1
|
Shao X, Zhang Z, Ma X, Liu F, Guo H, Ugurbil K, Wu X. Parallel-transmission spatial spectral pulse design with local specific absorption rate control: Demonstration for robust uniform water-selective excitation in the human brain at 7 T. Magn Reson Med 2024. [PMID: 39481025 DOI: 10.1002/mrm.30346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 11/02/2024]
Abstract
PURPOSE To propose a novel method for parallel-transmission (pTx) spatial-spectral pulse design and demonstrate its utility for robust uniform water-selective excitation (water excitation) across the entire brain. THEORY AND METHODS Our design problem is formulated as a magnitude-least-squares minimization with joint RF and k-space optimization under explicit specific-absorption-rate constraints. For improved robustness against off-resonance effects, the spectral component of the excitation target is prescribed to have a water passband and a fat stopband. A two-step algorithm was devised to solve our design problem, with Step 1 aiming to solve a reduced problem to find a sensible start point for Step 2 to solve the original problem. The efficacy of our pulse design was evaluated in simulation, phantom, and human experiments using the commercial Nova head coil. Universal pulses were also designed based on a 10-subject training data set to demonstrate the utility of our method for plug-and-play pTx. RESULTS For kT-points and spiral nonselective parameterizations, our design method outperformed the pTx interleaved binomial approach, reducing RMS error by up to about 35% for water excitation and about 97% for fat suppression (over a 200-Hz bandwidth) while decreasing local specific absorption rate by about 30%. Both our subject-specific and universal pulses improved water excitation, restoring signal loss in the cerebellum while suppressing fat signal even in regions of large susceptibility-induced off-resonances. CONCLUSION Demonstrated useful for 4D (3D spatial, one-dimensional spectral) pTx spatial-spectral pulse design, our proposed method provides an effective solution for robust volumetric uniform water excitation, holding a promise to many ultrahigh-field applications.
Collapse
Affiliation(s)
- Xin Shao
- Center for Biomedical Imaging Research, School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Zhe Zhang
- Tiantan Neuroimaging Center of Excellence, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaodong Ma
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Fan Liu
- Center for Biomedical Imaging Research, School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Hua Guo
- Center for Biomedical Imaging Research, School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Kamil Ugurbil
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Xiaoping Wu
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
2
|
Sui B, Sannananja B, Zhu C, Balu N, Eisenmenger L, Baradaran H, Edjlali M, Romero JM, Rajiah PS, Li R, Mossa-Basha M. Report from the society of magnetic resonance angiography: clinical applications of 7T neurovascular MR in the assessment of intracranial vascular disease. J Neurointerv Surg 2024; 16:846-851. [PMID: 37652689 PMCID: PMC10902184 DOI: 10.1136/jnis-2023-020668] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023]
Abstract
In recent years, ultra-high-field magnetic resonance imaging (MRI) applications have been rapidly increasing in both clinical research and practice. Indeed, 7-Tesla (7T) MRI allows improved depiction of smaller structures with high signal-to-noise ratio, and, therefore, may improve lesion visualization, diagnostic capabilities, and thus potentially affect treatment decision-making. Incremental evidence emerging from research over the past two decades has provided a promising prospect of 7T magnetic resonance angiography (MRA) in the evaluation of intracranial vasculature. The ultra-high resolution and excellent image quality of 7T MRA allow us to explore detailed morphological and hemodynamic information, detect subtle pathological changes in early stages, and provide new insights allowing for deeper understanding of pathological mechanisms of various cerebrovascular diseases. However, along with the benefits of ultra-high field strength, some challenges and concerns exist. Despite these, ongoing technical developments and clinical oriented research will facilitate the widespread clinical application of 7T MRA in the near future. In this review article, we summarize technical aspects, clinical applications, and recent advances of 7T MRA in the evaluation of intracranial vascular disease. The aim of this review is to provide a clinical perspective for the potential application of 7T MRA for the assessment of intracranial vascular disease, and to explore possible future research directions implementing this technique.
Collapse
Affiliation(s)
- Binbin Sui
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Bhagya Sannananja
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Chengcheng Zhu
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Niranjan Balu
- Department of Radiology, University of Washington, Seattle, Washington, USA
- Vascular Imaging Lab, University of Washington School of Medicine, Seattle, Washington, USA
| | | | - Hediyeh Baradaran
- Department of Radiology & Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | | | - Javier M Romero
- Department of Radiology, Division of Neuroradiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Rui Li
- Center for Biomedical Imaging Research, Tsinghua University, Beijing, China
| | - Mahmud Mossa-Basha
- Department of Radiology, University of Washington, Seattle, Washington, USA
- Vascular Imaging Lab, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
3
|
Zhang M, Rodgers CT. Bayesian optimization of gradient trajectory for parallel-transmit pulse design. Magn Reson Med 2024; 91:2358-2373. [PMID: 38193277 DOI: 10.1002/mrm.30007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/02/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024]
Abstract
PURPOSE Spoke pulses improve excitation homogeneity in parallel-transmit MRI. We propose an efficient global optimization algorithm, Bayesian optimization of gradient trajectory (BOGAT), for single-slice and simultaneous multislice imaging. THEORY AND METHODS BOGAT adds an outer loop to optimize kT-space positions. For each position, the RF coefficients are optimized (e.g., with magnitude least squares) and the cost function evaluated. Bayesian optimization progressively estimates the cost function. It automatically chooses the kT-space positions to sample, to achieve fast convergence, often coming close to the globally optimal spoke positions. We investigated the typical features of spokes cost functions by a grid search with field maps comprising 85 slabs from 14 volunteers. We tested BOGAT in this database, and prospectively in a phantom and in vivo. We compared the vendor-provided Fourier transform approach with the same magnitude least squares RF optimizer. RESULTS The cost function is nonconvex and seen empirically to be piecewise smooth with discontinuities where the underlying RF optimum changes sharply. BOGAT converged to within 10% of the global minimum cost within 30 iterations in 93% of slices in our database. BOGAT achieved up to 56% lower flip angle RMS error (RMSE) or 55% lower pulse energy in phantoms versus the Fourier transform approach, and up to 30% lower RMSE and 29% lower energy in vivo with 7.8 s extra computation. CONCLUSION BOGAT efficiently estimated near-global optimum spoke positions for the two-spoke tests, reducing flip-angle RMSE and/or pulse energy in a computation time (˜10 s), which is suitable for online optimization.
Collapse
Affiliation(s)
- Minghao Zhang
- Wolfson Brain Imaging Center, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
4
|
Dong Z, Reese TG, Lee HH, Huang SY, Polimeni JR, Wald LL, Wang F. Romer-EPTI: rotating-view motion-robust super-resolution EPTI for SNR-efficient distortion-free in-vivo mesoscale dMRI and microstructure imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577343. [PMID: 38352481 PMCID: PMC10862730 DOI: 10.1101/2024.01.26.577343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Purpose To overcome the major challenges in dMRI acquisition, including low SNR, distortion/blurring, and motion vulnerability. Methods A novel Romer-EPTI technique is developed to provide distortion-free dMRI with significant SNR gain, high motion-robustness, sharp spatial resolution, and simultaneous multi-TE imaging. It introduces a ROtating-view Motion-robust supEr-Resolution technique (Romer) combined with a distortion/blurring-free EPTI encoding. Romer enhances SNR by a simultaneous multi-thick-slice acquisition with rotating-view encoding, while providing high motion-robustness through a motion-aware super-resolution reconstruction, which also incorporates slice-profile and real-value diffusion, to resolve high-isotropic-resolution volumes. The in-plane encoding is performed using distortion/blurring-free EPTI, which further improves effective spatial resolution and motion robustness by preventing not only T2/T2*-blurring but also additional blurring resulting from combining encoded volumes with inconsistent geometries caused by dynamic distortions. Self-navigation was incorporated to enable efficient phase correction. Additional developments include strategies to address slab-boundary artifacts, achieve minimal TE for SNR gain at 7T, and achieve high robustness to strong phase variations at high b-values. Results Using Romer-EPTI, we demonstrate distortion-free whole-brain mesoscale in-vivo dMRI at both 3T (500-μm-iso) and 7T (485-μm-iso) for the first time, with high SNR efficiency (e.g., 25 × ), and high image quality free from distortion and slab-boundary artifacts with minimal blurring. Motion experiments demonstrate Romer-EPTI's high motion-robustness and ability to recover sharp images in the presence of motion. Romer-EPTI also demonstrates significant SNR gain and robustness in high b-value (b=5000s/mm2) and time-dependent dMRI. Conclusion Romer-EPTI significantly improves SNR, motion-robustness, and image quality, providing a highly efficient acquisition for high-resolution dMRI and microstructure imaging.
Collapse
Affiliation(s)
- Zijing Dong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Timothy G. Reese
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hong-Hsi Lee
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Susie Y. Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA
| | - Jonathan R. Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA
| | - Lawrence L. Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA
| | - Fuyixue Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Kazemivalipour E, Wald LL, Guerin B. Comparison of tight-fitting 7T parallel-transmit head array designs using excitation uniformity and local specific absorption rate metrics. Magn Reson Med 2024; 91:1209-1224. [PMID: 37927216 PMCID: PMC10848211 DOI: 10.1002/mrm.29900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 09/15/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023]
Abstract
PURPOSE We model the performance of parallel transmission (pTx) arrays with 8, 16, 24, and 32 channels and varying loop sizes built on a close-fitting helmet for brain imaging at 7 T and compare their local specific absorption rate (SAR) and flip-angle performances to that of birdcage coil (used as a baseline) and cylindrical 8-channel and 16-channel pTx coils (single-row and dual-row). METHODS We use the co-simulation approach along with MATLAB scripting for batch-mode simulation of the coils. For each coil, we extracted B1 + maps and SAR matrices, which we compressed using the virtual observation points algorithm, and designed slice-selective RF shimming pTx pulses with multiple local SAR and peak power constraints to generate L-curves in the transverse, coronal, and sagittal orientations. RESULTS Helmet designs outperformed cylindrical pTx arrays at a constant number of channels in the flip-angle uniformity at a constant local SAR metric: up to 29% for 8-channel arrays, and up to 34% for 16-channel arrays, depending on the slice orientation. For all helmet arrays, increasing the loop diameter led to better local SAR versus flip-angle uniformity tradeoffs, although this effect was more pronounced for the 8-channel and 16-channel systems than the 24-channel and 32-channel systems, as the former have more limited degrees of freedom and therefore benefit more from loop-size optimization. CONCLUSION Helmet pTx arrays significantly outperformed cylindrical arrays with the same number of channels in local SAR and flip-angle uniformity metrics. This improvement was especially pronounced for non-transverse slice excitations. Loop diameter optimization for helmets appears to favor large loops, compatible with nearest-neighbor decoupling by overlap.
Collapse
Affiliation(s)
- Ehsan Kazemivalipour
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Lawrence L. Wald
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Division of Health Sciences Technology, Cambridge, Massachusetts, USA
| | - Bastien Guerin
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Petzold J, Schmitter S, Silemek B, Winter L, Speck O, Ittermann B, Seifert F. Towards an integrated radiofrequency safety concept for implant carriers in MRI based on sensor-equipped implants and parallel transmission. NMR IN BIOMEDICINE 2023; 36:e4900. [PMID: 36624556 DOI: 10.1002/nbm.4900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 10/11/2022] [Accepted: 01/04/2023] [Indexed: 06/15/2023]
Abstract
To protect implant carriers in MRI from excessive radiofrequency (RF) heating it has previously been suggested to assess that hazard via sensors on the implant. Other work recommended parallel transmission (pTx) to actively mitigate implant-related heating. Here, both ideas are integrated into one comprehensive safety concept where native pTx safety (without implant) is ensured by state-of-the-art field simulations and the implant-specific hazard is quantified in situ using physical sensors. The concept is demonstrated by electromagnetic simulations performed on a human voxel model with a simplified spinal-cord implant in an eight-channel pTx body coil at 3 T . To integrate implant and native safety, the sensor signal must be calibrated in terms of an established safety metric (e.g., specific absorption rate [SAR]). Virtual experiments show that E -field and implant-current sensors are well suited for this purpose, while temperature sensors require some caution, and B 1 probes are inadequate. Based on an implant sensor matrix Q s , constructed in situ from sensor readings, and precomputed native SAR limits, a vector space of safe RF excitations is determined where both global (native) and local (implant-related) safety requirements are satisfied. Within this safe-excitation subspace, the solution with the best image quality in terms of B 1 + magnitude and homogeneity is then found by a straightforward optimization algorithm. In the investigated example, the optimized pTx shim provides a 3-fold higher mean B 1 + magnitude compared with circularly polarized excitation for a maximum implant-related temperature increase ∆ T imp ≤ 1 K . To date, sensor-equipped implants interfaced to a pTx scanner exist as demonstrator items in research labs, but commercial devices are not yet within sight. This paper aims to demonstrate the significant benefits of such an approach and how this could impact implant-related RF safety in MRI. Today, the responsibility for safe implant scanning lies with the implant manufacturer and the MRI operator; within the sensor concept, the MRI manufacturer would assume much of the operator's current responsibility.
Collapse
Affiliation(s)
- Johannes Petzold
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
- Biomedical Magnetic Resonance, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Berk Silemek
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Lukas Winter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Oliver Speck
- Biomedical Magnetic Resonance, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Frank Seifert
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| |
Collapse
|
7
|
Kopanoglu E. Actual patient position versus safety models: Specific Absorption Rate implications of initial head position for Ultrahigh Field Magnetic Resonance Imaging. NMR IN BIOMEDICINE 2023; 36:e4876. [PMID: 36385447 PMCID: PMC10802886 DOI: 10.1002/nbm.4876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/20/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Specific absorption rate (SAR) relates power absorption to tissue heating, and therefore is used as a safety constraint in magnetic resonance imaging (MRI). This study investigates the implications of initial head positioning on local and whole-head SAR. A virtual body model was simulated at 161 positions inside an eight-channel parallel-transmit (pTx) array. On-axis displacements and rotations of up to 20 mm/degrees and off-axis axial/coronal translations were investigated. Single-channel, radiofrequency (RF) shimming (i.e., single-spoke pTx) and multispoke pTx pulses were designed for seven axial, five coronal and five sagittal slices at each position (the slices were consistent across all positions). Whole-head and local SAR were calculated using safety models consisting of a single (centred) body position, multiple representative positions and all simulated body positions. Positional mismatches between safety models and actual positions cause SAR underestimation. For axial imaging, the actual peak local SAR was up to 4.2-fold higher for both single-channel and 5-spoke pTx, 3.5-fold higher for 3-/4-spoke pTx, and 2-fold higher for RF shimming and 2-spoke pTx, compared with that calculated using the centred body position. For sagittal and coronal imaging, the underestimation of peak local SAR was up to 5.2-fold and 3.8-fold, respectively. Using all body positions to estimate SAR prevented SAR underestimation but yielded up to 11-fold SAR overestimation for RF shimming. Local SAR of single-channel and pTx multispoke pulses showed considerable dependence on the initial patient position. RF shimming yielded much lower sensitivity to positional mismatches for axial imaging but not for sagittal and coronal imaging. This was deemed attributable to the higher degrees-of-freedom of control offered by the investigated coil array for axial imaging. Whole-head SAR is less sensitive to positional mismatches compared with local SAR. Nevertheless, whole-head SAR increased by up to 80% for sagittal imaging. Local and whole-head SAR were observed to be more sensitive to positional mismatches in the axial plane, because of larger variations in coil-tissue proximity. Using all possible body positions in the safety model may become substantially over-conservative and limit imaging performance, especially for the RF shimming mode for axial imaging.
Collapse
Affiliation(s)
- Emre Kopanoglu
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
| |
Collapse
|
8
|
Harrevelt SD, Roos THM, Klomp DWJ, Steensma BR, Raaijmakers AJE. Simulation-based evaluation of SAR and flip angle homogeneity for five transmit head arrays at 14 T. MAGMA (NEW YORK, N.Y.) 2023; 36:245-255. [PMID: 37000320 PMCID: PMC10140109 DOI: 10.1007/s10334-023-01067-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/13/2023] [Accepted: 01/31/2023] [Indexed: 04/01/2023]
Abstract
INTRODUCTION Various research sites are pursuing 14 T MRI systems. However, both local SAR and RF transmit field inhomogeneity will increase. The aim of this simulation study is to investigate the trade-offs between peak local SAR and flip angle uniformity for five transmit coil array designs at 14 T in comparison to 7 T. METHODS Investigated coil array designs are: 8 dipole antennas (8D), 16 dipole antennas (16D), 8 loop coils (8D), 16 loop coils (16L), 8 dipoles/8 loop coils (8D8L) and for reference 8 dipoles at 7 T. Both RF shimming and kT-points were investigated by plotting L-curves of peak SAR levels vs flip angle homogeneity. RESULTS For RF shimming, the 16L array performs best. For kT-points, superior flip angle homogeneity is achieved at the expense of more power deposition, and the dipole arrays outperform the loop coil arrays. DISCUSSION AND CONCLUSION For most arrays and regular imaging, the constraint on head SAR is reached before constraints on peak local SAR are violated. Furthermore, the different drive vectors in kT-points alleviate strong peaks in local SAR. Flip angle inhomogeneity can be alleviated by kT-points at the expense of larger power deposition. For kT-points, the dipole arrays seem to outperform loop coil arrays.
Collapse
Affiliation(s)
- Seb D Harrevelt
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Thomas H M Roos
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dennis W J Klomp
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bart R Steensma
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alexander J E Raaijmakers
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
9
|
Williams SN, McElhinney P, Gunamony S. Ultra-high field MRI: parallel-transmit arrays and RF pulse design. Phys Med Biol 2023; 68. [PMID: 36410046 DOI: 10.1088/1361-6560/aca4b7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 11/21/2022] [Indexed: 11/22/2022]
Abstract
This paper reviews the field of multiple or parallel radiofrequency (RF) transmission for magnetic resonance imaging (MRI). Currently the use of ultra-high field (UHF) MRI at 7 tesla and above is gaining popularity, yet faces challenges with non-uniformity of the RF field and higher RF power deposition. Since its introduction in the early 2000s, parallel transmission (pTx) has been recognized as a powerful tool for accelerating spatially selective RF pulses and combating the challenges associated with RF inhomogeneity at UHF. We provide a survey of the types of dedicated RF coils used commonly for pTx and the important modeling of the coil behavior by electromagnetic (EM) field simulations. We also discuss the additional safety considerations involved with pTx such as the specific absorption rate (SAR) and how to manage them. We then describe the application of pTx with RF pulse design, including a practical guide to popular methods. Finally, we conclude with a description of the current and future prospects for pTx, particularly its potential for routine clinical use.
Collapse
Affiliation(s)
- Sydney N Williams
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom
| | - Paul McElhinney
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom
| | - Shajan Gunamony
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom.,MR CoilTech Limited, Glasgow, United Kingdom
| |
Collapse
|
10
|
Yetisir F, Poser BA, Grant PE, Adalsteinsson E, Wald LL, Guerin B. Parallel transmission 2D RARE imaging at 7T with transmit field inhomogeneity mitigation and local SAR control. Magn Reson Imaging 2022; 93:87-96. [PMID: 35940379 PMCID: PMC9789791 DOI: 10.1016/j.mri.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/15/2022] [Accepted: 08/02/2022] [Indexed: 12/26/2022]
Abstract
PURPOSE We develop and test a parallel transmit (pTx) pulse design framework to mitigate transmit field inhomogeneity with control of local specific absorption rate (SAR) in 2D rapid acquisition with relaxation enhancement (RARE) imaging at 7T. METHODS We design large flip angle RF pulses with explicit local SAR constraints by numerical simulation of the Bloch equations. Parallel computation and analytical expressions for the Jacobian and the Hessian matrices are employed to reduce pulse design time. The refocusing-excitation "spokes" pulse pairs are designed to satisfy the Carr-Purcell-Meiboom-Gill (CPMG) condition using a combined magnitude least squares-least squares approach. RESULTS In a simulated dataset, the proposed approach reduced peak local SAR by up to 56% for the same level of refocusing uniformity error and reduced refocusing uniformity error by up to 59% (from 32% to 7%) for the same level of peak local SAR compared to the circularly polarized birdcage mode of the pTx array. Using explicit local SAR constraints also reduced peak local SAR by up to 46% compared to an RF peak power constrained design. The excitation and refocusing uniformity error were reduced from 20%-33% to 4%-6% in single slice phantom experiments. Phantom experiments demonstrated good agreement between the simulated excitation and refocusing uniformity profiles and experimental image shading. CONCLUSION PTx-designed excitation and refocusing CPMG pulse pairs can mitigate transmit field inhomogeneity in the 2D RARE sequence. Moreover, local SAR can be decreased significantly using pTx, potentially leading to better slice coverage, enabling larger flip angles or faster imaging.
Collapse
Affiliation(s)
- Filiz Yetisir
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Benedikt A Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands
| | - P Ellen Grant
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Elfar Adalsteinsson
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 MA Avenue, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 MA Avenue, Cambridge, MA 02139, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 77 MA Avenue, Cambridge, MA 02139, USA
| | - Lawrence L Wald
- Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 MA Avenue, Cambridge, MA 02139, USA; Athinoula A. Martinos Center for Biomedical Imaging, MA General Hospital, 149 13th Street, Charlestown, MA 02129, USA
| | - Bastien Guerin
- Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; Athinoula A. Martinos Center for Biomedical Imaging, MA General Hospital, 149 13th Street, Charlestown, MA 02129, USA
| |
Collapse
|
11
|
Fiedler TM, Orzada S, Flöser M, Rietsch SHG, Schmidt S, Stelter JK, Wittrich M, Quick HH, Bitz AK, Ladd ME. Performance and safety assessment of an integrated transmit array for body imaging at 7 T under consideration of specific absorption rate, tissue temperature, and thermal dose. NMR IN BIOMEDICINE 2022; 35:e4656. [PMID: 34962689 DOI: 10.1002/nbm.4656] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 10/18/2021] [Accepted: 11/05/2021] [Indexed: 05/12/2023]
Abstract
In this study, the performance of an integrated body-imaging array for 7 T with 32 radiofrequency (RF) channels under consideration of local specific absorption rate (SAR), tissue temperature, and thermal dose limits was evaluated and the imaging performance was compared with a clinical 3 T body coil. Thirty-two transmit elements were placed in three rings between the bore liner and RF shield of the gradient coil. Slice-selective RF pulse optimizations for B1 shimming and spokes were performed for differently oriented slices in the body under consideration of realistic constraints for power and local SAR. To improve the B1+ homogeneity, safety assessments based on temperature and thermal dose were performed to possibly allow for higher input power for the pulse optimization than permissible with SAR limits. The results showed that using two spokes, the 7 T array outperformed the 3 T birdcage in all the considered regions of interest. However, a significantly higher SAR or lower duty cycle at 7 T is necessary in some cases to achieve similar B1+ homogeneity as at 3 T. The homogeneity in up to 50 cm-long coronal slices can particularly benefit from the high RF shim performance provided by the 32 RF channels. The thermal dose approach increases the allowable input power and the corresponding local SAR, in one example up to 100 W/kg, without limiting the exposure time necessary for an MR examination. In conclusion, the integrated antenna array at 7 T enables a clinical workflow for body imaging and comparable imaging performance to a conventional 3 T clinical body coil.
Collapse
Affiliation(s)
- Thomas M Fiedler
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephan Orzada
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martina Flöser
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan H G Rietsch
- Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Simon Schmidt
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Jonathan K Stelter
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marco Wittrich
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Harald H Quick
- Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Andreas K Bitz
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Electromagnetic Theory and Applied Mathematics, Faculty of Electrical Engineering and Information Technology, FH Aachen - University of Applied Sciences, Aachen, Germany
| | - Mark E Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, Germany
- Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
- Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
12
|
Ma X, Uğurbil K, Wu X. Mitigating transmit‐B
1
artifacts by predicting parallel transmission images with deep learning: A feasibility study using high‐resolution whole‐brain diffusion at 7 Tesla. Magn Reson Med 2022; 88:727-741. [PMID: 35403237 PMCID: PMC9324974 DOI: 10.1002/mrm.29238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 11/12/2022]
Abstract
Purpose To propose a novel deep learning (DL) approach to transmit‐B1 (B1+)‐artifact mitigation without direct use of parallel transmission (pTx), by predicting pTx images from single‐channel transmission (sTx) images. Methods A deep encoder–decoder convolutional neural network was constructed and trained to learn the mapping from sTx to pTx images. The feasibility was demonstrated using 7 T Human‐Connectome Project (HCP)‐style diffusion MRI. The training dataset comprised images acquired on 5 healthy subjects using commercial Nova RF coils. Relevant hyperparameters were tuned with a nested cross‐validation, and the generalization performance evaluated using a regular cross‐validation. Results Our DL method effectively improved the image quality for sTx images by restoring the signal dropout, with quality measures (including normalized root‐mean‐square error, peak SNR, and structural similarity index measure) improved in most brain regions. The improved image quality was translated into improved performances for diffusion tensor imaging analysis; our method improved accuracy for fractional anisotropy and mean diffusivity estimations, reduced the angular errors of principal eigenvectors, and improved the fiber orientation delineation relative to sTx images. Moreover, the final DL model trained on data of all 5 subjects was successfully used to predict pTx images for unseen new subjects (randomly selected from the 7 T HCP database), effectively recovering the signal dropout and improving color‐coded fractional anisotropy maps with largely reduced noise levels. Conclusion The proposed DL method has potential to provide images with reduced B1+ artifacts in healthy subjects even when pTx resources are inaccessible on the user side.
Collapse
Affiliation(s)
- Xiaodong Ma
- Center for Magnetic Resonance Research, Radiology, Medical School University of Minnesota Minneapolis Minnesota USA
| | - Kâmil Uğurbil
- Center for Magnetic Resonance Research, Radiology, Medical School University of Minnesota Minneapolis Minnesota USA
| | - Xiaoping Wu
- Center for Magnetic Resonance Research, Radiology, Medical School University of Minnesota Minneapolis Minnesota USA
| |
Collapse
|
13
|
Eberhardt B, Poser BA, Shah NJ, Felder J. B1 field map synthesis with generative deep learning used in the design of parallel-transmit RF pulses for ultra-high field MRI. Z Med Phys 2022; 32:334-345. [PMID: 35144850 PMCID: PMC9948838 DOI: 10.1016/j.zemedi.2021.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/27/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022]
Abstract
Spoke trajectory parallel transmit (pTX) excitation in ultra-high field MRI enables B1+ inhomogeneities arising from the shortened RF wavelength in biological tissue to be mitigated. To this end, current RF excitation pulse design algorithms either employ the acquisition of field maps with subsequent non-linear optimization or a universal approach applying robust pre-computed pulses. We suggest and evaluate an intermediate method that uses a subset of acquired field maps combined with generative machine learning models to reduce the pulse calibration time while offering more tailored excitation than robust pulses (RP). The possibility of employing image-to-image translation and semantic image synthesis machine learning models based on generative adversarial networks (GANs) to deduce the missing field maps is examined. Additionally, an RF pulse design that employs a predictive machine learning model to find solutions for the non-linear (two-spokes) pulse design problem is investigated. As a proof of concept, we present simulation results obtained with the suggested machine learning approaches that were trained on a limited data-set, acquired in vivo. The achieved excitation homogeneity based on a subset of half of the B1+ maps acquired in the calibration scans and half of the B1+ maps synthesized with GANs is comparable with state of the art pulse design methods when using the full set of calibration data while halving the total calibration time. By employing RP dictionaries or machine-learning RF pulse predictions, the total calibration time can be reduced significantly as these methods take only seconds or milliseconds per slice, respectively.
Collapse
Affiliation(s)
- Boris Eberhardt
- Institute of Neuroscience and Medicine 4, Forschungszentrum Jülich, Jüich, Germany; RWTH Aachen University, Aachen, Germany.
| | - Benedikt A. Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - N. Jon Shah
- Institute of Neuroscience and Medicine 4, Forschungszentrum Jülich, Jüich, Germany,Institute of Neuroscience and Medicine 11, Forschungszentrum Jülich, Jülich, Germany,Department of Neurology, RWTH Aachen University, Aachen, Germany,JARA-BRAIN, Translational Medicine, Aachen, Germany
| | - Jörg Felder
- Institute of Neuroscience and Medicine 4, Forschungszentrum Jülich, Jüich, Germany; RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
14
|
Sadeghi-Tarakameh A, Jungst S, Lanagan M, DelaBarre L, Wu X, Adriany G, Metzger GJ, Van de Moortele PF, Ugurbil K, Atalar E, Eryaman Y. A nine-channel transmit/receive array for spine imaging at 10.5 T: Introduction to a nonuniform dielectric substrate antenna. Magn Reson Med 2021; 87:2074-2088. [PMID: 34825735 DOI: 10.1002/mrm.29096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE The purpose of this study is to introduce a new antenna element with improved transmit performance, named the nonuniform dielectric substrate (NODES) antenna, for building transmit arrays at ultrahigh-field. METHODS We optimized a dipole antenna at 10.5 Tesla by maximizing the B 1 + -SAR efficiency in a phantom for a human spine target. The optimization parameters included permittivity variation in the substrate, substrate thickness, antenna length, and conductor geometry. We conducted electromagnetic simulations as well as phantom experiments to compare the transmit/receive performance of the proposed NODES antenna design with existing coil elements from the literature. RESULTS Single NODES element showed up to 18% and 30% higher B 1 + -SAR efficiency than the fractionated dipole and loop elements, respectively. The new element is substantially shorter than a commonly used dipole, which enables z-stacked array formation; it is additionally capable of providing a relatively uniform current distribution along its conductors. The nine-channel transmit/receive NODES array achieved 7.5% higher B 1 + homogeneity than a loop array with the same number of elements. Excitation with the NODES array resulted in 33% lower peak 10g-averaged SAR and required 34% lower input power than the loop array for the target anatomy of the spine. CONCLUSION In this study, we introduced a new RF coil element: the NODES antenna. NODES antenna outperformed the widely used loop and dipole elements and may provide improved transmit/receive performance for future ultrahigh field MRI applications.
Collapse
Affiliation(s)
- Alireza Sadeghi-Tarakameh
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA.,Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey.,National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Steve Jungst
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Mike Lanagan
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Lance DelaBarre
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Xiaoping Wu
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Gregor Adriany
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Gregory J Metzger
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Kamil Ugurbil
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Ergin Atalar
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey.,National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Yigitcan Eryaman
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
15
|
Abstract
After introduction of the first human 7 tesla (7T) system in 1999, 7T MR systems have been employed as one of the most advanced platforms for human MR research for more than 20 years. Currently, two 7T MR models are approved for clinical use in the U.S.A. The approval facilitated introduction of the 7T system, summing up to around 100 worldwide. The approval in Japan is much awaited. As a clinical MR scanner, the 7T MR system is drawing attention in terms of safety.Several large-sized studies on bioeffects have been reported for vertigo, dizziness, motion disturbances, nausea, and others. Such effects might also be found in MR workers and researchers. Frequency and severity of reported bioeffects will be presented and discussed, including their variances. The high resonance frequency and shorter RF wavelength of 7T increase the concern about the safety. Homogeneous RF pulse excitation is difficult even for the brain, and a multi-channel parallel transmit (pTx) system is considered mandatory. However, pTx may create a hot spot, which makes the estimation of specific absorption rate (SAR) to be difficult. The stronger magnetic field of 7T causes a large force of displacement and heating on metallic implants or devices, and the scan of patients with them should not be conducted at 7T. However, there are some opinions that such patients might be scanned even at 7T, if certain criteria are met. This article provides a brief review on the effect of the static magnetic field on humans (MR subjects, workers, and researchers) and neurons, in addition to scan sound, SAR, and metal implants and devices. Understanding and avoiding adverse effects will contribute to the reduction in safety risks and the prevention of incidents.
Collapse
Affiliation(s)
- Tomohisa Okada
- Human Brain Research Center, Graduate School of Medicine, Kyoto University
| | - Thai Akasaka
- Human Brain Research Center, Graduate School of Medicine, Kyoto University
| | - Dinh Hd Thuy
- Human Brain Research Center, Graduate School of Medicine, Kyoto University
| | - Tadashi Isa
- Human Brain Research Center, Graduate School of Medicine, Kyoto University
| |
Collapse
|
16
|
Fiedler TM, Orzada S, Flöser M, Rietsch SHG, Quick HH, Ladd ME, Bitz AK. Performance analysis of integrated RF microstrip transmit antenna arrays with high channel count for body imaging at 7 T. NMR IN BIOMEDICINE 2021; 34:e4515. [PMID: 33942938 DOI: 10.1002/nbm.4515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 02/18/2021] [Accepted: 03/09/2021] [Indexed: 05/12/2023]
Abstract
The aim of the current study was to investigate the performance of integrated RF transmit arrays with high channel count consisting of meander microstrip antennas for body imaging at 7 T and to optimize the position and number of transmit elements. RF simulations using multiring antenna arrays placed behind the bore liner were performed for realistic exposure conditions for body imaging. Simulations were performed for arrays with as few as eight elements and for arrays with high channel counts of up to 48 elements. The B1+ field was evaluated regarding the degrees of freedom for RF shimming in the abdomen. Worst-case specific absorption rate (SARwc ), SAR overestimation in the matrix compression, the number of virtual observation points (VOPs) and SAR efficiency were evaluated. Constrained RF shimming was performed in differently oriented regions of interest in the body, and the deviation from a target B1+ field was evaluated. Results show that integrated multiring arrays are able to generate homogeneous B1+ field distributions for large FOVs, especially for coronal/sagittal slices, and thus enable body imaging at 7 T with a clinical workflow; however, a low duty cycle or a high SAR is required to achieve homogeneous B1+ distributions and to exploit the full potential. In conclusion, integrated arrays allow for high element counts that have high degrees of freedom for the pulse optimization but also produce high SARwc , which reduces the SAR accuracy in the VOP compression for low-SAR protocols, leading to a potential reduction in array performance. Smaller SAR overestimations can increase SAR accuracy, but lead to a high number of VOPs, which increases the computational cost for VOP evaluation and makes online SAR monitoring or pulse optimization challenging. Arrays with interleaved rings showed the best results in the study.
Collapse
Affiliation(s)
- Thomas M Fiedler
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephan Orzada
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Martina Flöser
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan H G Rietsch
- Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Harald H Quick
- Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Mark E Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, Germany
- Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
- Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Andreas K Bitz
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Electromagnetic Theory and Applied Mathematics, Faculty of Electrical Engineering and Information Technology, FH Aachen - University of Applied Sciences, Aachen, Germany
| |
Collapse
|
17
|
Gosselink M, Hoogduin H, Froeling M, Klomp DWJ. No need to detune transmitters in 32-channel receiver arrays at 7 T. NMR IN BIOMEDICINE 2021; 34:e4491. [PMID: 33567471 PMCID: PMC8244117 DOI: 10.1002/nbm.4491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/16/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Ultrahigh field magnetic resonance imaging facilitates high spatiotemporal resolution that benefits from increasing the number of receiver elements. Because high-density receiver arrays have a relatively small element size compared with the transmitter, a side effect is that such setups cause low flux coupling between the transmitter and receiver. Moreover, when transmitters are designed in a multitransmit configuration, their relative size is much smaller than the sample, reducing coupling to the sample and thereby potentially also the coupling to the receivers. Transmitters are traditionally detuned during reception. In this study, we investigate, for a 32-channel receiver head array at 7 T, if transmitter detuning of a quadrature birdcage or of an eight-channel transmit coil can be omitted without substantially sacrificing signal-to-noise ratio (SNR). The transmit elements are operated once with and once without detuning and, in the latter, the received signals are either merged with the array or excluded for image reconstruction. For each of the three measurements, SNR and 1/g-factor maps are investigated. The tuning of the quadrature and eight-channel transmit coils during signal reception introduced a 10.1% and 6.5% penalty in SNR, respectively, relative to the SNR received with detuned transmitters. When also incorporating the signal of the transmit coils, the SNR was regained to 98.5% or 101.4% for the quadrature and eight-channel coil, respectively, relative to the detuned transmitters, while the 1/g-factor maps improved slightly. For the 32-channel receive coil used the SNR penalty can become negligible when omitting detuning of the transmit coils. This not only simplifies transmit coil designs, potentially increasing their efficiency, but also enables the transmitters to be used as receivers in parallel to the receiver array, thus increasing parallel imaging performance.
Collapse
Affiliation(s)
- Mark Gosselink
- Department of RadiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Hans Hoogduin
- Department of RadiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Martijn Froeling
- Department of RadiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Dennis W. J. Klomp
- Department of RadiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| |
Collapse
|
18
|
Paez A, Gu C, Cao Z. Robust RF shimming and small-tip-angle multispoke pulse design with finite-difference regularization. Magn Reson Med 2021; 86:1472-1481. [PMID: 33934406 DOI: 10.1002/mrm.28820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 03/29/2021] [Accepted: 04/07/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE A new regularizer is proposed for the magnitude least-squares optimization algorithm, to ensure robust parallel transmit RF shimming and small-tip-angle multispoke pulse designs for ultrahigh-field MRI. METHODS A finite-difference regularization term is activated as an additional regularizer in the iterative magnitude-least-squares based pulse design algorithm when an unwanted flip angle null distribution is detected. Both simulated and experimental B 1 + maps from different transmit arrays and different human subjects at 7 T were used to evaluate the proposed algorithm. The algorithm was further demonstrated in experiment with dynamic multislice RF shimming for a single-shot gradient-echo EPI for human functional MRI at 7 T. RESULTS The proposed finite-difference regularizer effectively prevented excitation null to be formed for RF shimming and small-tip-angle multispoke pulses, and improved the latter with a monotonic trade-off relationship between flip angle error and RF power. The proposed algorithm was demonstrated to be effective with several head-array geometries by simulation and with a commercial head array with 12 healthy human subjects by experiment. During a functional MRI scan at 7 T with dynamic RF shimming, the proposed algorithm ensured high image SNR throughout the human brain, compared with near-complete local signal loss by the conventional magnitude-least-squares algorithm. CONCLUSION Using finite-difference regularization to avoid unwanted solutions, the robustness of RF shimming and small-tip-angle multispoke pulse design algorithms are improved, with better flip angle homogeneity and a monotonic trade-off relationship between flip angle error and RF power.
Collapse
Affiliation(s)
- Adrian Paez
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chunming Gu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Zhipeng Cao
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee, USA.,Department of Radiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
19
|
Herrler J, Liebig P, Gumbrecht R, Ritter D, Schmitter S, Maier A, Schmidt M, Uder M, Doerfler A, Nagel AM. Fast online-customized (FOCUS) parallel transmission pulses: A combination of universal pulses and individual optimization. Magn Reson Med 2021; 85:3140-3153. [PMID: 33400302 DOI: 10.1002/mrm.28643] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 11/03/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE To mitigate spatial flip angle (FA) variations under strict specific absorption rate (SAR) constraints for ultra-high field MRI using a combination of universal parallel transmit (pTx) pulses and fast subject-specific optimization. METHODS Data sets consisting of B0 , B 1 + maps, and virtual observation point (VOP) data were acquired from 72 subjects (study groups of 48/12 healthy Europeans/Asians and 12 Europeans with pathological or incidental findings) using an 8Tx/32Rx head coil on a 7T whole-body MR system. Combined optimization values (COV) were defined as combination of spiral-nonselective (SPINS) trajectory parameters and an energy regularization weight. A set of COV was optimized universally by simulating the individual RF pulse optimizations of 12 training data sets (healthy Europeans). Subsequently, corresponding universal pulses (UPs) were calculated. Using COV and UPs, individually optimized pulses (IOPs) were calculated during the sequence preparation phase (maximum 15 s). Two different UPs and IOPs were evaluated by calculating their normalized root-mean-square error (NRMSE) of the FA and SAR in simulations of all data sets. Seven additional subjects were examined using an MPRAGE sequence that uses the designed pTx excitation pulses and a conventional adiabatic inversion. RESULTS All pTx pulses resulted in decreased mean NRMSE compared to a circularly polarized (CP) pulse (CP = ~28%, UPs = ~17%, and IOPs = ~12%). UPs and IOPs improved homogeneity for all subjects. Differences in NRMSE between study groups were much lower than differences between different pulse types. CONCLUSION UPs can be used to generate fast online-customized (FOCUS) pulses gaining lower NRMSE and/or lower SAR values.
Collapse
Affiliation(s)
- Jürgen Herrler
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | | | | | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Andreas Maier
- Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Manuel Schmidt
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Arnd Doerfler
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Institute of Medical Physics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Division of Medical Physics in Radiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| |
Collapse
|
20
|
Eberhardt B, Poser BA, Shah NJ, Felder J. Application of Evolution Strategies to the Design of SAR Efficient Parallel Transmit Multi-Spoke Pulses for Ultra-High Field MRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:4225-4236. [PMID: 32763849 DOI: 10.1109/tmi.2020.3013982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We present an evolution-strategy based approach to solve the magnitude least squares (MLS) design problem of low flip-angle slice-selective parallel transmit RF pulses for ultra-high field MRI using SAR and peak-RF-constraints. A combined transmit k-space trajectory and RF pulse weight optimization is proposed in two algorithmic steps. The first step is a coarse grid search to find an initial solution that fulfills all constraints for the subsequent multistage optimization. This avoids convergence to the next nearest local minimum. The second step attempts to refine the results using multiple evolution strategies. We compare the performance of our approach with the non-convex optimization methods described in the literature. The proposed algorithm converges for phantom and in vivo data and only requires an initial estimate of the range of suitable regularization parameters. It demonstrates improved excitation homogeneity compared to published spoke-design methods and allows optimization for homogeneity with a subsequent reduction in the SAR burden. Moreover, excitation homogeneity and the SAR burden can be balanced against each other, enabling a further reduction in SAR at the cost of minor relaxations in excitation homogeneity. This feature makes the algorithm a good candidate for SAR limited sequences in ultra-high field imaging. The algorithm is validated using phantom and in vivo measurements obtained with a 16-channel transmit array at 9.4T.
Collapse
|
21
|
Kazemivalipour E, Sadeghi-Tarakameh A, Atalar E. Eigenmode analysis of the scattering matrix for the design of MRI transmit array coils. Magn Reson Med 2020; 85:1727-1741. [PMID: 33034125 DOI: 10.1002/mrm.28533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 02/02/2023]
Abstract
PURPOSE To obtain efficient operation modes of transmit array (TxArray) coils using a general design technique based on the eigenmode analysis of the scattering matrix. METHODS We introduce the concept of modal reflected power and excitation eigenmodes, which are calculated as the eigenvalues and eigenvectors of SH S, where the superscript H denotes the Hermitian transpose. We formulate the normalized reflected power, which is the ratio of the total reflected power to the total incident power of TxArray coils for a given excitation signal as the weighted sum of the modal reflected power. By minimizing the modal reflected power of TxArray coils, we increase the excitation space with a low total reflection. The algorithm was tested on 4 dual-row TxArray coils with 8 to 32 channels. RESULTS By minimizing the modal reflected power, we designed an 8-element TxArray coil to have a low reflection for 7 out of 8 dimensions of the excitation space. Similarly, the minimization of the modal reflected power of a 16-element TxArray coil enabled us to enlarge the dimension of the excitation space by 50% compared with commonly employed design techniques. Moreover, we demonstrated that the low total reflected power for some critical excitation modes, such as the circularly polarized mode, can be achieved for all TxArray coils even with a high level of coupling. CONCLUSION Eigenmode analysis is an efficient method that intuitively provides a quantitative and compact representation of the coil's power transmission capabilities. This method also provides insight into the excitation modes with low reflection.
Collapse
Affiliation(s)
- Ehsan Kazemivalipour
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey.,National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Alireza Sadeghi-Tarakameh
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey.,National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Ergin Atalar
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey.,National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| |
Collapse
|
22
|
de Buck MHS, Jezzard P, Jeong H, Hess AT. An investigation into the minimum number of tissue groups required for 7T in-silico parallel transmit electromagnetic safety simulations in the human head. Magn Reson Med 2020; 85:1114-1122. [PMID: 32845034 DOI: 10.1002/mrm.28467] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/22/2020] [Accepted: 07/16/2020] [Indexed: 02/03/2023]
Abstract
PURPOSE Safety limits for the permitted specific absorption rate (SAR) place restrictions on pulse sequence design, especially at ultrahigh fields (≥ 7 tesla). Due to intersubject variability, the SAR is usually conservatively estimated based on standard human models that include an applied safety margin to ensure safe operation. One approach to reducing the restrictions is to create more accurate subject-specific models from their segmented MR images. This study uses electromagnetic simulations to investigate the minimum number of tissue groups required to accurately determine SAR in the human head. METHODS Tissue types from a fully characterized electromagnetic human model with 47 tissue types in the head and neck region were grouped into different tissue clusters based on the conductivities, permittivities, and mass densities of the tissues. Electromagnetic simulations of the head model inside a parallel transmit head coil at 7 tesla were used to determine the minimum number of required tissue clusters to accurately determine the subject-specific SAR. The identified tissue clusters were then evaluated using 2 additional well-characterized electromagnetic human models. RESULTS A minimum of 4-clusters-plus-air was found to be required for accurate SAR estimation. These tissue clusters are centered around gray matter, fat, cortical bone, and cerebrospinal fluid. For all 3 simulated models, the parallel transmit maximum 10g SAR was consistently determined to within an error of <12% relative to the full 47-tissue model. CONCLUSION A minimum of 4-clusters-plus-air are required to produce accurate personalized SAR simulations of the human head when using parallel transmit at 7 tesla.
Collapse
Affiliation(s)
- Matthijs H S de Buck
- Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Peter Jezzard
- Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Hongbae Jeong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Maryland, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Aaron T Hess
- Oxford Centre for Clinical Magnetic Resonance Research, Department of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom.,BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
23
|
Mao X, Bari S, Love DJ, Rispoli JV. Global and peak local specific absorption rate control on parallel transmit systems using k-means SAR compression model. Magn Reson Med 2020; 85:1093-1103. [PMID: 32810320 DOI: 10.1002/mrm.28456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE To improve the specific absorption rate (SAR) compression model capability in parallel transmission (pTx) MRI systems. METHODS A k-means clustering method is proposed to group voxels with similar SAR behaviors in the scanned object, providing a controlled upper-bounded estimation of peak local SARs. This k-means compression model and the conventional virtual observation point (VOP) model were tested in a pTx MRI framework. The pTx pulse design with different SAR controlling schemes was simulated using a numerical human head model and an eight-channel 7T coil array. Multiple criteria (including RF power, global and peak local SARs, and excitation accuracy) were compared for the performance testing. RESULTS The k-means compression model generated a narrower overestimation bound, leading to a more accurate local SAR estimation. Among different pTx pulse design approaches, the k-means compression model showed the best trade-off between the SAR and excitation accuracy. CONCLUSIONS The developed SAR compression model is advantageous for pTx framework given the narrower overestimation bound and control over the compression ratio. Results also illustrate that a moderate increase of maximum RF power can be useful for reducing the maximum local SAR deposition.
Collapse
Affiliation(s)
- Xianglun Mao
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
| | - Sumra Bari
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
| | - David J Love
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
| | - Joseph V Rispoli
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
24
|
Gudino N, de Zwart JA, Duyn JH. Eight-channel parallel transmit-receive system for 7 T MRI with optically controlled and monitored on-coil current-mode RF amplifiers. Magn Reson Med 2020; 84:3494-3501. [PMID: 32662913 DOI: 10.1002/mrm.28392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/12/2020] [Accepted: 06/02/2020] [Indexed: 12/27/2022]
Abstract
PURPOSE To demonstrate a practical implementation of an eight-channel parallel-transmit system for brain imaging at 7 T based on on-coil amplifier technology. METHODS An eight-channel parallel transmit-receive system was built with optimized on-coil switch-mode current RF power amplifiers. The amplifiers were optically controlled from an eight-channel interface that was connected to a 7 T MRI scanner. The interface also optically received a down-converted version of the coil current sensed in each amplifier for monitoring and feedback adjustments. RESULTS Each on-coil amplifier delivered more than 100 W peak power and provided enough amplifier decoupling (<-15 dB) for the implemented eight-channel array configuration. Phantom and human images were acquired to demonstrate practical operation of this new technology in a 7 T MRI scanner. CONCLUSION Further development and improvement of previously demonstrated on-coil technology led to successful implementation of an eight-channel parallel-transmit system able to deliver strong B1 fields for typical brain imaging applications. This is an important step forward toward implementation of on-coil RF amplification for high-field MRI.
Collapse
Affiliation(s)
- Natalia Gudino
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Jacco A de Zwart
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeff H Duyn
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
25
|
Milshteyn E, Guryev G, Torrado-Carvajal A, Adalsteinsson E, White JK, Wald LL, Guerin B. Individualized SAR calculations using computer vision-based MR segmentation and a fast electromagnetic solver. Magn Reson Med 2020; 85:429-443. [PMID: 32643152 DOI: 10.1002/mrm.28398] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/28/2020] [Accepted: 06/05/2020] [Indexed: 11/06/2022]
Abstract
PURPOSE We propose a fast, patient-specific workflow for on-line specific absorption rate (SAR) supervision. An individualized electromagnetic model is created while the subject is on the table, followed by rapid SAR estimates for that individual. Our goal is an improved correspondence between the patient and model, reducing reliance on general anatomical body models. METHODS A 3D fat-water 3T acquisition (~2 minutes) is automatically segmented using a computer vision algorithm (~1 minute) into what we found to be the most important electromagnetic tissue classes: air, bone, fat, and soft tissues. We then compute the individual's EM field exposure and global and local SAR matrices using a fast electromagnetic integral equation solver. We assess the approach in 10 volunteers and compare to the SAR seen in a standard generic body model (Duke). RESULTS The on-the-table workflow averaged 7'44″. Simulation of the simplified Duke models confirmed that only air, bone, fat, and soft tissue classes are needed to estimate global and local SAR with an error of 6.7% and 2.7%, respectively, compared to the full model. In contrast, our volunteers showed a 16.0% and 20.3% population variability in global and local SAR, respectively, which was mostly underestimated by the Duke model. CONCLUSION Timely construction and deployment of a patient-specific model is computationally feasible. The benefit of resolving the population heterogeneity compared favorably to the modest modeling error incurred. This suggests that individualized SAR estimates can improve electromagnetic safety in MRI and possibly reduce conservative safety margins that account for patient-model mismatch, especially in non-standard patients.
Collapse
Affiliation(s)
- Eugene Milshteyn
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Georgy Guryev
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Angel Torrado-Carvajal
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.,Harvard Medical School, Boston, MA, USA.,Medical Image Analysis and Biometry Laboratory, Universidad Rey Juan Carlos, Madrid, Spain
| | - Elfar Adalsteinsson
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.,Harvard-MIT Division of Health Sciences Technology, Cambridge, MA, USA
| | - Jacob K White
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.,Harvard Medical School, Boston, MA, USA.,Harvard-MIT Division of Health Sciences Technology, Cambridge, MA, USA
| | - Bastien Guerin
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
26
|
Accelerating the co-simulation method for the design of transmit array coils for MRI. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2020; 34:165-178. [DOI: 10.1007/s10334-020-00858-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 05/18/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023]
|
27
|
Kopanoglu E, Deniz CM, Erturk MA, Wise RG. Specific absorption rate implications of within-scan patient head motion for ultra-high field MRI. Magn Reson Med 2020; 84:2724-2738. [PMID: 32301177 DOI: 10.1002/mrm.28276] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/10/2020] [Accepted: 03/16/2020] [Indexed: 12/31/2022]
Abstract
PURPOSE This study investigates the implications of all degrees of freedom of within-scan patient head motion on patient safety. METHODS Electromagnetic simulations were performed by displacing and/or rotating a virtual body model inside an 8-channel transmit array to simulate 6 degrees of freedom of motion. Rotations of up to 20° and displacements of up to 20 mm including off-axis axial/coronal translations were investigated, yielding 104 head positions. Quadrature excitation, RF shimming, and multi-spoke parallel-transmit excitation pulses were designed for axial slice-selection at 7T, for seven slices across the head. Variation of whole-head specific absorption rate (SAR) and 10-g averaged local SAR of the designed pulses, as well as the change in the maximum eigenvalue (worst-case pulse) were investigated by comparing off-center positions to the central position. RESULTS In their respective worst-cases, patient motion increased the eigenvalue-based local SAR by 42%, whole-head SAR by 60%, and the 10-g averaged local SAR by 210%. Local SAR was observed to be more sensitive to displacements along right-left and anterior-posterior directions than displacement in the superior-inferior direction and rotation. CONCLUSION This is the first study to investigate the effect of all 6 degrees of freedom of motion on safety of practical pulses. Although the results agree with the literature for overlapping cases, the results demonstrate higher increases (up to 3.1-fold) in local SAR for off-axis displacement in the axial plane, which had received less attention in the literature. This increase in local SAR could potentially affect the local SAR compliance of subjects, unless realistic within-scan patient motion is taken into account during pulse design.
Collapse
Affiliation(s)
- Emre Kopanoglu
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Cem M Deniz
- Department of Radiology, New York University Langone Health, New York, New York
| | - M Arcan Erturk
- Restorative Therapies Group, Medtronic, Minneapolis, Minnesota
| | - Richard G Wise
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK.,Institute for Advanced Biomedical Technologies, Department of Neuroscience, Imaging and Clinical Sciences, G. D'Annunzio University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
28
|
Guerin B, Angelone LM, Dougherty D, Wald LL. Parallel transmission to reduce absorbed power around deep brain stimulation devices in MRI: Impact of number and arrangement of transmit channels. Magn Reson Med 2020; 83:299-311. [PMID: 31389069 PMCID: PMC6778698 DOI: 10.1002/mrm.27905] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/04/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE To assess the mean and variance performance of parallel transmission (pTx) coils for reduction of the absorbed power around electrodes (APAE) in patients implanted with deep brain stimulation (DBS) devices. METHODS We simulated 4 pTx coils (8 and 16 channels, head and body coils) and a birdcage body coil. We characterized the RF safety risk using the APAE, which is the integral of the deposited power (in Watts) in a small cylindrical volume of brain tissue surrounding the electrode tips. We assessed the APAE mean and variance by simulation of 5 realistic DBS patient models that include the full DBS implant length, extracranial loops, and implanted pulse generator. RESULTS PTx coils with 8 (16) channels were able to reduce the APAE by >18× (>169×) compared to the birdcage coil in average for all patient models, at no cost in term of flip angle uniformity or global specific absorption rate (SAR). Moreover, local pTx coils performed significantly better than body arrays. CONCLUSION PTx is a possible solution to the problem of RF heating of DBS patients when performing MRI, but the large interpatient variability of the APAE indicates that patient-specific safety monitoring may be needed.
Collapse
Affiliation(s)
- Bastien Guerin
- Radiology, Massachusetts General Hospital, Charlestown, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Leonardo M. Angelone
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, United States
| | - Darin Dougherty
- Harvard Medical School, Boston, MA, United States
- Psychiatry, Massachusetts General Hospital, Charlestown, MA, United States
| | - Lawrence L. Wald
- Radiology, Massachusetts General Hospital, Charlestown, MA, United States
- Harvard Medical School, Boston, MA, United States
| |
Collapse
|
29
|
He X, Ertürk MA, Grant A, Wu X, Lagore RL, DelaBarre L, Eryaman Y, Adriany G, Auerbach EJ, Van de Moortele PF, Uğurbil K, Metzger GJ. First in-vivo human imaging at 10.5T: Imaging the body at 447 MHz. Magn Reson Med 2019; 84:289-303. [PMID: 31846121 DOI: 10.1002/mrm.28131] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 01/31/2023]
Abstract
PURPOSE To investigate the feasibility of imaging the human torso and to evaluate the performance of several radiofrequency (RF) management strategies at 10.5T. METHODS Healthy volunteers were imaged on a 10.5T whole-body scanner in multiple target anatomies, including the prostate, hip, kidney, liver, and heart. Phase-only shimming and spoke pulses were used to demonstrate their performance in managing the B 1 + inhomogeneity present at 447 MHz. Imaging protocols included both qualitative and quantitative acquisitions to show the feasibility of imaging with different contrasts. RESULTS High-quality images were acquired and demonstrated excellent overall contrast and signal-to-noise ratio. The experimental results matched well with predictions and suggested good translational capabilities of the RF management strategies previously developed at 7T. Phase-only shimming provided increased efficiency, but showed pronounced limitations in homogeneity, demonstrating the need for the increased degrees of freedom made possible through single- and multispoke RF pulse design. CONCLUSION The first in-vivo human imaging was successfully performed at 10.5T using previously developed RF management strategies. Further improvement in RF coils, transmit chain, and full integration of parallel transmit functionality are needed to fully realize the benefits of 10.5T.
Collapse
Affiliation(s)
- Xiaoxuan He
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - M Arcan Ertürk
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Andrea Grant
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Xiaoping Wu
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Russell L Lagore
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Lance DelaBarre
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Yiğitcan Eryaman
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Gregor Adriany
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Eddie J Auerbach
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | | | - Kâmil Uğurbil
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Gregory J Metzger
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
30
|
Sica CT, Rupprecht S, Hou RJ, Lanagan MT, Gandji NP, Lanagan MT, Yang QX. Toward whole-cortex enhancement with an ultrahigh dielectric constant helmet at 3T. Magn Reson Med 2019; 83:1123-1134. [PMID: 31502708 DOI: 10.1002/mrm.27962] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/15/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE To present a 3T brain imaging study using a conformal prototype helmet constructed with an ultra-high dielectric constant (uHDC; εr ~ 1000) materials that can be inserted into standard receive head-coils. METHODS A helmet conformal to a standard human head constructed with uHDC materials was characterized through electromagnetic simulations and experimental work. The signal-to-noise ratio (SNR), transmit efficiency, and power deposition with the uHDC helmet inserted within a 20-channel head coil were measured in vivo and compared with a 64-channel head coil and the 20-channel coil without the helmet. Seven healthy volunteers were analyzed. RESULTS Simulation and in vivo experimental results showed that transmit efficiency was improved by nearly 3 times within localized regions for a quadrature excitation, with a measured global increase of 58.21 ± 6.54% over 7 volunteers. The use of a parallel transmit spokes pulse compensated for severe degradation of B 1 + homogeneity, at the expense of higher global and local specific absorption rate levels. A SNR histogram analysis with statistical testing demonstrated that the uHDC helmet enhanced a 20-channel head coil to the level of the 64-channel head coil, with the improvements mainly within the cortical brain regions. CONCLUSION A prototype uHDC helmet enhanced the SNR of a standard head coil to the level of a high density 64-channel coil, although transmit homogeneity was compromised. Further improvements in SNR may be achievable with optimization of this technology, and could be a low-cost approach for future radiofrequency engineering work in the brain at 3T.
Collapse
Affiliation(s)
- Christopher T Sica
- Department of Radiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | | | - Ryan J Hou
- Department of Radiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | | | - Navid P Gandji
- Department of Radiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Michael T Lanagan
- Department of Engineering Science and Mechanics, University Park, Pennsylvania.,Department of Neurosurgery, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Qing X Yang
- Department of Radiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania.,HyQ Research Solutions, LLC, State College, Pennsylvania.,Department of Neurosurgery, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
31
|
Pendse M, Stara R, Khalighi MM, Rutt B. IMPULSE: A scalable algorithm for design of minimum specific absorption rate parallel transmit RF pulses. Magn Reson Med 2019; 81:2808-2822. [PMID: 30426583 PMCID: PMC6372346 DOI: 10.1002/mrm.27589] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/14/2018] [Accepted: 10/10/2018] [Indexed: 12/27/2022]
Abstract
PURPOSE Managing local specific absorption rate (SAR) in parallel transmission requires ensuring that the peak SAR over a large number of voxels (> 10 5 ) is below the regulatory limit. The safety risk to the patient depends on cumulative (not instantaneous) SAR thus making a joint design of all RF pulses in a sequence desirable. We propose the Iterative Minimization Procedure with Uncompressed Local SAR Estimate (IMPULSE), an efficient optimization formulation and algorithm that can handle uncompressed SAR matrices and optimize pulses for all slices jointly within a practical time frame. THEORY AND METHODS IMPULSE optimizes parallel transmit pulses for small-tip-angle slice selective excitation to minimize a single cost function incorporating multiple quantities (local SAR, global SAR, and per-channel power) averaged over the entire multislice scan subject to a strict constraint on excitation accuracy. Pulses for an 8-channel 7T head coil were designed with IMPULSE and compared with pulses designed using generic optimization algorithms and VOPs to assess the computation time and SAR performance benefits. RESULTS IMPULSE achieves lower SAR and shorter computation time compared with a VOP approach. Compared with the generic sequential quadratic programming algorithm, computation time is reduced by a factor of 5-6 by using IMPULSE. Using as many as 6 million local SAR terms, up to 120 slices can be designed jointly with IMPULSE within 45 s. CONCLUSIONS IMPULSE can handle significantly larger number of SAR matrices and slices than conventional optimization algorithms, enabling the use of uncompressed or partially compressed SAR matrices to design pulses for a multislice scan in a practical time frame.
Collapse
Affiliation(s)
- Mihir Pendse
- Stanford University Department of Radiology, 1201 Welch Road Stanford, CA, 94305-5105, USA
| | - Riccardo Stara
- Stanford University Department of Radiology, 1201 Welch Road Stanford, CA, 94305-5105, USA
| | | | - Brian Rutt
- Stanford University Department of Radiology, 1201 Welch Road Stanford, CA, 94305-5105, USA
| |
Collapse
|
32
|
Guerin B, Iacono MI, Davids M, Dougherty D, Angelone LM, Wald LL. The 'virtual DBS population': five realistic computational models of deep brain stimulation patients for electromagnetic MR safety studies. Phys Med Biol 2019; 64:035021. [PMID: 30625451 PMCID: PMC6530797 DOI: 10.1088/1361-6560/aafce8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We design, develop, and disseminate a 'virtual population' of five realistic computational models of deep brain stimulation (DBS) patients for electromagnetic (EM) analysis. We found five DBS patients in our institution' research patient database who received high quality post-DBS surgery computer tomography (CT) examinations of the head and neck. Three patients have a single implanted pulse generator (IPG) and the two others have two IPGs (one for each lead). Moreover, one patient has two abandoned leads on each side of the head. For each patient, we combined the head and neck volumes into a 'virtual CT', from which we extracted the full-length DBS path including the IPG, extension cables, and leads. We corrected topology errors in this path, such as self-intersections, using a previously published optimization procedure. We segmented the virtual CT volume into bones, internal air, and soft tissue classes and created two-manifold, watertight surface meshes of these distributions. In addition, we added a segmented model of the brain (grey matter, white matter, eyes and cerebrospinal fluid) to one of the model (nickname Freddie) that was derived from a T1-weighted MR image obtained prior to the DBS implantation. We simulated the EM fields and specific absorption rate (SAR) induced at 3 Tesla by a quadrature birdcage body coil in each of the five patient models using a co-simulation strategy. We found that inter-subject peak SAR variability across models was independent of the target averaging mass and equal to ~45%. In our simulations of the full brain segmentation and six simplified versions of the Freddie model, the error associated with incorrect dielectric property assignment around the DBS electrodes was greater than the error associated with modeling the whole model as a single tissue class. Our DBS patient models are freely available on our lab website (Webpage of the Martinos Center Phantom Resource 2018 https://phantoms.martinos.org/Main_Page).
Collapse
Affiliation(s)
- Bastien Guerin
- Radiology, Massachusetts General Hospital, Charlestown, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Maria Ida Iacono
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, United States of America
| | - Mathias Davids
- Radiology, Massachusetts General Hospital, Charlestown, MA, United States of America
- Computer Assisted Clinical Medicine, Heidelberg University, Heidelberg, Germany
| | - Darin Dougherty
- Harvard Medical School, Boston, MA, United States of America
- Psychiatry, Massachusetts General Hospital, Charlestown, MA, United States of America
| | - Leonardo M Angelone
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, United States of America
| | - Lawrence L Wald
- Radiology, Massachusetts General Hospital, Charlestown, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
33
|
Klein V, Davids M, Wald LL, Schad LR, Guérin B. Sensitivity analysis of neurodynamic and electromagnetic simulation parameters for robust prediction of peripheral nerve stimulation. Phys Med Biol 2018; 64:015005. [PMID: 30523884 DOI: 10.1088/1361-6560/aaf308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Peripheral nerve stimulation (PNS) has become an important limitation for fast MR imaging using the latest gradient hardware. We have recently developed a simulation framework to predict PNS thresholds and stimulation locations in the body for arbitrary coil geometries to inform the gradient coil optimization process. Our approach couples electromagnetic field simulations in realistic body models to a neurodynamic model of peripheral nerve fibers. In this work, we systematically analyze the impact of key parameters on the predicted PNS thresholds to assess the robustness of the simulation results. We analyze the sensitivity of the simulated thresholds to variations of the most important simulation parameters, including parameters of the electromagnetic field simulations (dielectric tissue properties, body model size, position, spatial resolution, and coil model discretization) and parameters of the neurodynamic simulation (length of the simulated nerves, position of the nerve model relative to the extracellular potential, temporal resolution of the nerve membrane dynamics). We found that for the investigated setup, the subject-dependent parameters (e.g. tissue properties or body size) can affect PNS prediction by up to ~26% when varied in a natural range. This is in accordance with the standard deviation of ~30% reported in human subject studies. Parameters related to numerical aspects can cause significant simulation errors (>30%), if not chosen cautiously. However, these perturbations can be controlled to yield errors below 5% for all investigated parameters without an excessive increase in computation time. Our sensitivity analysis shows that patient-specific parameter fluctuations yield PNS threshold variations similar to the variations observed in experimental PNS studies. This may become useful to estimate population-average PNS thresholds and understand their standard deviation. Our analysis indicates that the simulated PNS thresholds are numerically robust, which is important for ranking different MRI gradient coil designs or assessing different PNS mitigation strategies.
Collapse
Affiliation(s)
- Valerie Klein
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany. Author to whom any correspondence should be addressed
| | | | | | | | | |
Collapse
|
34
|
Ladd ME, Bachert P, Meyerspeer M, Moser E, Nagel AM, Norris DG, Schmitter S, Speck O, Straub S, Zaiss M. Pros and cons of ultra-high-field MRI/MRS for human application. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 109:1-50. [PMID: 30527132 DOI: 10.1016/j.pnmrs.2018.06.001] [Citation(s) in RCA: 289] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 05/08/2023]
Abstract
Magnetic resonance imaging and spectroscopic techniques are widely used in humans both for clinical diagnostic applications and in basic research areas such as cognitive neuroimaging. In recent years, new human MR systems have become available operating at static magnetic fields of 7 T or higher (≥300 MHz proton frequency). Imaging human-sized objects at such high frequencies presents several challenges including non-uniform radiofrequency fields, enhanced susceptibility artifacts, and higher radiofrequency energy deposition in the tissue. On the other side of the scale are gains in signal-to-noise or contrast-to-noise ratio that allow finer structures to be visualized and smaller physiological effects to be detected. This review presents an overview of some of the latest methodological developments in human ultra-high field MRI/MRS as well as associated clinical and scientific applications. Emphasis is given to techniques that particularly benefit from the changing physical characteristics at high magnetic fields, including susceptibility-weighted imaging and phase-contrast techniques, imaging with X-nuclei, MR spectroscopy, CEST imaging, as well as functional MRI. In addition, more general methodological developments such as parallel transmission and motion correction will be discussed that are required to leverage the full potential of higher magnetic fields, and an overview of relevant physiological considerations of human high magnetic field exposure is provided.
Collapse
Affiliation(s)
- Mark E Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine, University of Heidelberg, Heidelberg, Germany; Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany; Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany.
| | - Peter Bachert
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany.
| | - Martin Meyerspeer
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria; MR Center of Excellence, Medical University of Vienna, Vienna, Austria.
| | - Ewald Moser
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria; MR Center of Excellence, Medical University of Vienna, Vienna, Austria.
| | - Armin M Nagel
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - David G Norris
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands; Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany.
| | - Sebastian Schmitter
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.
| | - Oliver Speck
- Department of Biomedical Magnetic Resonance, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; German Center for Neurodegenerative Diseases, Magdeburg, Germany; Center for Behavioural Brain Sciences, Magdeburg, Germany; Leibniz Institute for Neurobiology, Magdeburg, Germany.
| | - Sina Straub
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Moritz Zaiss
- High-Field Magnetic Resonance Center, Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany.
| |
Collapse
|
35
|
Wu X, Auerbach EJ, Vu AT, Moeller S, Van de Moortele PF, Yacoub E, Uğurbil K. Human Connectome Project-style resting-state functional MRI at 7 Tesla using radiofrequency parallel transmission. Neuroimage 2018; 184:396-408. [PMID: 30237033 DOI: 10.1016/j.neuroimage.2018.09.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/13/2018] [Accepted: 09/15/2018] [Indexed: 01/16/2023] Open
Abstract
We investigate the utility of radiofrequency (RF) parallel transmission (pTx) for whole-brain resting-state functional MRI (rfMRI) acquisition at 7 Tesla (7T). To this end, Human Connectome Project (HCP)-style data acquisitions were chosen as a showcase example. Five healthy subjects were scanned in pTx and single-channel transmit (1Tx) modes. The pTx data were acquired using a prototype 16-channel transmit system and a commercially available Nova 8-channel transmit 32-channel receive RF head coil. Additionally, pTx single-spoke multiband (MB) pulses were designed to image sagittal slices. HCP-style 7T rfMRI data (1.6-mm isotropic resolution, 5-fold slice and 2-fold in-plane acceleration, 3600 image volumes and ∼ 1-h scan) were acquired with pTx and the results were compared to those acquired with the original 7T HCP rfMRI protocol. The use of pTx significantly improved flip-angle uniformity across the brain, with coefficient of variation (i.e., std/mean) of whole-brain flip-angle distribution reduced on average by ∼39%. This in turn yielded ∼17% increase in group temporal SNR (tSNR) as averaged across the entire brain and ∼10% increase in group functional contrast-to-noise ratio (fCNR) as averaged across the grayordinate space (including cortical surfaces and subcortical voxels). Furthermore, when placing a seed in either the posterior parietal lobe or putamen to estimate seed-based dense connectome, the increase in fCNR was observed to translate into stronger correlation of the seed with the rest of the grayordinate space. We have demonstrated the utility of pTx for slice-accelerated high-resolution whole-brain rfMRI at 7T; as compared to current state-of-the-art, the use of pTx improves flip-angle uniformity, increases tSNR, enhances fCNR and strengthens functional connectivity estimation.
Collapse
Affiliation(s)
- Xiaoping Wu
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, MN, United States.
| | - Edward J Auerbach
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - An T Vu
- Center for Imaging of Neurodegenerative Diseases, VA Healthcare System, San Francisco, CA, United States
| | - Steen Moeller
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, MN, United States
| | | | - Essa Yacoub
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - Kâmil Uğurbil
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
36
|
Yan X, Gore JC, Grissom WA. Self-decoupled radiofrequency coils for magnetic resonance imaging. Nat Commun 2018; 9:3481. [PMID: 30154408 PMCID: PMC6113296 DOI: 10.1038/s41467-018-05585-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 07/06/2018] [Indexed: 11/08/2022] Open
Abstract
Arrays of radiofrequency coils are widely used in magnetic resonance imaging to achieve high signal-to-noise ratios and flexible volume coverage, to accelerate scans using parallel reception, and to mitigate field non-uniformity using parallel transmission. However, conventional coil arrays require complex decoupling technologies to reduce electromagnetic coupling between coil elements, which would otherwise amplify noise and limit transmitted power. Here we report a novel self-decoupled RF coil design with a simple structure that requires only an intentional redistribution of electrical impedances around the length of the coil loop. We show that self-decoupled coils achieve high inter-coil isolation between adjacent and non-adjacent elements of loop arrays and mixed arrays of loops and dipoles. Self-decoupled coils are also robust to coil separation, making them attractive for size-adjustable and flexible coil arrays.
Collapse
Affiliation(s)
- Xinqiang Yan
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, USA.
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, 37232, USA.
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA
| | - William A Grissom
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Electrical Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
37
|
Garwood M, Uğurbil K. RF pulse methods for use with surface coils: Frequency-modulated pulses and parallel transmission. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 291:84-93. [PMID: 29705035 PMCID: PMC5943143 DOI: 10.1016/j.jmr.2018.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/24/2018] [Indexed: 06/08/2023]
Abstract
The first use of a surface coil to obtain a 31P NMR spectrum from an intact rat by Ackerman and colleagues initiated a revolution in magnetic resonance imaging (MRI) and spectroscopy (MRS). Today, we take it for granted that one can detect signals in regions external to an RF coil; at the time, however, this concept was most unusual. In the approximately four decade long period since its introduction, this simple idea gave birth to an increasing number of innovations that has led to transformative changes in the way we collect data in an in vivo magnetic resonance experiment, particularly with MRI of humans. These innovations include spatial localization and/or encoding based on the non-uniform B1 field generated by the surface coil, leading to new spectroscopic localization methods, image acceleration, and unique RF pulses that deal with B1 inhomogeneities and even reduce power deposition. Without the surface coil, many of the major technological advances that define the extraordinary success of MRI in clinical diagnosis and in biomedical research, as exemplified by projects like the Human Connectome Project, would not have been possible.
Collapse
Affiliation(s)
- Michael Garwood
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN 55455 USA.
| | - Kamil Uğurbil
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
38
|
Magnetic Resonance Imaging technology-bridging the gap between noninvasive human imaging and optical microscopy. Curr Opin Neurobiol 2018; 50:250-260. [PMID: 29753942 DOI: 10.1016/j.conb.2018.04.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 04/20/2018] [Accepted: 04/24/2018] [Indexed: 12/23/2022]
Abstract
Technological advances in Magnetic Resonance Imaging (MRI) have provided substantial gains in the sensitivity and specificity of functional neuroimaging. Mounting evidence demonstrates that the hemodynamic changes utilized in functional MRI can be far more spatially and thus neuronally specific than previously believed. This has motivated a push toward novel, high-resolution MR imaging strategies that can match this biological resolution limit while recording from the entire human brain. Although sensitivity increases are a necessary component, new MR encoding technologies are required to convert improved sensitivity into higher resolution. These new sampling strategies improve image acquisition efficiency and enable increased image encoding in the time-frame needed to follow hemodynamic changes associated with brain activation.
Collapse
|
39
|
Guerin B, Serano P, Iacono MI, Herrington TM, Widge AS, Dougherty DD, Bonmassar G, Angelone LM, Wald LL. Realistic modeling of deep brain stimulation implants for electromagnetic MRI safety studies. Phys Med Biol 2018; 63:095015. [PMID: 29637905 PMCID: PMC5935557 DOI: 10.1088/1361-6560/aabd50] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We propose a framework for electromagnetic (EM) simulation of deep brain stimulation (DBS) patients in radiofrequency (RF) coils. We generated a model of a DBS patient using post-operative head and neck computed tomography (CT) images stitched together into a 'virtual CT' image covering the entire length of the implant. The body was modeled as homogeneous. The implant path extracted from the CT data contained self-intersections, which we corrected automatically using an optimization procedure. Using the CT-derived DBS path, we built a model of the implant including electrodes, helicoidal internal conductor wires, loops, extension cables, and the implanted pulse generator. We also built four simplified models with straight wires, no extension cables and no loops to assess the impact of these simplifications on safety predictions. We simulated EM fields induced by the RF birdcage body coil in the body model, including at the DBS lead tip at both 1.5 Tesla (64 MHz) and 3 Tesla (123 MHz). We also assessed the robustness of our simulation results by systematically varying the EM properties of the body model and the position and length of the DBS implant (sensitivity analysis). The topology correction algorithm corrected all self-intersection and curvature violations of the initial path while introducing minimal deformations (open-source code available at http://ptx.martinos.org/index.php/Main_Page). The unaveraged lead-tip peak SAR predicted by the five DBS models (0.1 mm resolution grid) ranged from 12.8 kW kg-1 (full model, helicoidal conductors) to 43.6 kW kg-1 (no loops, straight conductors) at 1.5 T (3.4-fold variation) and 18.6 kW kg-1 (full model, straight conductors) to 73.8 kW kg-1 (no loops, straight conductors) at 3 T (4.0-fold variation). At 1.5 T and 3 T, the variability of lead-tip peak SAR with respect to the conductivity ranged between 18% and 30%. Variability with respect to the position and length of the DBS implant ranged between 9.5% and 27.6%.
Collapse
Affiliation(s)
- Bastien Guerin
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown MA
- Harvard Medical School, Boston MA
| | - Peter Serano
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring MD
| | - Maria Ida Iacono
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring MD
| | - Todd M. Herrington
- Harvard Medical School, Boston MA
- Department of Neurology, Massachusetts General Hospital, Boston MA
| | - Alik S. Widge
- Harvard Medical School, Boston MA
- Department of Psychiatry, Massachusetts General Hospital, Boston MA
| | - Darin D. Dougherty
- Harvard Medical School, Boston MA
- Department of Psychiatry, Massachusetts General Hospital, Boston MA
| | - Giorgio Bonmassar
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown MA
- Harvard Medical School, Boston MA
| | - Leonardo M. Angelone
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring MD
| | - Lawrence L. Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown MA
- Harvard Medical School, Boston MA
- Harvard-MIT Health Science and Technology, Cambridge MA
| |
Collapse
|
40
|
Wu X, Auerbach EJ, Vu AT, Moeller S, Lenglet C, Schmitter S, Van de Moortele PF, Yacoub E, Uğurbil K. High-resolution whole-brain diffusion MRI at 7T using radiofrequency parallel transmission. Magn Reson Med 2018; 80:1857-1870. [PMID: 29603381 DOI: 10.1002/mrm.27189] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 02/20/2018] [Accepted: 03/02/2018] [Indexed: 12/21/2022]
Abstract
PURPOSE Investigating the utility of RF parallel transmission (pTx) for Human Connectome Project (HCP)-style whole-brain diffusion MRI (dMRI) data at 7 Tesla (7T). METHODS Healthy subjects were scanned in pTx and single-transmit (1Tx) modes. Multiband (MB), single-spoke pTx pulses were designed to image sagittal slices. HCP-style dMRI data (i.e., 1.05-mm resolutions, MB2, b-values = 1000/2000 s/mm2 , 286 images and 40-min scan) and data with higher accelerations (MB3 and MB4) were acquired with pTx. RESULTS pTx significantly improved flip-angle detected signal uniformity across the brain, yielding ∼19% increase in temporal SNR (tSNR) averaged over the brain relative to 1Tx. This allowed significantly enhanced estimation of multiple fiber orientations (with ∼21% decrease in dispersion) in HCP-style 7T dMRI datasets. Additionally, pTx pulses achieved substantially lower power deposition, permitting higher accelerations, enabling collection of the same data in 2/3 and 1/2 the scan time or of more data in the same scan time. CONCLUSION pTx provides a solution to two major limitations for slice-accelerated high-resolution whole-brain dMRI at 7T; it improves flip-angle uniformity, and enables higher slice acceleration relative to current state-of-the-art. As such, pTx provides significant advantages for rapid acquisition of high-quality, high-resolution truly whole-brain dMRI data.
Collapse
Affiliation(s)
- Xiaoping Wu
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Edward J Auerbach
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - An T Vu
- Center for Imaging of Neurodegenerative Diseases, VA Healthcare System, San Francisco, California
| | - Steen Moeller
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Christophe Lenglet
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Sebastian Schmitter
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota.,Physikalisch-Technische Bundesanstalt, Berlin, Germany
| | | | - Essa Yacoub
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Kâmil Uğurbil
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
41
|
Uğurbil K. Imaging at ultrahigh magnetic fields: History, challenges, and solutions. Neuroimage 2018; 168:7-32. [PMID: 28698108 PMCID: PMC5758441 DOI: 10.1016/j.neuroimage.2017.07.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 01/06/2023] Open
Abstract
Following early efforts in applying nuclear magnetic resonance (NMR) spectroscopy to study biological processes in intact systems, and particularly since the introduction of 4 T human scanners circa 1990, rapid progress was made in imaging and spectroscopy studies of humans at 4 T and animal models at 9.4 T, leading to the introduction of 7 T and higher magnetic fields for human investigation at about the turn of the century. Work conducted on these platforms has provided numerous technological solutions to challenges posed at these ultrahigh fields, and demonstrated the existence of significant advantages in signal-to-noise ratio and biological information content. Primary difference from lower fields is the deviation from the near field regime at the radiofrequencies (RF) corresponding to hydrogen resonance conditions. At such ultrahigh fields, the RF is characterized by attenuated traveling waves in the human body, which leads to image non-uniformities for a given sample-coil configuration because of destructive and constructive interferences. These non-uniformities were initially considered detrimental to progress of imaging at high field strengths. However, they are advantageous for parallel imaging in signal reception and transmission, two critical technologies that account, to a large extend, for the success of ultrahigh fields. With these technologies and improvements in instrumentation and imaging methods, today ultrahigh fields have provided unprecedented gains in imaging of brain function and anatomy, and started to make inroads into investigation of the human torso and extremities. As extensive as they are, these gains still constitute a prelude to what is to come given the increasingly larger effort committed to ultrahigh field research and development of ever better instrumentation and techniques.
Collapse
Affiliation(s)
- Kamil Uğurbil
- Center for Magnetic Resonance Research (CMRR), University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
42
|
Jang A, Wu X, Auerbach EJ, Garwood M. Designing 3D selective adiabatic radiofrequency pulses with single and parallel transmission. Magn Reson Med 2018; 79:701-710. [PMID: 28497465 PMCID: PMC5682242 DOI: 10.1002/mrm.26720] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 11/11/2022]
Abstract
PURPOSE To introduce a method of designing single and parallel transmit (pTx) 3D adiabatic π pulses for inverting and refocusing spins that are insensitive to transmit B1 ( B1+) inhomogeneity. THEORY AND METHODS A 3D adiabatic pulse is created by replacing each piece-wise constant element (or sub-pulse) of an adiabatic full passage (AFP) by a 2D selective pulse. In this study, the parent AFP is an HS1 and each sub-pulse is a 2D pulse derived from a jinc function designed using a spiral k-trajectory. Spatial selectivity in the third direction is achieved by blipping the slab-selective gradient between sub-pulses, yielding a rectangular slab profile identical to that of the parent AFP. The slew-rate limited sub-pulse can be undersampled utilizing pTx, thus shortening the overall pulse width. Simulations and experiments demonstrate the quality of spatial selectivity and adiabaticity achievable. RESULTS The 3D adiabatic pulse inverts and refocus spins in a sharply demarcated cylindrical volume. When stepping RF amplitude, an adiabatic threshold is observed above which the flip angle remains π. Experimental results demonstrate that pTx is an effective means to significantly improve pulse performance. CONCLUSION A method of designing 3D adiabatic pulses insensitive to B1 inhomogeneity has been developed. pTx can shorten these pulses while retaining their adiabatic character. Magn Reson Med 79:701-710, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Albert Jang
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minnesota, United States
- Department of Electrical and Computer Engineering, University of Minnesota, Minnesota, United States
- Department of Medicine, Cardiovascular Division, University of Minnesota, Minnesota, United States
| | - Xiaoping Wu
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minnesota, United States
| | - Edward J. Auerbach
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minnesota, United States
| | - Michael Garwood
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minnesota, United States
| |
Collapse
|
43
|
Haemer GG, Vaidya M, Collins CM, Sodickson DK, Wiggins GC, Lattanzi R. Approaching ultimate intrinsic specific absorption rate in radiofrequency shimming using high-permittivity materials at 7 Tesla. Magn Reson Med 2017; 80:391-399. [PMID: 29193307 DOI: 10.1002/mrm.27022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/18/2017] [Accepted: 10/31/2017] [Indexed: 11/07/2022]
Abstract
PURPOSE The aim of this study was to evaluate the effect of integrated high-permittivity materials (HPMs) on excitation homogeneity and global specific absorption rate (SAR) for transmit arrays at 7T. METHODS A rapid electrodynamic simulation framework was used to calculate L-curves associated with excitation of a uniform 2D profile in a dielectric sphere. We used ultimate intrinsic SAR as an absolute performance reference to compare different transmit arrays in the presence and absence of a layer of HPM. We investigated the optimal permittivity for the HPM as a function of its thickness, the sample size, and the number of array elements. RESULTS Adding a layer of HPM can improve the performance of a 24-element array to match that of a 48-element array without HPM, whereas a 48-element array with HPM can perform as well as a 64-element array without HPM. Optimal relative permittivity values changed based on sample and coil geometry, but were always within a range obtainable with readily available materials (εr = 100-200). CONCLUSION Integration of HPMs could be a practical method to improve RF shimming performance, alternative to increasing the number of coils. The proposed simulation framework could be used to explore the design of novel transmit arrays for head imaging at ultra-high field strength. Magn Reson Med 80:391-399, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Gillian G Haemer
- Center for Advanced Imaging Innovation and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,NYU WIRELESS, New York University Tandon School of Engineering, Brooklyn, New York, USA.,The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA
| | - Manushka Vaidya
- Center for Advanced Imaging Innovation and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,NYU WIRELESS, New York University Tandon School of Engineering, Brooklyn, New York, USA.,The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA
| | - Christopher M Collins
- Center for Advanced Imaging Innovation and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,NYU WIRELESS, New York University Tandon School of Engineering, Brooklyn, New York, USA.,The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA
| | - Daniel K Sodickson
- Center for Advanced Imaging Innovation and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,NYU WIRELESS, New York University Tandon School of Engineering, Brooklyn, New York, USA.,The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA
| | - Graham C Wiggins
- Center for Advanced Imaging Innovation and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Riccardo Lattanzi
- Center for Advanced Imaging Innovation and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,NYU WIRELESS, New York University Tandon School of Engineering, Brooklyn, New York, USA.,The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
44
|
Stout JN, Adalsteinsson E, Rosen BR, Bolar DS. Functional oxygen extraction fraction (OEF) imaging with turbo gradient spin echo QUIXOTIC (Turbo QUIXOTIC). Magn Reson Med 2017; 79:2713-2723. [PMID: 28984056 DOI: 10.1002/mrm.26947] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/14/2017] [Accepted: 09/06/2017] [Indexed: 11/12/2022]
Abstract
PURPOSE QUantitative Imaging of eXtraction of Oxygen and TIssue Consumption (QUIXOTIC) is a recent technique that measures voxel-wise oxygen extraction fraction (OEF) but suffers from long scan times, limiting its application. We implemented multiecho QUIXOTIC dubbed turbo QUIXOTIC (tQUIXOTIC) that reduces scan time eightfold and then applied it in functional MRI. METHODS tQUIXOTIC utilizes a novel turbo gradient spin echo readout enabling measurement of venular blood transverse relaxation rate in a single tag-control acquisition. Using tQUIXOTIC, we estimated cortical gray matter (GM) OEF, created voxel-by-voxel GM OEF maps, and quantified changes in visual cortex OEF during a blocked design flashing checkerboard visual stimulus. Contamination from cerebrospinal fluid partial volume averaging was estimated and corrected. RESULTS The average cortical GM OEF was estimated as 0.38 ± 0.06 (n = 8) using a 3.4-min acquisition. The average OEF in the visual cortex was estimated as 0.43 ± 0.04 at baseline and 0.35 ± 0.05 during activation, with an average %ΔOEF of -20%. These values are consistent with those of past studies. CONCLUSION tQUIXOTIC successfully estimated cortical GM OEF in clinical scan times and detected changes in OEF during blocked design visual stimulation. tQUIXOTIC will be useful to monitor regional OEF clinically and in blocked design or event-related functional MRI experiments. Magn Reson Med 79:2713-2723, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Jeffrey N Stout
- Harvard-MIT Health Sciences and Technology, Institute of Medical Engineering & Science, MIT, Cambridge, Massachusetts, USA
| | - Elfar Adalsteinsson
- Harvard-MIT Health Sciences and Technology, Institute of Medical Engineering & Science, MIT, Cambridge, Massachusetts, USA.,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Bruce R Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Divya S Bolar
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Massachusetts, USA.,Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
45
|
Grissom WA, Setsompop K, Hurley SA, Tsao J, Velikina JV, Samsonov AA. Advancing RF pulse design using an open-competition format: Report from the 2015 ISMRM challenge. Magn Reson Med 2017; 78:1352-1361. [PMID: 27790754 PMCID: PMC5408273 DOI: 10.1002/mrm.26512] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 02/03/2023]
Abstract
PURPOSE To advance the best solutions to two important RF pulse design problems with an open head-to-head competition. METHODS Two sub-challenges were formulated in which contestants competed to design the shortest simultaneous multislice (SMS) refocusing pulses and slice-selective parallel transmission (pTx) excitation pulses, subject to realistic hardware and safety constraints. Short refocusing pulses are needed for spin echo SMS imaging at high multiband factors, and short slice-selective pTx pulses are needed for multislice imaging in ultra-high field MRI. Each sub-challenge comprised two phases, in which the first phase posed problems with a low barrier of entry, and the second phase encouraged solutions that performed well in general. The Challenge ran from October 2015 to May 2016. RESULTS The pTx Challenge winners developed a spokes pulse design method that combined variable-rate selective excitation with an efficient method to enforce SAR constraints, which achieved 10.6 times shorter pulse durations than conventional approaches. The SMS Challenge winners developed a time-optimal control multiband pulse design algorithm that achieved 5.1 times shorter pulse durations than conventional approaches. CONCLUSION The Challenge led to rapid step improvements in solutions to significant problems in RF excitation for SMS imaging and ultra-high field MRI. Magn Reson Med 78:1352-1361, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- William A. Grissom
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Kawin Setsompop
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Julia V. Velikina
- Department of Medical Physics, University of Wisconsin, Madison, USA
| | | |
Collapse
|
46
|
Winkler SA, Picot PA, Thornton MM, Rutt BK. Direct SAR mapping by thermoacoustic imaging: A feasibility study. Magn Reson Med 2017; 78:1599-1606. [PMID: 27779779 PMCID: PMC5405009 DOI: 10.1002/mrm.26517] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/01/2016] [Accepted: 09/27/2016] [Indexed: 11/09/2022]
Abstract
PURPOSE To develop a new method capable of directly measuring specific absorption rate (SAR) deposited in tissue using the thermoacoustic signal induced by short radiofrequency (RF) pulse excitation. THEORY A detailed model based on the thermoacoustic wave generation and propagation is presented. METHODS We propose a new concept for direct measurement of SAR, to be used as a safety assessment/monitoring tool for MRI. The concept involves the use of short bursts of RF energy and the measurement of the resulting thermoacoustic excitation pattern by an array of ultrasound transducers, followed by image reconstruction to yield the 3D SAR distribution. We developed a simulation framework to model this thermoacoustic SAR mapping concept and verified the concept in vitro. RESULTS Simulations show good agreement between reconstructed and original SAR distributions with an error of 4.2, 7.2, and 8.4% of the mean SAR values in axial, sagittal, and coronal planes and support the feasibility of direct experimental mapping of SAR distributions in vivo. The in vitro experiments show good agreement with theory (r2 = 0.52). CONCLUSIONS A novel thermoacoustic method for in vivo mapping of local SAR patterns in MRI has been proposed and verified in simulation and in a phantom experiment. Magn Reson Med 78:1599-1606, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Simone A. Winkler
- Department of Radiology, Stanford University, Stanford, California, USA
| | | | | | - Brian K. Rutt
- Department of Radiology, Stanford University, Stanford, California, USA
| |
Collapse
|
47
|
Çavuşoğlu M, Mooiweer R, Pruessmann KP, Malik SJ. VERSE-guided parallel RF excitations using dynamic field correction. NMR IN BIOMEDICINE 2017; 30:e3697. [PMID: 28211968 PMCID: PMC5484370 DOI: 10.1002/nbm.3697] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 11/24/2016] [Accepted: 12/29/2016] [Indexed: 06/06/2023]
Abstract
In parallel RF pulse design, peak RF magnitudes and specific absorption rate levels are critical concerns in the hardware and safety limits. The variable rate selective excitation (VERSE) method is an efficient technique to limit the peak RF power by applying a local-only RF and gradient waveform reshaping while retaining the on-resonance profile. The accuracy of the excitation performed by the VERSEd RF and gradient waveforms strictly depends on the performance of the employed hardware. Any deviation from the nominal gradient fields as a result of frequency dependent system imperfections violates the VERSE condition similarly to off-resonance effects, leading to significant excitation errors and the RF pulse not converging to the targeted peak RF power. Moreover, for iterative VERSE-guided RF pulse design (i.e. reVERSE), the k-space trajectory actually changes at every iteration, which is assumed to be constant. In this work, we show both theoretically and experimentally the effect of gradient system imperfections on iteratively VERSEd parallel RF excitations. In order to improve the excitation accuracy besides limiting the RF power below certain thresholds, we propose to integrate gradient field monitoring or gradient impulse response function (GIRF) estimations of the actual gradient fields into the RF pulse design problem. A third-order dynamic field camera comprising a set of NMR field sensors and GIRFs was used to measure or estimate the actual gradient waveforms that are involved in the VERSE algorithm respectively. The deviating and variable k-space is counteracted at each iteration of the VERSE-guided iterative RF pulse design. The proposed approaches are demonstrated for accelerated multiple-channel spatially selective RF pulses, and highly improved experimental performance was achieved at both 3 T and 7 T.
Collapse
Affiliation(s)
- Mustafa Çavuşoğlu
- Institute for Biomedical EngineeringUniversity and ETH ZürichZürichSwitzerland
| | - Ronald Mooiweer
- Division of Imaging Sciences and Biomedical Engineering, King's College LondonSt. Thomas' HospitalLondonUK
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Klaas P. Pruessmann
- Institute for Biomedical EngineeringUniversity and ETH ZürichZürichSwitzerland
| | - Shaihan J. Malik
- Division of Imaging Sciences and Biomedical Engineering, King's College LondonSt. Thomas' HospitalLondonUK
| |
Collapse
|
48
|
Beqiri A, Price AN, Padormo F, Hajnal JV, Malik SJ. Extended RF shimming: Sequence-level parallel transmission optimization applied to steady-state free precession MRI of the heart. NMR IN BIOMEDICINE 2017; 30:e3701. [PMID: 28195684 PMCID: PMC5484304 DOI: 10.1002/nbm.3701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 12/23/2016] [Accepted: 12/30/2016] [Indexed: 05/12/2023]
Abstract
Cardiac magnetic resonance imaging (MRI) at high field presents challenges because of the high specific absorption rate and significant transmit field (B1+ ) inhomogeneities. Parallel transmission MRI offers the ability to correct for both issues at the level of individual radiofrequency (RF) pulses, but must operate within strict hardware and safety constraints. The constraints are themselves affected by sequence parameters, such as the RF pulse duration and TR, meaning that an overall optimal operating point exists for a given sequence. This work seeks to obtain optimal performance by performing a 'sequence-level' optimization in which pulse sequence parameters are included as part of an RF shimming calculation. The method is applied to balanced steady-state free precession cardiac MRI with the objective of minimizing TR, hence reducing the imaging duration. Results are demonstrated using an eight-channel parallel transmit system operating at 3 T, with an in vivo study carried out on seven male subjects of varying body mass index (BMI). Compared with single-channel operation, a mean-squared-error shimming approach leads to reduced imaging durations of 32 ± 3% with simultaneous improvement in flip angle homogeneity of 32 ± 8% within the myocardium.
Collapse
Affiliation(s)
- Arian Beqiri
- Division of Imaging Sciences and Biomedical EngineeringKing's College LondonLondonUK
| | - Anthony N. Price
- Division of Imaging Sciences and Biomedical EngineeringKing's College LondonLondonUK
- Centre for the Developing BrainKing's College LondonLondonUK
| | - Francesco Padormo
- Division of Imaging Sciences and Biomedical EngineeringKing's College LondonLondonUK
| | - Joseph V. Hajnal
- Division of Imaging Sciences and Biomedical EngineeringKing's College LondonLondonUK
- Centre for the Developing BrainKing's College LondonLondonUK
| | - Shaihan J. Malik
- Division of Imaging Sciences and Biomedical EngineeringKing's College LondonLondonUK
| |
Collapse
|
49
|
Yan X, Gore JC, Grissom WA. New resonator geometries for ICE decoupling of loop arrays. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 277:59-67. [PMID: 28236786 PMCID: PMC5389865 DOI: 10.1016/j.jmr.2017.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 06/06/2023]
Abstract
RF arrays with a large number of independent coil elements are advantageous for parallel transmission (pTx) and reception at high fields. One of the main challenges in designing RF arrays is to minimize the electromagnetic (EM) coupling between the coil elements. The induced current elimination (ICE) method, which uses additional resonator elements to cancel coils' mutual EM coupling, has proven to be a simple and efficient solution for decoupling microstrip, L/C loop, monopole and dipole arrays. However, in previous embodiments of conventional ICE decoupling, the decoupling elements acted as "magnetic-walls" with low transmit fields and consequently low MR signal near them. To solve this problem, new resonator geometries including overlapped and perpendicular decoupling loops are proposed. The new geometries were analyzed theoretically and validated in EM simulations, bench tests and MR experiments. The isolation between two closely-placed loops could be improved from about -5dB to <-45dB by using the new geometries.
Collapse
Affiliation(s)
- Xinqiang Yan
- Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA.
| | - John C Gore
- Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - William A Grissom
- Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
50
|
Eryaman Y, Lagore RL, Ertürk MA, Utecht L, Zhang P, Torrado-Carvajal A, Türk EA, DelaBarre L, Metzger GJ, Adriany G, Uğurbil K, Vaughan JT. Radiofrequency heating studies on anesthetized swine using fractionated dipole antennas at 10.5 T. Magn Reson Med 2017; 79:479-488. [PMID: 28370375 DOI: 10.1002/mrm.26688] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/03/2017] [Accepted: 03/04/2017] [Indexed: 11/09/2022]
Abstract
PURPOSE To validate electromagnetic and thermal simulations with in vivo temperature measurements, and to demonstrate a framework that can be used to predict temperature increase caused by radiofrequency (RF) excitation with dipole transmitter arrays. METHODS Dipole arrays were used to deliver RF energy in the back/neck region of the swine using different RF excitation patterns (n = 2-4 per swine) for heating. The temperature in anesthetized swine (n = 3) was measured using fluoroscopic probes (n = 12) and compared against thermal modeling from animal-specific electromagnetic simulations. RESULTS Simulated temperature curves were in agreement with the measured data. The root mean square error between simulated and measured temperature rise at all locations (at the end of each RF excitation) is calculated as 0.37°C. The mean experimental temperature rise at the maximum temperature rise locations (averaged over all experiments) is calculated as 2.89°C. The root mean square error between simulated and measured temperature at the maximum temperature rise location is calculated as 0.57°C. (Error values are averaged over all experiments.) CONCLUSIONS: Electromagnetic and thermal simulations were validated with experiments. Thermal effects of RF excitation at 10.5 Tesla with dipoles were investigated. Magn Reson Med 79:479-488, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Yiğitcan Eryaman
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Russell L Lagore
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - M Arcan Ertürk
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lynn Utecht
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Patrick Zhang
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Angel Torrado-Carvajal
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Medical Image Analysis and Biometry Laboratory, Universidad Rey Juan Carlos, Madrid, Spain
| | - Esra Abaci Türk
- Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lance DelaBarre
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gregory J Metzger
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gregor Adriany
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kâmil Uğurbil
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - J Thomas Vaughan
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|