17822-4400 USA
- Biomedical and Translational Informatics Institute, Geisinger, Danville, PA USA
- Department of Radiology, Geisinger, Danville, PA USA
| | - Mark A. Fogel
- Division of Cardiology, Children’s Hospital of Philadelphia, Philadelphia, PA USA
| |
Collapse
|
26
|
Zhang X, Liu ZQ, Singh D, Wehner GJ, Powell DK, Campbell KS, Fornwalt BK, Wenk JF. Regional quantification of myocardial mechanics in rat using 3D cine DENSE cardiovascular magnetic resonance. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3733. [PMID: 28481037 PMCID: PMC10539034 DOI: 10.1002/nbm.3733] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 06/07/2023]
Abstract
Rat models have assumed an increasingly important role in cardiac research. However, a detailed profile of regional cardiac mechanics, such as strains and torsion, is lacking for rats. We hypothesized that healthy rat left ventricles (LVs) exhibit regional differences in cardiac mechanics, which are part of normal function. In this study, images of the LV were obtained with 3D cine displacement encoding with stimulated echoes (DENSE) cardiovascular magnetic resonance in 10 healthy rats. To evaluate regional cardiac mechanics, the LV was divided into basal, mid-ventricular, and apical regions. The myocardium at the mid-LV was further partitioned into four wall segments (i.e. septal, inferior, lateral, and anterior) and three transmural layers (i.e. sub-endocardium, mid-myocardium, and sub-epicardium). The six Lagrangian strain components (i.e. Err , Ecc , Ell , Ecl , Erl , and Ecr ) were computed from the 3D displacement field and averaged within each region of interest. Torsion was quantified using the circumferential-longitudinal shear angle. While peak systolic Ecl differed between the mid-ventricle and apex, the other five components of peak systolic strain were similar across the base, mid-ventricle, and apex. In the mid-LV myocardium, Ecc decreased gradually from the sub-endocardial to the sub-epicardial layer. Ell demonstrated significant differences between the four wall segments, with the largest magnitude in the inferior segment. Err was uniform among the four wall segments. Ecl varied along the transmural direction and among wall segments, whereas Erl differed only among the wall segments. Erc was not associated with significant variations. Torsion also varied along the transmural direction and among wall segments. These results provide fundamental insights into the regional contractile function of healthy rat hearts, and form the foundation for future studies on regional changes induced by disease or treatments.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Mechanical Engineering, University of Kentucky, Lexington, KY, USA
| | - Zhan-Qiu Liu
- Department of Mechanical Engineering, University of Kentucky, Lexington, KY, USA
| | - Dara Singh
- Department of Mechanical Engineering, University of Kentucky, Lexington, KY, USA
| | - Gregory J. Wehner
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | - David K. Powell
- Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY, USA
| | | | - Brandon K. Fornwalt
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- Institute for Advanced Application, Geisinger Health System, Danville, PA
| | - Jonathan F. Wenk
- Department of Mechanical Engineering, University of Kentucky, Lexington, KY, USA
- Department of Surgery, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
27
|
Suever JD, Wehner GJ, Jing L, Powell DK, Hamlet SM, Grabau JD, Mojsejenko D, Andres KN, Haggerty CM, Fornwalt BK. Right Ventricular Strain, Torsion, and Dyssynchrony in Healthy Subjects Using 3D Spiral Cine DENSE Magnetic Resonance Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:1076-1085. [PMID: 28055859 PMCID: PMC5711416 DOI: 10.1109/tmi.2016.2646321] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Mechanics of the left ventricle (LV) are important indicators of cardiac function. The role of right ventricular (RV) mechanics is largely unknown due to the technical limitations of imaging its thin wall and complex geometry and motion. By combining 3D Displacement Encoding with Stimulated Echoes (DENSE) with a post-processing pipeline that includes a local coordinate system, it is possible to quantify RV strain, torsion, and synchrony. In this study, we sought to characterize RV mechanics in 50 healthy individuals and compare these values to their LV counterparts. For each cardiac frame, 3D displacements were fit to continuous and differentiable radial basis functions, allowing for the computation of the 3D Cartesian Lagrangian strain tensor at any myocardial point. The geometry of the RV was extracted via a surface fit to manually delineated endocardial contours. Throughout the RV, a local coordinate system was used to transform from a Cartesian strain tensor to a polar strain tensor. It was then possible to compute peak RV torsion as well as peak longitudinal and circumferential strain. A comparable analysis was performed for the LV. Dyssynchrony was computed from the standard deviation of regional activation times. Global circumferential strain was comparable between the RV and LV (-18.0% for both) while longitudinal strain was greater in the RV (-18.1% vs. -15.7%). RV torsion was comparable to LV torsion (6.2 vs. 7.1 degrees, respectively). Regional activation times indicated that the RV contracted later but more synchronously than the LV. 3D spiral cine DENSE combined with a post-processing pipeline that includes a local coordinate system can resolve both the complex geometry and 3D motion of the RV.
Collapse
|
28
|
Kar J, Cupps B, Zhong X, Koerner D, Kulshrestha K, Neudecker S, Bell J, Craddock H, Pasque M. Preliminary investigation of multiparametric strain Z-score (MPZS) computation using displacement encoding with simulated echoes (DENSE) and radial point interpretation method (RPIM). J Magn Reson Imaging 2016; 44:993-1002. [PMID: 27038246 PMCID: PMC5028227 DOI: 10.1002/jmri.25239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/28/2016] [Accepted: 02/29/2016] [Indexed: 01/19/2023] Open
Abstract
PURPOSE To describe and assess an automated normalization method for identifying sentinel (septal) regions of myocardial dysfunction in nonischemic, nonvalvular dilated cardiomyopathy (DCM), using an unprecedented combination of the navigator-gated 3D spiral displacement encoding with stimulated echoes (DENSE) magnetic resonance imaging (MRI), radial point interpolation (RPIM) and multiparametric strain z-score (MPZS). MATERIALS AND METHODS Navigator-gated 3D spiral DENSE, in a 1.5T MRI machine, was used for acquiring the displacement encoded complex images, MR Analytical Software System (MASS) for automated boundary detection and automated meshfree RPIM for left-ventricular (LV) myocardial strain computation to analyze MPZS in 36 subjects (with n = 17 DCM patients). Pearson's r correlation established relations between global/sentinel MPZS and ejection fraction (EF). The time taken for combined RPIM-MPZS computations was recorded. RESULTS Maximum MPZS differences were seen between anteroseptal and posterolateral regions in the base (2.0 ± 0.3 vs. 0.9 ± 0.5) and the mid-wall (2.1 ± 0.4 vs. 1.0 ± 0.4). These regional differences were found to be consistent with historically documented septal injury in nonischemic DCM. Correlations were 0.6 between global MPZS and EF, and 0.7 between sentinel MPZS and EF. The time taken for combined RPIM-MPZS computations per subject was 18.9 ± 5.9 seconds. CONCLUSION Heterogeneous contractility found in the sentinel regions with the current automated MPZS computation scheme and the correlation found between MPZS and EF may lead to the creation of a new clinical metric in LV DCM surveillance. J. MAGN. RESON. IMAGING 2016;44:993-1002.
Collapse
MESH Headings
- Aged
- Algorithms
- Cardiomyopathy, Dilated/complications
- Cardiomyopathy, Dilated/diagnostic imaging
- Cardiomyopathy, Dilated/physiopathology
- Computer Simulation
- Elastic Modulus
- Elasticity Imaging Techniques/methods
- Female
- Humans
- Image Enhancement/methods
- Image Interpretation, Computer-Assisted/methods
- Imaging, Three-Dimensional/methods
- Magnetic Resonance Imaging/methods
- Male
- Middle Aged
- Models, Cardiovascular
- Pattern Recognition, Automated/methods
- Pilot Projects
- Reproducibility of Results
- Sensitivity and Specificity
- Signal Processing, Computer-Assisted
- Stress, Mechanical
- Stroke Volume
- Tensile Strength
- Ventricular Dysfunction, Left/diagnostic imaging
- Ventricular Dysfunction, Left/etiology
- Ventricular Dysfunction, Left/physiopathology
Collapse
Affiliation(s)
- Julia Kar
- Department of Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA.
| | - Brian Cupps
- Department of Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Xiaodong Zhong
- Department of Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Danielle Koerner
- Department of Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Kevin Kulshrestha
- Department of Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Samuel Neudecker
- Department of Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Jennifer Bell
- Department of Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Heidi Craddock
- Department of Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Michael Pasque
- Department of Surgery, School of Medicine, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
29
|
Chen X, Yang Y, Cai X, Auger DA, Meyer CH, Salerno M, Epstein FH. Accelerated two-dimensional cine DENSE cardiovascular magnetic resonance using compressed sensing and parallel imaging. J Cardiovasc Magn Reson 2016; 18:38. [PMID: 27301487 PMCID: PMC4906684 DOI: 10.1186/s12968-016-0253-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 05/20/2016] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Cine Displacement Encoding with Stimulated Echoes (DENSE) provides accurate quantitative imaging of cardiac mechanics with rapid displacement and strain analysis; however, image acquisition times are relatively long. Compressed sensing (CS) with parallel imaging (PI) can generally provide high-quality images recovered from data sampled below the Nyquist rate. The purposes of the present study were to develop CS-PI-accelerated acquisition and reconstruction methods for cine DENSE, to assess their accuracy for cardiac imaging using retrospective undersampling, and to demonstrate their feasibility for prospectively-accelerated 2D cine DENSE imaging in a single breathhold. METHODS An accelerated cine DENSE sequence with variable-density spiral k-space sampling and golden angle rotations through time was implemented. A CS method, Block LOw-rank Sparsity with Motion-guidance (BLOSM), was combined with sensitivity encoding (SENSE) for the reconstruction of under-sampled multi-coil spiral data. Seven healthy volunteers and 7 patients underwent 2D cine DENSE imaging with fully-sampled acquisitions (14-26 heartbeats in duration) and with prospectively rate-2 and rate-4 accelerated acquisitions (14 and 8 heartbeats in duration). Retrospectively- and prospectively-accelerated data were reconstructed using BLOSM-SENSE and SENSE. Image quality of retrospectively-undersampled data was quantified using the relative root mean square error (rRMSE). Myocardial displacement and circumferential strain were computed for functional assessment, and linear correlation and Bland-Altman analyses were used to compare accelerated acquisitions to fully-sampled reference datasets. RESULTS For retrospectively-undersampled data, BLOSM-SENSE provided similar or lower rRMSE at rate-2 and lower rRMSE at rate-4 acceleration compared to SENSE (p < 0.05, ANOVA). Similarly, for retrospective undersampling, BLOSM-SENSE provided similar or better correlation with reference displacement and strain data at rate-2 and better correlation at rate-4 acceleration compared to SENSE. Bland-Altman analyses showed similar or better agreement for displacement and strain data at rate-2 and better agreement at rate-4 using BLOSM-SENSE compared to SENSE for retrospectively-undersampled data. Rate-2 and rate-4 prospectively-accelerated cine DENSE provided good image quality and expected values of displacement and strain. CONCLUSIONS BLOSM-SENSE-accelerated spiral cine DENSE imaging with 2D displacement encoding can be acquired in a single breathhold of 8-14 heartbeats with high image quality and accurate assessment of myocardial displacement and circumferential strain.
Collapse
Affiliation(s)
- Xiao Chen
- Medical Imaging Technologies, Siemens Medical Solutions, USA Inc., 755 College Rd E., Princeton, NJ, 08540, USA
| | - Yang Yang
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Xiaoying Cai
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Daniel A Auger
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Craig H Meyer
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
- Department of Radiology , University of Virginia, Charlottesville, VA, 22908, USA
| | - Michael Salerno
- Department of Radiology , University of Virginia, Charlottesville, VA, 22908, USA
- Department of Cardiology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Frederick H Epstein
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA.
- Department of Radiology , University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
30
|
Mangion K, Clerfond G, McComb C, Carrick D, Rauhalammi SM, McClure J, Corcoran DS, Woodward R, Orchard V, Radjenovic A, Zhong X, Berry C. Myocardial strain in healthy adults across a broad age range as revealed by cardiac magnetic resonance imaging at 1.5 and 3.0T: Associations of myocardial strain with myocardial region, age, and sex. J Magn Reson Imaging 2016; 44:1197-1205. [PMID: 27104306 PMCID: PMC5082565 DOI: 10.1002/jmri.25280] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/29/2016] [Indexed: 01/28/2023] Open
Abstract
Purpose To assess myocardial strain using cine displacement encoding with stimulated echoes (DENSE) using 1.5T and 3.0T MRI in healthy adults. Materials and Methods Healthy adults without any history of cardiovascular disease underwent magnetic resonance imaging (MRI) at 1.5T and 3.0T within 2 days. The MRI protocol included balanced steady‐state free‐precession (b‐SSFP), 2D cine‐echo planar imaging (EPI)‐DENSE, and late gadolinium enhancement in subjects >45 years. Acquisitions were divided into six segments; global and segmental peak longitudinal and circumferential strain were derived and analyzed by field strength, age, and gender. Results In all, 89 volunteers (mean age 44.8 ± 18.0 years, range: 18–87 years) underwent MRI at 1.5T, and 88 of these subjects underwent MRI at 3.0T (1.4 ± 1.4 days between the scans). Compared with 3.0T, the magnitudes of global circumferential (–19.5 ± 2.6% vs. –18.47 ± 2.6%; P = 0.001) and longitudinal (–12.47 ± 3.2% vs. –10.53 ± 3.1%; P = 0.004) strain were greater at 1.5T. At 1.5T, longitudinal strain was greater in females than in males: –10.17 ± 3.4% vs. –13.67 ± 2.4%; P = 0.001. Similar observations occurred for circumferential strain at 1.5T (–18.72 ± 2.2% vs. –20.10 ± 2.7%; P = 0.014) and at 3.0T (–17.92 ± 1.8% vs. –19.1 ± 3.1%; P = 0.047). At 1.5T, longitudinal and circumferential strain were not associated with age after accounting for sex (longitudinal strain P = 0.178, circumferential strain P = 0.733). At 3.0T, longitudinal and circumferential strain were associated with age (P < 0.05). Longitudinal strain values were greater in the apico‐septal, basal‐lateral, and mid‐lateral segments and circumferential strain in the inferior, infero‐lateral, and antero‐lateral LV segments. Conclusion Myocardial strain parameters as revealed by cine‐DENSE at different MRI field strengths were associated with myocardial region, age, and sex. J. Magn. Reson. Imaging 2016;44:1197–1205.
Collapse
Affiliation(s)
- Kenneth Mangion
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, UK.,West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank, UK
| | | | - Christie McComb
- Clinical Physics, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - David Carrick
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, UK.,West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank, UK
| | | | - John McClure
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, UK
| | - David S Corcoran
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, UK.,West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank, UK
| | - Rosemary Woodward
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, UK
| | - Vanessa Orchard
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank, UK
| | | | - Xiaodong Zhong
- MR R&D Collaborations, Siemens Healthcare, Atlanta, Georgia, USA
| | - Colin Berry
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, UK. .,West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank, UK.
| |
Collapse
|
31
|
Wehner GJ, Grabau JD, Suever JD, Haggerty CM, Jing L, Powell DK, Hamlet SM, Vandsburger MH, Zhong X, Fornwalt BK. 2D cine DENSE with low encoding frequencies accurately quantifies cardiac mechanics with improved image characteristics. J Cardiovasc Magn Reson 2015; 17:93. [PMID: 26538111 PMCID: PMC4634910 DOI: 10.1186/s12968-015-0196-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 10/26/2015] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Displacement Encoding with Stimulated Echoes (DENSE) encodes displacement into the phase of the magnetic resonance signal. The encoding frequency (ke) maps the measured phase to tissue displacement while the strength of the encoding gradients affects image quality. 2D cine DENSE studies have used a ke of 0.10 cycles/mm, which is high enough to remove an artifact-generating echo from k-space, provide high sensitivity to tissue displacements, and dephase the blood pool. However, through-plane dephasing can remove the unwanted echo and dephase the blood pool without relying on high ke. Additionally, the high sensitivity comes with the costs of increased phase wrapping and intra-voxel dephasing. We hypothesized that ke below 0.10 cycles/mm can be used to improve image characteristics and provide accurate measures of cardiac mechanics. METHODS Spiral cine DENSE images were obtained for 10 healthy subjects and 10 patients with a history of heart disease on a 3 T Siemens Trio. A mid-ventricular short-axis image was acquired with different ke: 0.02, 0.04, 0.06, 0.08, and 0.10 cycles/mm. Peak twist, circumferential strain, and radial strain were compared between acquisitions employing different ke using Bland-Altman analyses and coefficients of variation. The percentage of wrapped pixels in the phase images at end-systole was calculated for each ke. The dephasing of the blood signal and signal to noise ratio (SNR) were also calculated and compared. RESULTS Negligible differences were seen in strains and twist for all ke between 0.04 and 0.10 cycles/mm. These differences were of the same magnitude as inter-test differences. Specifically, the acquisitions with 0.04 cycles/mm accurately quantified cardiac mechanics and had zero phase wrapping. Compared to 0.10 cycles/mm, the acquisitions with 0.04 cycles/mm had 9 % greater SNR and negligible differences in blood pool dephasing. CONCLUSIONS For 2D cine DENSE with through-plane dephasing, the encoding frequency can be lowered to 0.04 cycles/mm without compromising the quantification of twist or strain. The amount of wrapping can be reduced with this lower value to greatly simplify the input to unwrapping algorithms. The strain and twist results from studies using different encoding frequencies can be directly compared.
Collapse
Affiliation(s)
- Gregory J Wehner
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA.
| | - Jonathan D Grabau
- Department of Pediatrics, University of Kentucky, Lexington, KY, USA.
| | - Jonathan D Suever
- Department of Pediatrics, University of Kentucky, Lexington, KY, USA.
- Institute for Advanced Application, Geisinger Health System, Danville, PA, USA.
| | - Christopher M Haggerty
- Department of Pediatrics, University of Kentucky, Lexington, KY, USA.
- Institute for Advanced Application, Geisinger Health System, Danville, PA, USA.
| | - Linyuan Jing
- Department of Pediatrics, University of Kentucky, Lexington, KY, USA.
- Institute for Advanced Application, Geisinger Health System, Danville, PA, USA.
| | - David K Powell
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA.
| | - Sean M Hamlet
- Department of Electrical Engineering, University of Kentucky, Lexington, KY, USA.
| | | | - Xiaodong Zhong
- MR R&D Collaborations, Siemens Healthcare, Atlanta, GA, USA.
| | - Brandon K Fornwalt
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA.
- Department of Pediatrics, University of Kentucky, Lexington, KY, USA.
- Department of Physiology, University of Kentucky, Lexington, KY, USA.
- Department of Medicine, University of Kentucky, Lexington, KY, USA.
- Institute for Advanced Application, Geisinger Health System, Danville, PA, USA.
- Institute for Advanced Application, Geisinger Clinic, 100 North Academy Avenue, Danville, PA, 17822-4400, USA.
| |
Collapse
|
32
|
Kihlberg J, Haraldsson H, Sigfridsson A, Ebbers T, Engvall JE. Clinical experience of strain imaging using DENSE for detecting infarcted cardiac segments. J Cardiovasc Magn Reson 2015; 17:50. [PMID: 26104510 PMCID: PMC4478716 DOI: 10.1186/s12968-015-0155-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/10/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND We hypothesised that myocardial deformation determined with magnetic resonance imaging (MRI) will detect myocardial scar. METHODS Displacement Encoding with Stimulated Echoes (DENSE) was used to calculate left ventricular strain in 125 patients (29 women and 96 men) with suspected coronary artery disease. The patients also underwent cine imaging and late gadolinium enhancement. 57 patients had a scar area >1% in at least one segment, 23 were considered free from coronary artery disease (control group) and 45 had pathological findings but no scar (mixed group). Peak strain was calculated in eight combinations: radial and circumferential strain in transmural, subendocardial and epicardial layers derived from short axis acquisition, and transmural longitudinal and radial strain derived from long axis acquisitions. In addition, the difference between strain in affected segments and reference segments, "differential strain", from the control group was analysed. RESULTS In receiver-operator-characteristic analysis for the detection of 50% transmurality, circumferential strain performed best with area-under-curve (AUC) of 0.94. Using a cut-off value of -17%, sensitivity was 95% at a specificity of 80%. AUC did not further improve with differential strain. There were significant differences between the control group and global strain circumferential direction (-17% versus -12%) and in the longitudinal direction (-13% versus -10%). Interobserver and scan-rescan reproducibility was high with an intraclass correlation coefficient (ICC) >0.93. CONCLUSIONS DENSE-derived circumferential strain may be used for the detection of myocardial segments with >50 % scar area. The repeatability of strain is satisfactory. DENSE-derived global strain agrees with other global measures of left ventricular ejection fraction.
Collapse
Affiliation(s)
- Johan Kihlberg
- Department of Radiology and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.
| | - Henrik Haraldsson
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
| | - Andreas Sigfridsson
- Department of Clinical Physiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
| | - Tino Ebbers
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.
| | - Jan E Engvall
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.
- Department of Clinical Physiology and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.
| |
Collapse
|
33
|
Wehner GJ, Suever JD, Haggerty CM, Jing L, Powell DK, Hamlet SM, Grabau JD, Mojsejenko WD, Zhong X, Epstein FH, Fornwalt BK. Validation of in vivo 2D displacements from spiral cine DENSE at 3T. J Cardiovasc Magn Reson 2015; 17:5. [PMID: 25634468 PMCID: PMC4311418 DOI: 10.1186/s12968-015-0119-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 01/13/2015] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Displacement Encoding with Stimulated Echoes (DENSE) encodes displacement into the phase of the magnetic resonance signal. Due to the stimulated echo, the signal is inherently low and fades through the cardiac cycle. To compensate, a spiral acquisition has been used at 1.5T. This spiral sequence has not been validated at 3T, where the increased signal would be valuable, but field inhomogeneities may result in measurement errors. We hypothesized that spiral cine DENSE is valid at 3T and tested this hypothesis by measuring displacement errors at both 1.5T and 3T in vivo. METHODS Two-dimensional spiral cine DENSE and tagged imaging of the left ventricle were performed on ten healthy subjects at 3T and six healthy subjects at 1.5T. Intersection points were identified on tagged images near end-systole. Displacements from the DENSE images were used to project those points back to their origins. The deviation from a perfect grid was used as a measure of accuracy and quantified as root-mean-squared error. This measure was compared between 3T and 1.5T with the Wilcoxon rank sum test. Inter-observer variability of strains and torsion quantified by DENSE and agreement between DENSE and harmonic phase (HARP) were assessed by Bland-Altman analyses. The signal to noise ratio (SNR) at each cardiac phase was compared between 3T and 1.5T with the Wilcoxon rank sum test. RESULTS The displacement accuracy of spiral cine DENSE was not different between 3T and 1.5T (1.2 ± 0.3 mm and 1.2 ± 0.4 mm, respectively). Both values were lower than the DENSE pixel spacing of 2.8 mm. There were no substantial differences in inter-observer variability of DENSE or agreement of DENSE and HARP between 3T and 1.5T. Relative to 1.5T, the SNR at 3T was greater by a factor of 1.4 ± 0.3. CONCLUSIONS The spiral cine DENSE acquisition that has been used at 1.5T to measure cardiac displacements can be applied at 3T with equivalent accuracy. The inter-observer variability and agreement of DENSE-derived peak strains and torsion with HARP is also comparable at both field strengths. Future studies with spiral cine DENSE may take advantage of the additional SNR at 3T.
Collapse
Affiliation(s)
- Gregory J Wehner
- />Department of Biomedical Engineering, University of Kentucky, 741 S Limestone, BBSRB B353, Lexington, KY 40509 USA
| | | | | | - Linyuan Jing
- />Department of Pediatrics, University of Kentucky, Lexington, USA
| | - David K Powell
- />Department of Biomedical Engineering, University of Kentucky, 741 S Limestone, BBSRB B353, Lexington, KY 40509 USA
| | - Sean M Hamlet
- />Department of Electrical Engineering, University of Kentucky, Lexington, USA
| | | | | | - Xiaodong Zhong
- />MR R&D Collaborations, Siemens Healthcare, Atlanta, GA USA
| | - Frederick H Epstein
- />Department of Biomedical Engineering, University of Virginia, Charlottesville, VA USA
| | - Brandon K Fornwalt
- />Department of Biomedical Engineering, University of Kentucky, 741 S Limestone, BBSRB B353, Lexington, KY 40509 USA
- />Department of Pediatrics, University of Kentucky, Lexington, USA
- />Departments of Physiology and Medicine, University of Kentucky, Lexington, USA
| |
Collapse
|
34
|
Gomez AD, Merchant SS, Hsu EW. Accurate high-resolution measurements of 3-D tissue dynamics with registration-enhanced displacement encoded MRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2014; 33:1350-62. [PMID: 24771572 PMCID: PMC4163496 DOI: 10.1109/tmi.2014.2311755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Displacement fields are important to analyze deformation, which is associated with functional and material tissue properties often used as indicators of health. Magnetic resonance imaging (MRI) techniques like DENSE and image registration methods like Hyperelastic Warping have been used to produce pixel-level deformation fields that are desirable in high-resolution analysis. However, DENSE can be complicated by challenges associated with image phase unwrapping, in particular offset determination. On the other hand, Hyperelastic Warping can be hampered by low local image contrast. The current work proposes a novel approach for measuring tissue displacement with both DENSE and Hyperelastic Warping, incorporating physically accurate displacements obtained by the latter to improve phase characterization in DENSE. The validity of the proposed technique is demonstrated using numerical and physical phantoms, and in vivo small animal cardiac MRI.
Collapse
Affiliation(s)
- Arnold D. Gomez
- Bioengineering Department, University of Utah, Salt Lake City, UT 84102 USA, and also with the Cardiothoracic Surgery Division, School of Medicine, University of Utah, UT 84102 USA
| | - Samer S. Merchant
- Bioengineering Department at the University of Utah, Salt Lake City, UT 84102 USA
| | - Edward W. Hsu
- Bioengineering Department at the University of Utah, Salt Lake City, UT 84102 USA
| |
Collapse
|
35
|
Haraldsson H, Hope M, Acevedo-Bolton G, Tseng E, Zhong X, Epstein FH, Ge L, Saloner D. Feasibility of asymmetric stretch assessment in the ascending aortic wall with DENSE cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2014; 16:6. [PMID: 24400865 PMCID: PMC3895850 DOI: 10.1186/1532-429x-16-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 12/27/2013] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Vessel diameter is the principal imaging parameter assessed clinically for aortic disease, but adverse events can occur at normal diameters. Aortic stiffness has been studied as an additional imaging-based risk factor, and has been shown to be an independent predictor of cardiovascular morbidity and all-cause mortality. Reports suggest that some aortic pathology is asymmetric around the vessel circumference, a feature which would not be identified with current imaging approaches. We propose that this asymmetry may be revealed using Displacement Encoding with Stimulated Echoes (DENSE). The objective of this study is to investigate the feasibility of assessing asymmetric stretch in healthy and diseased ascending aortas using DENSE. METHODS Aortic wall displacement was assessed with DENSE cardiovascular magnetic resonance (CMR) in 5 volunteers and 15 consecutive patients. Analysis was performed in a cross-sectional plane through the ascending aorta at the pulmonary artery. Displacement data was used to determine the wall stretch between the expanded and resting states of the aorta, in four quadrants around the aortic circumference. RESULTS Analysis of variance (ANOVA) did not only show significant differences in stretch between groups of volunteers (p<0.001), but also significant differences in stretch along the circumference of the aorta (p<0.001), indicating an asymmetric stretch pattern. Furthermore, there is a significant difference in the asymmetry between volunteers and different groups of patients (p<0.01). CONCLUSIONS Evaluation of asymmetric stretch is feasible in the ascending aorta with DENSE CMR. Clear differences in stretch are seen between patients and volunteers, with asymmetric patterns demonstrated around the aortic circumference.
Collapse
Affiliation(s)
- Henrik Haraldsson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
- VAMC/UCSF, Radiology 114-D, Bldg 203, Rm BA-51, 4150 Clement Street, San Francisco, CA 94530, USA
| | - Michael Hope
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Gabriel Acevedo-Bolton
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Elaine Tseng
- Veterans Affairs Medical Center, San Francisco, CA, USA
- Department of Surgery, University of California, San Francisco, CA, USA
| | - Xiaodong Zhong
- MR R&D Collaborations, Siemens Healthcare, Atlanta, GA, USA
| | - Frederick H Epstein
- Department of Biomedical Engineering, University of Virginia, Charlotteville, VA, USA
| | - Liang Ge
- Department of Surgery, University of California, San Francisco, CA, USA
| | - David Saloner
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
- Veterans Affairs Medical Center, San Francisco, CA, USA
| |
Collapse
|
36
|
Cordero-Grande L, Vegas-Sánchez-Ferrero G, Casaseca-de-la-Higuera P, Aja-Fernández S, Alberola-López C. A magnetic resonance software simulator for the evaluation of myocardial deformation estimation. Med Eng Phys 2013; 35:1331-40. [PMID: 23561923 DOI: 10.1016/j.medengphy.2013.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 01/08/2013] [Accepted: 03/02/2013] [Indexed: 11/30/2022]
Abstract
This paper proposes a methodology to design a physiologically realistic computer simulator of images of the left ventricle myocardium based on a patient-specific biomechanical model. The simulator takes a magnetic resonance image of a given patient at end diastole, uses a manual segmentation of that image to model the geometry of the myocardium and sets the parameters of the constitutive model used for biomechanical simulation according to a regional labeling of the contractility of the myocardium for that patient. The simulated deformations are used to warp the magnetic resonance dataset throughout the cardiac cycle to generate different image modalities. The simulator is validated by quantifying its ability to model actual deformations in a set of patients affected by an acute myocardial infarction. Specifically a high correlation has been encountered between the ejection fraction derived from the simulated end systolic deformation of the myocardium and the myocardium segmented from actual data. Additionally, most of the parameters that describe the simulated deformation compare well with reported values. Overall, the simulator is intended as a testbed for extensive comparisons of myocardial motion tracking methods due to its ability to relate the impaired myocardial function with the associated ventricular remodeling, a novel contribution in the literature of cardiac image simulators.
Collapse
Affiliation(s)
- Lucilio Cordero-Grande
- Laboratorio de Procesado de Imagen, ETSIT, University of Valladolid, Paseo de Belén 15, 40011 Valladolid, Spain.
| | | | | | | | | |
Collapse
|
37
|
Ernande L, Thibault H, Bergerot C, Moulin P, Wen H, Derumeaux G, Croisille P. Systolic myocardial dysfunction in patients with type 2 diabetes mellitus: identification at MR imaging with cine displacement encoding with stimulated echoes. Radiology 2012; 265:402-9. [PMID: 22929334 DOI: 10.1148/radiol.12112571] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
PURPOSE To determine if cine displacement encoding with stimulated echoes (DENSE) can help to identify and determine the patterns of subclinical myocardial systolic dysfunction in patients with type 2 diabetes mellitus (DM) when compared with cine DENSE in control patients. MATERIALS AND METHODS After obtaining approval from the institutional ethics committee and written informed consent from the patients, 37 patients with type 2 DM without overt heart disease and 23 age-matched control patients were prospectively included in the study. The patients underwent standard cine magnetic resonance (MR) imaging with two-dimensional cine DENSE acquisitions. Circumferential (Ecc) and radial (Err) systolic strains were measured on short-axis views at basal, mid, and apical left ventricular levels. Longitudinal strain (Ell) was measured on four- and two-chamber views. Statistical testing included the intraclass correlation coefficient and multiple linear regression analysis. RESULTS The intraobserver intraclass correlation coefficient values were 0.85, 0.95, and 0.90, and the interobserver intraclass correlation coefficient values were 0.79, 0.91 and 0.80 for Ecc, Err, and Ell, respectively. The left ventricular ejection fraction was in the reference range and similar between the groups, and the patients with DM showed a decrease in Ecc (-14.4%±1.6 vs -17.0%±1.6, P<.001), Err (36.2%±10.9 vs 44.4%±9.9, P=.006) and Ell (-12.9%±2.1 vs -15.5%±1.6, P<.001) compared with the control patients. Finally, DM was independently associated with Ecc (P<.001), Err (P=.05) and Ell (P=.01) after adjustment for age, sex, hypertension, body mass index, and left ventricular mass. CONCLUSION Cine DENSE, a motion-encoding MR imaging technique for myocardial strain assessment with high spatial resolution, appears to be useful in the identification of subclinical myocardial dysfunction in patients with DM.
Collapse
Affiliation(s)
- Laura Ernande
- Service des Explorations Fonctionnelles Cardiovasculaires, Department of Endocrinology, Louis Pradel Hospital, CarMeN INSERM Unit 1060, Université de Lyon, Lyon, France
| | | | | | | | | | | | | |
Collapse
|
38
|
Simpson RM, Keegan J, Firmin DN. MR assessment of regional myocardial mechanics. J Magn Reson Imaging 2012; 37:576-99. [PMID: 22826177 DOI: 10.1002/jmri.23756] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 06/15/2012] [Indexed: 12/30/2022] Open
Abstract
Regional myocardial function can be measured by several MR techniques including tissue tagging, phase velocity mapping, and more recently, displacement encoding with stimulated echoes (DENSE) and strain encoding (SENC). Each of these techniques was developed separately and has undergone significant change since its original implementation. As a result, in the current literature, the common features and the differences between the techniques and what they measure are often unclear and confusing. This review article delivers an extensively referenced introductory text which clarifies the current methodology from the starting point of the Bloch equations. By doing this in a consistent way for each method, the similarities and differences between them are highlighted. In addition, their capabilities and limitations are discussed, together with their relative advantages and disadvantages. While the focus is on sequence design and development, the principal parameters measured by each technique are also summarized, together with brief results, with the reader being directed to the extensive literature on data processing and clinical applications for more detail.
Collapse
Affiliation(s)
- Robin M Simpson
- Cardiovascular Magnetic Resonance Unit, Royal Brompton and Harefield NHS Hospital Trust, London, United Kingdom.
| | | | | |
Collapse
|
39
|
Myocardial strains from 3D displacement encoded magnetic resonance imaging. BMC Med Imaging 2012; 12:9. [PMID: 22533791 PMCID: PMC3352108 DOI: 10.1186/1471-2342-12-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 04/25/2012] [Indexed: 11/21/2022] Open
Abstract
Background The ability to measure and quantify myocardial motion and deformation provides a useful tool to assist in the diagnosis, prognosis and management of heart disease. The recent development of magnetic resonance imaging methods, such as harmonic phase analysis of tagging and displacement encoding with stimulated echoes (DENSE), make detailed non-invasive 3D kinematic analyses of human myocardium possible in the clinic and for research purposes. A robust analysis method is required, however. Methods We propose to estimate strain using a polynomial function which produces local models of the displacement field obtained with DENSE. Given a specific polynomial order, the model is obtained as the least squares fit of the acquired displacement field. These local models are subsequently used to produce estimates of the full strain tensor. Results The proposed method is evaluated on a numerical phantom as well as in vivo on a healthy human heart. The evaluation showed that the proposed method produced accurate results and showed low sensitivity to noise in the numerical phantom. The method was also demonstrated in vivo by assessment of the full strain tensor and to resolve transmural strain variations. Conclusions Strain estimation within a 3D myocardial volume based on polynomial functions yields accurate and robust results when validated on an analytical model. The polynomial field is capable of resolving the measured material positions from the in vivo data, and the obtained in vivo strains values agree with previously reported myocardial strains in normal human hearts.
Collapse
|
40
|
Wang H, Amini AA. Cardiac motion and deformation recovery from MRI: a review. IEEE TRANSACTIONS ON MEDICAL IMAGING 2012; 31:487-503. [PMID: 21997253 DOI: 10.1109/tmi.2011.2171706] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Magnetic resonance imaging (MRI) is a highly advanced and sophisticated imaging modality for cardiac motion tracking and analysis, capable of providing 3D analysis of global and regional cardiac function with great accuracy and reproducibility. In the past few years, numerous efforts have been devoted to cardiac motion recovery and deformation analysis from MR image sequences. Many approaches have been proposed for tracking cardiac motion and for computing deformation parameters and mechanical properties of the heart from a variety of cardiac MR imaging techniques. In this paper, an updated and critical review of cardiac motion tracking methods including major references and those proposed in the past ten years is provided. The MR imaging and analysis techniques surveyed are based on cine MRI, tagged MRI, phase contrast MRI, DENSE, and SENC. This paper can serve as a tutorial for new researchers entering the field.
Collapse
Affiliation(s)
- Hui Wang
- Department of Electrical and Computer Engineering,University of Louisville, Louisville, KY 40292 USA.
| | | |
Collapse
|
41
|
Fiorentino NM, Epstein FH, Blemker SS. Activation and aponeurosis morphology affect in vivo muscle tissue strains near the myotendinous junction. J Biomech 2012; 45:647-52. [PMID: 22236527 DOI: 10.1016/j.jbiomech.2011.12.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 12/08/2011] [Accepted: 12/15/2011] [Indexed: 10/14/2022]
Abstract
Hamstring strain injury is one of the most common injuries in athletes, particularly for sports that involve high speed running. The aims of this study were to determine whether muscle activation and internal morphology influence in vivo muscle behavior and strain injury susceptibility. We measured tissue displacement and strains in the hamstring muscle injured most often, the biceps femoris long head muscle (BFLH), using cine DENSE dynamic magnetic resonance imaging. Strain measurements were used to test whether strain magnitudes are (i) larger during active lengthening than during passive lengthening and (ii) larger for subjects with a relatively narrow proximal aponeurosis than a wide proximal aponeurosis. Displacement color maps showed higher tissue displacement with increasing lateral distance from the proximal aponeurosis for both active lengthening and passive lengthening, and higher tissue displacement for active lengthening than passive lengthening. First principal strain magnitudes were averaged in a 1cm region near the myotendinous junction, where injury is most frequently observed. It was found that strains are significantly larger during active lengthening (0.19 SD 0.09) than passive lengthening (0.13 SD 0.06) (p<0.05), which suggests that elevated localized strains may be a mechanism for increased injury risk during active as opposed to passive lengthening. First principal strains were higher for subjects with a relatively narrow aponeurosis width (0.26 SD 0.15) than wide (0.14 SD 0.04) (p<0.05). This result suggests that athletes who have BFLH muscles with narrow proximal aponeuroses may have an increased risk for BFLH strain injuries.
Collapse
Affiliation(s)
- Niccolo M Fiorentino
- Department of Mechanical & Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | | | | |
Collapse
|
42
|
Vandsburger MH, French BA, Kramer CM, Zhong X, Epstein FH. Displacement-encoded and manganese-enhanced cardiac MRI reveal that nNOS, not eNOS, plays a dominant role in modulating contraction and calcium influx in the mammalian heart. Am J Physiol Heart Circ Physiol 2011; 302:H412-9. [PMID: 22058155 DOI: 10.1152/ajpheart.00705.2011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Within cardiomyocytes, endothelial nitric oxide synthase (eNOS) and neuronal nitric oxide synthase (nNOS) are thought to modulate L-type calcium channel (LTCC) function and sarcoplasmic reticulum calcium cycling, respectively. However, divergent results from mostly invasive prior studies suggest more complex roles. To elucidate the roles of nNOS and eNOS in vivo, we applied noninvasive cardiac MRI to study wild-type (WT), eNOS(-/-), and nNOS(-/-) mice. An in vivo index of LTCC flux (LTCCI) was measured at baseline (Bsl), dobutamine (Dob), and dobutamine + carbacholamine (Dob + CCh) using manganese-enhanced MRI. Displacement-encoded MRI assessed contractile function by measuring circumferential strain (E(cc)) and systolic (dE(cc)/dt) and diastolic (dE(cc)/dt(diastolic)) strain rates at Bsl, Dob, and Dob + CCh. Bsl LTCCI was highest in nNOS(-/-) mice (P < 0.05 vs. WT and eNOS(-/-)) and increased only in WT and eNOS(-/-) mice with Dob (P < 0.05 vs. Bsl). LTCCI decreased significantly from Dob levels with Dob + CCh in all mice. Contractile function, as assessed by E(cc), was similar in all mice at Bsl. With Dob, E(cc) increased significantly in WT and eNOS(-/-) but not nNOS(-/-) mice (P < 0.05 vs. WT and eNOS(-/-)). With Dob + CCh, E(cc) returned to baseline levels in all mice. Systolic blood pressure, measured via tail plethysmography, was highest in eNOS(-/-) mice (P < 0.05 vs. WT and nNOS(-/-)). Mice deficient in nNOS demonstrate increased Bsl LTCC function and an attenuated contractile reserve to Dob, whereas eNOS(-/-) mice demonstrate normal LTCC and contractile function under all conditions. These results suggest that nNOS, not eNOS, plays the dominant role in modulating Ca(2+) cycling in the heart.
Collapse
Affiliation(s)
- Moriel H Vandsburger
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
43
|
Young AA, Li B, Kirton RS, Cowan BR. Generalized spatiotemporal myocardial strain analysis for DENSE and SPAMM imaging. Magn Reson Med 2011; 67:1590-9. [PMID: 22135133 DOI: 10.1002/mrm.23142] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 06/01/2011] [Accepted: 07/18/2011] [Indexed: 11/08/2022]
Affiliation(s)
- Alistair A Young
- Auckland MRI Research Group, University of Auckland, Auckland, New Zealand.
| | | | | | | |
Collapse
|
44
|
Ibrahim ESH. Myocardial tagging by cardiovascular magnetic resonance: evolution of techniques--pulse sequences, analysis algorithms, and applications. J Cardiovasc Magn Reson 2011; 13:36. [PMID: 21798021 PMCID: PMC3166900 DOI: 10.1186/1532-429x-13-36] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 07/28/2011] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular magnetic resonance (CMR) tagging has been established as an essential technique for measuring regional myocardial function. It allows quantification of local intramyocardial motion measures, e.g. strain and strain rate. The invention of CMR tagging came in the late eighties, where the technique allowed for the first time for visualizing transmural myocardial movement without having to implant physical markers. This new idea opened the door for a series of developments and improvements that continue up to the present time. Different tagging techniques are currently available that are more extensive, improved, and sophisticated than they were twenty years ago. Each of these techniques has different versions for improved resolution, signal-to-noise ratio (SNR), scan time, anatomical coverage, three-dimensional capability, and image quality. The tagging techniques covered in this article can be broadly divided into two main categories: 1) Basic techniques, which include magnetization saturation, spatial modulation of magnetization (SPAMM), delay alternating with nutations for tailored excitation (DANTE), and complementary SPAMM (CSPAMM); and 2) Advanced techniques, which include harmonic phase (HARP), displacement encoding with stimulated echoes (DENSE), and strain encoding (SENC). Although most of these techniques were developed by separate groups and evolved from different backgrounds, they are in fact closely related to each other, and they can be interpreted from more than one perspective. Some of these techniques even followed parallel paths of developments, as illustrated in the article. As each technique has its own advantages, some efforts have been made to combine different techniques together for improved image quality or composite information acquisition. In this review, different developments in pulse sequences and related image processing techniques are described along with the necessities that led to their invention, which makes this article easy to read and the covered techniques easy to follow. Major studies that applied CMR tagging for studying myocardial mechanics are also summarized. Finally, the current article includes a plethora of ideas and techniques with over 300 references that motivate the reader to think about the future of CMR tagging.
Collapse
|
45
|
Vandsburger MH, Epstein FH. Emerging MRI methods in translational cardiovascular research. J Cardiovasc Transl Res 2011; 4:477-92. [PMID: 21452060 DOI: 10.1007/s12265-011-9275-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 03/15/2011] [Indexed: 12/11/2022]
Abstract
Cardiac magnetic resonance imaging (CMR) has become a reference standard modality for imaging of left ventricular (LV) structure and function and, using late gadolinium enhancement, for imaging myocardial infarction. Emerging CMR techniques enable a more comprehensive examination of the heart, making CMR an excellent tool for use in translational cardiovascular research. Specifically, emerging CMR methods have been developed to measure the extent of myocardial edema, changes in ventricular mechanics, changes in tissue composition as a result of fibrosis, and changes in myocardial perfusion as a function of both disease and infarct healing. New CMR techniques also enable the tracking of labeled cells, molecular imaging of biomarkers of disease, and changes in calcium flux in cardiomyocytes. In addition, MRI can quantify blood flow velocity and wall shear stress in large blood vessels. Almost all of these techniques can be applied in both pre-clinical and clinical settings, enabling both the techniques themselves and the knowledge gained using such techniques in pre-clinical research to be translated from the lab bench to the patient bedside.
Collapse
Affiliation(s)
- Moriel H Vandsburger
- Department of Biological Regulation, Weizmann Institute of Science, 76100, Rehovot, Israel.
| | | |
Collapse
|
46
|
Zhong X, Spottiswoode BS, Meyer CH, Kramer CM, Epstein FH. Imaging three-dimensional myocardial mechanics using navigator-gated volumetric spiral cine DENSE MRI. Magn Reson Med 2011; 64:1089-97. [PMID: 20574967 DOI: 10.1002/mrm.22503] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A navigator-gated 3D spiral cine displacement encoding with stimulated echoes (DENSE) pulse sequence for imaging 3D myocardial mechanics was developed. In addition, previously described 2D postprocessing algorithms including phase unwrapping, tissue tracking, and strain tensor calculation for the left ventricle (LV) were extended to 3D. These 3D methods were evaluated in five healthy volunteers, using 2D cine DENSE and historical 3D myocardial tagging as reference standards. With an average scan time of 20.5 ± 5.7 min, 3D data sets with a matrix size of 128 × 128 × 22, voxel size of 2.8 × 2.8 × 5.0 mm(3), and temporal resolution of 32 msec were obtained with displacement encoding in three orthogonal directions. Mean values for end-systolic mid-ventricular mid-wall radial, circumferential, and longitudinal strain were 0.33 ± 0.10, -0.17 ± 0.02, and -0.16 ± 0.02, respectively. Transmural strain gradients were detected in the radial and circumferential directions, reflecting high spatial resolution. Good agreement by linear correlation and Bland-Altman analysis was achieved when comparing normal strains measured by 2D and 3D cine DENSE. Also, the 3D strains, twist, and torsion results obtained by 3D cine DENSE were in good agreement with historical values measured by 3D myocardial tagging.
Collapse
Affiliation(s)
- Xiaodong Zhong
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | | | | | | | | |
Collapse
|
47
|
Sigfridsson A, Haraldsson H, Ebbers T, Knutsson H, Sakuma H. In vivo SNR in DENSE MRI; temporal and regional effects of field strength, receiver coil sensitivity and flip angle strategies. Magn Reson Imaging 2010; 29:202-8. [PMID: 21129876 DOI: 10.1016/j.mri.2010.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 08/30/2010] [Accepted: 08/31/2010] [Indexed: 10/18/2022]
Abstract
AIM The influences on the signal-to-noise ratio (SNR) of Displacement ENcoding with Stimulated Echoes (DENSE) MRI of field strength, receiver coil sensitivity and choice of flip angle strategy have been previously investigated individually. In this study, all of these parameters have been investigated in the same setting, and a mutual comparison of their impact on SNR is presented. MATERIALS AND METHODS Ten healthy volunteers were imaged in a 1.5 T and a 3 T MRI system, using standard five- or six-channel cardiac coils as well as 32-channel coils, with four different excitation patterns. Variation of spatial coil sensitivity was assessed by regional SNR analysis. RESULTS SNR ranging from 2.8 to 30.5 was found depending on the combination of excitation patterns, coil sensitivity and field strength. The SNR at 3 T was 53±26% higher than at 1.5 T (P<.001), whereas spatial differences of 59±26% were found in the ventricle (P<.001). Thirty-two-channel coils provided 52±29% higher SNR compared to standard five- or six-channel coils (P<.001). A fixed flip angle strategy provided an excess of 50% higher SNR in half of the imaged cardiac cycle compared to a sweeping flip angle strategy, and a single-phase acquisition provided a sixfold increase of SNR compared to a cine acquisition. CONCLUSION The effect of field strength and receiver coil sensitivity influences the SNR with the same order of magnitude, whereas flip angle strategy can have a larger effect on SNR. Thus, careful choice of imaging hardware in combination with adaptation of the acquisition protocol is crucial in order to realize sufficient SNR in DENSE MRI.
Collapse
|
48
|
Haraldsson H, Sigfridsson A, Sakuma H, Engvall J, Ebbers T. Influence of the FID and off-resonance effects in dense MRI. Magn Reson Med 2010; 65:1103-11. [PMID: 21413075 DOI: 10.1002/mrm.22692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 08/19/2010] [Accepted: 09/26/2010] [Indexed: 11/09/2022]
Abstract
Accurate functional measurement in cardiovascular diseases is important as inaccuracy may compromise diagnostic decisions. Cardiac function can be assessed using displacement encoding with stimulated echoes, resulting in three signal components. The free induction decay (FID), arising from spins undergoing T(1) -relaxation, is not displacement encoded and impairs the displacement acquired. Techniques for suppressing the FID exist; however, a residual will remain. The effect of the residual is difficult to distinguish and investigate in vitro and in vivo. In this work, the influence of the FID as well as of off-resonance effects is evaluated by altering the phase of the FID in relation to the stimulated echo. The results show that the FID and off-resonance effects can impair the accuracy of the displacement measurement acquired. The influence of the FID can be avoided by using an encoded reference. We therefore recommend the assessment of this influence of the FID for each displacement encoding with stimulated echoes protocol.
Collapse
Affiliation(s)
- Henrik Haraldsson
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.
| | | | | | | | | |
Collapse
|
49
|
Zhong J, Yu X. Strain and torsion quantification in mouse hearts under dobutamine stimulation using 2D multiphase MR DENSE. Magn Reson Med 2010; 64:1315-22. [PMID: 20740659 DOI: 10.1002/mrm.22530] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 05/13/2010] [Accepted: 05/17/2010] [Indexed: 11/08/2022]
Abstract
In this study, a 2D multiphase magnetic resonance displacement encoding with stimulated echoes (DENSE) imaging and analysis method was developed for direct quantification of Lagrangian strain in the mouse heart. Using the proposed method, <10 ms temporal resolution and 0.56 mm in-plane resolution were achieved. A validation study that compared strain calculation by displacement encoding with stimulated echoes and by magnetic resonance tagging showed high correlation between the two methods (R(2) > 0.80). Regional ventricular wall strain and twist were characterized in mouse hearts at baseline and under dobutamine stimulation. Dobutamine stimulation induced significant increase in radial and circumferential strains and torsion at peak systole. A rapid untwisting was also observed during early diastole. This work demonstrates the capability of characterizing cardiac functional response to dobutamine stimulation in the mouse heart using 2D multiphase magnetic resonance displacement encoding with stimulated echoes.
Collapse
Affiliation(s)
- Jia Zhong
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | | |
Collapse
|