1
|
Plähn NMJ, Poli S, Peper ES, Açikgöz BC, Kreis R, Ganter C, Bastiaansen JAM. Getting the phase consistent: The importance of phase description in balanced steady-state free precession MRI of multi-compartment systems. Magn Reson Med 2024; 92:215-225. [PMID: 38321594 DOI: 10.1002/mrm.30033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 02/08/2024]
Abstract
PURPOSE Determine the correct mathematical phase description for balanced steady-state free precession (bSSFP) signals in multi-compartment systems. THEORY AND METHODS Based on published bSSFP signal models, different phase descriptions can be formulated: one predicting the presence and the other predicting the absence of destructive interference effects in multi-compartment systems. Numerical simulations of bSSFP signals of water and acetone were performed to evaluate the predictions of these different phase descriptions. For experimental validation, bSSFP profiles were measured at 3T using phase-cycled bSSFP acquisitions performed in a phantom containing mixtures of water and acetone, which replicates a system with two signal components. Localized single voxel MRS was performed at 7T to determine the relative chemical shift of the acetone-water mixtures. RESULTS Based on the choice of phase description, the simulated bSSFP profiles of water-acetone mixtures varied significantly, either displaying or lacking destructive interference effects, as predicted theoretically. In phantom experiments, destructive interference was consistently observed in the measured bSSFP profiles of water-acetone mixtures, supporting the theoretical description that predicts such interference effects. The connection between the choice of phase description and predicted observation enables unambiguous experimental identification of the correct phase description for multi-compartment bSSFP profiles, which is consistent with the Bloch equations. CONCLUSION The study emphasizes that consistent phase descriptions are crucial for accurately describing multi-compartment bSSFP signals, as incorrect phase descriptions result in erroneous predictions.
Collapse
Affiliation(s)
- Nils M J Plähn
- Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Translation Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Simone Poli
- Translation Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- MR Methodology, Department for Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
| | - Eva S Peper
- Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Translation Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Berk C Açikgöz
- Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Translation Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Roland Kreis
- Translation Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
- MR Methodology, Department for Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
- Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Carl Ganter
- Department of Diagnostic and Interventional Radiology, TUM School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jessica A M Bastiaansen
- Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Translation Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| |
Collapse
|
2
|
Schäper J, Bieri O. Myelin water imaging at 0.55 T using a multigradient-echo sequence. Magn Reson Med 2024; 91:1043-1056. [PMID: 38010053 DOI: 10.1002/mrm.29949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/19/2023] [Accepted: 11/12/2023] [Indexed: 11/29/2023]
Abstract
PURPOSE To investigate the prospects of a multigradient-echo (mGRE) acquisition for in vivo myelin water imaging at 0.55 T. METHODS Scans were performed on the brain of four healthy volunteers at 0.55 and 3 T, using a 3D mGRE sequence. The myelin water fraction (MWF) was calculated for both field strengths using a nonnegative least squares (NNLS) algorithm, implemented in the qMRLab suite. The quality of these maps as well as single-voxel fits were compared visually for 0.55 and 3 T. RESULTS The obtained MWF values at 0.55 T are consistent with previously reported ones at higher field strengths. The MWF maps are a considerable improvement over the ones at 3 T. Example fits show that 0.55 T data is better described by an exponential model than 3 T data, making the assumed multi-exponential model of the NNLS algorithm more accurate. CONCLUSION This first assessment shows that mGRE myelin water imaging at 0.55 T is feasible and has the potential to yield better results than at higher fields.
Collapse
Affiliation(s)
- Jessica Schäper
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland
| | - Oliver Bieri
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
3
|
Rossi GMC, Mackowiak ALC, Açikgöz BC, Pierzchała K, Kober T, Hilbert T, Bastiaansen JAM. SPARCQ: A new approach for fat fraction mapping using asymmetries in the phase-cycled balanced SSFP signal profile. Magn Reson Med 2023; 90:2348-2361. [PMID: 37496187 DOI: 10.1002/mrm.29813] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/19/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
PURPOSE To develop SPARCQ (Signal Profile Asymmetries for Rapid Compartment Quantification), a novel approach to quantify fat fraction (FF) using asymmetries in the phase-cycled balanced SSFP (bSSFP) profile. METHODS SPARCQ uses phase-cycling to obtain bSSFP frequency profiles, which display asymmetries in the presence of fat and water at certain TRs. For each voxel, the measured signal profile is decomposed into a weighted sum of simulated profiles via multi-compartment dictionary matching. Each dictionary entry represents a single-compartment bSSFP profile with a specific off-resonance frequency and relaxation time ratio. Using the results of dictionary matching, the fractions of the different off-resonance components are extracted for each voxel, generating quantitative maps of water and FF and banding-artifact-free images for the entire image volume. SPARCQ was validated using simulations, experiments in a water-fat phantom and in knees of healthy volunteers. Experimental results were compared with reference proton density FFs obtained with 1 H-MRS (phantoms) and with multiecho gradient-echo MRI (phantoms and volunteers). SPARCQ repeatability was evaluated in six scan-rescan experiments. RESULTS Simulations showed that FF quantification is accurate and robust for SNRs greater than 20. Phantom experiments demonstrated good agreement between SPARCQ and gold standard FFs. In volunteers, banding-artifact-free quantitative maps and water-fat-separated images obtained with SPARCQ and ME-GRE demonstrated the expected contrast between fatty and non-fatty tissues. The coefficient of repeatability of SPARCQ FF was 0.0512. CONCLUSION SPARCQ demonstrates potential for fat quantification using asymmetries in bSSFP profiles and may be a promising alternative to conventional FF quantification techniques.
Collapse
Affiliation(s)
- Giulia M C Rossi
- Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Translational Imaging Center, Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Adèle L C Mackowiak
- Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Translational Imaging Center, Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Berk Can Açikgöz
- Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Translational Imaging Center, Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Katarzyna Pierzchała
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Tobias Kober
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Switzerland
- LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tom Hilbert
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Advanced Clinical Imaging Technology, Siemens Healthineers International AG, Lausanne, Switzerland
- LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jessica A M Bastiaansen
- Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Translational Imaging Center, Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| |
Collapse
|
4
|
Birk F, Glang F, Loktyushin A, Birkl C, Ehses P, Scheffler K, Heule R. High-resolution neural network-driven mapping of multiple diffusion metrics leveraging asymmetries in the balanced steady-state free precession frequency profile. NMR IN BIOMEDICINE 2022; 35:e4669. [PMID: 34964998 DOI: 10.1002/nbm.4669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
We propose to utilize the rich information content about microstructural tissue properties entangled in asymmetric balanced steady-state free precession (bSSFP) profiles to estimate multiple diffusion metrics simultaneously by neural network (NN) parameter quantification. A 12-point bSSFP phase-cycling scheme with high-resolution whole-brain coverage is employed at 3 and 9.4 T for NN input. Low-resolution target diffusion data are derived based on diffusion-weighted spin-echo echo-planar-imaging (SE-EPI) scans, that is, mean, axial, and radial diffusivity (MD, AD, and RD), fractional anisotropy (FA), as well as the spherical coordinates (azimuth Φ and inclination ϴ) of the principal diffusion eigenvector. A feedforward NN is trained with incorporated probabilistic uncertainty estimation. The NN predictions yielded highly reliable results in white matter (WM) and gray matter structures for MD. The quantification of FA, AD, and RD was overall in good agreement with the reference but the dependence of these parameters on WM anisotropy was somewhat biased (e.g. in corpus callosum). The inclination ϴ was well predicted for anisotropic WM structures, while the azimuth Φ was overall poorly predicted. The findings were highly consistent across both field strengths. Application of the optimized NN to high-resolution input data provided whole-brain maps with rich structural details. In conclusion, the proposed NN-driven approach showed potential to provide distortion-free high-resolution whole-brain maps of multiple diffusion metrics at high to ultrahigh field strengths in clinically relevant scan times.
Collapse
Affiliation(s)
- Florian Birk
- High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Felix Glang
- High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Alexander Loktyushin
- High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany
| | - Christoph Birkl
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Philipp Ehses
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Klaus Scheffler
- High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Rahel Heule
- High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Keskin K, Yilmaz U, Cukur T. Constrained Ellipse Fitting for Efficient Parameter Mapping With Phase-Cycled bSSFP MRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:14-26. [PMID: 34351856 DOI: 10.1109/tmi.2021.3102852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Balanced steady-state free precession (bSSFP) imaging enables high scan efficiency in MRI, but differs from conventional sequences in terms of elevated sensitivity to main field inhomogeneity and nonstandard [Formula: see text]-weighted tissue contrast. To address these limitations, multiple bSSFP images of the same anatomy are commonly acquired with a set of different RF phase-cycling increments. Joint processing of phase-cycled acquisitions serves to mitigate sensitivity to field inhomogeneity. Recently phase-cycled bSSFP acquisitions were also leveraged to estimate relaxation parameters based on explicit signal models. While effective, these model-based methods often involve a large number of acquisitions (N ≈ 10-16), degrading scan efficiency. Here, we propose a new constrained ellipse fitting method (CELF) for parameter estimation with improved efficiency and accuracy in phase-cycled bSSFP MRI. CELF is based on the elliptical signal model framework for complex bSSFP signals; and it introduces geometrical constraints on ellipse properties to improve estimation efficiency, and dictionary-based identification to improve estimation accuracy. CELF generates maps of [Formula: see text], [Formula: see text], off-resonance and on-resonant bSSFP signal by employing a separate [Formula: see text] map to mitigate sensitivity to flip angle variations. Our results indicate that CELF can produce accurate off-resonance and banding-free bSSFP maps with as few as N = 4 acquisitions, while estimation accuracy for relaxation parameters is notably limited by biases from microstructural sensitivity of bSSFP imaging.
Collapse
|
6
|
Schäper J, Bauman G, Ganter C, Bieri O. Pure balanced steady-state free precession imaging (pure bSSFP). Magn Reson Med 2021; 87:1886-1893. [PMID: 34775622 PMCID: PMC9299476 DOI: 10.1002/mrm.29086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/02/2021] [Accepted: 10/28/2021] [Indexed: 12/26/2022]
Abstract
Purpose To show that for tissues the conspicuous asymmetries in the frequency response function of bSSFP can be mitigated by using a short enough TR. Theory and Methods Configuration theory indicates that bSSFP becomes apparently “pure” (i.e., exhibiting a symmetric profile) in the limit of TR →0. To this end, the frequency profile of bSSFP was measured as a function of the TR using a manganese‐doped aqueous probe, as well as brain tissue that was shown to exhibit a pronounced asymmetry due to its microstructure. The frequency response function was sampled using N=72 (phantom) and N=36 (in vivo) equally distributed linear RF phase increments in the interval [0,2π). Imaging was performed with 2.0 mm isotropic resolution over a TR range of 1.5–8 ms at 3 and 1.5 T. Results As expected, pure substances showed a symmetric TR‐independent frequency profile, whereas brain tissue revealed a pronounced asymmetry. The observed asymmetry for the tissue, however, decreases with decreasing TR and gives strong evidence that the frequency response function of bSSFP becomes symmetric in the limit of TR →0, in agreement with theory. The limit of apparently pure bSSFP imaging can thus be achieved for a TR ∼ 1.5 ms at 1.5 T, whereas at 3 T, tissues still show some residual asymmetry. Conclusion In the limit of short enough TR, tissues become apparently pure for bSSFP. This limit can be reached for brain tissue at 1.5 T with TR ∼ 1–2 ms at clinically relevant resolutions.
Collapse
Affiliation(s)
- Jessica Schäper
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland.,Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland
| | - Grzegorz Bauman
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland.,Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland
| | - Carl Ganter
- Department of Diagnostic Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Oliver Bieri
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland.,Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
7
|
From signal-based to comprehensive magnetic resonance imaging. Sci Rep 2021; 11:17216. [PMID: 34446804 PMCID: PMC8390767 DOI: 10.1038/s41598-021-96791-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/09/2021] [Indexed: 12/03/2022] Open
Abstract
We present and evaluate a new insight into magnetic resonance imaging (MRI). It is based on the algebraic description of the magnetization during the transient response—including intrinsic magnetic resonance parameters such as longitudinal and transverse relaxation times (T1, T2) and proton density (PD) and experimental conditions such as radiofrequency field (B1) and constant/homogeneous magnetic field (B0) from associated scanners. We exploit the correspondence among three different elements: the signal evolution as a result of a repetitive sequence of blocks of radiofrequency excitation pulses and encoding gradients, the continuous Bloch equations and the mathematical description of a sequence as a linear system. This approach simultaneously provides, in a single measurement, all quantitative parameters of interest as well as associated system imperfections. Finally, we demonstrate the in-vivo applicability of the new concept on a clinical MRI scanner.
Collapse
|
8
|
Iyyakkunnel S, Schäper J, Bieri O. Configuration-based electrical properties tomography. Magn Reson Med 2020; 85:1855-1864. [PMID: 33107082 DOI: 10.1002/mrm.28542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 11/07/2022]
Abstract
PURPOSE To introduce phase-based conductivity mapping from a configuration space analysis. METHODS The frequency response function of balanced SSFP (bSSFP) is used to perform a configuration space analysis. It is shown that the transceive phase for conductivity mapping can be directly obtained by a simple fast Fourier transform of a series of phase-cycled bSSFP scans. For validation, transceive phase and off-resonance mapping with fast Fourier transform is compared with phase estimation using a recently proposed method, termed PLANET. Experiments were performed in phantoms and for in vivo brain imaging at 3 T using a quadrature head coil. RESULTS For fast Fourier transform, aliasing can lead to systematic phase errors. This bias, however, decreases rapidly with increasing sampling points. Interestingly, Monte Carlo simulations revealed a lower uncertainty for the transceive phase and the off-resonance using fast Fourier transform as compared with PLANET. Both methods, however, essentially retrieve the same phase information from a set of phase-cycled bSSFP scans. As a result, configuration-based conductivity mapping was successfully performed using eight phase-cycled bSSFP scans in the phantoms and for brain tissues. Overall, the retrieved values were in good agreement with expectations. Conductivity estimation and mapping of the field inhomogeneities can therefore be performed in conjunction with the estimation of other quantitative parameters, such as relaxation, using configuration theory. CONCLUSIONS Phase-based conductivity mapping can be estimated directly from a simple Fourier analysis, such as in conjunction with relaxometry, using a series of phase-cycled bSSFP scans.
Collapse
Affiliation(s)
- Santhosh Iyyakkunnel
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Jessica Schäper
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Oliver Bieri
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| |
Collapse
|
9
|
Foxley S, Wildenberg G, Sampathkumar V, Karczmar GS, Brugarolas P, Kasthuri N. Sensitivity to myelin using model-free analysis of the water resonance line-shape in postmortem mouse brain. Magn Reson Med 2020; 85:667-677. [PMID: 32783262 DOI: 10.1002/mrm.28440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/17/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE Dysmyelinating diseases are characterized by abnormal myelin formation and function. Such microstructural abnormalities in myelin have been demonstrated to produce measurable effects on the MR signal. This work examines these effects on measurements of voxel-wise, high-resolution water spectra acquired using a 3D echo-planar spectroscopic imaging (EPSI) pulse sequence from both postmortem fixed control mouse brains and a dysmyelination mouse brain model. METHODS Perfusion fixed, resected control (n = 5) and shiverer (n = 4) mouse brains were imaged using 3D-EPSI with 100 µm isotropic resolution. The free induction decay (FID) was sampled every 2.74 ms over 192 echoes, for a total sampling duration of 526.08 ms. Voxel-wise FIDs were Fourier transformed to produce water spectra with 1.9 Hz resolution. Spectral asymmetry was computed and compared between the two tissue types. RESULTS The water resonance is more asymmetrically broadened in the white matter of control mouse brain compared with dysmyelinated white matter. In control brain, this is modulated by and consistent with previously reported orientationally dependent effects of white matter relative to B0 . Similar sensitivity to orientation is observed in dysmyelinated white matter as well; however, the magnitude of the resonance asymmetry is much lower across all directions. CONCLUSION Results demonstrate that components of the spectra are specifically differentially affected by myelin concentration. This suggests that water proton spectra may be sensitive to the presence of myelin, and as such, could serve as a MRI-based biomarker of dysmyelinating disease, free of mathematical models.
Collapse
Affiliation(s)
- Sean Foxley
- Department of Radiology, University of Chicago, Chicago, Illinois, USA
| | - Gregg Wildenberg
- Department of Neurobiology, University of Chicago, Chicago, Illinois, USA
| | | | | | - Pedro Brugarolas
- Department of Radiology, Harvard Medical School, Boston, Maryland, USA.,Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, Maryland, USA
| | - Narayanan Kasthuri
- Department of Neurobiology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
10
|
Heule R, Bause J, Pusterla O, Scheffler K. Multi-parametric artificial neural network fitting of phase-cycled balanced steady-state free precession data. Magn Reson Med 2020; 84:2981-2993. [PMID: 32479661 DOI: 10.1002/mrm.28325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE Standard relaxation time quantification using phase-cycled balanced steady-state free precession (bSSFP), eg, motion-insensitive rapid configuration relaxometry (MIRACLE), is subject to a considerable underestimation of tissue T1 and T2 due to asymmetric intra-voxel frequency distributions. In this work, an artificial neural network (ANN) fitting approach is proposed to simultaneously extract accurate reference relaxation times (T1 , T2 ) and robust field map estimates ( B 1 + , ΔB0 ) from the bSSFP profile. METHODS Whole-brain bSSFP data acquired at 3T were used for the training of a feedforward ANN with N = 12, 6, and 4 phase-cycles. The magnitude and phase of the Fourier transformed complex bSSFP frequency response served as input and the multi-parametric reference set [T1 , T2 , B 1 + , ∆B0 ] as target. The ANN predicted relaxation times were validated against the target and MIRACLE. RESULTS The ANN prediction of T1 and T2 for trained and untrained data agreed well with the reference, even for only four acquired phase-cycles. In contrast, relaxometry based on 4-point MIRACLE was prone to severe off-resonance-related artifacts. ANN predicted B 1 + and ∆B0 maps showed the expected spatial inhomogeneity patterns in high agreement with the reference measurements for 12-point, 6-point, and 4-point bSSFP phase-cycling schemes. CONCLUSION ANNs show promise to provide accurate brain tissue T1 and T2 values as well as reliable field map estimates. Moreover, the bSSFP acquisition can be accelerated by reducing the number of phase-cycles while still delivering robust T1 , T2 , B 1 + , and ∆B0 estimates.
Collapse
Affiliation(s)
- Rahel Heule
- High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Jonas Bause
- High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Orso Pusterla
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland.,Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Klaus Scheffler
- High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| |
Collapse
|
11
|
Heule R, Deshmane A, Zaiss M, Herz K, Ehses P, Scheffler K. Structure or Exchange? On the Feasibility of Chemical Exchange Detection with Balanced Steady-State Free Precession in Tissue - An In Vitro Study. NMR IN BIOMEDICINE 2020; 33:e4200. [PMID: 31833130 DOI: 10.1002/nbm.4200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/15/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Balanced steady-state free precession imaging has recently been suggested for chemical exchange detection (bSSFPX). The objective of this work is to investigate the contributions of microstructural, chemical shift and chemical exchange effects to the asymmetry of the bSSFP profile at field strengths of 3 T and 9.4 T. To this end, in vitro bSSFPX experiments are performed for a range of repetition times and flip angles in glucose water solutions with different MnCl2 concentrations and tissue homogenates obtained from the brainstem of pig brains. The experimental results are compared to multi-pool Bloch-McConnell simulations. Additionally, the influence of white matter tract geometry is analyzed ex vivo in pig brain hemispheres measured at two different angles with respect to B0 . The detectable bSSFP profile asymmetry in glucose solutions with tissue-like relaxation times and white matter homogenates was consistent with Bloch-McConnell simulations but relatively small. In intact white matter tracts, the asymmetry was dominated by structural effects with a strong dependency on tract orientation relative to B0 . In tracts perpendicular to B0 , the asymmetry was ≈ 3-4 times higher than in the homogenates, thus barely affected by chemical exchange effects. In conclusion, chemical exchange-related bSSFP profile asymmetries are detectable in tissue homogenates, however, the observed asymmetry level is generally low and prone to confounding structural effects rendering in vivo chemical exchange detection with bSSFP challenging in the brain.
Collapse
Affiliation(s)
- Rahel Heule
- High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Anagha Deshmane
- High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Moritz Zaiss
- High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Kai Herz
- High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Philipp Ehses
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Klaus Scheffler
- High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| |
Collapse
|
12
|
Wood TC, Teixeira RPAG, Malik SJ. Magnetization transfer and frequency distribution effects in the SSFP ellipse. Magn Reson Med 2019; 84:857-865. [PMID: 31872921 PMCID: PMC7216875 DOI: 10.1002/mrm.28149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/15/2019] [Accepted: 12/06/2019] [Indexed: 01/08/2023]
Abstract
Purpose To demonstrate that quantitative magnetization transfer (qMT) parameters can be extracted from steady‐state free‐precession (SSFP) data with no external T1 map or banding artifacts. Methods SSFP images with multiple MT weightings were acquired and qMT parameters fitted with a two‐stage elliptical signal model. Results Monte Carlo simulations and data from a 3T scanner indicated that most qMT parameters could be recovered with reasonable accuracy. Systematic deviations from theory were observed in white matter, consistent with previous literature on frequency distribution effects. Conclusions qMT parameters can be extracted from SSFP data alone, in a manner robust to banding artifacts, despite several confounds.
Collapse
Affiliation(s)
- Tobias C Wood
- Department of Neuroimaging, King's College London, London, UK
| | - Rui P A G Teixeira
- School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Shaihan J Malik
- School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| |
Collapse
|
13
|
Gavazzi S, Shcherbakova Y, Bartels LW, Stalpers LJA, Lagendijk JJW, Crezee H, van den Berg CAT, van Lier ALHMW. Transceive phase mapping using the PLANET method and its application for conductivity mapping in the brain. Magn Reson Med 2019; 83:590-607. [PMID: 31483520 PMCID: PMC6900152 DOI: 10.1002/mrm.27958] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 12/23/2022]
Abstract
Purpose To demonstrate feasibility of transceive phase mapping with the PLANET method and its application for conductivity reconstruction in the brain. Methods Accuracy and precision of transceive phase (ϕ±) estimation with PLANET, an ellipse fitting approach to phase‐cycled balanced steady state free precession (bSSFP) data, were assessed with simulations and measurements and compared to standard bSSFP. Measurements were conducted on a homogeneous phantom and in the brain of healthy volunteers at 3 tesla. Conductivity maps were reconstructed with Helmholtz‐based electrical properties tomography. In measurements, PLANET was also compared to a reference technique for transceive phase mapping, i.e., spin echo. Results Accuracy and precision of ϕ± estimated with PLANET depended on the chosen flip angle and TR. PLANET‐based ϕ± was less sensitive to perturbations induced by off‐resonance effects and partial volume (e.g., white matter + myelin) than bSSFP‐based ϕ±. For flip angle = 25° and TR = 4.6 ms, PLANET showed an accuracy comparable to that of reference spin echo but a higher precision than bSSFP and spin echo (factor of 2 and 3, respectively). The acquisition time for PLANET was ~5 min; 2 min faster than spin echo and 8 times slower than bSSFP. However, PLANET simultaneously reconstructed T1, T2, B0 maps besides mapping ϕ±. In the phantom, PLANET‐based conductivity matched the true value and had the smallest spread of the three methods. In vivo, PLANET‐based conductivity was similar to spin echo‐based conductivity. Conclusion Provided that appropriate sequence parameters are used, PLANET delivers accurate and precise ϕ± maps, which can be used to reconstruct brain tissue conductivity while simultaneously recovering T1, T2, and B0 maps.
Collapse
Affiliation(s)
- Soraya Gavazzi
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Yulia Shcherbakova
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lambertus W Bartels
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands.,Image Sciences Institute, Imaging Division, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lukas J A Stalpers
- Department of Radiotherapy, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan J W Lagendijk
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hans Crezee
- Department of Radiotherapy, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Cornelis A T van den Berg
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands.,Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
14
|
Reynaud O, da Silva AR, Gruetter R, Jelescu IO. Multi-slice passband bSSFP for human and rodent fMRI at ultra-high field. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 305:31-40. [PMID: 31195214 DOI: 10.1016/j.jmr.2019.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/07/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
Balanced steady-state free precession (bSSFP) can be used as an alternative to gradient-echo (GE) EPI for BOLD functional MRI when image distortions and signal drop-outs are severe such as at ultra-high field. However, 3D-bSSFP acquisitions have distinct drawbacks on either human or animal MR systems. On clinical scanners, 3D imaging is suboptimal for localized fMRI applications. It can also display distortions when acceleration methods such as spiral read-outs are used, and, compared to multi-slice acquisitions, suffers from increased sensitivity to motion or physiological noise which further results in blurring. On pre-clinical systems, 3D acquisitions have low temporal resolution due to limited acceleration options, while single slice often results in insufficient coverage. The aim of the present study was to implement a multi-slice bSSFP acquisition with Cartesian read-out to obtain non-distorted BOLD fMRI activation maps in the human and rat brain at ultra-high field. We show that, when using a new pseudo-steady-state, the bSSFP signal characteristics are preserved. In the human brain at 7 T, we demonstrate that both task- and resting-state fMRI can be performed with multi-slice bSSFP, with a temporal SNR that matches that of 3D-bSSFP, resulting in - at least - equal performance. In the rat brain at 14 T, we show that the multi-slice bSSFP protocol has similar sensitivity to gradient-echo EPI for task fMRI, while benefitting from much reduced distortions and drop-outs. The advantages of passband bSSFP at 14 T in comparison with GE-EPI are expected to be even more marked for mouse brain.
Collapse
Affiliation(s)
- Olivier Reynaud
- Centre d'Imagerie Biomédicale, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Analina R da Silva
- Centre d'Imagerie Biomédicale, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Rolf Gruetter
- Centre d'Imagerie Biomédicale, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ileana O Jelescu
- Centre d'Imagerie Biomédicale, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
15
|
Shcherbakova Y, van den Berg CAT, Moonen CTW, Bartels LW. Investigation of the influence of B 0 drift on the performance of the PLANET method and an algorithm for drift correction. Magn Reson Med 2019; 82:1725-1740. [PMID: 31317584 PMCID: PMC6772029 DOI: 10.1002/mrm.27860] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/26/2019] [Accepted: 05/23/2019] [Indexed: 01/03/2023]
Abstract
Purpose The PLANET method was designed to simultaneously reconstruct maps of T1 and T2, the off‐resonance, the RF phase, and the banding free signal magnitude. The method requires a stationary B0 field over the course of a phase‐cycled balanced SSFP acquisition. In this work we investigated the influence of B0 drift on the performance of the PLANET method for single‐component and two‐component signal models, and we propose a strategy for drift correction. Methods The complex phase‐cycled balanced SSFP signal was modeled with and without frequency drift. The behavior of the signal influenced by drift was mathematically interpreted as a sum of drift‐dependent displacement of the data points along an ellipse and drift‐dependent rotation around the origin. The influence of drift on parameter estimates was investigated experimentally on a phantom and on the brain of healthy volunteers and was verified by numerical simulations. A drift correction algorithm was proposed and tested on a phantom and in vivo. Results Drift can be assumed to be linear over the typical duration of a PLANET acquisition. In a phantom (a single‐component signal model), drift induced errors of 4% and 8% in the estimated T1 and T2 values. In the brain, where multiple components are present, drift only had a minor effect. For both single‐component and two‐component signal models, drift‐induced errors were successfully corrected by applying the proposed drift correction algorithm. Conclusion We have demonstrated theoretically and experimentally the sensitivity of the PLANET method to B0 drift and have proposed a drift correction method.
Collapse
Affiliation(s)
- Yulia Shcherbakova
- Center for Image Sciences, Imaging Division, University Medical Center Utrecht, Utrecht, Netherlands
| | - Cornelis A T van den Berg
- Department of Radiotherapy, Imaging Division, University Medical Center Utrecht, Utrecht, Netherlands
| | - Chrit T W Moonen
- Center for Image Sciences, Imaging Division, University Medical Center Utrecht, Utrecht, Netherlands
| | - Lambertus W Bartels
- Center for Image Sciences, Imaging Division, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
16
|
Assländer J, Lattanzi R, Sodickson DK, Cloos MA. Optimized quantification of spin relaxation times in the hybrid state. Magn Reson Med 2019; 82:1385-1397. [PMID: 31189025 DOI: 10.1002/mrm.27819] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 04/01/2019] [Accepted: 04/29/2019] [Indexed: 01/08/2023]
Abstract
PURPOSE The optimization and analysis of spin ensemble trajectories in the hybrid state-a state in which the direction of the magnetization adiabatically follows the steady state while the magnitude remains in a transient state. METHODS Numerical optimizations were performed to find spin ensemble trajectories that minimize the Cramér-Rao bound for T 1 -encoding, T 2 -encoding, and their weighted sum, respectively, followed by a comparison between the Cramér-Rao bounds obtained with our optimized spin-trajectories, Look-Locker sequences, and multi-spin-echo methods. Finally, we experimentally tested our optimized spin trajectories with in vivo scans of the human brain. RESULTS After a nonrecurring inversion segment on the southern half of the Bloch sphere, all optimized spin trajectories pursue repetitive loops on the northern hemisphere in which the beginning of the first and the end of the last loop deviate from the others. The numerical results obtained in this work align well with intuitive insights gleaned directly from the governing equation. Our results suggest that hybrid-state sequences outperform traditional methods. Moreover, hybrid-state sequences that balance T 1 - and T 2 -encoding still result in near optimal signal-to-noise efficiency for each relaxation time. Thus, the second parameter can be encoded at virtually no extra cost. CONCLUSIONS We provided new insights into the optimal encoding processes of spin relaxation times in order to guide the design of robust and efficient pulse sequences. We found that joint acquisitions of T 1 and T 2 in the hybrid state are substantially more efficient than sequential encoding techniques.
Collapse
Affiliation(s)
- Jakob Assländer
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York.,Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York
| | - Riccardo Lattanzi
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York.,Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York.,Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York
| | - Daniel K Sodickson
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York.,Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York.,Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York
| | - Martijn A Cloos
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York.,Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York.,Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York
| |
Collapse
|
17
|
Shcherbakova Y, van den Berg CAT, Moonen CTW, Bartels LW. On the accuracy and precision of PLANET for multiparametric MRI using phase-cycled bSSFP imaging. Magn Reson Med 2018; 81:1534-1552. [PMID: 30303562 PMCID: PMC6585657 DOI: 10.1002/mrm.27491] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 11/09/2022]
Abstract
Purpose In this work we demonstrate how sequence parameter settings influence the accuracy and precision in T1, T2, and off‐resonance maps obtained with the PLANET method for a single‐component signal model. In addition, the performance of the method for the particular case of a two‐component relaxation model for white matter tissue was assessed. Methods Numerical simulations were performed to investigate the influence of sequence parameter settings on the accuracy and precision in the estimated parameters for a single‐component model, as well as for a two‐component white matter model. Phantom and in vivo experiments were performed for validation. In addition, the effects of Gibbs ringing were investigated. Results By making a proper choice for sequence parameter settings, accurate and precise parameter estimation can be achieved for a single‐component signal model over a wide range of relaxation times at realistic SNR levels. Due to the presence of a second myelin‐related signal component in white matter, an underestimation of approximately 30% in T1 and T2 was observed, predicted by simulations and confirmed by measurements. Gibbs ringing artifacts correction improved the precision and accuracy of the parameter estimates. Conclusion For a single‐component signal model there is a broad “sweet spot” of sequence parameter combinations for which a high accuracy and precision in the parameter estimates is achieved over a wide range of relaxation times. For a multicomponent signal model, the single‐component PLANET reconstruction results in systematic errors in the parameter estimates as expected.
Collapse
Affiliation(s)
- Yulia Shcherbakova
- Center for Image Sciences, Imaging Division, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Cornelis A T van den Berg
- 2Department of Radiotherapy, Imaging Division, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Chrit T W Moonen
- Center for Image Sciences, Imaging Division, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Lambertus W Bartels
- Center for Image Sciences, Imaging Division, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
18
|
Hilbert T, Nguyen D, Thiran J, Krueger G, Kober T, Bieri O. True constructive interference in the steady state (trueCISS). Magn Reson Med 2017; 79:1901-1910. [DOI: 10.1002/mrm.26836] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 06/01/2017] [Accepted: 06/22/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Tom Hilbert
- Advanced Clinical Imaging Technology (HC CEMEA SUI DI PI), Siemens Healthcare AGLausanne Switzerland
- LTS5, École Polytechnique Fédérale de LausanneLausanne Switzerland
- Department of RadiologyUniversity Hospital (CHUV)Lausanne Switzerland
| | - Damien Nguyen
- Division of Radiological PhysicsDepartment of Radiology, University Hospital Basel, University of BaselBasel Switzerland
- Department of Biomedical EngineeringUniversity of BaselBasel Switzerland
| | - Jean‐Philippe Thiran
- LTS5, École Polytechnique Fédérale de LausanneLausanne Switzerland
- Department of RadiologyUniversity Hospital (CHUV)Lausanne Switzerland
| | - Gunnar Krueger
- LTS5, École Polytechnique Fédérale de LausanneLausanne Switzerland
- Department of RadiologyUniversity Hospital (CHUV)Lausanne Switzerland
- Siemens Medical Solutions USABoston Massachusetts USA
| | - Tobias Kober
- Advanced Clinical Imaging Technology (HC CEMEA SUI DI PI), Siemens Healthcare AGLausanne Switzerland
- LTS5, École Polytechnique Fédérale de LausanneLausanne Switzerland
- Department of RadiologyUniversity Hospital (CHUV)Lausanne Switzerland
| | - Oliver Bieri
- Division of Radiological PhysicsDepartment of Radiology, University Hospital Basel, University of BaselBasel Switzerland
- Department of Biomedical EngineeringUniversity of BaselBasel Switzerland
| |
Collapse
|
19
|
Shcherbakova Y, van den Berg CAT, Moonen CTW, Bartels LW. PLANET: An ellipse fitting approach for simultaneous T 1 and T 2 mapping using phase-cycled balanced steady-state free precession. Magn Reson Med 2017; 79:711-722. [PMID: 28543430 PMCID: PMC5811804 DOI: 10.1002/mrm.26717] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 03/23/2017] [Accepted: 03/26/2017] [Indexed: 11/09/2022]
Abstract
Purpose To demonstrate the feasibility of a novel, ellipse fitting approach, named PLANET, for simultaneous estimation of relaxation times T1 and T2 from a single 3D phase‐cycled balanced steady‐state free precession (bSSFP) sequence. Methods A method is presented in which the elliptical signal model is used to describe the phase‐cycled bSSFP steady‐state signal. The fitting of the model to the acquired data is reformulated into a linear convex problem, which is solved directly by a linear least squares method, specific to ellipses. Subsequently, the relaxation times T1 and T2, the banding free magnitude, and the off‐resonance are calculated from the fitting results. Results Maps of T1 and T2, as well as an off‐resonance and a banding free magnitude can be simultaneously, quickly, and robustly estimated from a single 3D phase‐cycled bSSFP sequence. The feasibility of the method was demonstrated in a phantom and in the brain of healthy volunteers on a clinical MR scanner. The results were in good agreement for the phantom, but a systematic underestimation of T1 was observed in the brain. Conclusion The presented method allows for accurate mapping of relaxation times and off‐resonance, and for the reconstruction of banding free magnitude images at realistic signal‐to‐noise ratios. Magn Reson Med 79:711–722, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
Collapse
Affiliation(s)
- Yulia Shcherbakova
- Center for Image Sciences, Imaging Division, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cornelis A T van den Berg
- Department of Radiotherapy, Imaging Division, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Chrit T W Moonen
- Center for Image Sciences, Imaging Division, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lambertus W Bartels
- Center for Image Sciences, Imaging Division, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
20
|
Zhang S, Liu Z, Grant A, Keupp J, Lenkinski RE, Vinogradov E. Balanced Steady-State Free Precession (bSSFP) from an effective field perspective: Application to the detection of chemical exchange (bSSFPX). JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 275:55-67. [PMID: 28012297 PMCID: PMC5810596 DOI: 10.1016/j.jmr.2016.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/02/2016] [Accepted: 12/03/2016] [Indexed: 05/08/2023]
Abstract
Chemical exchange saturation transfer (CEST) is a novel contrast mechanism and it is gaining increasing popularity as many promising applications have been proposed and investigated. Fast and quantitative CEST imaging techniques are further needed in order to increase the applicability of CEST for clinical use as well as to derive quantitative physiological and biological information. Steady-state methods for fast CEST imaging have been reported recently. Here, we observe that an extreme case of these methods is a balanced steady-state free precession (bSSFP) sequence. The bSSFP in itself is sensitive to the exchange processes; hence, no additional saturation or preparation is needed for CEST-like data acquisition. The bSSFP experiment can be regarded as observation during saturation, without separate saturation and acquisition modules as used in standard CEST and similar experiments. One of the differences from standard CEST methods is that the bSSFP spectrum is an XY-spectrum not a Z-spectrum. As the first proof-of-principle step, we have implemented the steady-state bSSFP sequence for chemical exchange detection (bSSFPX) and verified its feasibility in phantom studies. These studies have shown that bSSFPX can achieve exchange-mediated contrast comparable to the standard CEST experiment. Therefore, the bSSFPX method has a potential for fast and quantitative CEST data acquisition.
Collapse
Affiliation(s)
- Shu Zhang
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zheng Liu
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Aaron Grant
- Division of MR Research, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Robert E Lenkinski
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elena Vinogradov
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
21
|
Nguyen D, Bieri O. Motion-insensitive rapid configuration relaxometry. Magn Reson Med 2016; 78:518-526. [DOI: 10.1002/mrm.26384] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 07/19/2016] [Accepted: 07/26/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Damien Nguyen
- Division of Radiological Physics; Department of Radiology, University of Basel Hospital; Basel Switzerland
- Department of Biomedical Engineering; University of Basel; Basel Switzerland
| | - Oliver Bieri
- Division of Radiological Physics; Department of Radiology, University of Basel Hospital; Basel Switzerland
- Department of Biomedical Engineering; University of Basel; Basel Switzerland
| |
Collapse
|
22
|
Fast isotropic banding-free bSSFP imaging using 3D dynamically phase-cycled radial bSSFP (3D DYPR-SSFP). Z Med Phys 2016; 26:63-74. [DOI: 10.1016/j.zemedi.2015.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/23/2015] [Accepted: 05/10/2015] [Indexed: 11/21/2022]
|
23
|
Larmour S, Chow K, Kellman P, Thompson RB. Characterization of T 1 bias in skeletal muscle from fat in MOLLI and SASHA pulse sequences: Quantitative fat-fraction imaging with T 1 mapping. Magn Reson Med 2016; 77:237-249. [PMID: 26860524 DOI: 10.1002/mrm.26113] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 11/28/2015] [Accepted: 12/12/2015] [Indexed: 12/26/2022]
Abstract
PURPOSE To characterize the effects of fat on commonly used T1 mapping sequences and evaluate a new method of quantitative fat fraction (FF) imaging for low fractions based on the modulation of T1 values by the fat pool. METHODS Bloch equation simulations and phantom and in vivo (skeletal muscle) experiments were used to characterize the response of the modified Look-Locker inversion recovery (MOLLI) and saturation recovery single-shot acquisition (SASHA) T1 mapping sequences to fat-water systems with known FFs (0%-10%) at 1.5T. FFs were measured with single voxel spectroscopy and Dixon imaging methods. A new T1 -based FF imaging method was evaluated using Monte Carlo simulations and phantom and in vivo experiments. RESULTS SASHA and MOLLI had similar T1 dependence on FF, with characteristic under- or overestimation of T1 values as a function of off-resonance frequency (30-70 ms variation in native T1 per 1% FF). FF maps generated from the SASHA method yielded a low variability of ±0.25% for a signal-to-noise ratio of 150:1 in the nonsaturation image, with good agreement with spectroscopy and a performance that is superior to that of Dixon methods at low FFs. CONCLUSION Fat results in negative or positive shifts in native tissue T1 measured with MOLLI and SASHA over a narrow range of off-resonance frequencies; T1 shifts from fat can be used to accurately quantify FF. Magn Reson Med 77:237-249, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sarah Larmour
- Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Kelvin Chow
- Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Peter Kellman
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Richard B Thompson
- Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
24
|
Varma G, Wang X, Vinogradov E, Bhatt RS, Sukhatme VP, Seth P, Lenkinski RE, Alsop DC, Grant AK. Selective spectroscopic imaging of hyperpolarized pyruvate and its metabolites using a single-echo variable phase advance method in balanced SSFP. Magn Reson Med 2015; 76:1102-15. [PMID: 26507361 DOI: 10.1002/mrm.26004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 08/15/2015] [Accepted: 09/11/2015] [Indexed: 12/30/2022]
Abstract
PURPOSE In balanced steady state free precession (bSSFP), the signal intensity has a well-known dependence on the off-resonance frequency, or, equivalently, the phase advance between successive radiofrequency (RF) pulses. The signal profile can be used to resolve the contributions from the spectrally separated metabolites. This work describes a method based on use of a variable RF phase advance to acquire spatial and spectral data in a time-efficient manner for hyperpolarized 13C MRI. THEORY AND METHODS The technique relies on the frequency response from a bSSFP acquisition to acquire relatively rapid, high-resolution images that may be reconstructed to separate contributions from different metabolites. The ability to produce images from spectrally separated metabolites was demonstrated in vitro, as well as in vivo following administration of hyperpolarized 1-13C pyruvate in mice with xenograft tumors. RESULTS In vivo images of pyruvate, alanine, pyruvate hydrate, and lactate were reconstructed from four images acquired in 2 s with an in-plane resolution of 1.25 × 1.25 mm(2) and 5 mm slice thickness. CONCLUSION The phase advance method allowed acquisition of spectroscopically selective images with high spatial and temporal resolution. This method provides an alternative approach to hyperpolarized 13C spectroscopic MRI that can be combined with other techniques such as multiecho or fluctuating equilibrium bSSFP. Magn Reson Med 76:1102-1115, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gopal Varma
- Division of MR Research, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
| | - Xiaoen Wang
- Division of MR Research, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Elena Vinogradov
- Advanced Imaging Research Center, Radiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Rupal S Bhatt
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Vikas P Sukhatme
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Pankaj Seth
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert E Lenkinski
- Advanced Imaging Research Center, Radiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - David C Alsop
- Division of MR Research, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Aaron K Grant
- Division of MR Research, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Thiesson SB, Thompson RB, Chow K. Characterization of T1 bias from lipids in MOLLI and SASHA pulse sequences. J Cardiovasc Magn Reson 2015. [PMCID: PMC4328276 DOI: 10.1186/1532-429x-17-s1-w10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
26
|
Benkert T, Ehses P, Blaimer M, Jakob PM, Breuer FA. Dynamically phase-cycled radial balanced SSFP imaging for efficient banding removal. Magn Reson Med 2014; 73:182-94. [PMID: 24478187 DOI: 10.1002/mrm.25113] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/09/2013] [Accepted: 12/12/2013] [Indexed: 11/07/2022]
Abstract
PURPOSE Balanced steady-state free precession (bSSFP) imaging suffers from banding artifacts due to its inherent sensitivity to inhomogeneities in the main magnetic field. These artifacts can be removed by the acquisition of multiple images at different frequency offsets. However, conventional phase-cycling is hindered by a long scan time. The purpose of this work is to present a novel approach for efficient banding removal in bSSFP imaging. THEORY AND METHODS To this end, the phase-cycle during a single-shot radial acquisition of an image was dynamically changed. Thus, each projection is acquired with a different frequency offset. Using conventional radial gridding, an artifact-free image can be reconstructed out of this dataset. RESULTS The approach is validated at clinical field strength [3.0 Tesla (T)] as well as at ultrahigh field (9.4T). Robust elimination of banding artifacts was obtained for different imaging regions, including brain imaging at ultrahigh field with an in-plane resolution of 0.25 × 0.25 mm(2). Besides banding artifact-free imaging, the applicability of the proposed technique for fat-water separation is demonstrated. CONCLUSION Dynamically phase-cycled radial bSSFP has the potential for banding-free bSSFP imaging in a short scan time, in the presence of severe field inhomogeneities and at high resolution.
Collapse
Affiliation(s)
- Thomas Benkert
- Research Center Magnetic Resonance Bavaria (MRB), Würzburg, Germany
| | - Philipp Ehses
- Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany.,High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Martin Blaimer
- Research Center Magnetic Resonance Bavaria (MRB), Würzburg, Germany
| | - Peter M Jakob
- Research Center Magnetic Resonance Bavaria (MRB), Würzburg, Germany.,Department of Experimental Physics 5, University of Würzburg, Würzburg, Germany
| | - Felix A Breuer
- Research Center Magnetic Resonance Bavaria (MRB), Würzburg, Germany
| |
Collapse
|
27
|
Challenges of High-resolution Diffusion Imaging of the Human Medial Temporal Lobe in Alzheimer Disease. Top Magn Reson Imaging 2012; 21:355-65. [PMID: 22158129 DOI: 10.1097/rmr.0b013e31823f6413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The human medial temporal lobe performs an essential role in memory formation and retrieval. Diseases involving the hippocampus such as Alzheimer disease present a unique opportunity for advanced imaging techniques to detect abnormalities at an early stage. In particular, it is possible that diffusion imaging will measure abnormal microarchitecture beyond the realm of macroscopic imaging. However, this task is formidable because of the detailed anatomy of the medial temporal lobe, the difficulties in obtaining high-quality diffusion images of adequate resolution, and the challenges in diffusion data processing. Moreover, it is unclear if any differences will be significant for an individual patient or simply groups of patients. Successful endeavors will need to address each of these challenges in an integrated fashion. The rewards of such analysis may be detection of microscopic disease in vivo, which could represent a landmark accomplishment for the field of neuroradiology.
Collapse
|
28
|
Magnetic Resonance Characterization of Porous Media Using Diffusion through Internal Magnetic Fields. MATERIALS 2012; 5:590-616. [PMID: 28816998 PMCID: PMC5448962 DOI: 10.3390/ma5040590] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 03/27/2012] [Accepted: 03/28/2012] [Indexed: 11/30/2022]
Abstract
When a porous material is inserted into a uniform magnetic field, spatially varying fields typically arise inside the pore space due to susceptibility contrast between the solid matrix and the surrounding fluid. As a result, direct measurement of the field variation may provide a unique opportunity to characterize the pore geometry. The sensitivity of nuclear magnetic resonance (NMR) to inhomogeneous field variations through their dephasing effects on diffusing spins is unique and powerful. Recent theoretical and experimental research sheds new light on how to utilize susceptibility-induced internal field gradients to quantitatively probe the microstructure of porous materials. This article reviews ongoing developments based on the stimulated echo-pulse sequence to extend the characterization of porous media using both spatially resolved and unresolved susceptibility-induced internal gradients that operate on a diffusing-spin ensemble.
Collapse
|
29
|
Miller KL, Tijssen RHN, Stikov N, Okell TW. Steady-state MRI: methods for neuroimaging. ACTA ACUST UNITED AC 2011. [DOI: 10.2217/iim.10.66] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Lee J, Fukunaga M, Duyn JH. Improving contrast to noise ratio of resonance frequency contrast images (phase images) using balanced steady-state free precession. Neuroimage 2010; 54:2779-88. [PMID: 21040793 DOI: 10.1016/j.neuroimage.2010.10.071] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 10/20/2010] [Accepted: 10/23/2010] [Indexed: 11/29/2022] Open
Abstract
Recent MRI studies have exploited subtle magnetic susceptibility differences between brain tissues to improve anatomical contrast and resolution. These susceptibility differences lead to resonance frequency shifts which can be visualized by reconstructing the signal phase in conventional gradient echo (GRE) acquisition techniques. In this work, a method is proposed to improve the contrast to noise ratio per unit time (CNR efficiency) of anatomical MRI based on resonance frequency contrast. The method, based on the balanced steady-state free precession (bSSFP) MRI acquisition technique, was evaluated in its ability to generate contrast between gray and white matter in human brain at 3T and 7T. The results show substantially improved CNR efficiency of bSSFP phase images (2.85±0.21 times at 3 T and 1.71±0.11 times at 7 T) compared to the GRE data in a limited spatial area. This limited spatial coverage is attributed to the sensitivity of bSSFP to macroscopic B(0) inhomogeneities. With this CNR improvement, high resolution bSSFP phase images (resolution=0.3×0.3×2 mm(3), acquisition time=10min) acquired at 3T had sufficient CNR to allow the visualization of cortical laminar structures in invivo human primary visual cortex. Practical application of the proposed method may require improvement of B(0) homogeneity and stability by additional preparatory scans and/or compensation schemes such as respiration and drift compensation. Without these additions, the CNR benefits of the method may be limited to studies at low field or limited regions of interest.
Collapse
Affiliation(s)
- Jongho Lee
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1065, USA.
| | | | | |
Collapse
|