1
|
Wehrli FW. Recent Advances in MR Imaging-based Quantification of Brain Oxygen Metabolism. Magn Reson Med Sci 2024; 23:377-403. [PMID: 38866481 PMCID: PMC11234951 DOI: 10.2463/mrms.rev.2024-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
The metabolic rate of oxygen (MRO2) is fundamental to tissue metabolism. Determination of MRO2 demands knowledge of the arterio-venous difference in hemoglobin-bound oxygen concentration, typically expressed as oxygen extraction fraction (OEF), and blood flow rate (BFR). MRI is uniquely suited for measurement of both these quantities, yielding MRO2 in absolute physiologic units of µmol O2 min-1/100 g tissue. Two approaches are discussed, both relying on hemoglobin magnetism. Emphasis will be on cerebral oxygen metabolism expressed in terms of the cerebral MRO2 (CMRO2), but translation of the relevant technologies to other organs, including kidney and placenta will be touched upon as well. The first class of methods exploits the blood's bulk magnetic susceptibility, which can be derived from field maps. The second is based on measurement of blood water T2, which is modulated by diffusion and exchange in the local-induced fields within and surrounding erythrocytes. Some whole-organ methods achieve temporal resolution adequate to permit time-series studies of brain energetics, for instance, during sleep in the scanner with concurrent electroencephalogram (EEG) sleep stage monitoring. Conversely, trading temporal for spatial resolution has led to techniques for spatially resolved approaches based on quantitative blood oxygen level dependent (BOLD) or calibrated BOLD models, allowing regional assessment of vascular-metabolic parameters, both also exploiting deoxyhemoglobin paramagnetism like their whole-organ counterparts.
Collapse
Affiliation(s)
- Felix W Wehrli
- Laboratory for Structural, Physiologic and Functional Imaging (LSPFI), Department of Radiology, Perelman School of Medicine, University Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Li C, Buch S, Sun Z, Muccio M, Jiang L, Chen Y, Haacke EM, Zhang J, Wisniewski TM, Ge Y. In vivo mapping of hippocampal venous vasculature and oxygenation using susceptibility imaging at 7T. Neuroimage 2024; 291:120597. [PMID: 38554779 PMCID: PMC11115460 DOI: 10.1016/j.neuroimage.2024.120597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024] Open
Abstract
Mapping the small venous vasculature of the hippocampus in vivo is crucial for understanding how functional changes of hippocampus evolve with age. Oxygen utilization in the hippocampus could serve as a sensitive biomarker for early degenerative changes, surpassing hippocampal tissue atrophy as the main source of information regarding tissue degeneration. Using an ultrahigh field (7T) susceptibility-weighted imaging (SWI) sequence, it is possible to capture oxygen-level dependent contrast of submillimeter-sized vessels. Moreover, the quantitative susceptibility mapping (QSM) results derived from SWI data allow for the simultaneous estimation of venous oxygenation levels, thereby enhancing the understanding of hippocampal function. In this study, we proposed two potential imaging markers in a cohort of 19 healthy volunteers aged between 20 and 74 years. These markers were: 1) hippocampal venous density on SWI images and 2) venous susceptibility (Δχvein) in the hippocampus-associated draining veins (the inferior ventricular veins (IVV) and the basal veins of Rosenthal (BVR) using QSM images). They were chosen specifically to help characterize the oxygen utilization of the human hippocampus and medial temporal lobe (MTL). As part of the analysis, we demonstrated the feasibility of measuring hippocampal venous density and Δχvein in the IVV and BVR at 7T with high spatial resolution (0.25 × 0.25 × 1 mm3). Our results demonstrated the in vivo reconstruction of the hippocampal venous system, providing initial evidence regarding the presence of the venous arch structure within the hippocampus. Furthermore, we evaluated the age effect of the two quantitative estimates and observed a significant increase in Δχvein for the IVV with age (p=0.006, r2 = 0.369). This may suggest the potential application of Δχvein in IVV as a marker for assessing changes in atrophy-related hippocampal oxygen utilization in normal aging and neurodegenerative diseases such as AD and dementia.
Collapse
Affiliation(s)
- Chenyang Li
- Department of Radiology, Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, USA; Vilcek Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine, New York, NY, USA
| | - Sagar Buch
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Zhe Sun
- Department of Radiology, Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, USA; Vilcek Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine, New York, NY, USA
| | - Marco Muccio
- Department of Radiology, Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, USA
| | - Li Jiang
- Department of Radiology, Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, USA
| | - Yongsheng Chen
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
| | - E Mark Haacke
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA; Department of Radiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jiangyang Zhang
- Department of Radiology, Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Yulin Ge
- Department of Radiology, Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Biondetti E, Cho J, Lee H. Cerebral oxygen metabolism from MRI susceptibility. Neuroimage 2023; 276:120189. [PMID: 37230206 PMCID: PMC10335841 DOI: 10.1016/j.neuroimage.2023.120189] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/26/2023] [Accepted: 05/23/2023] [Indexed: 05/27/2023] Open
Abstract
This article provides an overview of MRI methods exploiting magnetic susceptibility properties of blood to assess cerebral oxygen metabolism, including the tissue oxygen extraction fraction (OEF) and the cerebral metabolic rate of oxygen (CMRO2). The first section is devoted to describing blood magnetic susceptibility and its effect on the MRI signal. Blood circulating in the vasculature can have diamagnetic (oxyhemoglobin) or paramagnetic properties (deoxyhemoglobin). The overall balance between oxygenated and deoxygenated hemoglobin determines the induced magnetic field which, in turn, modulates the transverse relaxation decay of the MRI signal via additional phase accumulation. The following sections of this review then illustrate the principles underpinning susceptibility-based techniques for quantifying OEF and CMRO2. Here, it is detailed whether these techniques provide global (OxFlow) or local (Quantitative Susceptibility Mapping - QSM, calibrated BOLD - cBOLD, quantitative BOLD - qBOLD, QSM+qBOLD) measurements of OEF or CMRO2, and what signal components (magnitude or phase) and tissue pools they consider (intravascular or extravascular). Validations studies and potential limitations of each method are also described. The latter include (but are not limited to) challenges in the experimental setup, the accuracy of signal modeling, and assumptions on the measured signal. The last section outlines the clinical uses of these techniques in healthy aging and neurodegenerative diseases and contextualizes these reports relative to results from gold-standard PET.
Collapse
Affiliation(s)
- Emma Biondetti
- Department of Neuroscience, Imaging and Clinical Sciences, "D'Annunzio University" of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, "D'Annunzio University" of Chieti-Pescara, Chieti, Italy
| | - Junghun Cho
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, New York, USA
| | - Hyunyeol Lee
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu, Republic of Korea; Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
4
|
Mahmud SZ, Bashir A. Repeatability assessment for simultaneous measurement of arterial blood flow, venous oxygen saturation, and muscle perfusion following dynamic exercise. NMR IN BIOMEDICINE 2023; 36:e4872. [PMID: 36349386 DOI: 10.1002/nbm.4872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The purpose of the present study was to demonstrate a new sequence and determine the repeatability of simultaneous dynamic measurements of blood flow, venous oxygen saturation (SvO2 ), and relative perfusion (change from resting perfusion) in calf muscle during recovery from plantar flexion exercise. The feasibility of near simultaneous measurement of bio-energetic parameters was also demonstrated. A sequence was developed to simultaneously measure arterial blood flow using flow-encoded projection, SvO2 using susceptibility-based oximetry, and relative perfusion using arterial spin labeling in combination with dynamic plantar flexion exercise. The parameters were determined at rest and during recovery from single leg plantar flexion exercise. Test-retest repeatability was analyzed using Bland-Altman analysis and intraclass correlation coefficients (ICC). The mitochondrial capacity of skeletal muscle was also measured immediately afterwards with dynamic phosphorus magnetic resonance spectroscopy. Eight healthy subjects participated in the study for test-retest repeatability. Popliteal artery blood flow at rest was 1.79 ± 0.58 ml/s and increased to 11.18 ± 3.02 ml/s immediately after exercise. Popliteal vein SvO2 decreased to 45.93% ± 6.5% from a resting value of 70.46% ± 4.76% following exercise. Relative perfusion (change from rest value) was 51.83 ± 15.00 ml/100 g/min at the cessation of exercise. The recovery of blood flow and SvO2 was modeled as a single exponential with time constants of 38.03 ± 6.91 and 71.19 ± 14.53 s, respectively. All the measured parameters exhibited good repeatability with ICC ranging from 0.8 to 0.95. Bioenergetics measurements were within normal range, demonstrating the feasibility of near simultaneous measurement of hemodynamic and energetic parameters. Clinical feasibility was assessed with Barth syndrome patients, demonstrating reduced oxygen extraction from the blood and reduced mitochondrial oxidative capacity compared with healthy controls. The proposed protocol allows rapid imaging of multiple parameters in skeletal muscle that might be affected in disease.
Collapse
Affiliation(s)
- Sultan Z Mahmud
- Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama, USA
| | - Adil Bashir
- Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
5
|
Improved laminar specificity and sensitivity by combining SE and GE BOLD signals. Neuroimage 2022; 264:119675. [PMID: 36243267 DOI: 10.1016/j.neuroimage.2022.119675] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/20/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
The most widely used gradient-echo (GE) blood oxygenation level-dependent (BOLD) contrast has high sensitivity, but low specificity due to draining vein contributions, while spin-echo (SE) BOLD approach at ultra-high magnetic fields is highly specific to neural active sites but has lower sensitivity. To obtain high specificity and sensitivity, we propose to utilize a vessel-size-sensitive filter to the GE-BOLD signal, which suppresses macrovascular contributions and to combine selectively retained microvascular GE-BOLD signals with the SE-BOLD signals. To investigate our proposed idea, fMRI with 0.8 mm isotropic resolution was performed on the primary motor and sensory cortices in humans at 7 T by implementing spin- and gradient-echo (SAGE) echo planar imaging (EPI) acquisition. Microvascular-passed sigmoidal filters were designed based upon the vessel-size-sensitive ΔR2*/ΔR2 value for retaining GE-BOLD signals originating from venous vessels with ≤ 45 μm and ≤ 65 μm diameter. Unlike GE-BOLD fMRI, the laminar profile of SAGE-BOLD fMRI with the vessel-size-sensitive filter peaked at ∼ 1.0 mm from the surface of the primary motor and sensory cortices, demonstrating an improvement of laminar specificity over GE-BOLD fMRI. Also, the functional sensitivity of SAGE BOLD at middle layers (0.75-1.5 mm) was improved by ∼ 80% to ∼100% when compared with SE BOLD. In summary, we showed that combined GE- and SE-BOLD fMRI with the vessel-size-sensitive filter indeed yielded improved laminar specificity and sensitivity and is therefore an excellent tool for high spatial resolution ultra-high filed (UHF)-fMRI studies for resolving mesoscopic functional units.
Collapse
|
6
|
Wirestam R, Lundberg A, Chakwizira A, van Westen D, Knutsson L, Lind E. Test-retest analysis of cerebral oxygen extraction estimates in healthy volunteers: comparison of methods based on quantitative susceptibility mapping and dynamic susceptibility contrast magnetic resonance imaging. Heliyon 2022; 8:e12364. [PMID: 36590544 PMCID: PMC9801129 DOI: 10.1016/j.heliyon.2022.e12364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/18/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Background Estimation of the oxygen extraction fraction (OEF) by quantitative susceptibility mapping (QSM) magnetic resonance imaging (MRI) is promising but requires systematic evaluation. Extraction of OEF-related information from the tissue residue function in dynamic susceptibility contrast MRI (DSC-MRI) has also been proposed. In this study, whole-brain OEF repeatability was investigated, as well as the relationships between QSM-based OEF and DSC-MRI-based parameters, i.e., mean transit time (MTT) and an oxygen extraction index, referred to as apparent OEF (AOEF). Method Test-retest data were obtained from 20 healthy volunteers at 3 T. QSM maps were reconstructed from 3D gradient-echo MRI phase data, using morphology-enabled dipole inversion. DSC-MRI was accomplished using gradient-echo MRI at a temporal resolution of 1.24 s. Results The whole-brain QSM-based OEF was (40.4±4.8) % and, in combination with a previously published cerebral blood flow (CBF) estimate, this corresponds to a cerebral metabolic rate of oxygen level of CMRO2 = 3.36 ml O2/min/100 g. The intra-class correlation coefficient [ICC(2,1)] for OEF test-retest data was 0.73. The MTT-versus-OEF and AOEF-versus-OEF relationships showed correlation coefficients of 0.61 (p = 0.004) and 0.52 (p = 0.019), respectively. Discussion QSM-based OEF showed a convincing absolute level and good test-retest results in terms of the ICC. Moderate to good correlations between QSM-based OEF and DSC-MRI-based parameters were observed. The present results constitute an indicator of the level of robustness that can be achieved without applying extraordinary resources in terms of MRI equipment, imaging protocol, QSM reconstruction, and OEF analysis.
Collapse
Affiliation(s)
- Ronnie Wirestam
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Anna Lundberg
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Arthur Chakwizira
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Danielle van Westen
- Department of Diagnostic Radiology, Lund University, Lund, Sweden
- Image and Function, Skåne University Hospital, Lund, Sweden
| | - Linda Knutsson
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Emelie Lind
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Murdoch R, Stotesbury H, Hales PW, Kawadler JM, Kölbel M, Clark CA, Kirkham FJ, Shmueli K. A Comparison of MRI Quantitative Susceptibility Mapping and TRUST-Based Measures of Brain Venous Oxygen Saturation in Sickle Cell Anaemia. Front Physiol 2022; 13:913443. [PMID: 36105280 PMCID: PMC9465016 DOI: 10.3389/fphys.2022.913443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, interest has grown in the potential for magnetic resonance imaging (MRI) measures of venous oxygen saturation (Yv) to improve neurological risk prediction. T2-relaxation-under-spin-tagging (TRUST) is an MRI technique which has revealed changes in Yv in patients with sickle cell anemia (SCA). However, prior studies comparing Yv in patients with SCA relative to healthy controls have reported opposing results depending on whether the calibration model, developed to convert blood T2 to Yv, is based on healthy human hemoglobin (HbA), bovine hemoglobin (HbBV) or sickle hemoglobin (HbS). MRI Quantitative Susceptibility Mapping (QSM) is an alternative technique that may hold promise for estimating Yv in SCA as blood magnetic susceptibility is linearly dependent upon Yv, and no significant difference has been found between the magnetic susceptibility of HbA and HbS. Therefore, the aim of this study was to compare estimates of Yv using QSM and TRUST with five published calibration models in healthy controls and patients with SCA. 17 patients with SCA and 13 healthy controls underwent MRI. Susceptibility maps were calculated from a multi-parametric mapping acquisition and Yv was calculated from the mean susceptibility in a region of interest in the superior sagittal sinus. TRUST estimates of T2, within a similar but much smaller region, were converted to Yv using five different calibration models. Correlation and Bland-Altman analyses were performed to compare estimates of Yv between TRUST and QSM methods. For each method, t-tests were also used to explore group-wise differences between patients with SCA and healthy controls. In healthy controls, significant correlations were observed between QSM and TRUST measures of Yv, while in SCA, there were no such correlations. The magnitude and direction of group-wise differences in Yv varied with method. The TRUST-HbBV and QSM methods suggested decreased Yv in SCA relative to healthy controls, while the TRUST-HbS (p < 0.01) and TRUST-HbA models suggested increased Yv in SCA as in previous studies. Further validation of all MRI measures of Yv, relative to ground truth measures such as O15 PET and jugular vein catheterization, is required in SCA before QSM or TRUST methods can be considered for neurological risk prediction.
Collapse
Affiliation(s)
- Russell Murdoch
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Hanne Stotesbury
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Patrick W. Hales
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Jamie M. Kawadler
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Melanie Kölbel
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Christopher A. Clark
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Fenella J. Kirkham
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom
| | - Karin Shmueli
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| |
Collapse
|
8
|
Shen J, Miao X, Vu C, Xu B, González-Zacarías C, Nederveen AJ, Wood JC. Anemia Increases Oxygen Extraction Fraction in Deep Brain Structures but Not in the Cerebral Cortex. Front Physiol 2022; 13:896006. [PMID: 35784894 PMCID: PMC9248375 DOI: 10.3389/fphys.2022.896006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/19/2022] [Indexed: 01/26/2023] Open
Abstract
Sickle cell disease (SCD) is caused by a single amino acid mutation in hemoglobin, causing chronic anemia and neurovascular complications. However, the effects of chronic anemia on oxygen extraction fraction (OEF), especially in deep brain structures, are less well understood. Conflicting OEF values have been reported in SCD patients, but have largely attributed to different measurement techniques, faulty calibration, and different locations of measurement. Thus, in this study, we investigated the reliability and agreement of two susceptibility-based methods, quantitative susceptibility mapping (QSM) and complex image summation around a spherical or a cylindrical object (CISSCO), for OEF measurements in internal cerebral vein (ICV), reflecting oxygen saturation in deep brain structures. Both methods revealed that SCD patients and non-sickle anemia patients (ACTL) have increased OEF in ICV (42.6% ± 5.6% and 30.5% ± 3.6% in SCD by CISSCO and QSM respectively, 37.0% ± 4.1% and 28.5% ± 2.3% in ACTL) compared with controls (33.0% ± 2.3% and 26.8% ± 1.8%). OEF in ICV varied reciprocally with hematocrit (r 2 = 0.92, 0.53) and oxygen content (r 2 = 0.86, 0.53) respectively. However, an opposite relationship was observed for OEF measurements in sagittal sinus (SS) with the widely used T2-based oximetry, T2-Relaxation-Under-Spin-Tagging (TRUST), in the same cohorts (31.2% ± 6.6% in SCD, 33.3% ± 5.9% in ACTL and 36.8% ± 5.6% in CTL). Importantly, we demonstrated that hemoglobin F and other fast moving hemoglobins decreased OEF by TRUST and explained group differences in sagittal sinus OEF between anemic and control subjects. These data demonstrate that anemia causes deep brain hypoxia in anemia subjects with concomitant preservation of cortical oxygenation, as well as the key interaction of the hemoglobin dissociation curve and cortical oxygen extraction.
Collapse
Affiliation(s)
- Jian Shen
- Biomedical Engineering, University of Southern California, Los Angeles, Los Angeles, CA, United States
| | - Xin Miao
- Siemens, Boston, MA, United States
| | - Chau Vu
- Biomedical Engineering, University of Southern California, Los Angeles, Los Angeles, CA, United States
| | - Botian Xu
- Biomedical Engineering, University of Southern California, Los Angeles, Los Angeles, CA, United States
| | - Clio González-Zacarías
- Neuroscience Graduate Program, University of Southern California, Los Angeles, Los Angeles, CA, United States
| | - Aart J. Nederveen
- Amsterdam UMC, Radiology and Nuclear Medicine, University of Amsterdam, Amsterdam, Netherlands
| | - John C. Wood
- Biomedical Engineering, University of Southern California, Los Angeles, Los Angeles, CA, United States,Department of Pediatrics and Radiology, Children’s Hospital Los Angeles, Los Angeles, CA, United States,*Correspondence: John C. Wood,
| |
Collapse
|
9
|
Jiang D, Lu H. Cerebral oxygen extraction fraction MRI: Techniques and applications. Magn Reson Med 2022; 88:575-600. [PMID: 35510696 PMCID: PMC9233013 DOI: 10.1002/mrm.29272] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/20/2022] [Accepted: 03/29/2022] [Indexed: 12/20/2022]
Abstract
The human brain constitutes 2% of the body's total mass but uses 20% of the oxygen. The rate of the brain's oxygen utilization can be derived from a knowledge of cerebral blood flow and the oxygen extraction fraction (OEF). Therefore, OEF is a key physiological parameter of the brain's function and metabolism. OEF has been suggested to be a useful biomarker in a number of brain diseases. With recent advances in MRI techniques, several MRI-based methods have been developed to measure OEF in the human brain. These MRI OEF techniques are based on the T2 of blood, the blood signal phase, the magnetic susceptibility of blood-containing voxels, the effect of deoxyhemoglobin on signal behavior in extravascular tissue, and the calibration of the BOLD signal using gas inhalation. Compared to 15 O PET, which is considered the "gold standard" for OEF measurement, MRI-based techniques are non-invasive, radiation-free, and are more widely available. This article provides a review of these emerging MRI-based OEF techniques. We first briefly introduce the role of OEF in brain oxygen homeostasis. We then review the methodological aspects of different categories of MRI OEF techniques, including their signal mechanisms, acquisition methods, and data analyses. The strengths and limitations of the techniques are discussed. Finally, we review key applications of these techniques in physiological and pathological conditions.
Collapse
Affiliation(s)
- Dengrong Jiang
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Bartnik-Olson BL, Blood AB, Terry MH, Hanson SFL, Day C, Kido D, Kim P. Quantitative susceptibility mapping as a measure of cerebral oxygenation in neonatal piglets. J Cereb Blood Flow Metab 2022; 42:891-900. [PMID: 34878947 PMCID: PMC9254037 DOI: 10.1177/0271678x211065199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 11/15/2022]
Abstract
Prominence of cerebral veins using susceptibility weighted magnetic resonance imaging (SWI) has been used as a qualitative indicator of cerebral venous oxygenation (CvO2). Quantitative susceptibility mapping (QSM) adds more precision to the assessment of CvO2, but has not been applied to neonatal hypoxic ischemic injury (HII). We proposed to study QSM measures of venous susceptibility and their correlation with direct measures of brain oxygenation and cerebral blood flow (CBF) in the neonatal piglet. The association of QSM intravascular cerebral venous susceptibility, with brain tissue O2 tension, CBF, cortical tissue oxyhemoglobin saturation, and the partial pressure of oxygen in arterial blood measurement during various oxygenation states was determined by linear regression. Compared to normoxia, venous susceptibility in the straight sinus increased 56.8 ± 25.4% during hypoxia, while decreasing during hyperoxia (23.5 ± 32.9%) and hypercapnia (23.3 ± 73.1%), which was highly correlated to all other measures of oxygenation (p < 0.0001) but did not correlate to CBF (p = 0.82). These findings demonstrate a strong relationship between venous susceptibility and brain tissue O2 tension. Our results suggest that QSM-derived venous susceptibility is sensitive to cerebral oxygenation status across various oxygenation states.
Collapse
Affiliation(s)
| | - Arlin B Blood
- Department of Pediatrics, Loma Linda University School of
Medicine, Center for Perinatal Biology, Loma Linda, CA, USA
| | - Michael H Terry
- Department of Pulmonary & Critical Care, Loma Linda
University Medical Center, Loma Linda, CA, USA
| | - Shawn FL Hanson
- Center for Perinatal Biology, Loma Linda University School of
Medicine, Loma Linda, CA, USA
| | - Christopher Day
- Department of Pediatrics, Office of Graduate Medical Education,
Loma Linda, CA, USA
| | - Daniel Kido
- Department of Radiology, Loma Linda University Medical Center,
Loma Linda, CA, USA
| | - Paggie Kim
- Department of Radiology, Loma Linda University Medical Center,
Loma Linda, CA, USA
| |
Collapse
|
11
|
Lundberg A, Lind E, Olsson H, Helms G, Knutsson L, Wirestam R. Comparison of MRI methods for measuring whole‐brain oxygen extraction fraction under different geometric conditions at 7T. J Neuroimaging 2022; 32:442-458. [PMID: 35128747 PMCID: PMC9305937 DOI: 10.1111/jon.12975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/22/2021] [Accepted: 01/18/2022] [Indexed: 11/28/2022] Open
Abstract
Background and Purpose Methods Results Conclusion
Collapse
Affiliation(s)
- Anna Lundberg
- Department of Medical Radiation Physics Lund University Lund Sweden
| | - Emelie Lind
- Department of Medical Radiation Physics Lund University Lund Sweden
| | - Hampus Olsson
- Department of Medical Radiation Physics Lund University Lund Sweden
| | - Gunther Helms
- Department of Medical Radiation Physics Lund University Lund Sweden
| | - Linda Knutsson
- Department of Medical Radiation Physics Lund University Lund Sweden
- Russell H. Morgan Department of Radiology and Radiological Science Johns Hopkins University School of Medicine Baltimore Maryland United States
| | - Ronnie Wirestam
- Department of Medical Radiation Physics Lund University Lund Sweden
| |
Collapse
|
12
|
Hendley SA, Dimov A, Bhargava A, Snoddy E, Mansour D, Afifi RO, Wool GD, Zha Y, Sammet S, Lu ZF, Ahmed O, Paul JD, Bader KB. Assessment of histological characteristics, imaging markers, and rt-PA susceptibility of ex vivo venous thrombi. Sci Rep 2021; 11:22805. [PMID: 34815441 PMCID: PMC8610976 DOI: 10.1038/s41598-021-02030-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/08/2021] [Indexed: 12/27/2022] Open
Abstract
Venous thromboembolism is a significant source of morbidity and mortality worldwide. Catheter-directed thrombolytics is the primary treatment used to relieve critical obstructions, though its efficacy varies based on the thrombus composition. Non-responsive portions of the specimen often remain in situ, which prohibits mechanistic investigation of lytic resistance or the development of diagnostic indicators for treatment outcomes. In this study, thrombus samples extracted from venous thromboembolism patients were analyzed ex vivo to determine their histological properties, susceptibility to lytic therapy, and imaging characteristics. A wide range of thrombus morphologies were observed, with a dependence on age and etymology of the specimen. Fibrinolytic inhibitors including PAI-1, alpha 2-antiplasmin, and TAFI were present in samples, which may contribute to the response venous thrombi to catheter-directed thrombolytics. Finally, a weak but significant correlation was observed between the response of the sample to lytic drug and its magnetic microstructure assessed with a quantitative MRI sequence. These findings highlight the myriad of changes in venous thrombi that may promote lytic resistance, and imaging metrics that correlate with treatment outcomes.
Collapse
Affiliation(s)
- Samuel A Hendley
- Committee on Medical Physics, University of Chicago, Chicago, IL, 60637, USA
| | - Alexey Dimov
- Department of Radiology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Aarushi Bhargava
- Department of Radiology, University of Chicago, Chicago, IL, 60637, USA
| | - Erin Snoddy
- Department of Radiology, University of Chicago, Chicago, IL, 60637, USA
| | - Daniel Mansour
- Department of Radiology, University of Chicago, Chicago, IL, 60637, USA
| | - Rana O Afifi
- Department of Cardiothoracic and Vascular Surgery, University of Texas at Houston, Houston, TX, 77030, USA
| | - Geoffrey D Wool
- Department of Pathology, University of Chicago, Chicago, IL, 60637, USA
| | - Yuanyuan Zha
- The Human Immunological Monitoring Facility, University of Chicago, Chicago, IL, 60637, USA
| | - Steffen Sammet
- Committee on Medical Physics, University of Chicago, Chicago, IL, 60637, USA
- Department of Radiology, University of Chicago, Chicago, IL, 60637, USA
| | - Zheng Feng Lu
- Committee on Medical Physics, University of Chicago, Chicago, IL, 60637, USA
- Department of Radiology, University of Chicago, Chicago, IL, 60637, USA
| | - Osman Ahmed
- Department of Radiology, University of Chicago, Chicago, IL, 60637, USA
| | - Jonathan D Paul
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Kenneth B Bader
- Committee on Medical Physics, University of Chicago, Chicago, IL, 60637, USA.
- Department of Radiology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
13
|
Yan Y, Hernandez-Andrade E, Basij M, Alshahrani SS, Kondle S, Brown BO, Gelovani J, Hassan S, Hsu CD, Mehrmohammadi M. Endocavity ultrasound and photoacoustic system for fetal and maternal imaging: design, implementation, and ex-vivo validation. J Med Imaging (Bellingham) 2021; 8:066001. [PMID: 34778491 DOI: 10.1117/1.jmi.8.6.066001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 10/22/2021] [Indexed: 11/14/2022] Open
Abstract
Purpose: Transvaginal ultrasound (TVUS) is a widely used real-time and non-invasive imaging technique for fetal and maternal care. It can provide structural and functional measurements about the fetal brain, such as blood vessel diameter and blood flow. However, it lacks certain biochemical estimations, such as hemoglobin oxygen saturation ( SO 2 ), which limits its ability to indicate a fetus at risk of birth asphyxia. Photoacoustic (PA) imaging has been steadily growing in recognition as a complement to ultrasound (US). Studies have shown PA imaging is capable of providing such biochemical estimations as SO 2 at relatively high penetration depth (up to 30 mm). Approach: In this study, we have designed and developed a multi-modal (US, PA, and Doppler) endocavity imaging system (ECUSPA) around a commercialized TVUS probe (Philips ATL C9-5). Results: The integrated system was evaluated through a set of in-vitro, ex-vivo, and in-vivo studies. Imaging of excised sheep brain tissue demonstrated the system's utility and penetration depth in transfontanelle imaging conditions. The accuracy of using the spectroscopic PA imaging (sPA) method to estimate SO 2 was validated by comparing sPA oximetry results with the gold standard measurements indicated by a blood gas analyzer. The ability of US and Doppler to measure moving blood volume was evaluated in-vivo. Spectral unmixing capabilities were tested using fluorophores within sheep brains. Conclusion: The developed system is a high resolution (about 200 μ m at 30 mm depth), real-time (at 30 Hz), and quantitative ( SO 2 estimation error < 10 % ) imaging tool with a total diameter less than 30 mm, making it suitable for intrapartum applications such as fetal and maternal diagnostics.
Collapse
Affiliation(s)
- Yan Yan
- Wayne State University, Department of Biomedical Engineering, Detroit, Michigan, United States
| | - Edgar Hernandez-Andrade
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, U.S. Department of Health and Human Services, Detroit, Michigan, United States.,University of Texas, McGovern Medical School, Health Science Center at Houston (UTHealth), Department of Obstetrics and Gynecology and Reproductive Sciences, Houston, Texas, United States
| | - Maryam Basij
- Wayne State University, Department of Biomedical Engineering, Detroit, Michigan, United States
| | - Suhail S Alshahrani
- King Saud University, Department of Biomedical Technology, Riyadh, Kingdom of Saudi Arabia
| | - Sirisha Kondle
- Wayne State University, Department of Biomedical Engineering, Detroit, Michigan, United States
| | - Barrington O Brown
- Wayne State University, Department of Biomedical Engineering, Detroit, Michigan, United States
| | - Juri Gelovani
- Wayne State University, Department of Biomedical Engineering, Detroit, Michigan, United States
| | - Sonia Hassan
- Wayne State University School of Medicine, Department of Obstetrics and Gynecology, Detroit, Michigan, United States.,Wayne State University School of Medicine, Department of Physiology, Detroit, Michigan, United States.,Wayne State University School of Medicine, Office of Women's Health, Detroit, Michigan, United States
| | - Chaur-Dong Hsu
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, U.S. Department of Health and Human Services, Detroit, Michigan, United States
| | - Mohammad Mehrmohammadi
- Wayne State University, Department of Biomedical Engineering, Detroit, Michigan, United States.,Wayne State University School of Medicine, Department of Obstetrics and Gynecology, Detroit, Michigan, United States.,Wayne State University, Department of Electrical and Computer Engineering, Detroit, Michigan, United States.,Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, United States
| |
Collapse
|
14
|
Han S, Eun S, Cho H, Uludaǧ K, Kim SG. Improvement of sensitivity and specificity for laminar BOLD fMRI with double spin-echo EPI in humans at 7 T. Neuroimage 2021; 241:118435. [PMID: 34324976 DOI: 10.1016/j.neuroimage.2021.118435] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/26/2021] [Indexed: 12/19/2022] Open
Abstract
Mapping mesoscopic cortical functional units such as columns or laminae is increasingly pursued by ultra-high field (UHF) functional magnetic resonance imaging (fMRI). The most popular approach for high-resolution fMRI is currently gradient-echo (GE) blood oxygenation level-dependent (BOLD) fMRI. However, its spatial accuracy is reduced due to its sensitivity to draining vessels, including pial veins, whereas spin-echo (SE) BOLD signal is expected to have higher spatial accuracy, albeit with lower sensitivity than the GE-BOLD signal. Here, we introduce a new double spin-echo (dSE) echo-planar imaging (EPI) method to improve the sensitivity of SE-BOLD contrast by averaging two spin-echoes using three radiofrequency pulses. Human fMRI experiments were performed with slices perpendicular to the central sulcus between motor and sensory cortices at 7 T during fist-clenching with touching. First, we evaluated the feasibility of single-shot dSE-EPI for BOLD fMRI with 1.5 mm isotropic resolution and found that dSE-BOLD fMRI has higher signal-to-noise ratio (SNR), temporal SNR (tSNR), and higher functional sensitivity than conventional SE-BOLD fMRI. Second, to investigate the laminar specificity of dSE-BOLD fMRI, we implemented a multi-shot approach to achieve 0.8-mm isotropic resolution with sliding-window reconstruction. Unlike GE-BOLD fMRI, the cortical profile of dSE-BOLD fMRI peaked at ~ 1.0 mm from the surface of the primary motor and sensory cortices, demonstrating an improvement of laminar specificity in humans over GE-BOLD fMRI. The proposed multi-shot dSE-EPI method is viable for high spatial resolution UHF-fMRI studies in the pursuit of resolving mesoscopic functional units.
Collapse
Affiliation(s)
- SoHyun Han
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea.
| | - Seulgi Eun
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - HyungJoon Cho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Kâmil Uludaǧ
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea; Techna Institute & Koerner Scientist in MR Imaging, University Health Network, Toronto, Canada
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
15
|
Berg RC, Preibisch C, Thomas DL, Shmueli K, Biondetti E. Investigating the effect of flow compensation and quantitative susceptibility mapping method on the accuracy of venous susceptibility measurement. Neuroimage 2021; 240:118399. [PMID: 34273528 DOI: 10.1016/j.neuroimage.2021.118399] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/15/2021] [Accepted: 07/13/2021] [Indexed: 11/25/2022] Open
Abstract
Quantitative susceptibility mapping (QSM) is a promising non-invasive method for obtaining information relating to oxygen metabolism. However, the optimal acquisition sequence and QSM reconstruction method for reliable venous susceptibility measurements are unknown. Full flow compensation is generally recommended to correct for the influence of venous blood flow, although the effect of flow compensation on the accuracy of venous susceptibility values has not been systematically evaluated. In this study, we investigated the effect of different acquisition sequences, including different flow compensation schemes, and different QSM reconstruction methods on venous susceptibilities. Ten healthy subjects were scanned with five or six distinct QSM sequence designs using monopolar readout gradients and different flow compensation schemes. All data sets were processed using six different QSM pipelines and venous blood susceptibility was evaluated in whole-brain segmentations of the venous vasculature and single veins. The quality of vein segmentations and the accuracy of venous susceptibility values were analyzed and compared between all combinations of sequences and reconstruction methods. The influence of the QSM reconstruction method on average venous susceptibility values was found to be 2.7-11.6 times greater than the influence of the acquisition sequence, including flow compensation. The majority of the investigated QSM reconstruction methods tended to underestimate venous susceptibility values in the vein segmentations that were obtained. In summary, we found that multi-echo gradient-echo acquisition sequences without full flow compensation yielded venous susceptibility values comparable to sequences with full flow compensation. However, the QSM reconstruction method had a great influence on susceptibility values and thus needs to be selected carefully for accurate venous QSM.
Collapse
Affiliation(s)
- Ronja C Berg
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Munich, Germany.
| | - Christine Preibisch
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, TUM Neuroimaging Center, Ismaninger Str. 22, 81675 Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Clinic for Neurology, Ismaninger Str. 22, 81675 Munich, Munich, Germany.
| | - David L Thomas
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, United Kingdom; Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, United Kingdom; Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, United Kingdom.
| | - Karin Shmueli
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom.
| | - Emma Biondetti
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom; Institut du Cerveau - ICM, Centre de NeuroImagerie de Recherche - CENIR, Team "Movement Investigations and Therapeutics" (MOV'IT), INSERM U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France.
| |
Collapse
|
16
|
Investigation of the magnetic susceptibility properties of fresh and fixed mouse heart, liver, skeletal muscle and brain tissue. Phys Med 2021; 88:37-44. [PMID: 34171574 DOI: 10.1016/j.ejmp.2021.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 06/08/2021] [Accepted: 06/13/2021] [Indexed: 11/22/2022] Open
Abstract
PURPOSE Several magnetic resonance imaging (MRI) techniques exploit the difference in magnetic susceptibilities between tissues, but systematic measurements of tissue susceptibility are lacking. Furthermore, there is the question as to whether chemical fixation that is used for ex vivo MRI studies, affects the magnetic properties of the tissue. Here, we determined the magnetic susceptibility and water content of fresh and chemically fixed mouse tissue. METHODS Mass susceptibility of brain, heart, liver and skeletal muscle samples were determined on a vibrating sample magnetometer at room temperature. Measurements at 50, 125, 200 and 295 K were performed to assess the temperature dependence of susceptibility. Moreover, we measured water content of fresh and fixed samples. RESULTS All samples show mass susceptibilities between -0.068 and -1.929 × 10-8 m3/kg, compared to -9.338 × 10-9 m3/kg of double distilled water. Heart tissue has a more diamagnetic susceptibility than the other tissues. Compared to fresh tissue, fixed tissue has a less diamagnetic susceptibility. Fixed tissue was not different in water content to fresh tissue and showed no consistent dependence of susceptibility with temperature, whereas fresh tissue shows a decrease to at least 125 K, indicative of a paramagnetic component. CONCLUSIONS Biological tissues are diamagnetic in comparison to water, where the heart is more diamagnetic than the other tissues, with paramagnetic contributions. Fixation rendered tissue less diamagnetic compared to fresh tissue. Our measurements revealed differences in tissue susceptibility between VSM and QSM, inviting more research to compare susceptibility-based MRI methods with physical measurements of tissue susceptibility.
Collapse
|
17
|
Investigation of the plaque morphology effect on changes of pulsatile blood flow in a stenosed curved artery induced by an external magnetic field. Comput Biol Med 2021; 135:104600. [PMID: 34214938 DOI: 10.1016/j.compbiomed.2021.104600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/09/2021] [Accepted: 06/20/2021] [Indexed: 01/20/2023]
Abstract
In a new therapeutic technique, called magnetic drug targeting (MDT), magnetic particles carrying therapeutic agents are directed to the target tissue by applying an external magnetic field. Meanwhile, this magnetic field also affects the blood as a biomagnetic fluid. Therefore, it is necessary to select a magnetic field with an acceptable range of influence on the blood flow. This study investigates the effect of an external magnetic field on the pulsatile blood flow in a stenosed curved artery to identify a safe magnetic field. The effects of a number of parameters, including the magnetic susceptibility of blood in oxygenated and deoxygenated states and the magnetic field strength, were studied. Moreover, the effect of the plaque morphology, including the occlusion percentage and the chord length of the stenosis, on changes in blood flow induced by the magnetic field was investigated. The results show that applying a magnetic field increases the wall shear stress (WSS) and the pressure of the deoxygenated blood. Comparing the wall shear stresses of the deoxygenated and oxygenated blood shows that the effect of magnetic field on the deoxygenated blood is more significant than its effect on the oxygenated blood due to its higher magnetic susceptibility. The study of the stenosis geometry shows that the influence of magnetic field on the blood flow is increased by decreasing the occlusion percentage of the artery. Furthermore, among the evaluated lengths, the 50° chord length results in the highest variation under the influence of the magnetic field. Finally, the magnetic field of Mn = 2.5 can be utilized as a safe field for MDT purposes in such a stenosed curved artery.
Collapse
|
18
|
Gozt A, Hellewell S, Ward PGD, Bynevelt M, Fitzgerald M. Emerging Applications for Quantitative Susceptibility Mapping in the Detection of Traumatic Brain Injury Pathology. Neuroscience 2021; 467:218-236. [PMID: 34087394 DOI: 10.1016/j.neuroscience.2021.05.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/16/2022]
Abstract
Traumatic brain injury (TBI) is a common but heterogeneous injury underpinned by numerous complex and interrelated pathophysiological mechanisms. An essential trace element, iron is abundant within the brain and involved in many fundamental neurobiological processes, including oxygen transportation, oxidative phosphorylation, myelin production and maintenance, as well as neurotransmitter synthesis and metabolism. Excessive levels of iron are neurotoxic and thus iron homeostasis is tightly regulated in the brain, however, many details about the mechanisms by which this is achieved are yet to be elucidated. A key mediator of oxidative stress, mitochondrial dysfunction and neuroinflammatory response, iron dysregulation is an important contributor to secondary injury in TBI. Advances in neuroimaging that leverage magnetic susceptibility properties have enabled increasingly comprehensive investigations into the distribution and behaviour of iron in the brain amongst healthy individuals as well as disease states such as TBI. Quantitative Susceptibility Mapping (QSM) is an advanced neuroimaging technique that promises quantitative estimation of local magnetic susceptibility at the voxel level. In this review, we provide an overview of brain iron and its homeostasis, describe recent advances enabling applications of QSM within the context of TBI and summarise the current state of the literature. Although limited, the emergent research suggests that QSM is a promising neuroimaging technique that can be used to investigate a host of pathophysiological changes that are associated with TBI.
Collapse
Affiliation(s)
- Aleksandra Gozt
- Curtin University, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Bentley, WA Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA Australia
| | - Sarah Hellewell
- Curtin University, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Bentley, WA Australia
| | - Phillip G D Ward
- Australian Research Council Centre of Excellence for Integrative Brain Function, VIC Australia; Turner Institute for Brain and Mental Health, Monash University, VIC Australia
| | - Michael Bynevelt
- Neurological Intervention and Imaging Service of Western Australia, Sir Charles Gairdner Hospital, Nedlands, WA Australia
| | - Melinda Fitzgerald
- Curtin University, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Bentley, WA Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA Australia.
| |
Collapse
|
19
|
Wen Y, Spincemaille P, Nguyen T, Cho J, Kovanlikaya I, Anderson J, Wu G, Yang B, Fung M, Li K, Kelley D, Benhamo N, Wang Y. Multiecho complex total field inversion method (mcTFI) for improved signal modeling in quantitative susceptibility mapping. Magn Reson Med 2021; 86:2165-2178. [PMID: 34028868 DOI: 10.1002/mrm.28814] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 02/20/2021] [Accepted: 03/28/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE Typical quantitative susceptibility mapping (QSM) reconstruction steps consist of first estimating the magnetization field from the gradient-echo images, and then reconstructing the susceptibility map from the estimated field. The errors from the field-estimation steps may propagate into the final QSM map, and the noise in the estimated field map may no longer be zero-mean Gaussian noise, thus, causing streaking artifacts in the resulting QSM. A multiecho complex total field inversion (mcTFI) method was developed to compute the susceptibility map directly from the multiecho gradient echo images using an improved signal model that retains the Gaussian noise property in the complex domain. It showed improvements in QSM reconstruction over the conventional field-to-source inversion. METHODS The proposed mcTFI method was compared with the nonlinear total field inversion (nTFI) method in a numerical brain with hemorrhage and calcification, the numerical brains provided by the QSM Challenge 2.0, 18 brains with intracerebral hemorrhage scanned at 3T, and 6 healthy brains scanned at 7T. RESULTS Compared with nTFI, the proposed mcTFI showed more accurate QSM reconstruction around the lesions in the numerical simulations. The mcTFI reconstructed QSM also showed the best image quality with the least artifacts in the brains with intracerebral hemorrhage scanned at 3T and healthy brains scanned at 7T. CONCLUSION The proposed multiecho complex total field inversion improved QSM reconstruction over traditional field-to-source inversion through better signal modeling.
Collapse
Affiliation(s)
- Yan Wen
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA.,Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | | | - Thanh Nguyen
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Junghun Cho
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA.,Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Ilhami Kovanlikaya
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | | | - Gaohong Wu
- General Electrical Healthcare, Waukesha, Wisconsin, USA
| | - Baolian Yang
- General Electrical Healthcare, Waukesha, Wisconsin, USA
| | - Maggie Fung
- General Electrical Healthcare, Waukesha, Wisconsin, USA
| | - Ke Li
- General Electrical Healthcare, Waukesha, Wisconsin, USA
| | | | | | - Yi Wang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA.,Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
20
|
Dimov AV, Christoforidis GA, Saadat N, Liu MM, Jeong YI, Roth S, Niekrasz M, Carroll TJ. QSM in canine model of acute cerebral ischemia: A pilot study. Magn Reson Med 2021; 85:1602-1610. [PMID: 33034078 DOI: 10.1002/mrm.28498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/28/2020] [Accepted: 08/05/2020] [Indexed: 11/07/2022]
Abstract
PURPOSE In the present study, we investigated the potential of QSM to assess the physiological state of cortical tissue in the middle cerebral artery occlusion canine model of a cerebral ischemia. METHODS Experiments were performed in 8 anesthetized canines. Gradient echo, perfusion, and DWI data of brains at normal and ischemic states were acquired. In the postprocessed susceptibility and quantitative cerebral blood flow maps, changes in values within the middle cerebral artery-fed cortical territories were quantified both on the ischemic and normal contralateral hemisphere side. RESULTS QSM values in critically ischemic tissue were significantly different from contralateral values-namely, susceptibility increase was observed in the cases in which cerebral perfusion was maintained above the threshold of neuronal death. Furthermore, the data indicates presence of a significant correlation between the changes in susceptibility values, cerebral perfusion, and the infarct volume and pial collateral scores. Additionally, our data suggests that difference in cortical susceptibility is prospectively indicative of the infarct growth rate. CONCLUSION In an experimental permanent middle cerebral artery occlusion model, QSM was shown to correlate with the functional parameters characterizing viability of ischemic tissue, thus warranting further research on its ability to provide complementary information during acute stroke MRI examinations in humans.
Collapse
Affiliation(s)
- Alexey V Dimov
- Department of Radiology, University of Chicago, Chicago, Illinois, USA
| | | | - Niloufar Saadat
- Department of Radiology, University of Chicago, Chicago, Illinois, USA
| | - Mira M Liu
- Department of Radiology, University of Chicago, Chicago, Illinois, USA
| | - Yong I Jeong
- Department of Radiology, University of Chicago, Chicago, Illinois, USA
| | - Steven Roth
- Department of Anesthesiology, University of Illinois, College of Medicine, Chicago, Illinois, USA
| | - Marek Niekrasz
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Timothy J Carroll
- Department of Radiology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
21
|
Eldeniz C, Binkley MM, Fields M, Guilliams K, Ragan DK, Chen Y, Lee JM, Ford AL, An H. Bulk volume susceptibility difference between deoxyhemoglobin and oxyhemoglobin for HbA and HbS: A comparative study. Magn Reson Med 2021; 85:3383-3393. [PMID: 33475200 DOI: 10.1002/mrm.28668] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/15/2020] [Accepted: 12/11/2020] [Indexed: 12/26/2022]
Abstract
PURPOSE Sickle cell anemia is a blood disorder that alters the morphology and the oxygen affinity of the red blood cells. Cerebral oxygen extraction fraction measurements using quantitative BOLD contrast have been used for assessing inadequate oxygen delivery and the subsequent risk of ischemic stroke in sickle cell anemia. The BOLD signal in MRI studies relies on Δ χ do , the bulk volume susceptibility difference between fully oxygenated and fully deoxygenated blood. Several studies have measured Δ χ do for normal hemoglobin A (HbA). However, it is not known whether the value is different for sickle hemoglobin. In this study, Δ χ do was measured for both HbA and sickle hemoglobin. METHODS Six sickle cell anemia patients and 6 controls were recruited. Various blood oxygenation levels were achieved through in vivo manipulations to keep the blood close to its natural state. To account for the differences in oxygen affinity, Hill's equations were used to translate partial pressure of oxygen to oxygen saturation for HbA, sickle hemoglobin, and fetal hemoglobin (HbF) separately. The pH and PCO2 corrections were performed. Temperature and magnetic field drift were controlled for. A multivariate generalized linear mixed model with random participant effect was used. RESULTS Assuming that Δ χ do is similar for HbA and HbF and that Δ χ metHb is 5/4 of Δ χ do for HbA, it was found that the Δ χ do values for HbA and sickle hemoglobin were not statistically significantly different from each other. CONCLUSION The same Δ χ do value can be used for both types of hemoglobin in quantitative BOLD analysis.
Collapse
Affiliation(s)
- Cihat Eldeniz
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Michael M Binkley
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Melanie Fields
- Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Kristin Guilliams
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Dustin K Ragan
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Yasheng Chen
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jin-Moo Lee
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Andria L Ford
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Hongyu An
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
22
|
Karsa A, Punwani S, Shmueli K. An optimized and highly repeatable MRI acquisition and processing pipeline for quantitative susceptibility mapping in the head-and-neck region. Magn Reson Med 2020; 84:3206-3222. [PMID: 32621302 DOI: 10.1002/mrm.28377] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/06/2020] [Accepted: 05/23/2020] [Indexed: 02/11/2024]
Abstract
PURPOSE Quantitative Susceptibility Mapping (QSM) is an emerging technique sensitive to disease-related changes including oxygenation. It is extensively used in brain studies and has increasing clinical applications outside the brain. Here we present the first MRI acquisition protocol and QSM pipeline optimized for the head-and-neck region together with a repeatability analysis performed in healthy volunteers. METHODS We investigated both the intrasession and the intersession repeatability of the optimized method in 10 subjects. We also implemented two, Tikhonov-regularisation-based susceptibility calculation techniques that were found to have higher contrast-to-noise than existing methods in the head-and-neck region. Repeatability was evaluated by calculating the distributions of susceptibility differences between repeated scans and the corresponding minimum detectable effect sizes (MDEs). RESULTS Deep brain regions had higher QSM repeatability than neck regions. As expected, intrasession repeatability was generally better than intersession repeatability. Susceptibility maps calculated using projection onto dipole fields for background field removal were more repeatable than using the Laplacian boundary value method in the head-and-neck region. Small (short-axis diameter <5 mm) lymph nodes had the lowest repeatability (MDE = 0.27 ppm) as imperfect segmentation included some of the surrounding paramagnetic fatty fascia, highlighting the importance of accurate region delineation. MDEs in the larger lymph nodes (0.16 ppm), submandibular glands (0.10 ppm), and especially the parotid glands (0.06 ppm) were much lower, comparable to those of the brain regions. CONCLUSIONS The high repeatability of the acquisition and pipeline optimized for QSM will facilitate clinical studies in the head-and-neck region.
Collapse
Affiliation(s)
- Anita Karsa
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
- Centre for Medical Imaging, University College London, London, United Kingdom
| | - Shonit Punwani
- Centre for Medical Imaging, University College London, London, United Kingdom
| | - Karin Shmueli
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
- Centre for Medical Imaging, University College London, London, United Kingdom
| |
Collapse
|
23
|
Numerical Solution of Biomagnetic Power-Law Fluid Flow and Heat Transfer in a Channel. Symmetry (Basel) 2020. [DOI: 10.3390/sym12121959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The effect of non-Newtonian biomagnetic power-law fluid in a channel undergoing external localised magnetic fields is investigated. The governing equations are derived by considering both effects of Ferrohydrodynamics (FHD) and Magnetohydrodynamics (MHD). These governing equations are difficult to solve due to the inclusion of source term from magnetic equation and the nonlinearity of the power-law model. Numerical scheme of Constrained Interpolation Profile (CIP) is developed to solve the governing equations numerically. Extensive results carried out show that this method is efficient on studying the biomagnetic and non-Newtonian power-law flow. New results show that the inclusion of power-law model affects the vortex formation, skin friction and heat transfer parameter significantly. Regardless of the power-law index, the vortex formation length increases when Magnetic number increases. The effect of this vortex however decreases with the inclusion of power-law where in the shear thinning case, the arising vortex is more pronounced than in the shear thickening case. Furthermore, increasing of power-law index from shear thinning to shear thickening, decreases the wall shear stress and heat transfer parameters. However for high Magnetic number, the wall shear stress and heat transfer parameters increase especially near the location of the magnetic source. The results can be used as a guide on assessing the potential effects of radiofrequency fields (RF) from electromagnetic fields (EMF) exposure on blood vessel.
Collapse
|
24
|
Steidle G, Schick F. A new concept for improved quantitative analysis of reversible transverse relaxation in tissues with variable microscopic field distribution. Magn Reson Med 2020; 85:1493-1506. [PMID: 33000529 DOI: 10.1002/mrm.28534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE The intravoxel distribution of the magnetic field strongly influences signal dephasing after RF excitation and the resulting signal decay in gradient echo-based MRI. In this work, several different field distribution models were applied and tested for analysis of microscopic field characteristics within pixels. THEORY A flexible model for improved pixel-wise characterization of the underlying field distribution is introduced. The proposed symmetric alpha-stable (SαS) distribution covers Lorentzian, Gaussian, and intermediate field distributions in a continuous way using a two-parametric (width and shape) function. METHODS The new model was applied on human brain, potatoes (homogeneous isotropic tissue), and stems of pineapple (anisotropic fibrous tissue). Effects of microscopic structure and background gradients on the shape and the widths of the microscopic field distribution were analyzed using gradient echo sampling of the spin echo and multigradient-echo sequences. Effects of non-Lorentzian shapes of microscopic field distributions on the results of common T 2 ∗ measurements with mono-exponential fitting of signal values were tested. RESULTS Many pixels of the examined objects showed field characteristics in between Lorentzian and Gaussian shapes. Microscopic field inhomogeneities caused by microscopic susceptibility effects and background gradients sometimes led to rather Gaussian than Lorentzian field distribution. In cases with nearly Gaussian field distribution, mono-exponential fitting of the signal decay resulted in different T 2 ∗ values, depending on the sampling points. CONCLUSIONS Using the concept of more flexible distributions for characterization of microscopic susceptibility effects in tissue provides better fitting of data and nearly sampling point-independent results than common T 2 ∗ measurements with mono-exponential fitting.
Collapse
Affiliation(s)
- Günter Steidle
- Section of Experimental Radiology, Department of Diagnostic and Interventional Radiology, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Fritz Schick
- Section of Experimental Radiology, Department of Diagnostic and Interventional Radiology, Universitätsklinikum Tübingen, Tübingen, Germany
| |
Collapse
|
25
|
Cheng CM, Chou CC, Yeh TC, Chung HW. Measurements of venous oxygen saturation in the superior sagittal sinus using conventional 3D multiple gradient-echo MRI: Effects of flow velocity and acceleration. Magn Reson Med 2020; 85:995-1003. [PMID: 32815571 DOI: 10.1002/mrm.28474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/02/2020] [Accepted: 07/23/2020] [Indexed: 11/07/2022]
Abstract
PURPOSE This work investigates the effects of flow acceleration in the superior sagittal sinus on slice-dependent variations in venous oxygen saturation (SvO2 ) estimations using susceptibility-based MR oximetry. METHODS Three-dimensional multiple gradient-echo images, with first-order flow compensation along the anterior-posterior readout direction for the first echo, were acquired twice from 15 healthy volunteers. For all slices, phases within the superior sagittal sinus were fitted using linear regression across four TEs to obtain the Pearson's correlation coefficients (PCCs), the largest of which corresponded to minimum acceleration influence. SvO2 derived from odd echoes on this slice was used to assess interscan difference, and compared with the central 15th slice for slice-dependent difference, both using Bland-Altman analysis. Within-scan interslice SvO2 consistency was examined versus PCC. Multislice-averaged SvO2 values were then computed from slices with PCCs above a certain threshold. RESULTS Slice-dependent difference in SvO2 varied from -16.2% to 21.5% at two SDs, in agreement with a recent report, and about twice larger than interscan differences for the automatically selected slice (-7.5% to 10.3%) and for the central 15th slice (-8.0% to 8.8%). For slices with PCCs higher than -0.98, interslice SvO2 deviations were all found to be less than 5.0%. Multislice-averaged SvO2 with PCCs higher than -0.98 further reduced interscan difference to -4.7% to 8.2%. CONCLUSION Slice-dependent variations in SvO2 may partly be explained by the effects of flow acceleration. Our method may enable conventional 3D multiple gradient echo to be used for SvO2 estimations in the presence of pulsatile flow.
Collapse
Affiliation(s)
- Chou-Ming Cheng
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chih-Che Chou
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tzu-Chen Yeh
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hsiao-Wen Chung
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
26
|
Englund EK, Fernández-Seara MA, Rodríguez-Soto AE, Lee H, Rodgers ZB, Vidorreta M, Detre JA, Wehrli FW. Calibrated fMRI for dynamic mapping of CMRO 2 responses using MR-based measurements of whole-brain venous oxygen saturation. J Cereb Blood Flow Metab 2020; 40:1501-1516. [PMID: 31394960 PMCID: PMC7308517 DOI: 10.1177/0271678x19867276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Functional MRI (fMRI) can identify active foci in response to stimuli through BOLD signal fluctuations, which represent a complex interplay between blood flow and cerebral metabolic rate of oxygen (CMRO2) changes. Calibrated fMRI can disentangle the underlying contributions, allowing quantification of the CMRO2 response. Here, whole-brain venous oxygen saturation (Yv) was computed alongside ASL-measured CBF and BOLD-weighted data to derive the calibration constant, M, using the proposed Yv-based calibration. Data were collected from 10 subjects at 3T with a three-part interleaved sequence comprising background-suppressed 3D-pCASL, 2D BOLD-weighted, and single-slice dual-echo GRE (to measure Yv via susceptometry-based oximetry) acquisitions while subjects breathed normocapnic/normoxic, hyperoxic, and hypercapnic gases, and during a motor task. M was computed via Yv-based calibration from both hypercapnia and hyperoxia stimulus data, and results were compared to conventional hypercapnia or hyperoxia calibration methods. Mean M in gray matter did not significantly differ between calibration methods, ranging from 8.5 ± 2.8% (conventional hyperoxia calibration) to 11.7 ± 4.5% (Yv-based calibration in response to hyperoxia), with hypercapnia-based M values between (p = 0.56). Relative CMRO2 changes from finger tapping were computed from each M map. CMRO2 increased by ∼20% in the motor cortex, and good agreement was observed between the conventional and proposed calibration methods.
Collapse
Affiliation(s)
- Erin K Englund
- Laboratory for Structural, Physiologic and Functional Imaging (LSPFI), Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Ana E Rodríguez-Soto
- Laboratory for Structural, Physiologic and Functional Imaging (LSPFI), Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Hyunyeol Lee
- Laboratory for Structural, Physiologic and Functional Imaging (LSPFI), Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Zachary B Rodgers
- Laboratory for Structural, Physiologic and Functional Imaging (LSPFI), Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA.,Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marta Vidorreta
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA.,Siemens Healthineers, Madrid, Spain
| | - John A Detre
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Felix W Wehrli
- Laboratory for Structural, Physiologic and Functional Imaging (LSPFI), Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
27
|
Dellschaft NS, Hutchinson G, Shah S, Jones NW, Bradley C, Leach L, Platt C, Bowtell R, Gowland PA. The haemodynamics of the human placenta in utero. PLoS Biol 2020; 18:e3000676. [PMID: 32463837 PMCID: PMC7255609 DOI: 10.1371/journal.pbio.3000676] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
We have used magnetic resonance imaging (MRI) to provide important new insights into the function of the human placenta in utero. We have measured slow net flow and high net oxygenation in the placenta in vivo, which are consistent with efficient delivery of oxygen from mother to fetus. Our experimental evidence substantiates previous hypotheses on the effects of spiral artery remodelling in utero and also indicates rapid venous drainage from the placenta, which is important because this outflow has been largely neglected in the past. Furthermore, beyond Braxton Hicks contractions, which involve the entire uterus, we have identified a new physiological phenomenon, the ‘utero-placental pump’, by which the placenta and underlying uterine wall contract independently of the rest of the uterus, expelling maternal blood from the intervillous space. MRI provides important new insights into the function of the human placenta, revealing slow net flow and high, uniform oxygenation in healthy pregnancies, detecting changes that will lead to compromised oxygen delivery to the fetus in preeclampsia, and identifying a new physiological phenomenon, the ‘utero-placental pump’.
Collapse
Affiliation(s)
- Neele S. Dellschaft
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| | - George Hutchinson
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| | - Simon Shah
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| | - Nia W. Jones
- Department of Child Health, Obstetrics and Gynaecology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Chris Bradley
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| | - Lopa Leach
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Craig Platt
- Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, United Kingdom
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| | - Penny A. Gowland
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Li W, van Zijl PC. Quantitative theory for the transverse relaxation time of blood water. NMR IN BIOMEDICINE 2020; 33:e4207. [PMID: 32022362 PMCID: PMC7322972 DOI: 10.1002/nbm.4207] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 09/19/2019] [Accepted: 10/01/2019] [Indexed: 05/08/2023]
Abstract
An integrative model is proposed to describe the dependence of the transverse relaxation rate of blood water protons (R2blood = 1/T2blood ) on hematocrit fraction and oxygenation fraction (Y). This unified model takes into account (a) the diamagnetic effects of albumin, hemoglobin and the cell membrane; (b) the paramagnetic effect of hemoglobin; (c) the effect of compartmental exchange between plasma and erythrocytes under both fast and slow exchange conditions that vary depending on field strength and compartmental relaxation rates and (d) the effect of diffusion through field gradients near the erythrocyte membrane. To validate the model, whole-blood and lysed-blood R2 data acquired previously using Carr-Purcell-Meiboom-Gill measurements as a function of inter-echo spacing τcp at magnetic fields of 3.0, 7.0, 9.4 and 11.7 T were fitted to determine the lifetimes (field-independent physiological constants) for water diffusion and exchange, as well as several physical constants, some of which are field-independent (magnetic susceptibilities) and some are field-dependent (relaxation rates for water protons in solutions of albumin and oxygenated and deoxygenated hemoglobin, ie, blood plasma and erythrocytes, respectively). This combined exchange-diffusion model allowed excellent fitting of the curve of the τcp -dependent relaxation rate dispersion at all four fields using a single average erythrocyte water lifetime, τery = 9.1 ± 1.4 ms, and an averaged diffusional correlation time, τD = 3.15 ± 0.43 ms. Using this model and the determined physiological time constants and relaxation parameters, blood T2 values published by multiple groups based on measurements at magnetic field strengths of 1.5 T and higher could be predicted correctly within error. Establishment of this theory is a fundamental step for quantitative modeling of the BOLD effect underlying functional MRI.
Collapse
Affiliation(s)
- Wenbo Li
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Peter C.M. van Zijl
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
- Correspondence: Peter C.M. van Zijl, PhD, F. M. Kirby Research Center for Functional Brain Imaging, The Kennedy Krieger Institute, 707 N. Broadway, Room G-25, Baltimore, MD, 21205, United States of America, , Tel: 443-923-9500, Fax: 443-923-9505
| |
Collapse
|
29
|
Vinayagamani S, Sheelakumari R, Sabarish S, Senthilvelan S, Ros R, Thomas B, Kesavadas C. Quantitative Susceptibility Mapping: Technical Considerations and Clinical Applications in Neuroimaging. J Magn Reson Imaging 2020; 53:23-37. [DOI: 10.1002/jmri.27058] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/28/2019] [Accepted: 12/30/2019] [Indexed: 12/12/2022] Open
Affiliation(s)
| | - R Sheelakumari
- Department of Imaging Sciences and Interventional Radiology Trivandrum India
| | - Sekar Sabarish
- Department of Imaging Sciences and Interventional Radiology Trivandrum India
| | | | - Roopa Ros
- Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology Trivandrum India
| | - Bejoy Thomas
- Department of Imaging Sciences and Interventional Radiology Trivandrum India
| | | |
Collapse
|
30
|
Tao Q, Zhang L, Han X, Chen H, Ji X, Zhang X. Magnetic Susceptibility Difference-Induced Nucleus Positioning in Gradient Ultrahigh Magnetic Field. Biophys J 2019; 118:578-585. [PMID: 31952800 PMCID: PMC7004839 DOI: 10.1016/j.bpj.2019.12.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/07/2019] [Accepted: 12/18/2019] [Indexed: 01/18/2023] Open
Abstract
Despite the importance of magnetic properties of biological samples for biomagnetism and related fields, the exact magnetic susceptibilities of most biological samples in their physiological conditions are still unknown. Here we used superconducting quantum interferometer device to detect the magnetic properties of nonfixed, nondehydrated live cell and cellular fractions at a physiological temperature of 37°C (310 K). It is obvious that there are paramagnetic components within human nasopharyngeal carcinoma CNE-2Z cells. More importantly, the magnetic properties of the cytoplasm and nucleus are different. Although within a single cell, the magnetic susceptibility difference between cellular fractions (nucleus and cytoplasm) could only cause ∼41-130 pN forces to the nucleus by gradient ultrahigh magnetic fields of 13.1-23.5 T (92-160 T/m), these forces are enough to cause a relative position shift of the nucleus within the cell. This not only demonstrates the importance of magnetic susceptibility in the biological effects of magnetic field but also illustrates the potential application of high magnetic fields in biomedicine.
Collapse
Affiliation(s)
- Qingping Tao
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Lei Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.
| | - Xuyao Han
- School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, China
| | - Hanxiao Chen
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Xinmiao Ji
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Xin Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, China.
| |
Collapse
|
31
|
Wen Y, Weinsaft JW, Nguyen TD, Liu Z, Horn EM, Singh H, Kochav J, Eskreis-Winkler S, Deh K, Kim J, Prince MR, Wang Y, Spincemaille P. Free breathing three-dimensional cardiac quantitative susceptibility mapping for differential cardiac chamber blood oxygenation - initial validation in patients with cardiovascular disease inclusive of direct comparison to invasive catheterization. J Cardiovasc Magn Reson 2019; 21:70. [PMID: 31735165 PMCID: PMC6859622 DOI: 10.1186/s12968-019-0579-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 10/04/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Differential blood oxygenation between left (LV) and right ventricles (RV; ΔSaO2) is a key index of cardiac performance; LV dysfunction yields increased RV blood pool deoxygenation. Deoxyhemoglobin increases blood magnetic susceptibility, which can be measured using an emerging cardiovascular magnetic resonance (CMR) technique, Quantitative Susceptibility Mapping (QSM) - a concept previously demonstrated in healthy subjects using a breath-hold 2D imaging approach (2DBHQSM). This study tested utility of a novel 3D free-breathing QSM approach (3DNAVQSM) in normative controls, and validated 3DNAVQSM for non-invasive ΔSaO2 quantification in patients undergoing invasive cardiac catheterization (cath). METHODS Initial control (n = 10) testing compared 2DBHQSM (ECG-triggered 2D gradient echo acquired at end-expiration) and 3DNAVQSM (ECG-triggered navigator gated gradient echo acquired in free breathing using a phase-ordered automatic window selection algorithm to partition data based on diaphragm position). Clinical testing was subsequently performed in patients being considered for cath, including 3DNAVQSM comparison to cine-CMR quantified LV function (n = 39), and invasive-cath quantified ΔSaO2 (n = 15). QSM was acquired using 3 T scanners; analysis was blinded to comparator tests (cine-CMR, cath). RESULTS 3DNAVQSM generated interpretable QSM in all controls; 2DBHQSM was successful in 6/10. Among controls in whom both pulse sequences were successful, RV/LV susceptibility difference (and ΔSaO2) were not significantly different between 3DNAVQSM and 2DBHQSM (252 ± 39 ppb [17.5 ± 3.1%] vs. 211 ± 29 ppb [14.7 ± 2.0%]; p = 0.39). Acquisition times were 30% lower with 3DNAVQSM (4.7 ± 0.9 vs. 6.7 ± 0.5 min, p = 0.002), paralleling a trend towards lower LV mis-registration on 3DNAVQSM (p = 0.14). Among cardiac patients (63 ± 10y, 56% CAD) 3DNAVQSM was successful in 87% (34/39) and yielded higher ΔSaO2 (24.9 ± 6.1%) than in controls (p < 0.001). QSM-calculated ΔSaO2 was higher among patients with LV dysfunction as measured on cine-CMR based on left ventricular ejection fraction (29.4 ± 5.9% vs. 20.9 ± 5.7%, p < 0.001) or stroke volume (27.9 ± 7.5% vs. 22.4 ± 5.5%, p = 0.013). Cath measurements (n = 15) obtained within a mean interval of 4 ± 3 days from CMR demonstrated 3DNAVQSM to yield high correlation (r = 0.87, p < 0.001), small bias (- 0.1%), and good limits of agreement (±8.6%) with invasively measured ΔSaO2. CONCLUSION 3DNAVQSM provides a novel means of assessing cardiac performance. Differential susceptibility between the LV and RV is increased in patients with cine-CMR evidence of LV systolic dysfunction; QSM-quantified ΔSaO2 yields high correlation and good agreement with the reference of invasively-quantified ΔSaO2.
Collapse
Affiliation(s)
- Yan Wen
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY USA
- Department of Radiology, Weill Cornell Medicine, New York, NY USA
| | | | - Thanh D. Nguyen
- Department of Radiology, Weill Cornell Medicine, New York, NY USA
| | - Zhe Liu
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY USA
- Department of Radiology, Weill Cornell Medicine, New York, NY USA
| | - Evelyn M. Horn
- Department of Medicine, Weill Cornell Medicine, New York, NY USA
| | - Harsimran Singh
- Department of Medicine, Weill Cornell Medicine, New York, NY USA
| | - Jonathan Kochav
- Department of Medicine, Weill Cornell Medicine, New York, NY USA
| | | | - Kofi Deh
- Department of Radiology, Weill Cornell Medicine, New York, NY USA
| | - Jiwon Kim
- Department of Medicine, Weill Cornell Medicine, New York, NY USA
| | - Martin R. Prince
- Department of Radiology, Weill Cornell Medicine, New York, NY USA
| | - Yi Wang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY USA
- Department of Radiology, Weill Cornell Medicine, New York, NY USA
| | - Pascal Spincemaille
- Department of Radiology, Weill Cornell Medicine, New York, NY USA
- Weill Cornell Medical College, 515 East 71th Street, S101, New York, NY 10021 USA
| |
Collapse
|
32
|
Abstract
BACKGROUND Patients undergoing MRI examinations are exposed to a strong static magnetic field and powerful electromagnetic alternating fields. Undesired or even dangerous effects could be caused if implants or objects with magnetic or electrically conductive elements are accidentally brought into the examination area. METHODS Relevant interactions in MRI between magnetic/electric fields and body tissue as well as foreign materials are systematically presented, based on proven physical principles. RESULTS OF PRACTICAL RELEVANCE Natural components of the human body are mainly diamagnetic leading to only hardly perceptible magnetic forces in MRI. In contrast, ferromagnetic items as iron show translational forces of more than hundred times their weight force when brought to the entry of the bore. Lengthy ferromagnetic items are additionally subjected to torque. Materials with high electrical conductivity as metals and carbon fibre-reinforced plastic are also safety relevant. Especially long conductive structures as often present in implants are prone to induced strong electrical currents and high voltages at their end portions. Maximum voltages occurring at the implants and current density in adjacent tissue which might cause significant heating are hardly predictable for individual cases. Implants providing extended conductive loops for ring currents often show strong vibrations due to gradient switching. Counter forces must be considered when tilting conductive plates or ring structures inside the magnetic field area.
Collapse
Affiliation(s)
- F Schick
- Sektion für Experimentelle Radiologie, Abteilung für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Deutschland.
| |
Collapse
|
33
|
Biondetti E, Rojas-Villabona A, Sokolska M, Pizzini FB, Jäger HR, Thomas DL, Shmueli K. Investigating the oxygenation of brain arteriovenous malformations using quantitative susceptibility mapping. Neuroimage 2019; 199:440-453. [DOI: 10.1016/j.neuroimage.2019.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/23/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023] Open
|
34
|
Hubertus S, Thomas S, Cho J, Zhang S, Wang Y, Schad LR. Using an artificial neural network for fast mapping of the oxygen extraction fraction with combined QSM and quantitative BOLD. Magn Reson Med 2019; 82:2199-2211. [PMID: 31273828 DOI: 10.1002/mrm.27882] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/28/2019] [Accepted: 06/05/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE To apply an artificial neural network (ANN) for fast and robust quantification of the oxygen extraction fraction (OEF) from a combined QSM and quantitative BOLD analysis of gradient echo data and to compare the ANN to a traditional quasi-Newton (QN) method for numerical optimization. METHODS Random combinations of OEF, deoxygenated blood volume ( ν ), R2 , and nonblood magnetic susceptibility ( χ nb ) with each parameter following a Gaussian distribution that represented physiological gray matter and white matter values were used to simulate quantitative BOLD signals and QSM values. An ANN was trained with the simulated data with added Gaussian noise. The ANN was applied to multigradient echo brain data of 7 healthy subjects, and the reconstructed parameters and maps were compared to QN results using Student t test and Bland-Altman analysis. RESULTS Intersubject means and SDs of gray matter were OEF = 43.5 ± 0.8 %, R 2 = 13.5 ± 0.3 Hz, ν = 3.4 ± 0.1 %, χ nb = - 25 ± 5 ppb for ANN; and OEF = 43.8 ± 5.2 %, R 2 = 12.2 ± 0.8 Hz, ν = 4.2 ± 0.6 %, χ nb = - 39 ± 7 ppb for QN, with a significant difference ( P < 0.05 ) for R 2 , ν , and χ nb . For white matter, they were OEF = 47.5 ± 1.1 %, R 2 = 17.1 ± 0.4 Hz, ν = 2.5 ± 0.2 %, χ nb = - 38 ± 5 ppb for ANN; and OEF = 42.3 ± 5.6 %, R 2 = 16.7 ± 0.7 Hz, ν = 2.9 ± 0.3 %, χ nb = - 45 ± 9 ppb for QN, with a significant difference ( P < 0.05 ) for OEF and ν . ANN revealed more gray-white matter contrast but less intersubject variation in OEF than QN. In contrast to QN, the ANN reconstruction did not need an additional sequence for parameter initialization and took approximately 1 s rather than roughly 1 h. CONCLUSION ANNs allow faster and, with regard to initialization, more robust reconstruction of OEF maps with lower intersubject variation than QN approaches.
Collapse
Affiliation(s)
- Simon Hubertus
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sebastian Thomas
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Junghun Cho
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Shun Zhang
- Department of Radiology, Weill Cornell Medical College, New York, New York.,Department of Radiology, Tongji Hospital, Wuhan, China
| | - Yi Wang
- Department of Biomedical Engineering, Cornell University, Ithaca, New York.,Department of Radiology, Weill Cornell Medical College, New York, New York
| | - Lothar Rudi Schad
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
35
|
Hubertus S, Thomas S, Cho J, Zhang S, Wang Y, Schad LR. Comparison of gradient echo and gradient echo sampling of spin echo sequence for the quantification of the oxygen extraction fraction from a combined quantitative susceptibility mapping and quantitative BOLD (QSM+qBOLD) approach. Magn Reson Med 2019; 82:1491-1503. [DOI: 10.1002/mrm.27804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Simon Hubertus
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim Heidelberg University Mannheim Germany
| | - Sebastian Thomas
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim Heidelberg University Mannheim Germany
| | - Junghun Cho
- Department of Biomedical Engineering Cornell University Ithaca New York
| | - Shun Zhang
- Department of Radiology Weill Cornell Medical College New York New York
- Department of Radiology Tongji Hospital Wuhan China
| | - Yi Wang
- Department of Biomedical Engineering Cornell University Ithaca New York
- Department of Radiology Weill Cornell Medical College New York New York
| | - Lothar Rudi Schad
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim Heidelberg University Mannheim Germany
| |
Collapse
|
36
|
Vestergaard MB, Larsson HB. Cerebral metabolism and vascular reactivity during breath-hold and hypoxic challenge in freedivers and healthy controls. J Cereb Blood Flow Metab 2019; 39:834-848. [PMID: 29099292 PMCID: PMC6498754 DOI: 10.1177/0271678x17737909] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The goal of the present study was to examine the cerebral metabolism and vascular reactivity during extended breath-holds (ranging from 2 min 32 s to 7 min 0 s) and during a hypoxic challenge in freedivers and non-diver controls. Magnetic resonance imaging was used to measure the global cerebral blood flow (CBF) and metabolic rate of oxygen (CMRO2), and magnetic resonance spectroscopy was used to measure the cerebral lactate, glutamate+glutamine, N-acetylaspartate and phosphocreatine+creatine concentrations in the occipital lobe. Fifteen freedivers and seventeen non-diver controls participated. The freedivers showed remarkable increases in CBF (107%) during the breath-holds, compensating for arterial desaturation, and sustained cerebral oxygen delivery (CDO2). CMRO2 was unaffected throughout the breath-holds. During the hypoxic challenge, the freedivers had larger increases in blood flow in the sagittal sinus than the non-divers, and could sustain normal CDO2. No differences were found in lactate production, global CBF or CMRO2. We conclude that the mechanism for sustaining brain function during breath-holding in freedivers involves an extraordinary increase in perfusion, and that freedivers present evidence for higher cerebrovascular reactivity, but not for higher lactate-producing glycolysis during a hypoxic challenge compared to controls.
Collapse
Affiliation(s)
- Mark B Vestergaard
- 1 Department of Clinical Physiology, Nuclear Medicine and PET, Functional Imaging Unit, Copenhagen University Hospital, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Henrik Bw Larsson
- 1 Department of Clinical Physiology, Nuclear Medicine and PET, Functional Imaging Unit, Copenhagen University Hospital, Rigshospitalet Glostrup, Glostrup, Denmark.,2 Institute of Clinical Medicine, The Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
37
|
In silico study of patient-specific magnetic drug targeting for a coronary LAD atherosclerotic plaque. Int J Pharm 2019; 559:113-129. [DOI: 10.1016/j.ijpharm.2018.12.088] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/08/2018] [Accepted: 12/28/2018] [Indexed: 02/06/2023]
|
38
|
Vasung L, Abaci Turk E, Ferradal SL, Sutin J, Stout JN, Ahtam B, Lin PY, Grant PE. Exploring early human brain development with structural and physiological neuroimaging. Neuroimage 2019; 187:226-254. [PMID: 30041061 PMCID: PMC6537870 DOI: 10.1016/j.neuroimage.2018.07.041] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 12/11/2022] Open
Abstract
Early brain development, from the embryonic period to infancy, is characterized by rapid structural and functional changes. These changes can be studied using structural and physiological neuroimaging methods. In order to optimally acquire and accurately interpret this data, concepts from adult neuroimaging cannot be directly transferred. Instead, one must have a basic understanding of fetal and neonatal structural and physiological brain development, and the important modulators of this process. Here, we first review the major developmental milestones of transient cerebral structures and structural connectivity (axonal connectivity) followed by a summary of the contributions from ex vivo and in vivo MRI. Next, we discuss the basic biology of neuronal circuitry development (synaptic connectivity, i.e. ensemble of direct chemical and electrical connections between neurons), physiology of neurovascular coupling, baseline metabolic needs of the fetus and the infant, and functional connectivity (defined as statistical dependence of low-frequency spontaneous fluctuations seen with functional magnetic resonance imaging (fMRI)). The complementary roles of magnetic resonance imaging (MRI), electroencephalography (EEG), magnetoencephalography (MEG), and near-infrared spectroscopy (NIRS) are discussed. We include a section on modulators of brain development where we focus on the placenta and emerging placental MRI approaches. In each section we discuss key technical limitations of the imaging modalities and some of the limitations arising due to the biology of the system. Although neuroimaging approaches have contributed significantly to our understanding of early brain development, there is much yet to be done and a dire need for technical innovations and scientific discoveries to realize the future potential of early fetal and infant interventions to avert long term disease.
Collapse
Affiliation(s)
- Lana Vasung
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Esra Abaci Turk
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Silvina L Ferradal
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Jason Sutin
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Jeffrey N Stout
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Banu Ahtam
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Pei-Yi Lin
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - P Ellen Grant
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
39
|
Jensen MLF, Vestergaard MB, Tønnesen P, Larsson HBW, Jennum PJ. Cerebral blood flow, oxygen metabolism, and lactate during hypoxia in patients with obstructive sleep apnea. Sleep 2019; 41:4788814. [PMID: 29309697 DOI: 10.1093/sleep/zsy001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Study Objectives Obstructive sleep apnea (OSA) is associated with increased risk of stroke but the underlying mechanism is poorly understood. We suspect that the normal cerebrovascular response to hypoxia is disturbed in patients with OSA. Methods Global cerebral blood flow (CBF), cerebral metabolic rate of oxygen (CMRO2), and lactate concentration during hypoxia were measured in patients with OSA and matched controls. Twenty-eight patients (82.1% males, mean age 52.3 ± 10.0 years) with moderate-to-severe OSA assessed by partial polysomnography were examined and compared with 19 controls (73.7% males, mean age 51.8 ± 10.1 years). Patients and controls underwent magnetic resonance imaging (MRI) during 35 min of normoxia followed by 35 min inhaling hypoxic air (10%-12% O2). After 3 months of continuous positive airway pressure (CPAP) treatment, 22 patients were rescanned. Results During hypoxia, CBF significantly increased with decreasing arterial blood oxygen concentration (4.53 mL (blood)/100 g/min per -1 mmol(O2)/L, p < 0.001) in the control group, but was unchanged (0.89 mL (blood)/100 g/min per -1 mmol(O2)/L, p = 0.289) in the patient group before CPAP treatment. The CBF response to hypoxia was significantly weaker in patients than in controls (p = 0.003). After 3 months of CPAP treatment the CBF response normalized, showing a significant increase during hypoxia (5.15 mL (blood)/100 g/min per -1 mmol(O2)/L, p < 0.001). There was no difference in CMRO2 or cerebral lactate concentration between patients and controls, and no effect of CPAP treatment. Conclusions Patients with OSA exhibit reduced CBF in response to hypoxia. CPAP treatment normalized these patterns.
Collapse
Affiliation(s)
- M L F Jensen
- Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Rigshospitalet, University of Copenhagen, Glostrup, Denmark
| | - M B Vestergaard
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Glostrup, Denmark
| | - P Tønnesen
- Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Rigshospitalet, University of Copenhagen, Glostrup, Denmark
| | - H B W Larsson
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Glostrup, Denmark
| | - Poul J Jennum
- Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Rigshospitalet, University of Copenhagen, Glostrup, Denmark
| |
Collapse
|
40
|
Yang E, Kirkham AA, Grenier J, Thompson RB. Measurement and correction of the bulk magnetic susceptibility effects of fat: application in venous oxygen saturation imaging. Magn Reson Med 2018; 81:3124-3137. [PMID: 30549088 DOI: 10.1002/mrm.27640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 12/21/2022]
Abstract
PURPOSE To develop a correction method for the effects of the magnetic susceptibility of fat (χFat ) on the calculation of venous oxygen saturation (SvO2 ). THEORY The magnetic field shifts associated with the magnetic susceptibility of deoxyhemoglobin can be used to estimate SvO2 , a measure of oxygen extraction and metabolism. However, the distinct magnetic susceptibility of fat surrounding targeted veins will give rise to magnetic field perturbations that will extend into the vein and surrounding tissues, potentially confounding the calculation of SvO2 . METHODS Multi-echo modified Dixon fat-water separated imaging was used to quantify fat-water distributions around the superficial femoral vein (venous return from the lower leg). Fat fraction images were used to generate χFat images, to calculate and remove the associated fat-susceptibility-induced magnetic field shifts before the estimation of SvO2 . This approach was evaluated at rest and with plantar flexion exercise to evaluate calf muscle oxygen extraction in 10 healthy subjects. RESULTS The presence of fat around the vein resulted in complex magnetic field shifts and errors in estimated SvO2 . Corrected resting SvO2 values were significantly larger than those measured with conventional methods, at rest (72.6 ± 11.0% vs. 65.2 ± 12.2%, P < 0.05) and post-exercise (37.4 ± 12.3% vs. 31.7 ± 12.7%, P < 0.05), with larger errors in individuals and/or regions with increased fat volumes. Estimation and removal of the field-effects from χFat enabled the use of fat tissues for the measurement and removal of the background magnetic field. CONCLUSIONS The magnetic susceptibility effects of fat can confound SvO2 estimation, but the susceptibility field effects can estimated and removed with the use of modified Dixon fat-water separated imaging.
Collapse
Affiliation(s)
- Esther Yang
- Department of Biomedical Engineering, University of Alberta, Edmonton, Canada
| | - Amy A Kirkham
- Department of Biomedical Engineering, University of Alberta, Edmonton, Canada
| | - Justin Grenier
- Department of Biomedical Engineering, University of Alberta, Edmonton, Canada
| | - Richard B Thompson
- Department of Biomedical Engineering, University of Alberta, Edmonton, Canada
| |
Collapse
|
41
|
Yadav BK, Buch S, Krishnamurthy U, Jella P, Hernandez-Andrade E, Trifan A, Yeo L, Hassan SS, Mark Haacke E, Romero R, Neelavalli J. Quantitative susceptibility mapping in the human fetus to measure blood oxygenation in the superior sagittal sinus. Eur Radiol 2018; 29:2017-2026. [PMID: 30276673 DOI: 10.1007/s00330-018-5735-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 08/12/2018] [Accepted: 08/28/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVES To present the feasibility of performing quantitative susceptibility mapping (QSM) in the human fetus to evaluate the oxygenation (SvO2) of cerebral venous blood in vivo. METHODS Susceptibility weighted imaging (SWI) data were acquired from healthy pregnant subjects (n = 21, median = 31.3 weeks, interquartile range = 8.8 weeks). The susceptibility maps were generated from the SWI-phase images using a modified QSM processing pipeline, optimised for fetal applications. The processing pipeline is as follows: (1) mild high-pass filtering followed by quadratic fitting of the phase images to eliminate background phase variations; (2) manual creation of a fetal brain mask that includes the superior sagittal sinus (SSS); (3) inverse filtering of the resultant masked phase images using a truncated k-space approach with geometric constraint. Further, the magnetic susceptibility, ∆χv and corresponding putative SvO2 of the SSS were quantified from the generated susceptibility maps. Systematic error in the measured SvO2 due to the modified pipeline was also studied through simulations. RESULTS Simulations showed that the systematic error in SvO2 when using a mask that includes a minimum of 5 voxels around the SSS and five slices remains < 3% for different orientations of the vessel relative to the main magnetic field. The average ∆χv in the SSS quantified across all gestations was 0.42 ± 0.03 ppm. Based on ∆χv, the average putative SvO2 in the SSS across all fetuses was 67% ± 7%, which is in good agreement with published studies. CONCLUSIONS This in vivo study demonstrates the feasibility of using QSM in the human fetal brain to estimate ∆χv and SvO2. KEY POINTS • A modified quantitative susceptibility mapping (QSM) processing pipeline is tested and presented for the human fetus. • QSM is feasible in the human fetus for measuring magnetic susceptibility and oxygenation of venous blood in vivo. • Blood magnetic susceptibility values from MR susceptometry and QSM agree with each other in the human fetus.
Collapse
Affiliation(s)
- Brijesh Kumar Yadav
- Department of Radiology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, MI, USA
| | - Sagar Buch
- The MRI Institute for Biomedical Research, Waterloo, Ontario, Canada
| | - Uday Krishnamurthy
- Department of Radiology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, MI, USA
| | - Pavan Jella
- Department of Radiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Edgar Hernandez-Andrade
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Anabela Trifan
- Department of Radiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Lami Yeo
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sonia S Hassan
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - E Mark Haacke
- Department of Radiology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, MI, USA
| | - Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland and Detroit, MI, USA. .,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA. .,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA. .,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.
| | - Jaladhar Neelavalli
- Department of Radiology, Wayne State University School of Medicine, Detroit, MI, USA. .,Philips Innovation Campus, Philips India Ltd., Bengaluru, India.
| |
Collapse
|
42
|
Walsh AJ, Sun H, Emery DJ, Wilman AH. Hematocrit Measurement with R2* and Quantitative Susceptibility Mapping in Postmortem Brain. AJNR Am J Neuroradiol 2018; 39:1260-1266. [PMID: 29794234 DOI: 10.3174/ajnr.a5677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 04/01/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE Noninvasive venous oxygenation quantification with MR imaging will improve the neurophysiologic investigation and the understanding of the pathophysiology in neurologic diseases. Available MR imaging methods are limited by sensitivity to flow and often require assumptions of the hematocrit level. In situ postmortem imaging enables evaluation of methods in a fully deoxygenated environment without flow artifacts, allowing direct calculation of hematocrit. This study compares 2 venous oxygenation quantification methods in in situ postmortem subjects. MATERIALS AND METHODS Transverse relaxation (R2*) mapping and quantitative susceptibility mapping were performed on a whole-body 4.7T MR imaging system. Intravenous measurements in major draining intracranial veins were compared between the 2 methods in 3 postmortem subjects. The quantitative susceptibility mapping technique was also applied in 10 healthy control subjects and compared with reference venous oxygenation values. RESULTS In 2 early postmortem subjects, R2* mapping and quantitative susceptibility mapping measurements within intracranial veins had a significant and strong correlation (R2 = 0.805, P = .004 and R2 = 0.836, P = .02). Higher R2* and susceptibility values were consistently demonstrated within gravitationally dependent venous segments during the early postmortem period. Hematocrit ranged from 0.102 to 0.580 in postmortem subjects, with R2* and susceptibility as large as 291 seconds-1 and 1.75 ppm, respectively. CONCLUSIONS Measurements of R2* and quantitative susceptibility mapping within large intracranial draining veins have a high correlation in early postmortem subjects. This study supports the use of quantitative susceptibility mapping for evaluation of in vivo venous oxygenation and postmortem hematocrit concentrations.
Collapse
Affiliation(s)
- A J Walsh
- From the Departments of Biomedical Engineering (A.J.W., H.S., A.H.W.)
- Radiology and Diagnostic Imaging (A.J.W., D.J.E.), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - H Sun
- From the Departments of Biomedical Engineering (A.J.W., H.S., A.H.W.)
| | - D J Emery
- Radiology and Diagnostic Imaging (A.J.W., D.J.E.), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - A H Wilman
- From the Departments of Biomedical Engineering (A.J.W., H.S., A.H.W.)
| |
Collapse
|
43
|
Rodríguez-Soto AE, Abdulmalik O, Langham MC, Schwartz N, Lee H, Wehrli FW. T 2 -prepared balanced steady-state free precession (bSSFP) for quantifying whole-blood oxygen saturation at 1.5T. Magn Reson Med 2018; 79:1893-1900. [PMID: 28718522 PMCID: PMC5771982 DOI: 10.1002/mrm.26835] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/06/2017] [Accepted: 06/21/2017] [Indexed: 11/11/2022]
Abstract
PURPOSE To establish a calibration equation to convert human blood T2 to the full range of oxygen saturation levels (HbO2 ) and physiologic hematocrit (Hct) values using a T2 -prepared balanced steady-state free precession sequence (T2 -SSFP) at 1.5T. METHODS Blood drawn from 10 healthy donors (29.1 ± 3.9 years old) was prepared into samples of varying HbO2 and Hct (n = 79), and imaged using T2 -SSFP sequence at 37°C and interrefocusing interval τ180 = 12 ms. The relationship between blood T2 , HbO2 , and Hct was established based on the model R2=R2,plasma+Hct (R2,RBC-R2,plasma)+k·Hct·(1-Hct)·(1-HbO2)2. Measured R2 and HbO2 levels were fit by the model yielding values of R2,plasma, R2,RBC, and k. T2 -SSFP and the established calibration equation were applied to extract HbO2 at the superior sagittal sinus (SSS) in vivo and were compared with susceptometry-based oximetry. RESULTS Constants derived from the fit were: k = 74.2 [s-1 ], R2,plasma = 1.5 [s-1 ], R2,RBC = 11.6 [s-1 ], the R2 of the fit was 0.95. Average HbO2 at the SSS in seven healthy volunteers was 65% ± 7% and 66% ± 7% via T2 - and susceptometry-based oximetry, respectively. Bland-Altman analysis indicated agreement between the two oximetric methods with no significant bias. CONCLUSION The calibration constants presented here should ensure improved accuracy for whole-blood oximetry based on T2 -SSFP at 1.5T. Magn Reson Med 79:1893-1900, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Ana E. Rodríguez-Soto
- Laboratory for Structural, Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | - Osheiza Abdulmalik
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Michael C. Langham
- Laboratory for Structural, Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | - Nadav Schwartz
- Maternal and Child Health Research Program, Department of OBGYN, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Hyunyeol Lee
- Laboratory for Structural, Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | - Felix W. Wehrli
- Laboratory for Structural, Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
44
|
Interleaved quantitative BOLD: Combining extravascular R 2' - and intravascular R 2-measurements for estimation of deoxygenated blood volume and hemoglobin oxygen saturation. Neuroimage 2018; 174:420-431. [PMID: 29580967 DOI: 10.1016/j.neuroimage.2018.03.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/19/2018] [Accepted: 03/18/2018] [Indexed: 12/20/2022] Open
Abstract
Quantitative BOLD (qBOLD), a non-invasive MRI method for assessment of hemodynamic and metabolic properties of the brain in the baseline state, provides spatial maps of deoxygenated blood volume fraction (DBV) and hemoglobin oxygen saturation (HbO2) by means of an analytical model for the temporal evolution of free-induction-decay signals in the extravascular compartment. However, mutual coupling between DBV and HbO2 in the signal model results in considerable estimation uncertainty precluding achievement of a unique set of solutions. To address this problem, we developed an interleaved qBOLD method (iqBOLD) that combines extravascular R2' and intravascular R2 mapping techniques so as to obtain prior knowledge for the two unknown parameters. To achieve these goals, asymmetric spin echo and velocity-selective spin-labeling (VSSL) modules were interleaved in a single pulse sequence. Prior to VSSL, arterial blood and CSF signals were suppressed to produce reliable estimates for cerebral venous blood volume fraction (CBVv) as well as venous blood R2 (to yield HbO2). Parameter maps derived from the VSSL module were employed to initialize DBV and HbO2 in the qBOLD processing. Numerical simulations and in vivo experiments at 3 T were performed to evaluate the performance of iqBOLD in comparison to the parent qBOLD method. Data obtained in eight healthy subjects yielded plausible values averaging 60.1 ± 3.3% for HbO2 and 3.1 ± 0.5 and 2.0 ± 0.4% for DBV in gray and white matter, respectively. Furthermore, the results show that prior estimates of CBVv and HbO2 from the VSSL component enhance the solution stability in the qBOLD processing, and thus suggest the feasibility of iqBOLD as a promising alternative to the conventional technique for quantifying neurometabolic parameters.
Collapse
|
45
|
Portnoy S, Milligan N, Seed M, Sled JG, Macgowan CK. Human umbilical cord blood relaxation times and susceptibility at 3 T. Magn Reson Med 2017; 79:3194-3206. [DOI: 10.1002/mrm.26978] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/01/2017] [Accepted: 09/27/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Sharon Portnoy
- Department of Medical Biophysics; University of Toronto; Toronto Ontario Canada
- Mouse Imaging Centre; Hospital for Sick Children; Toronto Ontario Canada
| | - Natasha Milligan
- Department of Obstetrics & Gynecology; Mount Sinai Hospital; Toronto Ontario Canada
| | - Mike Seed
- Division of Cardiology; Hospital for Sick Children; Toronto Ontario Canada
- Department of Pediatrics and Diagnostic Imaging; University of Toronto; Toronto Ontario Canada
| | - John G. Sled
- Department of Medical Biophysics; University of Toronto; Toronto Ontario Canada
- Mouse Imaging Centre; Hospital for Sick Children; Toronto Ontario Canada
- Department of Obstetrics and Gynecology; University of Toronto; Toronto Ontario Canada
| | - Christopher K. Macgowan
- Department of Medical Biophysics; University of Toronto; Toronto Ontario Canada
- Division of Translational Medicine; Hospital for Sick Children; Toronto Ontario Canada
- Labatt Family Heart Centre; Hospital for Sick Children; Toronto Ontario Canada
| |
Collapse
|
46
|
The impact of vessel size, orientation and intravascular contribution on the neurovascular fingerprint of BOLD bSSFP fMRI. Neuroimage 2017; 163:13-23. [PMID: 28890417 DOI: 10.1016/j.neuroimage.2017.09.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/17/2017] [Accepted: 09/06/2017] [Indexed: 12/24/2022] Open
Abstract
Monte Carlo simulations have been used to analyze oxygenation-related signal changes in pass-band balanced steady state free precession (bSSFP) as well as in gradient echo (GE) and spin echo (SE) sequences. Signal changes were calculated for artificial cylinders and neurovascular networks acquired from the mouse parietal cortex by two-photon laser scanning microscopy at 1 μm isotropic resolution. Signal changes as a function of vessel size, blood volume, vessel orientation to the main magnetic field B0 as well as relations of intra- and extravascular and of micro- and macrovascular contributions have been analyzed. The results show that bSSFP is highly sensitive to extravascular and microvascular components. Furthermore, GE and bSSFP, and to a lesser extent SE, exhibit a strong dependence of their signal change on the orientation of the vessel network to B0.
Collapse
|
47
|
Langham MC, Rodríguez-Soto AE, Schwartz N, Wehrli FW. In vivo whole-blood T 2 versus HbO 2 calibration by modulating blood oxygenation level in the femoral vein through intermittent cuff occlusion. Magn Reson Med 2017; 79:2290-2296. [PMID: 28868660 DOI: 10.1002/mrm.26885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 11/11/2022]
Abstract
PURPOSE To investigate the feasibility of estimating calibration constants (K and T2o ) in vivo for converting whole-blood T2 to blood hemoglobin oxygen saturation (HbO2 ) according to the Luz-Meiboom model, 1/T2=1/T2o+K(1-HbO2)2, where K and T2o are relaxivity and transverse relaxation time of fully saturated blood, respectively. METHODS A range of HbO2 values was achieved in the superficial femoral vein with intermittent cuff occlusion in seven healthy adults (four males) to establish a calibration curve between blood T2 and HbO2 at 1.5T. HbO2 was derived via MR susceptometry, a technique previously validated, and the transverse relaxation time was quantified with an optimized T2 -prepared balanced steady-state free precession pulse sequence. To evaluate the accuracy of the in vivo calibration method, T2 and HbO2 were quantified in the superior sagittal sinus in six additional subjects and compared with susceptometry. RESULTS Two sets of gender-specific calibration constants were derived, one for each gender corresponding to hematocrits of 0.47 ± 0.02 for males and 0.38 ± 0.01 for females, yielding K/T2o = 41 Hz/260 ms and 26 Hz/280 ms, respectively. The in vivo calibration returned physiologically plausible superior sagittal sinus SvO2 values (65 ± 5% HbO2 ), and there was no significant difference between the results from the two methods (average difference -0.3% HbO2 ). CONCLUSION The results show feasibility of performing in vivo calibration for converting whole-blood T2 to HbO2 . The proposed approach bypasses the involved and cumbersome processes associated with in vitro calibration. Magn Reson Med 79:2290-2296, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Michael C Langham
- Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ana E Rodríguez-Soto
- Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nadav Schwartz
- Department of Obstetrics and Gynecology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Felix W Wehrli
- Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
48
|
Wen Y, Nguyen TD, Liu Z, Spincemaille P, Zhou D, Dimov A, Kee Y, Deh K, Kim J, Weinsaft JW, Wang Y. Cardiac quantitative susceptibility mapping (QSM) for heart chamber oxygenation. Magn Reson Med 2017; 79:1545-1552. [PMID: 28653375 DOI: 10.1002/mrm.26808] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 05/30/2017] [Accepted: 05/30/2017] [Indexed: 12/18/2022]
Abstract
PURPOSE To demonstrate the feasibility of in vivo quantitative susceptibility mapping (QSM) in cardiac MRI and to show that mixed-venous oxygen saturation (SvO2 ) can be measured non-invasively using QSM. METHODS Electrocardiographic-gated multi-echo 2D gradient echo data were collected at 1.5 T from 14 healthy volunteers during successive breath-holds. Phase wraps and fat chemical shift were removed using a graph-cut-based phase analysis and IDEAL in an iterative approach. The large susceptibility range from air in the lungs to blood in the heart was addressed by using the preconditioning approach in the dipole field inversion. SvO2 was calculated based on the difference in blood susceptibility between the right ventricle (RV) and left ventricle (LV). Cardiac QSM quality was assessed by two independent readers. RESULTS Nine out of fourteen volunteers (64%) yielded interpretable cardiac QSM. QSM maps showed strong differential contrast between RV and LV blood with RV blood having higher susceptibility values (291.5 ± 32.4 ppb), which correspond to 78.3 ± 2.3% SvO2 . CONCLUSION In vivo cardiac QSM is feasible and can be used to measure SvO2 , but improvements in data acquisition are needed. Magn Reson Med 79:1545-1552, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Yan Wen
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA.,Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Thanh D Nguyen
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Zhe Liu
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA.,Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | | | - Dong Zhou
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Alexey Dimov
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA.,Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Youngwook Kee
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Kofi Deh
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Jiwon Kim
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | | | - Yi Wang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA.,Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
49
|
Digernes I, Bjørnerud A, Vatnehol SAS, Løvland G, Courivaud F, Vik-Mo E, Meling TR, Emblem KE. A theoretical framework for determining cerebral vascular function and heterogeneity from dynamic susceptibility contrast MRI. J Cereb Blood Flow Metab 2017; 37:2237-2248. [PMID: 28273722 PMCID: PMC5444554 DOI: 10.1177/0271678x17694187] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mapping the complex heterogeneity of vascular tissue in the brain is important for understanding cerebrovascular disease. In this translational study, we build on previous work using vessel architectural imaging (VAI) and present a theoretical framework for determining cerebral vascular function and heterogeneity from dynamic susceptibility contrast magnetic resonance imaging (MRI). Our tissue model covers realistic structural architectures for vessel branching and orientations, as well as a range of hemodynamic scenarios for blood flow, capillary transit times and oxygenation. In a typical image voxel, our findings show that the apparent MRI relaxation rates are independent of the mean vessel orientation and that the vortex area, a VAI-based parameter, is determined by the relative oxygen saturation level and the vessel branching of the tissue. Finally, in both simulated and patient data, we show that the relative distributions of the vortex area parameter as a function of capillary transit times show unique characteristics in normal-appearing white and gray matter tissue, whereas tumour-voxels in comparison display a heterogeneous distribution. Collectively, our study presents a comprehensive framework that may serve as a roadmap for in vivo and per-voxel determination of vascular status and heterogeneity in cerebral tissue.
Collapse
Affiliation(s)
- Ingrid Digernes
- 1 Department of Diagnostic Physics, Oslo University Hospital, Oslo, Norway
| | - Atle Bjørnerud
- 1 Department of Diagnostic Physics, Oslo University Hospital, Oslo, Norway.,2 Department of Physics, University of Oslo, Oslo, Norway
| | | | - Grete Løvland
- 1 Department of Diagnostic Physics, Oslo University Hospital, Oslo, Norway
| | - Frédéric Courivaud
- 1 Department of Diagnostic Physics, Oslo University Hospital, Oslo, Norway
| | - Einar Vik-Mo
- 3 Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | - Torstein R Meling
- 3 Department of Neurosurgery, Oslo University Hospital, Oslo, Norway.,4 Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kyrre E Emblem
- 1 Department of Diagnostic Physics, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
50
|
Deistung A, Schweser F, Reichenbach JR. Overview of quantitative susceptibility mapping. NMR IN BIOMEDICINE 2017; 30:e3569. [PMID: 27434134 DOI: 10.1002/nbm.3569] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 05/03/2016] [Accepted: 05/09/2016] [Indexed: 06/06/2023]
Abstract
Magnetic susceptibility describes the magnetizability of a material to an applied magnetic field and represents an important parameter in the field of MRI. With the recently introduced method of quantitative susceptibility mapping (QSM) and its conceptual extension to susceptibility tensor imaging (STI), the non-invasive assessment of this important physical quantity has become possible with MRI. Both methods solve the ill-posed inverse problem to determine the magnetic susceptibility from local magnetic fields. Whilst QSM allows the extraction of the spatial distribution of the bulk magnetic susceptibility from a single measurement, STI enables the quantification of magnetic susceptibility anisotropy, but requires multiple measurements with different orientations of the object relative to the main static magnetic field. In this review, we briefly recapitulate the fundamental theoretical foundation of QSM and STI, as well as computational strategies for the characterization of magnetic susceptibility with MRI phase data. In the second part, we provide an overview of current methodological and clinical applications of QSM with a focus on brain imaging. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Andreas Deistung
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, NY, USA
- MRI Clinical and Translational Research Center, Jacobs School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, NY, USA
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
- Michael Stifel Center for Data-driven and Simulation Science Jena, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|