1
|
Zhao Y, Olin RB, Hansen ESS, Laustsen C, Hanson LG, Ardenkjær‐Larsen JH. 3D quantitative myocardial perfusion imaging with hyperpolarized HP001(bis-1,1-(hydroxymethyl)-[1- 13C]cyclopropane-d8): Application of gradient echo and balanced SSFP sequences. Magn Reson Med 2025; 93:814-827. [PMID: 39344297 PMCID: PMC11604847 DOI: 10.1002/mrm.30320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024]
Abstract
PURPOSE This study aims to show the viability of conducting three-dimensional (3D) myocardial perfusion quantification covering the entire heart using both GRE and bSSFP sequences with hyperpolarized HP001. METHODS A GRE sequence and a bSSFP sequence, both with a stack-of-spirals readout, were designed and applied to three pigs. The images were reconstructed using 13 $$ {}^{13} $$ C coil sensitivity maps measured in a phantom experiment. Perfusion was quantified using a constrained decomposition method, and the estimated rest/stress perfusion values from 13 $$ {}^{13} $$ C GRE/bSSFP and Dynamic contrast-enhanced MRI (DCE-MRI) were individually analyzed through histograms and the mean perfusion values were compared with reference values obtained from PET( 15 $$ {}^{15} $$ O-water). The Myocardial Perfusion Reserve Index (MPRI) was estimated for 13 $$ {}^{13} $$ C GRE/bSSFP and DCE-MRI and compared with the reference values. RESULTS Perfusion values, estimated by both DCE and 13 $$ {}^{13} $$ C MRI, were found to be lower than reference values. However, DCE-MRI's estimated perfusion values were closer to the reference values than those obtained from 13 $$ {}^{13} $$ C MRI. In the case of MPRI estimation, the 13 $$ {}^{13} $$ C estimated MPRI values (GRE/bSSFP: 2.3/2.0) more closely align with the literature value (around 3) than the DCE estimated MPRI value (1.6). CONCLUSION This study demonstrated the feasibility of 3D whole-heart myocardial perfusion quantification using hyperpolarized HP001 with both GRE and bSSFP sequences. The 13 $$ {}^{13} $$ C perfusion measurements underestimated perfusion values compared to the 15 $$ {}^{15} $$ O PET literature value, while the 13 $$ {}^{13} $$ C estimated MPRI value aligned better with the literature. This preliminary result indicates 13 $$ {}^{13} $$ C imaging may more accurately estimate MPRI values compared to DCE-MRI.
Collapse
Affiliation(s)
- Yupeng Zhao
- Department of Health TechnologyTechnical University of DenmarkKgs. LyngbyDenmark
| | - Rie Beck Olin
- Department of Health TechnologyTechnical University of DenmarkKgs. LyngbyDenmark
| | | | | | - Lars G. Hanson
- Department of Health TechnologyTechnical University of DenmarkKgs. LyngbyDenmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital HvidovreHvidovreDenmark
| | | |
Collapse
|
2
|
Guarin DO, Joshi SM, Samoilenko A, Kabir MSH, Hardy EE, Takahashi AM, Ardenkjaer-Larsen JH, Chekmenev EY, Yen YF. Development of Dissolution Dynamic Nuclear Polarization of [ 15 N 3 ]Metronidazole: A Clinically Approved Antibiotic. Angew Chem Int Ed Engl 2023; 62:e202219181. [PMID: 37247411 PMCID: PMC10524734 DOI: 10.1002/anie.202219181] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/12/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
We report dissolution Dynamic Nuclear Polarization (d-DNP) of [15 N3 ]metronidazole ([15 N3 ]MNZ) for the first time. Metronidazole is a clinically approved antibiotic, which can be potentially employed as a hypoxia-sensing molecular probe using 15 N hyperpolarized (HP) nucleus. The DNP process is very efficient for [15 N3 ]MNZ with an exponential build-up constant of 13.8 min using trityl radical. After dissolution and sample transfer to a nearby 4.7 T Magnetic Resonance Imaging scanner, HP [15 N3 ]MNZ lasted remarkably long with T1 values up to 343 s and 15 N polarizations up to 6.4 %. A time series of HP [15 N3 ]MNZ images was acquired in vitro using a steady state free precession sequence on the 15 NO2 peak. The signal lasted over 13 min with notably long T2 of 20.5 s. HP [15 N3 ]MNZ was injected in the tail vein of a healthy rat, and dynamic spectroscopy was performed over the rat brain. The in vivo HP 15 N signals persisted over 70 s, demonstrating an unprecedented opportunity for in vivo studies.
Collapse
Affiliation(s)
- David O Guarin
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th St., MA 02129, Charlestown, USA
- Polarize ApS., Asmussens Alle 1, 1808, Frederiksberg, Denmak
| | - Sameer M Joshi
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, MI 48202, Detroit, USA
| | - Anna Samoilenko
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, MI 48202, Detroit, USA
| | - Mohammad S H Kabir
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, MI 48202, Detroit, USA
| | - Erin E Hardy
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th St., MA 02129, Charlestown, USA
| | - Atsush M Takahashi
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, MA 02139, Cambridge, USA
| | - Jan H Ardenkjaer-Larsen
- Polarize ApS., Asmussens Alle 1, 1808, Frederiksberg, Denmak
- Department of Health Technology, Technical University of Denmark, 348, Ørsteds Pl., 2800, Kongens Lyngby, Denmark
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, MI 48202, Detroit, USA
- Russian Academy of Sciences (RAS), 14 Leninskiy Prospekt, 119991, Moscow, Russia
| | - Yi-Fen Yen
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th St., MA 02129, Charlestown, USA
| |
Collapse
|
3
|
Guglielmetti C, Cordano C, Najac C, Green AJ, Chaumeil MM. Imaging immunomodulatory treatment responses in a multiple sclerosis mouse model using hyperpolarized 13C metabolic MRI. COMMUNICATIONS MEDICINE 2023; 3:71. [PMID: 37217574 DOI: 10.1038/s43856-023-00300-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND In recent years, the ability of conventional magnetic resonance imaging (MRI), including T1 contrast-enhanced (CE) MRI, to monitor high-efficacy therapies and predict long-term disability in multiple sclerosis (MS) has been challenged. Therefore, non-invasive methods to improve MS lesions detection and monitor therapy response are needed. METHODS We studied the combined cuprizone and experimental autoimmune encephalomyelitis (CPZ-EAE) mouse model of MS, which presents inflammatory-mediated demyelinated lesions in the central nervous system as commonly seen in MS patients. Using hyperpolarized 13C MR spectroscopy (MRS) metabolic imaging, we measured cerebral metabolic fluxes in control, CPZ-EAE and CPZ-EAE mice treated with two clinically-relevant therapies, namely fingolimod and dimethyl fumarate. We also acquired conventional T1 CE MRI to detect active lesions, and performed ex vivo measurements of enzyme activities and immunofluorescence analyses of brain tissue. Last, we evaluated associations between imaging and ex vivo parameters. RESULTS We show that hyperpolarized [1-13C]pyruvate conversion to lactate is increased in the brain of untreated CPZ-EAE mice when compared to the control, reflecting immune cell activation. We further demonstrate that this metabolic conversion is significantly decreased in response to the two treatments. This reduction can be explained by increased pyruvate dehydrogenase activity and a decrease in immune cells. Importantly, we show that hyperpolarized 13C MRS detects dimethyl fumarate therapy, whereas conventional T1 CE MRI cannot. CONCLUSIONS In conclusion, hyperpolarized MRS metabolic imaging of [1-13C]pyruvate detects immunological responses to disease-modifying therapies in MS. This technique is complementary to conventional MRI and provides unique information on neuroinflammation and its modulation.
Collapse
Affiliation(s)
- Caroline Guglielmetti
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, CA, USA.
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
| | - Christian Cordano
- Department of Neurology, Weill Institute for Neurosciences, University of California at San Francisco, San Francisco, CA, USA
| | - Chloé Najac
- Department of Radiology, C.J. Gorter MRI Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Ari J Green
- Department of Neurology, Weill Institute for Neurosciences, University of California at San Francisco, San Francisco, CA, USA
- Department of Ophthalmology, University of California at San Francisco, CA, San Francisco, USA
| | - Myriam M Chaumeil
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, CA, USA.
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
4
|
Reynolds S, Kazan SM, Anton A, Alizadeh T, Gunn RN, Paley MN, Tozer GM, Cunningham VJ. Kinetic modelling of dissolution dynamic nuclear polarisation 13 C magnetic resonance spectroscopy data for analysis of pyruvate delivery and fate in tumours. NMR IN BIOMEDICINE 2022; 35:e4650. [PMID: 34841602 DOI: 10.1002/nbm.4650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 09/19/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Dissolution dynamic nuclear polarisation (dDNP) of 13 C-labelled pyruvate in magnetic resonance spectroscopy/imaging (MRS/MRSI) has the potential for monitoring tumour progression and treatment response. Pyruvate delivery, its metabolism to lactate and efflux were investigated in rat P22 sarcomas following simultaneous intravenous administration of hyperpolarised 13 C-labelled pyruvate (13 C1 -pyruvate) and urea (13 C-urea), a nonmetabolised marker. A general mathematical model of pyruvate-lactate exchange, incorporating an arterial input function (AIF), enabled the losses of pyruvate and lactate from tumour to be estimated, in addition to the clearance rate of pyruvate signal from blood into tumour, Kip , and the forward and reverse fractional rate constants for pyruvate-lactate signal exchange, kpl and klp . An analogous model was developed for urea, enabling estimation of urea tumour losses and the blood clearance parameter, Kiu . A spectral fitting procedure to blood time-course data proved superior to assuming a gamma-variate form for the AIFs. Mean arterial blood pressure marginally correlated with clearance rates. Kiu equalled Kip , indicating equivalent permeability of the tumour vasculature to urea and pyruvate. Fractional loss rate constants due to effluxes of pyruvate, lactate and urea from tumour tissue into blood (kpo , klo and kuo , respectively) indicated that T1 s and the average flip angle, θ, obtained from arterial blood were poor surrogates for these parameters in tumour tissue. A precursor-product model, using the tumour pyruvate signal time-course as the input for the corresponding lactate signal time-course, was modified to account for the observed delay between them. The corresponding fractional rate constant, kavail , most likely reflected heterogeneous tumour microcirculation. Loss parameters, estimated from this model with different TRs, provided a lower limit on the estimates of tumour T1 for lactate and urea. The results do not support use of hyperpolarised urea for providing information on the tumour microcirculation over and above what can be obtained from pyruvate alone. The results also highlight the need for rigorous processes controlling signal quantitation, if absolute estimations of biological parameters are required.
Collapse
Affiliation(s)
- Steven Reynolds
- Academic Unit of Radiology, Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Sheffield, UK
| | - Samira M Kazan
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, UK
| | - Adriana Anton
- Academic Unit of Radiology, Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Sheffield, UK
| | - Tooba Alizadeh
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, UK
| | - Roger N Gunn
- Department of Brain Sciences, Imperial College London, London, UK
| | - Martyn N Paley
- Academic Unit of Radiology, Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Sheffield, UK
| | - Gillian M Tozer
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, UK
| | | |
Collapse
|
5
|
Lee SJ, Park I, Talbott JF, Gordon J. Investigating the Feasibility of In Vivo Perfusion Imaging Methods for Spinal Cord Using Hyperpolarized [ 13C]t-Butanol and [ 13C, 15N 2]Urea. Mol Imaging Biol 2021; 24:371-376. [PMID: 34779970 DOI: 10.1007/s11307-021-01682-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/30/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE This study examined the feasibility of using two novel agents, hyperpolarized [13C]t-butanol and [13C,15N2]urea, for assessing in vivo perfusion of the intact spinal cord in rodents. Due to their distinct permeabilities to blood brain barrier (BBB), we hypothesized that [13C]t-butanol and [13C,15N2]urea exhibit unique 13C signal characteristics in the spinal cord. PROCEDURES Dynamic 13C t-butanol MRI data were acquired from healthy Long-Evans rats using a symmetric, ramp-sampled, partial-Fourier 13C echo-planar imaging sequence after the injection of hyperpolarized [13C]t-butanol solution. In subsequent scans, dynamic 13C urea MRI data were acquired after the injection of hyperpolarized [13C,15N2]urea. The SNRs of t-butanol and urea were calculated for regions corresponding to spine, supratentorial brain, and blood vessels and plotted over time. Mean peak SNR and AUC were calculated from the dynamic plots for each region and compared between t-butanol and urea. RESULTS In spine and supratentorial brain, the mean peak SNR and AUC of t-butanol were significantly higher than those of urea (p < 0.05). In contrast, urea was predominantly contained within vasculature and exhibited significantly higher levels of mean peak SNR and AUC compared to t-butanol in blood vessels (p < 0.05). CONCLUSION This study has demonstrated the feasibility of using hyperpolarized [13C]t-butanol and [13C,15N2]urea for assessing in vivo perfusion in cervical spinal cord. Due to differences in blood-brain barrier permeability, t-butanol rapidly crossed the blood-brain barrier and diffused into spine and brain tissue, while urea predominantly remained in vasculature. The results from this study suggest that this technique may provide unique non-invasive imaging tracers that are able to directly monitor hemodynamic processes in the normal and injured spinal cord.
Collapse
Affiliation(s)
- Seung Jin Lee
- Department of Radiology, Chonnam National University Hospital, 42 Jaebongro, Donggu, Gwangju, 61469, South Korea
| | - Ilwoo Park
- Department of Radiology, Chonnam National University Hospital, 42 Jaebongro, Donggu, Gwangju, 61469, South Korea. .,Department of Radiology, Chonnam National University, 42 Jaebongro, Donggu, Gwangju, 61469, South Korea. .,Department of Artificial Intelligence Convergence, Chonnam National University, 77 Yongbongro, Bukgu, Gwangju, 61186, South Korea.
| | - Jason F Talbott
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94143, USA.,Brain and Spine Injury Center (BASIC), San Francisco General Hospital, University of California, San Francisco, CA, 94110, USA
| | - Jeremy Gordon
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94143, USA
| |
Collapse
|
6
|
Qin H, Tang S, Riselli AM, Bok RA, Delos Santos R, van Criekinge M, Gordon JW, Aggarwal R, Chen R, Goddard G, Zhang CT, Chen A, Reed G, Ruscitto DM, Slater J, Sriram R, Larson PEZ, Vigneron DB, Kurhanewicz J. Clinical translation of hyperpolarized 13 C pyruvate and urea MRI for simultaneous metabolic and perfusion imaging. Magn Reson Med 2021; 87:138-149. [PMID: 34374471 PMCID: PMC8616838 DOI: 10.1002/mrm.28965] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/30/2021] [Accepted: 07/23/2021] [Indexed: 11/11/2022]
Abstract
Purpose The combined hyperpolarized (HP) 13C pyruvate and urea MRI has provided a simultaneous assessment of glycolytic metabolism and tissue perfusion for improved cancer diagnosis and therapeutic evaluation in preclinical studies. This work aims to translate this dual‐probe HP imaging technique to clinical research. Methods A co‐polarization system was developed where [1‐13C]pyruvic acid (PA) and [13C, 15N2]urea in water solution were homogeneously mixed and polarized on a 5T SPINlab system. Physical and chemical characterizations and toxicology studies of the combined probe were performed. Simultaneous metabolic and perfusion imaging was performed on a 3T clinical MR scanner by alternatively applying a multi‐slice 2D spiral sequence for [1‐13C]pyruvate and its downstream metabolites and a 3D balanced steady‐state free precession (bSSFP) sequence for [13C, 15N2]urea. Results The combined PA/urea probe has a glass‐formation ability similar to neat PA and can generate nearly 40% liquid‐state 13C polarization for both pyruvate and urea in 3‐4 h. A standard operating procedure for routine on‐site production was developed and validated to produce 40 mL injection product of approximately 150 mM pyruvate and 35 mM urea. The toxicology study demonstrated the safety profile of the combined probe. Dynamic metabolite‐specific imaging of [1‐13C]pyruvate, [1‐13C]lactate, [1‐13C]alanine, and [13C, 15N2]urea was achieved with adequate spatial (2.6 mm × 2.6 mm) and temporal resolution (4.2 s), and urea images showed reduced off‐resonance artifacts due to the JCN coupling. Conclusion The reported technical development and translational studies will lead to the first‐in‐human dual‐agent HP MRI study and mark the clinical translation of the first HP 13C MRI probe after pyruvate.
Collapse
Affiliation(s)
- Hecong Qin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA.,Graduate Program in Bioengineering, University of California, Berkeley and San Francisco, San Francisco, California, USA
| | - Shuyu Tang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Andrew M Riselli
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Robert A Bok
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Romelyn Delos Santos
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Mark van Criekinge
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Rahul Aggarwal
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Rui Chen
- General Electric Healthcare, Milwaukee, Wisconsin, USA
| | | | | | - Albert Chen
- General Electric Healthcare, Milwaukee, Wisconsin, USA
| | - Galen Reed
- General Electric Healthcare, Milwaukee, Wisconsin, USA
| | | | - James Slater
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA.,Graduate Program in Bioengineering, University of California, Berkeley and San Francisco, San Francisco, California, USA
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA.,Graduate Program in Bioengineering, University of California, Berkeley and San Francisco, San Francisco, California, USA
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA.,Graduate Program in Bioengineering, University of California, Berkeley and San Francisco, San Francisco, California, USA
| |
Collapse
|
7
|
Ardenkjaer-Larsen JH. Hyperpolarized Magnetic Resonance With Dissolution Dynamic Nuclear Polarization: Principles and Applications. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
8
|
Reed GD, Korn NJ, Laustsen C, von Morze C. Analysis Methods for Hyperpolarized Carbon ( 13C) MRI of the Kidney. Methods Mol Biol 2021; 2216:697-710. [PMID: 33476032 PMCID: PMC9703216 DOI: 10.1007/978-1-0716-0978-1_42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Hyperpolarized 13C MR is a novel medical imaging modality with substantially different signal dynamics as compared to conventional 1H MR, thus requiring new methods for processing the data in order to access and quantify the embedded metabolic and functional information. Here we describe step-by-step analysis protocols for functional renal hyperpolarized 13C imaging. These methods are useful for investigating renal blood flow and function as well as metabolic status of rodents in vivo under various experimental physiological conditions.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This analysis protocol chapter is complemented by two separate chapters describing the basic concept and experimental procedure.
Collapse
Affiliation(s)
| | - Natalie J Korn
- Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | | | | |
Collapse
|
9
|
Lindhardt JL, Nielsen PM, Hansen ESS, Qi H, Tougaard RS, Mariager CØ, Bertelsen LB, Kim WY, Laustsen C. The hemodynamic and metabolic effects of spironolactone treatment in acute kidney injury assessed by hyperpolarized MRI. NMR IN BIOMEDICINE 2020; 33:e4371. [PMID: 32691467 DOI: 10.1002/nbm.4371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 05/18/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Renal ischemia-reperfusion injury (IRI) is one of the most common types of acute kidney injury. Spironolactone has shown promising kidney protective effects in renal IRI in rats. We investigated the hemodynamic and metabolic effects of spironolactone (100 mg/kg) administered immediately after 40 min unilateral kidney ischemia in rats. Hyperpolarized MRI using co-polarized [1-13 C]pyruvate and [13 C,15 N2 ]urea as well as 1 H dynamic contrast-enhanced (DCE) MRI was performed 24 h after induction of ischemia. We found a significant decrease in renal blood flow (RBF) in the ischemic kidney compared with the contralateral one measured using DCE and [13 C,15 N2 ]urea. The RBF measured using [1-13 C]pyruvate and [13 C,15 N2 ]urea was significantly altered by spironolactone. The RBFs in the ischemic kidney compared with the contralateral kidney were decreased similarly as measured using both [13 C,15 N2 ]urea and [1-13 C]pyruvate in the spironolactone-treated group. Spironolactone treatment increased the perfusion-corrected pyruvate metabolism by 54% in both the ischemic and contralateral kidney. Furthermore, we showed a correlation between vascular permeability using a histological Evans blue analysis and the ratio of the volumes of distribution (VoDs), ie VoD-[13 C,15 N2 ]urea/VoD-[1-13 C]pyruvate. This suggests that [13 C,15 N2 ]urea/[1-13 C]pyruvate VoD ratio may be a novel indicator of renal vascular permeability associated with renal damage in rodents.
Collapse
Affiliation(s)
- Jakob Lykke Lindhardt
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Per Mose Nielsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Haiyun Qi
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Rasmus Stilling Tougaard
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Lotte Bonde Bertelsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Won Yong Kim
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
10
|
Le Page LM, Guglielmetti C, Taglang C, Chaumeil MM. Imaging Brain Metabolism Using Hyperpolarized 13C Magnetic Resonance Spectroscopy. Trends Neurosci 2020; 43:343-354. [PMID: 32353337 DOI: 10.1016/j.tins.2020.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/28/2020] [Accepted: 03/08/2020] [Indexed: 12/28/2022]
Abstract
Aberrant metabolism is a key factor in many neurological disorders. The ability to measure such metabolic impairment could lead to improved detection of disease progression, and development and monitoring of new therapeutic approaches. Hyperpolarized 13C magnetic resonance spectroscopy (MRS) is a developing imaging technique that enables non-invasive measurement of enzymatic activity in real time in living organisms. Primarily applied in the fields of cancer and cardiac disease so far, this metabolic imaging method has recently been used to investigate neurological disorders. In this review, we summarize the preclinical research developments in this emerging field, and discuss future prospects for this exciting technology, which has the potential to change the clinical paradigm for patients with neurological disorders.
Collapse
Affiliation(s)
- Lydia M Le Page
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA; Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Caroline Guglielmetti
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA; Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Celine Taglang
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA; Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Myriam M Chaumeil
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA; Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
| |
Collapse
|
11
|
Topping GJ, Hundshammer C, Nagel L, Grashei M, Aigner M, Skinner JG, Schulte RF, Schilling F. Acquisition strategies for spatially resolved magnetic resonance detection of hyperpolarized nuclei. MAGMA (NEW YORK, N.Y.) 2020; 33:221-256. [PMID: 31811491 PMCID: PMC7109201 DOI: 10.1007/s10334-019-00807-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/08/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Hyperpolarization is an emerging method in magnetic resonance imaging that allows nuclear spin polarization of gases or liquids to be temporarily enhanced by up to five or six orders of magnitude at clinically relevant field strengths and administered at high concentration to a subject at the time of measurement. This transient gain in signal has enabled the non-invasive detection and imaging of gas ventilation and diffusion in the lungs, perfusion in blood vessels and tissues, and metabolic conversion in cells, animals, and patients. The rapid development of this method is based on advances in polarizer technology, the availability of suitable probe isotopes and molecules, improved MRI hardware and pulse sequence development. Acquisition strategies for hyperpolarized nuclei are not yet standardized and are set up individually at most sites depending on the specific requirements of the probe, the object of interest, and the MRI hardware. This review provides a detailed introduction to spatially resolved detection of hyperpolarized nuclei and summarizes novel and previously established acquisition strategies for different key areas of application.
Collapse
Affiliation(s)
- Geoffrey J Topping
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christian Hundshammer
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Luca Nagel
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Martin Grashei
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maximilian Aigner
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jason G Skinner
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Franz Schilling
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
12
|
Grist JT, Mariager CØ, Qi H, Nielsen PM, Laustsen C. Detection of acute kidney injury with hyperpolarized [ 13 C, 15 N]Urea and multiexponential relaxation modeling. Magn Reson Med 2019; 84:943-949. [PMID: 31840294 DOI: 10.1002/mrm.28134] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 01/06/2023]
Abstract
PURPOSE To assess the utility of Laplacian fitting to describe the differences in hyperpolarized [13 C, 15 N]urea T2 relaxation in ischemic and healthy rodent kidneys. METHODS Six rats with unilateral renal ischemia were investigated. [13 C, 15 N]Urea T2 mapping was undertaken with a radial fast spin echo method, with subsequent postprocessing performed with regularized Laplacian fitting. RESULTS Simulations showed that Laplacian fitting was stable down to a signal-to-noise ratio of 20. In vivo results showed a significant increase in the mono- and decrease in biexponential pools in ischemia reperfusion injury kidneys, in comparison to healthy (14 ± 10% versus 4 ± 2%, 85 ± 10% versus 95 ± 3%; P < .05). CONCLUSION We demonstrate, for the first time, the differences in multiexponential behavior of [13 C, 15 N]urea between the healthy and ischemic rodent kidney. The distribution of relaxation pools were found to be both visually and numerically significantly different. The ability to improve the information level in hyperpolarized MR, by using the relaxation contrast mechanisms is an appealing option, that can easily be adopted in large animals and even in clinical studies in the near future.
Collapse
Affiliation(s)
- James T Grist
- The Institute of Child Health, Institute of Cancer and Genomic Sciences, School of Medical and Dental Sciences, The University of Birmingham, Birmingham, United Kingdom
| | | | - Haiyun Qi
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Per Mose Nielsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
13
|
Chen HY, Gordon JW, Bok RA, Cao P, von Morze C, van Criekinge M, Milshteyn E, Carvajal L, Hurd RE, Kurhanewicz J, Vigneron DB, Larson PE. Pulse sequence considerations for quantification of pyruvate-to-lactate conversion k PL in hyperpolarized 13 C imaging. NMR IN BIOMEDICINE 2019; 32:e4052. [PMID: 30664305 PMCID: PMC6380928 DOI: 10.1002/nbm.4052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 10/16/2018] [Accepted: 11/09/2018] [Indexed: 05/26/2023]
Abstract
Hyperpolarized 13 C MRI takes advantage of the unprecedented 50 000-fold signal-to-noise ratio enhancement to interrogate cancer metabolism in patients and animals. It can measure the pyruvate-to-lactate conversion rate, kPL , a metabolic biomarker of cancer aggressiveness and progression. Therefore, it is crucial to evaluate kPL reliably. In this study, three sequence components and parameters that modulate kPL estimation were identified and investigated in model simulations and through in vivo animal studies using several specifically designed pulse sequences. These factors included a magnetization spoiling effect due to RF pulses, a crusher gradient-induced flow suppression, and intrinsic image weightings due to relaxation. Simulation showed that the RF-induced magnetization spoiling can be substantially improved using an inputless kPL fitting. In vivo studies found a significantly higher apparent kPL with an additional gradient that leads to flow suppression (kPL,FID-Delay,Crush /kPL,FID-Delay = 1.37 ± 0.33, P < 0.01, N = 6), which agrees with simulation outcomes (12.5% kPL error with Δv = 40 cm/s), indicating that the gradients predominantly suppressed flowing pyruvate spins. Significantly lower kPL was found using a delayed free induction decay (FID) acquisition versus a minimum-TE version (kPL,FID-Delay /kPL,FID = 0.67 ± 0.09, P < 0.01, N = 5), and the lactate peak had broader linewidth than pyruvate (Δωlactate /Δωpyruvate = 1.32 ± 0.07, P < 0.000 01, N = 13). This illustrated that lactate's T2 *, shorter than that of pyruvate, can affect calculated kPL values. We also found that an FID sequence yielded significantly lower kPL versus a double spin-echo sequence that includes spin-echo spoiling, flow suppression from crusher gradients, and more T2 weighting (kPL,DSE /kPL,FID = 2.40 ± 0.98, P < 0.0001, N = 7). In summary, the pulse sequence, as well as its interaction with pharmacokinetics and the tissue microenvironment, can impact and be optimized for the measurement of kPL . The data acquisition and analysis pipelines can work synergistically to provide more robust and reproducible kPL measures for future preclinical and clinical studies.
Collapse
Affiliation(s)
- Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Jeremy W. Gordon
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Robert A. Bok
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Peng Cao
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Cornelius von Morze
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Mark van Criekinge
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Eugene Milshteyn
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Lucas Carvajal
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Ralph E. Hurd
- Department of Radiology, Stanford University, California, United States
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Daniel B. Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| | - Peder E.Z. Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco
| |
Collapse
|
14
|
Kurhanewicz J, Vigneron DB, Ardenkjaer-Larsen JH, Bankson JA, Brindle K, Cunningham CH, Gallagher FA, Keshari KR, Kjaer A, Laustsen C, Mankoff DA, Merritt ME, Nelson SJ, Pauly JM, Lee P, Ronen S, Tyler DJ, Rajan SS, Spielman DM, Wald L, Zhang X, Malloy CR, Rizi R. Hyperpolarized 13C MRI: Path to Clinical Translation in Oncology. Neoplasia 2019; 21:1-16. [PMID: 30472500 PMCID: PMC6260457 DOI: 10.1016/j.neo.2018.09.006] [Citation(s) in RCA: 303] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/27/2018] [Accepted: 09/27/2018] [Indexed: 12/22/2022]
Abstract
This white paper discusses prospects for advancing hyperpolarization technology to better understand cancer metabolism, identify current obstacles to HP (hyperpolarized) 13C magnetic resonance imaging's (MRI's) widespread clinical use, and provide recommendations for overcoming them. Since the publication of the first NIH white paper on hyperpolarized 13C MRI in 2011, preclinical studies involving [1-13C]pyruvate as well a number of other 13C labeled metabolic substrates have demonstrated this technology's capacity to provide unique metabolic information. A dose-ranging study of HP [1-13C]pyruvate in patients with prostate cancer established safety and feasibility of this technique. Additional studies are ongoing in prostate, brain, breast, liver, cervical, and ovarian cancer. Technology for generating and delivering hyperpolarized agents has evolved, and new MR data acquisition sequences and improved MRI hardware have been developed. It will be important to continue investigation and development of existing and new probes in animal models. Improved polarization technology, efficient radiofrequency coils, and reliable pulse sequences are all important objectives to enable exploration of the technology in healthy control subjects and patient populations. It will be critical to determine how HP 13C MRI might fill existing needs in current clinical research and practice, and complement existing metabolic imaging modalities. Financial sponsorship and integration of academia, industry, and government efforts will be important factors in translating the technology for clinical research in oncology. This white paper is intended to provide recommendations with this goal in mind.
Collapse
Affiliation(s)
- John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, CA, USA
| | | | - James A Bankson
- Department of Imaging Physics, MD Anderson Medical Center, Houston, TX, USA
| | - Kevin Brindle
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | - Kayvan R Keshari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, NY, New York, USA
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Denmark
| | | | - David A Mankoff
- Department of Radiology, University of Pennsylvania, PA, USA
| | - Matthew E Merritt
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - Sarah J Nelson
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, CA, USA
| | - John M Pauly
- Department of Electric Engineering, Stanford University, USA
| | - Philips Lee
- Functional Metabolism Group, Singapore Biomedical Consortium, Agency for Science, Technology and Research, Singapore
| | - Sabrina Ronen
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, CA, USA
| | - Damian J Tyler
- Department of Biomedical Science, University of Oxford, Oxford, UK
| | - Sunder S Rajan
- Center for Devices and Radiological Health (CDRH), FDA, White Oak, MD, USA
| | - Daniel M Spielman
- Departments of Radiology and Electric Engineering, Stanford University, USA
| | - Lawrence Wald
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Xiaoliang Zhang
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, CA, USA
| | - Craig R Malloy
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rahim Rizi
- Department of Radiology, University of Pennsylvania, PA, USA
| |
Collapse
|
15
|
Milshteyn E, von Morze C, Gordon JW, Zhu Z, Larson PEZ, Vigneron DB. High spatiotemporal resolution bSSFP imaging of hyperpolarized [1- 13 C]pyruvate and [1- 13 C]lactate with spectral suppression of alanine and pyruvate-hydrate. Magn Reson Med 2018; 80:1048-1060. [PMID: 29451329 PMCID: PMC5980670 DOI: 10.1002/mrm.27104] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/02/2017] [Accepted: 01/03/2018] [Indexed: 12/23/2022]
Abstract
Purpose The bSSFP acquisition enables high spatiotemporal resolution for hyperpolarized 13C MRI at 3T, but is limited by spectral contamination from adjacent resonances. The purpose of this study was to develop a framework for in vivo dynamic high resolution imaging of hyperpolarized [1-13C]pyruvate and [1-13C]lactate generated in vivo at 3T by simplifying the spectrum through the use of selective suppression pulses. Methods Spectral suppression pulses were incorporated into the bSSFP sequence for suppression of [1-13C]alanine and [1-13C]pyruvate-hydrate signals, leaving only the pyruvate and lactate resonances. Subsequently, the bSSFP pulse width, time-bandwidth, and repetition time were optimized for imaging these dual resonances. Results The spectral suppression reduced both the alanine and pyruvate-hydrate signals by 85.5 ± 4.9% and had no significant effect on quantitation of pyruvate to lactate conversion (liver: P = 0.400, kidney: P = 0.499). High resolution (2 × 2 mm2 and 3 × 3 mm2) sub-second 2D coronal projections and 3D 2.5 mm isotropic images were obtained in rats and tumor-bearing mice with 1.8-5 s temporal resolution, allowing for calculation of lactate-to-pyruvate ratios and k PL. Conclusion The developed framework presented here shows the capability for dynamic high resolution volumetric hyperpolarized bSSFP imaging of pyruvate-to-lactate conversion on a clinical 3T MR scanner.
Collapse
Affiliation(s)
- Eugene Milshteyn
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California, USA
| | - Cornelius von Morze
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Jeremy W. Gordon
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Zihan Zhu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California, USA
| | - Peder E. Z. Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California, USA
| | - Daniel B. Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California, USA
| |
Collapse
|
16
|
Timm KN, Miller JJ, Henry JA, Tyler DJ. Cardiac applications of hyperpolarised magnetic resonance. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 106-107:66-87. [PMID: 31047602 DOI: 10.1016/j.pnmrs.2018.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/14/2018] [Accepted: 05/29/2018] [Indexed: 05/05/2023]
Abstract
Cardiovascular disease is the leading cause of death world-wide. It is increasingly recognised that cardiac pathologies show, or may even be caused by, changes in metabolism, leading to impaired cardiac energetics. The heart turns over 15 times its own weight in ATP every day and thus relies heavily on the availability of substrates and on efficient oxidation to generate this ATP. A number of old and emerging drugs that target different aspects of metabolism are showing promising results with regard to improved cardiac outcomes in patients. A non-invasive imaging technique that could assess the role of different aspects of metabolism in heart disease, as well as measure changes in cardiac energetics due to treatment, would be valuable in the routine clinical care of cardiac patients. Hyperpolarised magnetic resonance spectroscopy and imaging have revolutionised metabolic imaging, allowing real-time metabolic flux assessment in vivo for the first time. In this review we summarise metabolism in the healthy and diseased heart, give an introduction to the hyperpolarisation technique, 'dynamic nuclear polarisation' (DNP), and review the preclinical studies that have thus far explored healthy cardiac metabolism and different models of human heart disease. We furthermore show what advances have been made to translate this technique into the clinic, what technical challenges still remain and what unmet clinical needs and unexplored metabolic substrates still need to be assessed by researchers in this exciting and fast-moving field.
Collapse
Affiliation(s)
- Kerstin N Timm
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK.
| | - Jack J Miller
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK; Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, Oxford, UK; Clarendon Laboratory, Department of Physics, University of Oxford, UK.
| | - John A Henry
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK.
| | - Damian J Tyler
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK; Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
17
|
Milshteyn E, von Morze C, Reed GD, Shang H, Shin PJ, Larson PEZ, Vigneron DB. Using a local low rank plus sparse reconstruction to accelerate dynamic hyperpolarized 13C imaging using the bSSFP sequence. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 290:46-59. [PMID: 29567434 PMCID: PMC6054792 DOI: 10.1016/j.jmr.2018.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/03/2018] [Accepted: 03/09/2018] [Indexed: 05/27/2023]
Abstract
Acceleration of dynamic 2D (T2 Mapping) and 3D hyperpolarized 13C MRI acquisitions using the balanced steady-state free precession sequence was achieved with a specialized reconstruction method, based on the combination of low rank plus sparse and local low rank reconstructions. Methods were validated using both retrospectively and prospectively undersampled in vivo data from normal rats and tumor-bearing mice. Four-fold acceleration of 1-2 mm isotropic 3D dynamic acquisitions with 2-5 s temporal resolution and two-fold acceleration of 0.25-1 mm2 2D dynamic acquisitions was achieved. This enabled visualization of the biodistribution of [2-13C]pyruvate, [1-13C]lactate, [13C, 15N2]urea, and HP001 within heart, kidneys, vasculature, and tumor, as well as calculation of high resolution T2 maps.
Collapse
Affiliation(s)
- Eugene Milshteyn
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, Berkeley, CA, USA
| | - Cornelius von Morze
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | | | | | - Peter J Shin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, Berkeley, CA, USA
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, Berkeley, CA, USA.
| |
Collapse
|
18
|
Wang J, Wright AJ, Hesketh RL, Hu D, Brindle KM. A referenceless Nyquist ghost correction workflow for echo planar imaging of hyperpolarized [1- 13 C]pyruvate and [1- 13 C]lactate. NMR IN BIOMEDICINE 2018; 31:e3866. [PMID: 29215773 PMCID: PMC5814908 DOI: 10.1002/nbm.3866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 05/10/2023]
Abstract
Single-shot echo planar imaging (EPI), which allows an image to be acquired using a single excitation pulse, is used widely for imaging the metabolism of hyperpolarized 13 C-labelled metabolites in vivo as the technique is rapid and minimizes the depletion of the hyperpolarized signal. However, EPI suffers from Nyquist ghosting, which normally is corrected for by acquiring a reference scan. In a dynamic acquisition of a series of images, this results in the sacrifice of a time point if the reference scan involves a full readout train with no phase encoding. This time penalty is negligible if an integrated navigator echo is used, but at the cost of a lower signal-to-noise ratio (SNR) as a result of prolonged T2 * decay. We describe here a workflow for hyperpolarized 13 C EPI that requires no reference scan. This involves the selection of a ghost-containing background from a 13 C image of a single metabolite at a single time point, the identification of phase correction coefficients that minimize signal in the selected area, and the application of these coefficients to images acquired at all time points and from all metabolites. The workflow was compared in phantom experiments with phase correction using a 13 C reference scan, and yielded similar results in situations with a regular field of view (FOV), a restricted FOV and where there were multiple signal sources. When compared with alternative phase correction methods, the workflow showed an SNR benefit relative to integrated 13 C reference echoes (>15%) or better ghost removal relative to a 1 H reference scan. The residual ghosting in a slightly de-shimmed B0 field was 1.6% using the proposed workflow and 3.8% using a 1 H reference scan. The workflow was implemented with a series of dynamically acquired hyperpolarized [1-13 C]pyruvate and [1-13 C]lactate images in vivo, resulting in images with no observable ghosting and which were quantitatively similar to images corrected using a 13 C reference scan.
Collapse
Affiliation(s)
- Jiazheng Wang
- Cancer Research UK Cambridge InstituteUniversity of CambridgeLi Ka Shing CentreCambridgeUK
| | - Alan J. Wright
- Cancer Research UK Cambridge InstituteUniversity of CambridgeLi Ka Shing CentreCambridgeUK
| | - Richard L. Hesketh
- Cancer Research UK Cambridge InstituteUniversity of CambridgeLi Ka Shing CentreCambridgeUK
| | - De‐en Hu
- Cancer Research UK Cambridge InstituteUniversity of CambridgeLi Ka Shing CentreCambridgeUK
| | - Kevin M. Brindle
- Cancer Research UK Cambridge InstituteUniversity of CambridgeLi Ka Shing CentreCambridgeUK
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| |
Collapse
|
19
|
Marco-Rius I, Gordon JW, Mattis AN, Bok R, Santos RD, Sukumar S, Larson PE, Vigneron DB, Ohliger MA. Diffusion-weighted imaging of hyperpolarized [ 13 C]urea in mouse liver. J Magn Reson Imaging 2018; 47:141-151. [PMID: 28419644 PMCID: PMC5645231 DOI: 10.1002/jmri.25721] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 03/16/2017] [Indexed: 12/20/2022] Open
Abstract
PURPOSE To compare the apparent diffusion coefficient (ADC) of hyperpolarized (HP) [13 C,15 N]urea to the ADC of endogenous water in healthy and fibrotic mouse liver. MATERIALS AND METHODS ADC measurements for water and [13 C]urea were made in agarose phantoms at 14.1T. Next, the ADC of water and injected HP [13 C,15 N]urea were measured in eight CD1 mouse livers before and after induction of liver fibrosis using CCl4 . Liver fibrosis was quantified pathologically using the modified Brunt fibrosis score and compared to the measured ADC of water and urea. RESULTS In cell-free phantoms with 12.5% agarose, water ADC was nearly twice the ADC of urea (1.93 × 10-3 mm2 /s vs. 1.00 × 10-3 mm2 /s). The mean ADC values of water and [13 C,15 N]urea in healthy mouse liver (±SD) were nearly identical [(0.75 ± 0.11) × 10-3 mm2 /s and (0.75 ± 0.22) × 10-3 mm2 /s, respectively]. Mean water and [13 C,15 N]urea ADC values in fibrotic liver (±SD) were (0.84 ± 0.22) × 10-3 mm2 /s and (0.75 ± 0.15) × 10-3 mm2 /s, respectively. Neither water nor urea ADCs were statistically different in the fibrotic livers compared to baseline (P = 0.14 and P = 0.99, respectively). Water and urea ADCs were positively correlated at baseline (R2 = 0.52 and P = 0.045) but not in fibrotic livers (R2 = 0.23 and P = 0.23). CONCLUSION ADC of injected hyperpolarized urea in healthy liver reflects a smaller change as compared to free solution than ADC of water. This may reflect differences in cellular compartmentalization of the two compounds. No significant change in ADC of either water or urea were observed in relatively mild stages of liver fibrosis. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:141-151.
Collapse
Affiliation(s)
- Irene Marco-Rius
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Jeremy W. Gordon
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Aras N. Mattis
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
- UCSF Liver Center University of California San Francisco, San Francisco, California, USA
| | - Robert Bok
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Romelyn Delos Santos
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Subramanian Sukumar
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Peder E.Z. Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Daniel B. Vigneron
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UCSF Liver Center University of California San Francisco, San Francisco, California, USA
| | - Michael A. Ohliger
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UCSF Liver Center University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
20
|
Niles DJ, Gordon JW, Huang G, Reese S, Adamson EB, Djamali A, Fain SB. Evaluation of renal metabolic response to partial ureteral obstruction with hyperpolarized 13 C MRI. NMR IN BIOMEDICINE 2018; 31. [PMID: 29130537 PMCID: PMC5736002 DOI: 10.1002/nbm.3846] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 09/17/2017] [Accepted: 09/18/2017] [Indexed: 05/13/2023]
Abstract
Hyperpolarized 13 C magnetic resonance imaging (MRI) may be used to non-invasively image the transport and chemical conversion of 13 C-labeled compounds in vivo. In this study, we utilize hyperpolarized 13 C MRI to evaluate metabolic markers in the kidneys longitudinally in a mouse model of partial unilateral ureteral obstruction (pUUO). Partial obstruction was surgically induced in the left ureter of nine adult mice, leaving the right ureter as a control. 1 H and hyperpolarized [1-13 C]pyruvate MRI of the kidneys was performed 2 days prior to surgery (baseline) and at 3, 7 and 14 days post-surgery. Images were evaluated for changes in renal pelvis volume, pyruvate, lactate and the lactate to pyruvate ratio. After 14 days, mice were sacrificed and immunohistological staining of both kidneys for collagen fibrosis (picrosirius red) and macrophage infiltration (F4/80) was performed. Statistical analysis was performed using a linear mixed effects model. Significant kidney × time interaction effects were observed for both lactate and pyruvate, indicating that these markers changed differently between time points for the obstructed and unobstructed kidneys. Both kidneys showed an increase in the lactate to pyruvate ratio after obstruction, suggesting a shift towards glycolytic metabolism. These changes were accompanied by marked hydronephrosis, fibrosis and macrophage infiltration in the obstructed kidney, but not in the unobstructed kidney. Our results show that pUUO is associated with increased pyruvate to lactate metabolism in both kidneys, with injury and inflammation specific to the obstructed kidney. The work also demonstrates the feasibility of the use of hyperpolarized 13 C MRI to study metabolism in renal disease.
Collapse
Affiliation(s)
- David J Niles
- Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Jeremy W Gordon
- Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Gengwen Huang
- Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Shannon Reese
- Medicine, Nephrology, University of Wisconsin-Madison, Madison, WI, USA
| | - Erin B Adamson
- Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Arjang Djamali
- Medicine, Nephrology, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sean B Fain
- Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
21
|
Eldirdiri A, Clemmensen A, Bowen S, Kjaer A, Ardenkjaer-Larsen JH. Simultaneous imaging of hyperpolarized [1,4- 13 C 2 ]fumarate, [1- 13 C]pyruvate and 18 F-FDG in a rat model of necrosis in a clinical PET/MR scanner. NMR IN BIOMEDICINE 2017; 30:e3803. [PMID: 29044751 DOI: 10.1002/nbm.3803] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 07/31/2017] [Accepted: 08/11/2017] [Indexed: 06/07/2023]
Abstract
A co-polarization scheme for [1,4-13 C2 ]fumarate and [1-13 C]pyruvate is presented to simultaneously assess necrosis and metabolism in rats with hyperpolarized 13 C magnetic resonance (MR). The co-polarization was performed in a SPINlab polarizer. In addition, the feasibility of simultaneous positron emission tomography (PET) and MR of small animals with a clinical PET/MR scanner is demonstrated. The hyperpolarized metabolic MR and PET was demonstrated in a rat model of necrosis. The polarization and T1 of the co-polarized [1,4-13 C2 ]fumarate and [1-13 C]pyruvate substrates were measured in vitro and compared with those obtained when the substrates were polarized individually. A polarization of 36 ± 4% for fumarate and 37 ± 6% for pyruvate was obtained. We found no significant difference in the polarization and T1 values between the dual and single substrate polarization. Rats weighing about 400 g were injected intramuscularly in one of the hind legs with 200 μL of turpentine to induce necrosis. Two hours later, 13 C metabolic maps were obtained with a chemical shift imaging sequence (16 × 16) with a resolution of 3.1 × 5.0 × 25.0 mm3 . The 13 C spectroscopic images were acquired in 12 s, followed by an 8-min 18 F-2-fluoro-2-deoxy-d-glucose (18 F-FDG) PET acquisition with a resolution of 3.5 mm. [1,4-13 C2 ]Malate was observed from the tissue injected with turpentine indicating necrosis. Normal [1-13 C]pyruvate metabolism and 18 F-FDG uptake were observed from the same tissue. The proposed co-polarization scheme provides a means to utilize multiple imaging agents simultaneously, and thus to probe various metabolic pathways in a single examination. Moreover, it demonstrates the feasibility of small animal research on a clinical PET/MR scanner for combined PET and hyperpolarized metabolic MR.
Collapse
Affiliation(s)
- Abubakr Eldirdiri
- Department of Electrical Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
- Danish Research Center for Magnetic Resonance, Copenhagen University Hospital, Hvidovre, Denmark
| | - Andreas Clemmensen
- Danish Research Center for Magnetic Resonance, Copenhagen University Hospital, Hvidovre, Denmark
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
- Cluster for Molecular Imaging, Department of Biomedical Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sean Bowen
- Department of Electrical Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
- Cluster for Molecular Imaging, Department of Biomedical Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jan Henrik Ardenkjaer-Larsen
- Department of Electrical Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
- GE Healthcare, Broendby, Denmark
| |
Collapse
|
22
|
Baligand C, Qin H, True-Yasaki A, Gordon J, von Morze C, Santos JD, Wilson D, Raffai R, Cowley PM, Baker AJ, Kurhanewicz J, Lovett DH, Wang ZJ. Hyperpolarized 13 C magnetic resonance evaluation of renal ischemia reperfusion injury in a murine model. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3765. [PMID: 28708304 PMCID: PMC5618802 DOI: 10.1002/nbm.3765] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 05/16/2017] [Accepted: 05/29/2017] [Indexed: 05/10/2023]
Abstract
Acute kidney injury (AKI) is a major risk factor for the development of chronic kidney disease (CKD). Persistent oxidative stress and mitochondrial dysfunction are implicated across diverse forms of AKI and in the transition to CKD. In this study, we applied hyperpolarized (HP) 13 C dehydroascorbate (DHA) and 13 C pyruvate magnetic resonance spectroscopy (MRS) to investigate the renal redox capacity and mitochondrial pyruvate dehydrogenase (PDH) activity, respectively, in a murine model of AKI at baseline and 7 days after unilateral ischemia reperfusion injury (IRI). Compared with the contralateral sham-operated kidneys, the kidneys subjected to IRI showed a significant decrease in the HP 13 C vitamin C/(vitamin C + DHA) ratio, consistent with a decrease in redox capacity. The kidneys subjected to IRI also showed a significant decrease in the HP 13 C bicarbonate/pyruvate ratio, consistent with impaired PDH activity. The IRI kidneys showed a significantly higher HP 13 C lactate/pyruvate ratio at day 7 compared with baseline, although the 13 C lactate/pyruvate ratio was not significantly different between the IRI and contralateral sham-operated kidneys at day 7. Arterial spin labeling magnetic resonance imaging (MRI) demonstrated significantly reduced perfusion in the IRI kidneys. Renal tissue analysis showed corresponding increased reactive oxygen species (ROS) and reduced PDH activity in the IRI kidneys. Our results show the feasibility of HP 13 C MRS for the non-invasive assessment of oxidative stress and mitochondrial PDH activity following renal IRI.
Collapse
Affiliation(s)
- Celine Baligand
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Hecong Qin
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Aisha True-Yasaki
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Jeremy Gordon
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Cornelius von Morze
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Justin DeLos Santos
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - David Wilson
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Robert Raffai
- Medicine, San Francisco VAMC/University of California San Francisco, San Francisco, CA
| | - Patrick M. Cowley
- Medicine, San Francisco VAMC/University of California San Francisco, San Francisco, CA
| | - Anthony J. Baker
- Medicine, San Francisco VAMC/University of California San Francisco, San Francisco, CA
| | - John Kurhanewicz
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - David H. Lovett
- Medicine, San Francisco VAMC/University of California San Francisco, San Francisco, CA
| | - Zhen Jane Wang
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| |
Collapse
|
23
|
Østergaard Mariager C, Nielsen PM, Qi H, Schroeder M, Bertelsen LB, Laustsen C. Can Hyperpolarized 13C-Urea be Used to Assess Glomerular Filtration Rate? A Retrospective Study. ACTA ACUST UNITED AC 2017; 3:146-152. [PMID: 30042978 PMCID: PMC6024438 DOI: 10.18383/j.tom.2017.00010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This study investigated a simple method for calculating the single-kidney glomerular filtration rate (GFR) using dynamic hyperpolarized 13C-urea magnetic resonance (MR) renography. A retrospective data analysis was applied to renal hyperpolarized 13C-urea MR data acquired from control rats, prediabetic nephropathy rats, and rats in which 1 kidney was subjected to ischemia-reperfusion. Renal blood flow was determined by the model-free bolus differentiation method, GFR was determined using the Baumann–Rudin model method. Reference single-kidney and total GFRs were measured by plasma creatinine content and compared to 1H dynamic contrast-enhanced estimated GFR and fluorescein isothiocyanate-inulin clearance GFR estimation. In healthy and prediabetic nephropathy rats, single-kidney hyperpolarized 13C-urea GFR was estimated to be 2.5 ± 0.7 mL/min in good agreement with both gold-standard inulin clearance GFR (2.7 ± 1.2 ml/min) and 1H dynamic contrast-enhanced estimated GFR (1.8 ± 0.8 mL/min), as well as plasma creatinine measurements and literature findings. Following ischemia-reperfusion, hyperpolarized 13C-urea revealed a significant reduction in single-kidney GFR of 57% compared with the contralateral kidney. Hyperpolarized 13C MR could be a promising tool for accurate determination of GFR. The model-free renal blood flow and arterial input function-insensitive GFR estimations are simple to implement and warrant further translational adaptation.
Collapse
Affiliation(s)
| | - Per Mose Nielsen
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Haiyun Qi
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Marie Schroeder
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Lotte Bonde Bertelsen
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Christoffer Laustsen
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| |
Collapse
|
24
|
Gizatullin B, Neudert O, Stapf S, Mattea C. Dynamic Nuclear Polarization Fast Field Cycling Method for the Selective Study of Molecular Dynamics in Block Copolymers. Chemphyschem 2017; 18:2347-2356. [DOI: 10.1002/cphc.201700539] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/03/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Bulat Gizatullin
- Ilmenau University of Technology; Institute of Physics; PO Box 100565 98684 Ilmenau Germany
| | - Oliver Neudert
- GMBU e.V., Erich-; Neuß-Weg 5 06120 Halle (Saale) Germany
| | - Siegfried Stapf
- Ilmenau University of Technology; Institute of Physics; PO Box 100565 98684 Ilmenau Germany
| | - Carlos Mattea
- Ilmenau University of Technology; Institute of Physics; PO Box 100565 98684 Ilmenau Germany
| |
Collapse
|
25
|
MR Molecular Imaging of Brain Cancer Metabolism Using Hyperpolarized 13C Magnetic Resonance Spectroscopy. Top Magn Reson Imaging 2017; 25:187-196. [PMID: 27748711 DOI: 10.1097/rmr.0000000000000104] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metabolic reprogramming is an important hallmark of cancer. Alterations in many metabolic pathways support the requirement for cellular building blocks that are essential for cancer cell proliferation. This metabolic reprogramming can be imaged using magnetic resonance spectroscopy (MRS). H MRS can inform on alterations in the steady-state levels of cellular metabolites, but the emergence of hyperpolarized C MRS has now also enabled imaging of metabolic fluxes in real-time, providing a new method for tumor detection and monitoring of therapeutic response. In the case of glioma, preclinical cell and animal studies have shown that the hyperpolarized C MRS metabolic imaging signature is specific to tumor type and can distinguish between mutant IDH1 glioma and primary glioblastoma. Here, we review these findings, first describing the main metabolic pathways that are altered in the different glioma subtypes, and then reporting on the use of hyperpolarized C MRS and MR spectroscopic imaging (MRSI) to probe these pathways. We show that the future translation of this hyperpolarized C MRS molecular metabolic imaging method to the clinic promises to improve the noninvasive detection, characterization, and response-monitoring of brain tumors resulting in improved patient diagnosis and clinical management.
Collapse
|
26
|
Milshteyn E, von Morze C, Reed GD, Shang H, Shin PJ, Zhu Z, Chen HY, Bok R, Goga A, Kurhanewicz J, Larson PEZ, Vigneron DB. Development of high resolution 3D hyperpolarized carbon-13 MR molecular imaging techniques. Magn Reson Imaging 2017; 38:152-162. [PMID: 28077268 PMCID: PMC5360530 DOI: 10.1016/j.mri.2017.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 01/08/2023]
Abstract
The goal of this project was to develop and apply techniques for T2 mapping and 3D high resolution (1.5mm isotropic; 0.003cm3) 13C imaging of hyperpolarized (HP) probes [1-13C]lactate, [1-13C]pyruvate, [2-13C]pyruvate, and [13C,15N2]urea in vivo. A specialized 2D bSSFP sequence was implemented on a clinical 3T scanner and used to obtain the first high resolution T2 maps of these different hyperpolarized compounds in both rats and tumor-bearing mice. These maps were first used to optimize timings for highest SNR for single time-point 3D bSSFP acquisitions with a 1.5mm isotropic spatial resolution of normal rats. This 3D acquisition approach was extended to serial dynamic imaging with 2-fold compressed sensing acceleration without changing spatial resolution. The T2 mapping experiments yielded measurements of T2 values of >1s for all compounds within rat kidneys/vasculature and TRAMP tumors, except for [2-13C]pyruvate which was ~730ms and ~320ms, respectively. The high resolution 3D imaging enabled visualization the biodistribution of [1-13C]lactate, [1-13C]pyruvate, and [2-13C]pyruvate within different kidney compartments as well as in the vasculature. While the mouse anatomy is smaller, the resolution was also sufficient to image the distribution of all compounds within kidney, vasculature, and tumor. The development of the specialized 3D sequence with compressed sensing provided improved structural and functional assessments at a high (0.003cm3) spatial and 2s temporal resolution in vivo utilizing HP 13C substrates by exploiting their long T2 values. This 1.5mm isotropic resolution is comparable to 1H imaging and application of this approach could be extended to future studies of uptake, metabolism, and perfusion in cancer and other disease models and may ultimately be of value for clinical imaging.
Collapse
Affiliation(s)
- Eugene Milshteyn
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, CA, USA
| | - Cornelius von Morze
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | | | - Hong Shang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, CA, USA
| | - Peter J Shin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Zihan Zhu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, CA, USA
| | - Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, CA, USA
| | - Robert Bok
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Andrei Goga
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, CA, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, CA, USA
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, CA, USA.
| |
Collapse
|
27
|
Siddiqui S, Kadlecek S, Pourfathi M, Xin Y, Mannherz W, Hamedani H, Drachman N, Ruppert K, Clapp J, Rizi R. The use of hyperpolarized carbon-13 magnetic resonance for molecular imaging. Adv Drug Deliv Rev 2017; 113:3-23. [PMID: 27599979 PMCID: PMC5783573 DOI: 10.1016/j.addr.2016.08.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/25/2016] [Accepted: 08/27/2016] [Indexed: 02/06/2023]
Abstract
Until recently, molecular imaging using magnetic resonance (MR) has been limited by the modality's low sensitivity, especially with non-proton nuclei. The advent of hyperpolarized (HP) MR overcomes this limitation by substantially enhancing the signal of certain biologically important probes through a process known as external nuclear polarization, enabling real-time assessment of tissue function and metabolism. The metabolic information obtained by HP MR imaging holds significant promise in the clinic, where it could play a critical role in disease diagnosis and therapeutic monitoring. This review will provide a comprehensive overview of the developments made in the field of hyperpolarized MR, including advancements in polarization techniques and delivery, probe development, pulse sequence optimization, characterization of healthy and diseased tissues, and the steps made towards clinical translation.
Collapse
Affiliation(s)
- Sarmad Siddiqui
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen Kadlecek
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mehrdad Pourfathi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi Xin
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William Mannherz
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hooman Hamedani
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas Drachman
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kai Ruppert
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Justin Clapp
- Department of Anesthesiology and Critical Care, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rahim Rizi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
28
|
Zhao EW, Maligal‐Ganesh R, Xiao C, Goh T, Qi Z, Pei Y, Hagelin‐Weaver HE, Huang W, Bowers CR. Silica‐Encapsulated Pt‐Sn Intermetallic Nanoparticles: A Robust Catalytic Platform for Parahydrogen‐Induced Polarization of Gases and Liquids. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701314] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Evan W. Zhao
- Department of Chemistry and Department of Chemical Engineering University of Florida Gainesville FL 32611 USA
| | - Raghu Maligal‐Ganesh
- Department of Chemistry Iowa State University Ames Laboratory U.S. Department of Energy Ames IA 50011 USA
| | - Chaoxian Xiao
- Department of Chemistry Iowa State University Ames Laboratory U.S. Department of Energy Ames IA 50011 USA
| | - Tian‐Wei Goh
- Department of Chemistry Iowa State University Ames Laboratory U.S. Department of Energy Ames IA 50011 USA
| | - Zhiyuan Qi
- Department of Chemistry Iowa State University Ames Laboratory U.S. Department of Energy Ames IA 50011 USA
| | - Yuchen Pei
- Department of Chemistry Iowa State University Ames Laboratory U.S. Department of Energy Ames IA 50011 USA
| | - Helena E. Hagelin‐Weaver
- Department of Chemistry and Department of Chemical Engineering University of Florida Gainesville FL 32611 USA
| | - Wenyu Huang
- Department of Chemistry Iowa State University Ames Laboratory U.S. Department of Energy Ames IA 50011 USA
| | - Clifford R. Bowers
- Department of Chemistry and Department of Chemical Engineering University of Florida Gainesville FL 32611 USA
| |
Collapse
|
29
|
Zhao EW, Maligal‐Ganesh R, Xiao C, Goh T, Qi Z, Pei Y, Hagelin‐Weaver HE, Huang W, Bowers CR. Silica‐Encapsulated Pt‐Sn Intermetallic Nanoparticles: A Robust Catalytic Platform for Parahydrogen‐Induced Polarization of Gases and Liquids. Angew Chem Int Ed Engl 2017; 56:3925-3929. [DOI: 10.1002/anie.201701314] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Evan W. Zhao
- Department of Chemistry and Department of Chemical Engineering University of Florida Gainesville FL 32611 USA
| | - Raghu Maligal‐Ganesh
- Department of Chemistry Iowa State University Ames Laboratory U.S. Department of Energy Ames IA 50011 USA
| | - Chaoxian Xiao
- Department of Chemistry Iowa State University Ames Laboratory U.S. Department of Energy Ames IA 50011 USA
| | - Tian‐Wei Goh
- Department of Chemistry Iowa State University Ames Laboratory U.S. Department of Energy Ames IA 50011 USA
| | - Zhiyuan Qi
- Department of Chemistry Iowa State University Ames Laboratory U.S. Department of Energy Ames IA 50011 USA
| | - Yuchen Pei
- Department of Chemistry Iowa State University Ames Laboratory U.S. Department of Energy Ames IA 50011 USA
| | - Helena E. Hagelin‐Weaver
- Department of Chemistry and Department of Chemical Engineering University of Florida Gainesville FL 32611 USA
| | - Wenyu Huang
- Department of Chemistry Iowa State University Ames Laboratory U.S. Department of Energy Ames IA 50011 USA
| | - Clifford R. Bowers
- Department of Chemistry and Department of Chemical Engineering University of Florida Gainesville FL 32611 USA
| |
Collapse
|
30
|
Imaging oxygen metabolism with hyperpolarized magnetic resonance: a novel approach for the examination of cardiac and renal function. Biosci Rep 2017; 37:BSR20160186. [PMID: 27899435 PMCID: PMC5270319 DOI: 10.1042/bsr20160186] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 12/24/2022] Open
Abstract
Every tissue in the body critically depends on meeting its energetic demands with sufficient oxygen supply. Oxygen supply/demand imbalances underlie the diseases that inflict the greatest socio-economic burden globally. The purpose of this review is to examine how hyperpolarized contrast media, used in combination with MR data acquisition methods, may advance our ability to assess oxygen metabolism non-invasively and thus improve management of clinical disease. We first introduce the concept of hyperpolarization and how hyperpolarized contrast media have been practically implemented to achieve translational and clinical research. We will then analyse how incorporating hyperpolarized contrast media could enable realization of unmet technical needs in clinical practice. We will focus on imaging cardiac and renal oxygen metabolism, as both organs have unique physiological demands to satisfy their requirements for tissue oxygenation, their dysfunction plays a fundamental role in society’s most prevalent diseases, and each organ presents unique imaging challenges. It is our aim that this review attracts a multi-disciplinary audience and sparks collaborations that utilize an exciting, emergent technology to advance our ability to treat patients adversely affected by an oxygen supply/demand mismatch.
Collapse
|
31
|
Shang H, Sukumar S, von Morze C, Bok RA, Marco-Rius I, Kerr A, Reed GD, Milshteyn E, Ohliger MA, Kurhanewicz J, Larson PEZ, Pauly JM, Vigneron DB. Spectrally selective three-dimensional dynamic balanced steady-state free precession for hyperpolarized C-13 metabolic imaging with spectrally selective radiofrequency pulses. Magn Reson Med 2016; 78:963-975. [PMID: 27770458 DOI: 10.1002/mrm.26480] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/30/2016] [Accepted: 09/02/2016] [Indexed: 12/12/2022]
Abstract
PURPOSE Balanced steady-state free precession (bSSFP) sequences can provide superior signal-to-noise ratio efficiency for hyperpolarized (HP) carbon-13 (13 C) magnetic resonance imaging by efficiently utilizing the nonrecoverable magnetization, but managing their spectral response is challenging in the context of metabolic imaging. A new spectrally selective bSSFP sequence was developed for fast imaging of multiple HP 13 C metabolites with high spatiotemporal resolution. THEORY AND METHODS This novel approach for bSSFP spectral selectivity incorporates optimized short-duration spectrally selective radiofrequency pulses within a bSSFP pulse train and a carefully chosen repetition time to avoid banding artifacts. RESULTS The sequence enabled subsecond 3D dynamic spectrally selective imaging of 13 C metabolites of copolarized [1-13 C]pyruvate and [13 C]urea at 2-mm isotropic resolution, with excellent spectral selectivity (∼100:1). The sequence was successfully tested in phantom studies and in vivo studies with normal mice. CONCLUSION This sequence is expected to benefit applications requiring dynamic volumetric imaging of metabolically active 13 C compounds at high spatiotemporal resolution, including preclinical studies at high field and, potentially, clinical studies. Magn Reson Med 78:963-975, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Hong Shang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA.,UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California, USA
| | - Subramaniam Sukumar
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Cornelius von Morze
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Robert A Bok
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Irene Marco-Rius
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Adam Kerr
- Electrical Engineering, Stanford University, Stanford, California, USA
| | | | - Eugene Milshteyn
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA.,UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California, USA
| | - Michael A Ohliger
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA.,UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA.,UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California, USA
| | - John M Pauly
- Electrical Engineering, Stanford University, Stanford, California, USA
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA.,UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, California, USA
| |
Collapse
|
32
|
Wigh Lipsø K, Hansen ESS, Tougaard RS, Laustsen C, Ardenkjaer-Larsen JH. Renal MR angiography and perfusion in the pig using hyperpolarized water. Magn Reson Med 2016; 78:1131-1135. [DOI: 10.1002/mrm.26478] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/08/2016] [Accepted: 09/01/2016] [Indexed: 01/20/2023]
Affiliation(s)
- Kasper Wigh Lipsø
- Department of Electrical Engineering; Technical University of Denmark; Kgs Lyngby Denmark
| | - Esben Søvsø Szocska Hansen
- Department of Clinical Medicine, MR Research Centre; Aarhus University; Aarhus Denmark
- Danish Diabetes Academy; Odense Denmark
| | - Rasmus Stilling Tougaard
- Department of Clinical Medicine, MR Research Centre; Aarhus University; Aarhus Denmark
- Department of Cardiology - Research; Aarhus University Hospital; Aarhus Denmark
| | - Christoffer Laustsen
- Department of Clinical Medicine, MR Research Centre; Aarhus University; Aarhus Denmark
| | - Jan Henrik Ardenkjaer-Larsen
- Department of Electrical Engineering; Technical University of Denmark; Kgs Lyngby Denmark
- GE Healthcare; Brøndby Denmark
| |
Collapse
|
33
|
Koelsch BL, Sriram R, Keshari KR, Leon Swisher C, Van Criekinge M, Sukumar S, Vigneron DB, Wang ZJ, Larson PEZ, Kurhanewicz J. Separation of extra- and intracellular metabolites using hyperpolarized (13)C diffusion weighted MR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 270:115-123. [PMID: 27434780 PMCID: PMC5448422 DOI: 10.1016/j.jmr.2016.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 05/07/2023]
Abstract
This work demonstrates the separation of extra- and intracellular components of glycolytic metabolites with diffusion weighted hyperpolarized (13)C magnetic resonance spectroscopy. Using b-values of up to 15,000smm(-2), a multi-exponential signal response was measured for hyperpolarized [1-(13)C] pyruvate and lactate. By fitting the fast and slow asymptotes of these curves, their extra- and intracellular weighted diffusion coefficients were determined in cells perfused in a MR compatible bioreactor. In addition to measuring intracellular weighted diffusion, extra- and intracellular weighted hyperpolarized (13)C metabolites pools are assessed in real-time, including their modulation with inhibition of monocarboxylate transporters. These studies demonstrate the ability to simultaneously assess membrane transport in addition to enzymatic activity with the use of diffusion weighted hyperpolarized (13)C MR. This technique could be an indispensible tool to evaluate the impact of microenvironment on the presence, aggressiveness and metastatic potential of a variety of cancers.
Collapse
Affiliation(s)
- Bertram L Koelsch
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, CA, USA
| | - Renuka Sriram
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
| | - Kayvan R Keshari
- Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | - Christine Leon Swisher
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, CA, USA
| | - Mark Van Criekinge
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Subramaniam Sukumar
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Daniel B Vigneron
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, CA, USA
| | - Zhen J Wang
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Peder E Z Larson
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, CA, USA
| | - John Kurhanewicz
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, CA, USA
| |
Collapse
|
34
|
Lau JYC, Chen AP, Gu YP, Cunningham CH. Voxel-by-voxel correlations of perfusion, substrate, and metabolite signals in dynamic hyperpolarized (13) C imaging. NMR IN BIOMEDICINE 2016; 29:1038-1047. [PMID: 27295304 DOI: 10.1002/nbm.3564] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 06/06/2023]
Abstract
In this study, a mixture of pyruvic acid and the perfusion agent HP001 was co-polarized for simultaneous assessment of perfusion and metabolism in vivo. The pre-polarized mixture was administered to rats with subcutaneous MDA-MB-231 breast cancer xenografts and imaged using an interleaved sequence with designed spectral-spatial pulses and flyback echo-planar readouts. Voxel-by-voxel signal correlations from 10 animals (15 data sets) were analyzed for tumour, kidney, and muscle regions of interest. The relationship between perfusion and hyperpolarized signal was explored on a voxel-by-voxel basis in various metabolically active tissues, including tumour, healthy kidneys, and skeletal muscle. Positive pairwise correlations between lactate, pyruvate, and HP001 observed in all 10 tumours suggested that substrate delivery was the dominant factor limiting the conversion of pyruvate to lactate in the tumour model used in this study. On the other hand, in cases where conversion is the limiting factor, such as in healthy kidneys, both pyruvate and lactate can act as excellent perfusion markers. In intermediate cases between the two limits, such as in skeletal muscle, some perfusion information may be inferred from the (pyruvate + lactate) signal distribution. Co-administration of pyruvate with a dynamic nuclear polarization (DNP) perfusion agent is an effective approach for distinguishing between slow metabolism and poor perfusion and a practical strategy for lactate signal normalization to account for substrate delivery, especially in cases of rapid pyruvate-to-lactate conversion and in poorly perfused regions with inadequate pyruvate signal-to-noise ratio for reliable determination of the lactate-to-pyruvate ratio. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Justin Y C Lau
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | - Yi-Ping Gu
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Charles H Cunningham
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
35
|
Reed GD, von Morze C, Verkman AS, Koelsch BL, Chaumeil MM, Lustig M, Ronen SM, Bok RA, Sands JM, Larson PEZ, Wang ZJ, Larsen JHA, Kurhanewicz J, Vigneron DB. Imaging Renal Urea Handling in Rats at Millimeter Resolution using Hyperpolarized Magnetic Resonance Relaxometry. Tomography 2016; 2:125-135. [PMID: 27570835 PMCID: PMC4996281 DOI: 10.18383/j.tom.2016.00127] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In vivo spin spin relaxation time (T2) heterogeneity of hyperpolarized [13C,15N2]urea in the rat kidney was investigated. Selective quenching of the vascular hyperpolarized 13C signal with a macromolecular relaxation agent revealed that a long-T2 component of the [13C,15N2]urea signal originated from the renal extravascular space, thus allowing the vascular and renal filtrate contrast agent pools of the [13C,15N2]urea to be distinguished via multi-exponential analysis. The T2 response to induced diuresis and antidiuresis was performed with two imaging agents: hyperpolarized [13C,15N2]urea and a control agent hyperpolarized bis-1,1-(hydroxymethyl)-1-13C-cyclopropane-2H8. Large T2 increases in the inner-medullar and papilla were observed with the former agent and not the latter during antidiuresis. Therefore, [13C,15N2]urea relaxometry is sensitive to two steps of the renal urea handling process: glomerular filtration and the inner-medullary urea transporter (UT)-A1 and UT-A3 mediated urea concentrating process. Simple motion correction and subspace denoising algorithms are presented to aid in the multi exponential data analysis. Furthermore, a T2-edited, ultra long echo time sequence was developed for sub-2 mm3 resolution 3D encoding of urea by exploiting relaxation differences in the vascular and filtrate pools.
Collapse
Affiliation(s)
- Galen D Reed
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA; Graduate Group in Bioengineering University of California San Francisco, San Francisco, California, USA, and University of California Berkeley, Berkeley, California, USA
| | - Cornelius von Morze
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Alan S Verkman
- Departments of Medicine and Physiology, University of California San Francisco, San Francisco, California, USA
| | - Bertram L Koelsch
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA; Graduate Group in Bioengineering University of California San Francisco, San Francisco, California, USA, and University of California Berkeley, Berkeley, California, USA
| | - Myriam M Chaumeil
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Michael Lustig
- Graduate Group in Bioengineering University of California San Francisco, San Francisco, California, USA, and University of California Berkeley, Berkeley, California, USA; Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, California, USA
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA; Graduate Group in Bioengineering University of California San Francisco, San Francisco, California, USA, and University of California Berkeley, Berkeley, California, USA
| | - Robert A Bok
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Jeff M Sands
- Department of Medicine, Renal Division, Emory University, Atlanta, Georgia, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA; Graduate Group in Bioengineering University of California San Francisco, San Francisco, California, USA, and University of California Berkeley, Berkeley, California, USA
| | - Zhen J Wang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Jan Henrik Ardenkjær Larsen
- GE Healthcare, Brøndby, Denmark; Department of Electrical Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA; Graduate Group in Bioengineering University of California San Francisco, San Francisco, California, USA, and University of California Berkeley, Berkeley, California, USA
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA; Graduate Group in Bioengineering University of California San Francisco, San Francisco, California, USA, and University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
36
|
Reed GD, von Morze C, Verkman AS, Koelsch BL, Chaumeil MM, Lustig M, Ronen SM, Bok RA, Sands JM, Larson PEZ, Wang ZJ, Larsen JHA, Kurhanewicz J, Vigneron DB. Imaging Renal Urea Handling in Rats at Millimeter Resolution using Hyperpolarized Magnetic Resonance Relaxometry. Tomography 2016. [PMID: 27570835 DOI: 10.18383/j.tom2016.00127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023] Open
Abstract
In vivo spin spin relaxation time (T2) heterogeneity of hyperpolarized [13C,15N2]urea in the rat kidney was investigated. Selective quenching of the vascular hyperpolarized 13C signal with a macromolecular relaxation agent revealed that a long-T2 component of the [13C,15N2]urea signal originated from the renal extravascular space, thus allowing the vascular and renal filtrate contrast agent pools of the [13C,15N2]urea to be distinguished via multi-exponential analysis. The T2 response to induced diuresis and antidiuresis was performed with two imaging agents: hyperpolarized [13C,15N2]urea and a control agent hyperpolarized bis-1,1-(hydroxymethyl)-1-13C-cyclopropane-2H8. Large T2 increases in the inner-medullar and papilla were observed with the former agent and not the latter during antidiuresis. Therefore, [13C,15N2]urea relaxometry is sensitive to two steps of the renal urea handling process: glomerular filtration and the inner-medullary urea transporter (UT)-A1 and UT-A3 mediated urea concentrating process. Simple motion correction and subspace denoising algorithms are presented to aid in the multi exponential data analysis. Furthermore, a T2-edited, ultra long echo time sequence was developed for sub-2 mm3 resolution 3D encoding of urea by exploiting relaxation differences in the vascular and filtrate pools.
Collapse
Affiliation(s)
- Galen D Reed
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA; Graduate Group in Bioengineering University of California San Francisco, San Francisco, California, USA, and University of California Berkeley, Berkeley, California, USA
| | - Cornelius von Morze
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Alan S Verkman
- Departments of Medicine and Physiology, University of California San Francisco, San Francisco, California, USA
| | - Bertram L Koelsch
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA; Graduate Group in Bioengineering University of California San Francisco, San Francisco, California, USA, and University of California Berkeley, Berkeley, California, USA
| | - Myriam M Chaumeil
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Michael Lustig
- Graduate Group in Bioengineering University of California San Francisco, San Francisco, California, USA, and University of California Berkeley, Berkeley, California, USA; Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, California, USA
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA; Graduate Group in Bioengineering University of California San Francisco, San Francisco, California, USA, and University of California Berkeley, Berkeley, California, USA
| | - Robert A Bok
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Jeff M Sands
- Department of Medicine, Renal Division, Emory University, Atlanta, Georgia, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA; Graduate Group in Bioengineering University of California San Francisco, San Francisco, California, USA, and University of California Berkeley, Berkeley, California, USA
| | - Zhen J Wang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Jan Henrik Ardenkjær Larsen
- GE Healthcare, Brøndby, Denmark; Department of Electrical Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA; Graduate Group in Bioengineering University of California San Francisco, San Francisco, California, USA, and University of California Berkeley, Berkeley, California, USA
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA; Graduate Group in Bioengineering University of California San Francisco, San Francisco, California, USA, and University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
37
|
Park JM, Spielman DM, Josan S, Jang T, Merchant M, Hurd RE, Mayer D, Recht LD. Hyperpolarized (13)C-lactate to (13)C-bicarbonate ratio as a biomarker for monitoring the acute response of anti-vascular endothelial growth factor (anti-VEGF) treatment. NMR IN BIOMEDICINE 2016; 29:650-9. [PMID: 26990457 PMCID: PMC4833516 DOI: 10.1002/nbm.3509] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 01/14/2016] [Accepted: 02/03/2016] [Indexed: 05/25/2023]
Abstract
Hyperpolarized [1-(13)C]pyruvate MRS provides a unique imaging opportunity to study the reaction kinetics and enzyme activities of in vivo metabolism because of its favorable imaging characteristics and critical position in the cellular metabolic pathway, where it can either be reduced to lactate (reflecting glycolysis) or converted to acetyl-coenzyme A and bicarbonate (reflecting oxidative phosphorylation). Cancer tissue metabolism is altered in such a way as to result in a relative preponderance of glycolysis relative to oxidative phosphorylation (i.e. Warburg effect). Although there is a strong theoretical basis for presuming that readjustment of the metabolic balance towards normal could alter tumor growth, a robust noninvasive in vivo tool with which to measure the balance between these two metabolic processes has yet to be developed. Until recently, hyperpolarized (13)C-pyruvate imaging studies had focused solely on [1-(13)C]lactate production because of its strong signal. However, without a concomitant measure of pyruvate entry into the mitochondria, the lactate signal provides no information on the balance between the glycolytic and oxidative metabolic pathways. Consistent measurement of (13)C-bicarbonate in cancer tissue, which does provide such information, has proven difficult, however. In this study, we report the reliable measurement of (13)C-bicarbonate production in both the healthy brain and a highly glycolytic experimental glioblastoma model using an optimized (13)C MRS imaging protocol. With the capacity to obtain signal in all tumors, we also confirm for the first time that the ratio of (13)C-lactate to (13)C-bicarbonate provides a more robust metric relative to (13)C-lactate for the assessment of the metabolic effects of anti-angiogenic therapy. Our data suggest a potential application of this ratio as an early biomarker to assess therapeutic effectiveness. Furthermore, although further study is needed, the results suggest that anti-angiogenic treatment results in a rapid normalization in the relative tissue utilization of glycolytic and oxidative phosphorylation by tumor tissue.
Collapse
Affiliation(s)
- Jae Mo Park
- Department of Radiology, Stanford University, 1201 Welch Rd., Stanford, California 94305, U.S.A
| | - Daniel M. Spielman
- Department of Radiology, Stanford University, 1201 Welch Rd., Stanford, California 94305, U.S.A
| | - Sonal Josan
- Department of Radiology, Stanford University, 1201 Welch Rd., Stanford, California 94305, U.S.A
- Biosciences Division, SRI International, 333 Ravenswood Ave.., Menlo Park, California 94025, U.S.A
| | - Taichang Jang
- Department of Neurology and Neurological Sciences, Stanford University, 875 Blake Wilbur Dr., Palo Alto, California 94304, U.S.A
| | - Milton Merchant
- Department of Neurology and Neurological Sciences, Stanford University, 875 Blake Wilbur Dr., Palo Alto, California 94304, U.S.A
| | - Ralph E. Hurd
- Applied Science Laboratory West, GE Healthcare, 333 Ravenswood Ave., Menlo Park, California 94025, U.S.A
| | - Dirk Mayer
- Biosciences Division, SRI International, 333 Ravenswood Ave.., Menlo Park, California 94025, U.S.A
- Department of Diagnostic Radiology and Nuclear Medicine, , University of Maryland, 22 S. Greene St., Baltimore, Maryland 21201, U.S.A
| | - Lawrence D. Recht
- Department of Neurology and Neurological Sciences, Stanford University, 875 Blake Wilbur Dr., Palo Alto, California 94304, U.S.A
| |
Collapse
|
38
|
Walker CM, Merritt M, Wang JX, Bankson JA. Use of a Multi-compartment Dynamic Single Enzyme Phantom for Studies of Hyperpolarized Magnetic Resonance Agents. J Vis Exp 2016:e53607. [PMID: 27166971 DOI: 10.3791/53607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Imaging of hyperpolarized substrates by magnetic resonance shows great clinical promise for assessment of critical biochemical processes in real time. Due to fundamental constraints imposed by the hyperpolarized state, exotic imaging and reconstruction techniques are commonly used. A practical system for characterization of dynamic, multi-spectral imaging methods is critically needed. Such a system must reproducibly recapitulate the relevant chemical dynamics of normal and pathological tissues. The most widely utilized substrate to date is hyperpolarized [1-(13)C]-pyruvate for assessment of cancer metabolism. We describe an enzyme-based phantom system that mediates the conversion of pyruvate to lactate. The reaction is initiated by injection of the hyperpolarized agent into multiple chambers within the phantom, each of which contains varying concentrations of reagents that control the reaction rate. Multiple compartments are necessary to ensure that imaging sequences faithfully capture the spatial and metabolic heterogeneity of tissue. This system will aid the development and validation of advanced imaging strategies by providing chemical dynamics that are not available from conventional phantoms, as well as control and reproducibility that is not possible in vivo.
Collapse
Affiliation(s)
| | - Matthew Merritt
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center
| | - Jian-Xiong Wang
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center
| | - James A Bankson
- Imaging Physics, University of Texas M.D. Anderson Cancer Center;
| |
Collapse
|
39
|
Park I, von Morze C, Lupo JM, Ardenkjaer-Larsen JH, Kadambi A, Vigneron DB, Nelson SJ. Investigating tumor perfusion by hyperpolarized 13 C MRI with comparison to conventional gadolinium contrast-enhanced MRI and pathology in orthotopic human GBM xenografts. Magn Reson Med 2016; 77:841-847. [PMID: 26892398 DOI: 10.1002/mrm.26155] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/08/2015] [Accepted: 01/17/2016] [Indexed: 12/22/2022]
Abstract
PURPOSE Dissolution dynamic nuclear polarization (DNP) enables the acquisition of 13 C magnetic resonance data with a high sensitivity. Recently, metabolically inactive hyperpolarized 13 C-labeled compounds have shown to be potentially useful for perfusion imaging. The purpose of this study was to validate hyperpolarized perfusion imaging methods by comparing with conventional gadolinium (Gd)-based perfusion MRI techniques and pathology. METHODS Dynamic 13 C data using metabolically inactive hyperpolarized bis-1,1-(hydroxymethyl)-[1-13 C]cyclopropane-d8 (HMCP) were obtained from an orthotopic human glioblastoma (GBM) model for the characterization of tumor perfusion and compared with standard Gd-based dynamic susceptibility contrast (DSC) MRI data and immunohistochemical analysis from resected brains. RESULTS Distinct HMCP perfusion characteristics were observed within the GBM tumors compared with contralateral normal brain tissue. The perfusion parameters obtained from the hyperpolarized HMCP data in tumor were strongly correlated with normalized peak height measured from the DSC images. The results from immunohistochemical analysis supported these findings by showing a high level of vascular staining for tumor that exhibited high levels of hyperpolarized HMCP signal. CONCLUSION The results from this study have demonstrated that hyperpolarized HMCP data can be used as an indicator of tumor perfusion in an orthotopic xenograft model for GBM. Magn Reson Med 77:841-847, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Ilwoo Park
- Surbeck Laboratory of Advanced Imaging, Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Cornelius von Morze
- Surbeck Laboratory of Advanced Imaging, Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Janine M Lupo
- Surbeck Laboratory of Advanced Imaging, Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Jan H Ardenkjaer-Larsen
- GE Healthcare, Brøndby, Denmark.,Department of Electrical Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Achuta Kadambi
- Media Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Daniel B Vigneron
- Surbeck Laboratory of Advanced Imaging, Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Sarah J Nelson
- Surbeck Laboratory of Advanced Imaging, Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA.,Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| |
Collapse
|
40
|
Fan TWM, Lane AN. Applications of NMR spectroscopy to systems biochemistry. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2016; 92-93:18-53. [PMID: 26952191 PMCID: PMC4850081 DOI: 10.1016/j.pnmrs.2016.01.005] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/26/2016] [Accepted: 01/28/2016] [Indexed: 05/05/2023]
Abstract
The past decades of advancements in NMR have made it a very powerful tool for metabolic research. Despite its limitations in sensitivity relative to mass spectrometric techniques, NMR has a number of unparalleled advantages for metabolic studies, most notably the rigor and versatility in structure elucidation, isotope-filtered selection of molecules, and analysis of positional isotopomer distributions in complex mixtures afforded by multinuclear and multidimensional experiments. In addition, NMR has the capacity for spatially selective in vivo imaging and dynamical analysis of metabolism in tissues of living organisms. In conjunction with the use of stable isotope tracers, NMR is a method of choice for exploring the dynamics and compartmentation of metabolic pathways and networks, for which our current understanding is grossly insufficient. In this review, we describe how various direct and isotope-edited 1D and 2D NMR methods can be employed to profile metabolites and their isotopomer distributions by stable isotope-resolved metabolomic (SIRM) analysis. We also highlight the importance of sample preparation methods including rapid cryoquenching, efficient extraction, and chemoselective derivatization to facilitate robust and reproducible NMR-based metabolomic analysis. We further illustrate how NMR has been applied in vitro, ex vivo, or in vivo in various stable isotope tracer-based metabolic studies, to gain systematic and novel metabolic insights in different biological systems, including human subjects. The pathway and network knowledge generated from NMR- and MS-based tracing of isotopically enriched substrates will be invaluable for directing functional analysis of other 'omics data to achieve understanding of regulation of biochemical systems, as demonstrated in a case study. Future developments in NMR technologies and reagents to enhance both detection sensitivity and resolution should further empower NMR in systems biochemical research.
Collapse
Affiliation(s)
- Teresa W-M Fan
- Department of Toxicology and Cancer Biology, University of Kentucky, 789 S. Limestone St., Lexington, KY 40536, United States.
| | - Andrew N Lane
- Department of Toxicology and Cancer Biology, University of Kentucky, 789 S. Limestone St., Lexington, KY 40536, United States.
| |
Collapse
|
41
|
Lau AZ, Miller JJ, Robson MD, Tyler DJ. Simultaneous assessment of cardiac metabolism and perfusion using copolarized [1- 13 C]pyruvate and 13 C-urea. Magn Reson Med 2016; 77:151-158. [PMID: 26743440 PMCID: PMC5217077 DOI: 10.1002/mrm.26106] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/04/2015] [Accepted: 12/02/2015] [Indexed: 12/23/2022]
Abstract
Purpose To demonstrate the feasibility of imaging a bolus of co‐polarized [1‐13C]pyruvate and 13C‐urea to simultaneously assess both metabolism and perfusion in the rodent heart. Methods Copolarized [1‐13C]pyruvate and 13C‐urea was imaged using a multi‐echo, flow‐sensitized spiral pulse sequence. Healthy rats were scanned in a two‐factor factorial design (n = 12 total; metabolism: overnight fasting versus fed with dichloroacetate injection; perfusion: rest versus adenosine stress‐induced hyperemia). Results Alterations in metabolism were detected by changes in pyruvate metabolism into 13C‐bicarbonate. Statistically independent alterations in perfusion were detected by changes in myocardial pyruvate and urea signals. Conclusion The new pulse sequence was used to obtain maps of metabolism and perfusion in the rodent heart in a single acquisition. This hyperpolarized 13C imaging test is expected to enable new studies in which the cardiac metabolism/perfusion mismatch can be studied in the acute environment. Magn Reson Med 77:151–158, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine
Collapse
Affiliation(s)
- Angus Z Lau
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom.,Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Jack J Miller
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom.,Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, United Kingdom
| | - Matthew D Robson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Damian J Tyler
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom.,Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
42
|
Feng Y, Gordon JW, Shin PJ, von Morze C, Lustig M, Larson PEZ, Ohliger MA, Carvajal L, Tropp J, Pauly JM, Vigneron DB. Development and testing of hyperpolarized (13)C MR calibrationless parallel imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 262:1-7. [PMID: 26679288 PMCID: PMC4864033 DOI: 10.1016/j.jmr.2015.10.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 05/12/2023]
Abstract
A calibrationless parallel imaging technique developed previously for (1)H MRI was modified and tested for hyperpolarized (13)C MRI for applications requiring large FOV and high spatial resolution. The technique was demonstrated with both retrospective and prospective under-sampled data acquired in phantom and in vivo rat studies. A 2-fold acceleration was achieved using a 2D symmetric EPI readout equipped with random blips on the phase encode dimension. Reconstructed images showed excellent qualitative agreement with fully sampled data. Further acceleration can be achieved using acquisition schemes that incorporate multi-dimensional under-sampling.
Collapse
Affiliation(s)
- Yesu Feng
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA, USA
| | - Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA, USA
| | - Peter J Shin
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA, USA
| | - Cornelius von Morze
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA, USA
| | - Michael Lustig
- Department of Electrical Engineering and Computer Sciences, UC Berkeley, Berkeley, CA, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA, USA
| | - Michael A Ohliger
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA, USA
| | - Lucas Carvajal
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA, USA
| | | | - John M Pauly
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA, USA.
| |
Collapse
|
43
|
Koelsch BL, Reed GD, Keshari KR, Chaumeil MM, Bok R, Ronen SM, Vigneron DB, Kurhanewicz J, Larson PEZ. Rapid in vivo apparent diffusion coefficient mapping of hyperpolarized (13) C metabolites. Magn Reson Med 2015; 74:622-633. [PMID: 25213126 PMCID: PMC4362805 DOI: 10.1002/mrm.25422] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/01/2014] [Accepted: 08/01/2014] [Indexed: 12/22/2022]
Abstract
PURPOSE Hyperpolarized (13) C magnetic resonance allows for the study of real-time metabolism in vivo, including significant hyperpolarized (13) C lactate production in many tumors. Other studies have shown that aggressive and highly metastatic tumors rapidly transport lactate out of cells. Thus, the ability to not only measure the production of hyperpolarized (13) C lactate but also understand its compartmentalization using diffusion-weighted MR will provide unique information for improved tumor characterization. METHODS We used a bipolar, pulsed-gradient, double spin echo imaging sequence to rapidly generate diffusion-weighted images of hyperpolarized (13) C metabolites. Our methodology included a simultaneously acquired B1 map to improve apparent diffusion coefficient (ADC) accuracy and a diffusion-compensated variable flip angle scheme to improve ADC precision. RESULTS We validated this sequence and methodology in hyperpolarized (13) C phantoms. Next, we generated ADC maps of several hyperpolarized (13) C metabolites in a normal rat, rat brain tumor, and prostate cancer mouse model using both preclinical and clinical trial-ready hardware. CONCLUSION ADC maps of hyperpolarized (13) C metabolites provide information about the localization of these molecules in the tissue microenvironment. The methodology presented here allows for further studies to investigate ADC changes due to disease state that may provide unique information about cancer aggressiveness and metastatic potential.
Collapse
Affiliation(s)
- Bertram L. Koelsch
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
- UC Berkeley – UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California, USA
| | - Galen D. Reed
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
- UC Berkeley – UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California, USA
| | - Kayvan R. Keshari
- Department of Radiology and Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Myriam M. Chaumeil
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Robert Bok
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Sabrina M. Ronen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
- UC Berkeley – UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California, USA
| | - Daniel B. Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
- UC Berkeley – UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California, USA
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
- UC Berkeley – UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California, USA
| | - Peder E. Z. Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
- UC Berkeley – UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California, USA
| |
Collapse
|
44
|
Chaumeil MM, Najac C, Ronen SM. Studies of Metabolism Using (13)C MRS of Hyperpolarized Probes. Methods Enzymol 2015; 561:1-71. [PMID: 26358901 DOI: 10.1016/bs.mie.2015.04.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
First described in 2003, the dissolution dynamic nuclear polarization (DNP) technique, combined with (13)C magnetic resonance spectroscopy (MRS), has since been used in numerous metabolic studies and has become a valuable metabolic imaging method. DNP dramatically increases the level of polarization of (13)C-labeled compounds resulting in an increase in the signal-to-noise ratio (SNR) of over 50,000 fold for the MRS spectrum of hyperpolarized compounds. The high SNR enables rapid real-time detection of metabolism in cells, tissues, and in vivo. This chapter will present a comprehensive review of the DNP approaches that have been used to monitor metabolism in living systems. First, the list of (13)C DNP probes developed to date will be presented, with a particular focus on the most commonly used probe, namely [1-(13)C] pyruvate. In the next four sections, we will then describe the different factors that need to be considered when designing (13)C DNP probes for metabolic studies, conducting in vitro or in vivo hyperpolarized experiments, as well as acquiring, analyzing, and modeling hyperpolarized (13)C data.
Collapse
Affiliation(s)
- Myriam M Chaumeil
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Chloé Najac
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA.
| |
Collapse
|
45
|
Durst M, Koellisch U, Frank A, Rancan G, Gringeri CV, Karas V, Wiesinger F, Menzel MI, Schwaiger M, Haase A, Schulte RF. Comparison of acquisition schemes for hyperpolarised ¹³C imaging. NMR IN BIOMEDICINE 2015; 28:715-25. [PMID: 25908233 DOI: 10.1002/nbm.3301] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 03/12/2015] [Accepted: 03/12/2015] [Indexed: 05/10/2023]
Abstract
The aim of this study was to characterise and compare widely used acquisition strategies for hyperpolarised (13)C imaging. Free induction decay chemical shift imaging (FIDCSI), echo-planar spectroscopic imaging (EPSI), IDEAL spiral chemical shift imaging (ISPCSI) and spiral chemical shift imaging (SPCSI) sequences were designed for two different regimes of spatial resolution. Their characteristics were studied in simulations and in tumour-bearing rats after injection of hyperpolarised [1-(13)C]pyruvate on a clinical 3-T scanner. Two or three different sequences were used on the same rat in random order for direct comparison. The experimentally obtained lactate signal-to-noise ratio (SNR) in the tumour matched the simulations. Differences between the sequences were mainly found in the encoding efficiency, gradient demand and artefact behaviour. Although ISPCSI and SPCSI offer high encoding efficiencies, these non-Cartesian trajectories are more prone than EPSI and FIDCSI to artefacts from various sources. If the encoding efficiency is sufficient for the desired application, EPSI has been proven to be a robust choice. Otherwise, faster spiral acquisition schemes are recommended. The conclusions found in this work can be applied directly to clinical applications.
Collapse
Affiliation(s)
- Markus Durst
- Technische Universität München, Institute of Medical Engineering, Munich, Germany
| | - Ulrich Koellisch
- Technische Universität München, Institute of Medical Engineering, Munich, Germany
| | - Annette Frank
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Giaime Rancan
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Concetta V Gringeri
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | | | | | | | - Markus Schwaiger
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Axel Haase
- Technische Universität München, Institute of Medical Engineering, Munich, Germany
| | | |
Collapse
|
46
|
Lau AZ, Miller JJ, Robson MD, Tyler DJ. Cardiac perfusion imaging using hyperpolarized (13)C urea using flow sensitizing gradients. Magn Reson Med 2015; 75:1474-83. [PMID: 25991580 PMCID: PMC4556069 DOI: 10.1002/mrm.25713] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/25/2015] [Accepted: 03/05/2015] [Indexed: 01/18/2023]
Abstract
Purpose To demonstrate the feasibility of imaging the first passage of a bolus of hyperpolarized 13C urea through the rodent heart using flow‐sensitizing gradients to reduce signal from the blood pool. Methods A flow‐sensitizing bipolar gradient was optimized to reduce the bright signal within the cardiac chambers, enabling improved contrast of the agent within the tissue capillary bed. The gradient was incorporated into a dynamic golden angle spiral 13C imaging sequence. Healthy rats were scanned during rest (n = 3) and under adenosine stress‐induced hyperemia (n = 3). Results A two‐fold increase in myocardial perfusion relative to rest was detected during adenosine stress‐induced hyperemia, consistent with a myocardial perfusion reserve of two in rodents. Conclusion The new pulse sequence was used to obtain dynamic images of the first passage of hyperpolarized 13C urea in the rodent heart, without contamination from bright signal within the neighboring cardiac lumen. This probe of myocardial perfusion is expected to enable new hyperpolarized 13C studies in which the cardiac metabolism/perfusion mismatch can be identified. Magn Reson Med, 2015. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Magn Reson Med 75:1474–1483, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance.
Collapse
Affiliation(s)
- Angus Z Lau
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom.,Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom
| | - Jack J Miller
- Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom.,Department of Physics, Clarendon Laboratory, University of Oxford, United Kingdom
| | - Matthew D Robson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom
| | - Damian J Tyler
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom.,Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom
| |
Collapse
|