1
|
Kazemivalipour E, Atalar E. Enhancing fine-tuning efficiency and design optimization of an eight-channel 3T transmit array via equivalent circuit modeling and Eigenmode analysis. Med Phys 2025. [PMID: 39815440 DOI: 10.1002/mp.17612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 11/20/2024] [Accepted: 12/19/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Radiofrequency (RF) transmit arrays play a crucial role in various MRI applications, offering enhanced field control and improved imaging capabilities. Designing and optimizing these arrays, particularly in high-field MRI settings, poses challenges related to coupling, resonance, and construction imperfections. Numerical electromagnetic simulation methods effectively aid in the initial design, but discrepancies between simulated and fabricated arrays often necessitate fine-tuning. Fine-tuning involves iteratively adjusting the array's lumped elements, a complex and time-consuming process that demands expertise and substantial experience. This process is particularly required for high-Q-factor arrays or those with decoupling circuitries, where the impact of construction variations and coupling between elements is more pronounced. In this context, our study introduces and validates an accelerated fine-tuning approach custom RF transmit arrays, leveraging the arrays equivalent circuit modeling and eigenmode analysis of the scattering (S) parameters. PURPOSE This study aims to streamline the fine-tuning process of lab-fabricated RF transmit arrays, specifically targeting an eight-channel degenerate birdcage coil designed for 3T MRI. The objective is to minimize the array's modal reflected power values and address challenges related to coupling and resonance. METHODS An eight-channel 3T transmit array is designed and simulated, optimizing capacitor values via the co-simulation strategy and eigenmode analysis. The resulting values are used in constructing a prototype. Experimental measurements of the fabricated coil's S-parameters and fitting them into an equivalent circuit model, enabling estimation of self/mutual-inductances and self/mutual-resistances of the fabricated coil. Capacitor adjustments in the equivalent circuit model minimize mismatches between experimental and simulated results. RESULTS The simulated eight-channel array, optimized for minimal normalized reflected power, exhibits excellent tuning and matching and an acceptable level of decoupling (|Snn|≤-23 dB and |Smn|≤-11 dB). However, the fabricated array displays deviations, including resonances at different frequencies and increased reflections. The proposed fine-tuning approach yields an updated set of capacitor values, improving resonance frequencies and reducing reflections. The fine-tuned array demonstrates comparable performance to the simulation (|Snn|≤-15 dB and |Smn|≤-9 dB), mitigating disparities caused by construction imperfections. The maximum error between the calculated and measured S-parameters is -7 dB. CONCLUSION This accelerated fine-tuning approach, integrating equivalent circuit modeling and eigenmode analysis, effectively optimizes the performance of fabricated transmit arrays. Demonstrated through the design and refinement of an eight-channel array, the method addresses construction-related disparities, showcasing its potential to enhance overall array performance. The approach holds promise for streamlining the design and optimization of complex RF coil systems, particularly for high Q-factor arrays and/or arrays with decoupling circuitry.
Collapse
Affiliation(s)
- Ehsan Kazemivalipour
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Ergin Atalar
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| |
Collapse
|
2
|
Drago JM, Guerin B, Stockmann JP, Wald LL. Multiphoton parallel transmission (MP-pTx): Pulse design methods and numerical validation. Magn Reson Med 2024; 92:1376-1391. [PMID: 38899391 PMCID: PMC11262987 DOI: 10.1002/mrm.30116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/01/2024] [Accepted: 04/01/2024] [Indexed: 06/21/2024]
Abstract
PURPOSE We propose and evaluate multiphoton parallel transmission (MP-pTx) to mitigate flip angle inhomogeneities in high-field MRI. MP-pTx is an excitation method that utilizes a single, conventional birdcage coil supplemented with low-frequency (kHz) irradiation from a multichannel shim array and/or gradient channels. SAR analysis is simplified to that of a conventional birdcage coil, because only the radiofrequency (RF) field from the birdcage coil produces significant SAR. METHODS MP-pTx employs an off-resonance RF pulse from a conventional birdcage coil supplemented with oscillatingz $$ z $$ -directed fields from a multichannel shim array and/or the gradient coils. We simulate the ability of MP-pTx to create uniform nonselective brain excitations at 7 T using realisticB 1 + $$ {\mathrm{B}}_1^{+} $$ andΔ B 0 $$ \Delta {\mathrm{B}}_0 $$ field maps. The RF, shim array, and gradient waveform's amplitudes and phases are optimized using a genetic algorithm followed by sequential quadratic programming. RESULTS A 1 ms MP-pTx excitation using a 32-channel shim array with current constrained to less than 50 Amp-turns reduced the transverse magnetization's normalized root-mean-squared error from 29% for a conventional birdcage excitation to 6.6% and was nearly 40% better than a 1 ms birdcage coil 5 kT-point excitation with optimized kT-point locations and comparable pulse power. CONCLUSION The MP-pTx method resembles conventional pTx in its goals and approach but replaces the parallel RF channels with cheaper, low-frequency shim channels. The method mitigates high-field flip angle inhomogeneities to a level better than 3 T CP-mode and comparable to 7 T pTx while retaining the straightforward SAR characteristics of conventional birdcage excitations, as low-frequency shim array fields produce negligible SAR.
Collapse
Affiliation(s)
- John M. Drago
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard Medical School, Boston, Massachusetts, USA
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Bastien Guerin
- Harvard Medical School, Boston, Massachusetts, USA
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Jason P. Stockmann
- Harvard Medical School, Boston, Massachusetts, USA
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Lawrence L. Wald
- Harvard Medical School, Boston, Massachusetts, USA
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard-MIT Division of Health Sciences Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
3
|
Li R, Chen X, Liao Y, Xin SX. Evaluation of the RF depositions at 3T in routine clinical scans with respect to the SAR safety to improve efficiency of MRI utilization. BIOMED ENG-BIOMED TE 2024:bmt-2024-0339. [PMID: 39286927 DOI: 10.1515/bmt-2024-0339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
OBJECTIVES This study explores the potential for improving of 3T MRI utilization by assessing and tailoring RF exposure in routine clinical scans while complying to standard safety limit. METHODS Using two generic human body models, we evaluated pbSAR10g values at four landmark positions (knee, pelvis, thoracic spine, head) at different wbSAR levels. Specifically, we analyzed local SAR10g in different operating modes and computed the maximum safety wbSAR, ensuring compliance with IEC limits. RESULTS In normal operating mode, the RF power deposition reached wbSAR limit before the pbSAR10g limit. In the first level controlled operating mode, pbSAR10g limit is reached before the wbSAR limit in the knee, thoracic spine scanning scenarios, while the wbSAR limit is reached first in the pelvis scanning scenarios, making it the most potential-releasing (up to 33.33 %) scanning scenario. For head exposure, the head SAR10g limit is reached before the wbSAR limit, highlighting the necessity for strict SAR control. Moreover, we calculated the minimum allowable TR for common imaging sequences for reference. CONCLUSIONS Different RF exposure setups are necessary to meet safety standards in various scenarios. By implementing careful RF exposure setups in routine clinical scans, the high potential capacity of 3T MRI can be fully released.
Collapse
Affiliation(s)
- Ruixin Li
- Laboratory of Biophysics, School of Medicine, South China University of Technology Guangzhou, China
| | - Xinlian Chen
- Laboratory of Biophysics, School of Medicine, South China University of Technology Guangzhou, China
| | - Yupeng Liao
- College of Medical Information Engineering, Gannan Medical University, Ganzhou, China
| | - Sherman Xuegang Xin
- Laboratory of Biophysics, School of Medicine, South China University of Technology Guangzhou, China
| |
Collapse
|
4
|
Petzold J, Schmitter S, Silemek B, Winter L, Speck O, Ittermann B, Seifert F. Investigation of alternative RF power limit control methods for 0.5T, 1.5T, and 3T parallel transmission cardiac imaging: A simulation study. Magn Reson Med 2024; 91:1659-1675. [PMID: 38031517 DOI: 10.1002/mrm.29932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/09/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023]
Abstract
PURPOSE To investigate safety and performance aspects of parallel-transmit (pTx) RF control-modes for a body coil atB 0 ≤ 3 T $$ {B}_0\le 3\mathrm{T} $$ . METHODS Electromagnetic simulations of 11 human voxel models in cardiac imaging position were conducted forB 0 = 0.5 T $$ {B}_0=0.5\mathrm{T} $$ ,1.5 T $$ 1.5\mathrm{T} $$ and3 T $$ 3\mathrm{T} $$ and a body coil with a configurable number of transmit channels (1, 2, 4, 8, 16). Three safety modes were considered: the 'SAR-controlled mode' (SCM), where specific absorption rate (SAR) is limited directly, a 'phase agnostic SAR-controlled mode' (PASCM), where phase information is neglected, and a 'power-controlled mode' (PCM), where the voltage amplitude for each channel is limited. For either mode, safety limits were established based on a set of 'anchor' simulations and then evaluated in 'target' simulations on previously unseen models. The comparison allowed to derive safety factors accounting for varying patient anatomies. All control modes were compared in terms of theB 1 + $$ {B}_1^{+} $$ amplitude and homogeneity they permit under their respective safety requirements. RESULTS Large safety factors (approximately five) are needed if only one or two anchor models are investigated but they shrink with increasing number of anchors. The achievableB 1 + $$ {B}_1^{+} $$ is highest for SCM but this advantage is reduced when the safety factor is included. PCM appears to be more robust against variations of subjects. PASCM performance is mostly in between SCM and PCM. Compared to standard circularly polarized (CP) excitation, pTx offers minorB 1 + $$ {B}_1^{+} $$ improvements if local SAR limits are always enforced. CONCLUSION PTx body coils can safely be used atB 0 ≤ 3 T $$ {B}_0\le 3\mathrm{T} $$ . Uncertainties in patient anatomy must be accounted for, however, by simulating many models.
Collapse
Affiliation(s)
- Johannes Petzold
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
- Biomedical Magnetic Resonance, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Berk Silemek
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Lukas Winter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Oliver Speck
- Biomedical Magnetic Resonance, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Frank Seifert
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| |
Collapse
|
5
|
Kazemivalipour E, Wald LL, Guerin B. Comparison of tight-fitting 7T parallel-transmit head array designs using excitation uniformity and local specific absorption rate metrics. Magn Reson Med 2024; 91:1209-1224. [PMID: 37927216 PMCID: PMC10848211 DOI: 10.1002/mrm.29900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 09/15/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023]
Abstract
PURPOSE We model the performance of parallel transmission (pTx) arrays with 8, 16, 24, and 32 channels and varying loop sizes built on a close-fitting helmet for brain imaging at 7 T and compare their local specific absorption rate (SAR) and flip-angle performances to that of birdcage coil (used as a baseline) and cylindrical 8-channel and 16-channel pTx coils (single-row and dual-row). METHODS We use the co-simulation approach along with MATLAB scripting for batch-mode simulation of the coils. For each coil, we extracted B1 + maps and SAR matrices, which we compressed using the virtual observation points algorithm, and designed slice-selective RF shimming pTx pulses with multiple local SAR and peak power constraints to generate L-curves in the transverse, coronal, and sagittal orientations. RESULTS Helmet designs outperformed cylindrical pTx arrays at a constant number of channels in the flip-angle uniformity at a constant local SAR metric: up to 29% for 8-channel arrays, and up to 34% for 16-channel arrays, depending on the slice orientation. For all helmet arrays, increasing the loop diameter led to better local SAR versus flip-angle uniformity tradeoffs, although this effect was more pronounced for the 8-channel and 16-channel systems than the 24-channel and 32-channel systems, as the former have more limited degrees of freedom and therefore benefit more from loop-size optimization. CONCLUSION Helmet pTx arrays significantly outperformed cylindrical arrays with the same number of channels in local SAR and flip-angle uniformity metrics. This improvement was especially pronounced for non-transverse slice excitations. Loop diameter optimization for helmets appears to favor large loops, compatible with nearest-neighbor decoupling by overlap.
Collapse
Affiliation(s)
- Ehsan Kazemivalipour
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Lawrence L. Wald
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Division of Health Sciences Technology, Cambridge, Massachusetts, USA
| | - Bastien Guerin
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Schmidt S, Ertürk MA, He X, Haluptzok T, Eryaman Y, Metzger GJ. Improved 1 H body imaging at 10.5 T: Validation and VOP-enabled imaging in vivo with a 16-channel transceiver dipole array. Magn Reson Med 2024; 91:513-529. [PMID: 37705412 PMCID: PMC10850915 DOI: 10.1002/mrm.29866] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/04/2023] [Accepted: 08/28/2023] [Indexed: 09/15/2023]
Abstract
PURPOSE To increase the RF coil performance and RF management for body imaging at 10.5 T by validating and evaluating a high-density 16-channel transceiver array, implementing virtual observation points (VOPs), and demonstrating specific absorption rate (SAR) constrained imaging in vivo. METHODS The inaccuracy of the electromagnetic model of the array was quantified based on B1 + and SAR data. Inter-subject variability was estimated using a new approach based on the relative SAR deviation of different RF shims between human body models. The pTx performance of the 16-channel array was assessed in simulation by comparison to a previously demonstrated 10-channel array. In vivo imaging of the prostate was performed demonstrating SAR-constrained static RF shimming and acquisition modes optimized for refocused echoes (AMORE). RESULTS The model inaccuracy of 29% and the inter-subject variability of 85% resulted in a total safety factor of 1.91 for pelvis studies. For renal and cardiac imaging, inter-subject variabilities of 121% and 141% lead to total safety factors of 2.25 and 2.45, respectively. The shorter wavelength at 10.5 T supported the increased element density of the 16-channel array which in turn outperformed the 10-channel version for all investigated metrics. Peak 10 g local SAR reduction of more than 25% without a loss of image quality was achieved in vivo, allowing a theoretical improvement in measurement efficiency of up to 66%. CONCLUSIONS By validating and characterizing a 16-channel dipole transceiver array, this work demonstrates, for the first time, a VOP-enabled RF coil for human torso imaging enabling increased pTx performance at 10.5 T.
Collapse
Affiliation(s)
- Simon Schmidt
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - M. Arcan Ertürk
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Xiaoxuan He
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Tobey Haluptzok
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yiğitcan Eryaman
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gregory J. Metzger
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
7
|
Giannakopoulos II, Georgakis IP, Sodickson DK, Lattanzi R. Computational methods for the estimation of ideal current patterns in realistic human models. Magn Reson Med 2024; 91:760-772. [PMID: 37800398 PMCID: PMC11467686 DOI: 10.1002/mrm.29864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 10/07/2023]
Abstract
PURPOSE To introduce a method for the estimation of the ideal current patterns (ICP) that yield optimal signal-to-noise ratio (SNR) for realistic heterogeneous tissue models in MRI. THEORY AND METHODS The ICP were calculated for different surfaces that resembled typical radiofrequency (RF) coil formers. We constructed numerical electromagnetic (EM) bases to accurately represent EM fields generated by RF current sources located on the current-bearing surfaces. Using these fields as excitations, we solved the volume integral equation and computed the EM fields in the sample. The fields were appropriately weighted to calculate the optimal SNR and the corresponding ICP. We demonstrated how to qualitatively use ICP to guide the design of a coil array to maximize SNR inside a head model. RESULTS In agreement with previous analytic work, ICP formed large distributed loops for voxels in the middle of the sample and alternated between a single loop and a figure-eight shape for a voxel 3-cm deep in the sample's cortex. For the latter voxel, a surface quadrature loop array inspired by the shape of the ICP reached87 . 5 % $$ 87.5\% $$ of the optimal SNR at 3T, whereas a single loop placed above the voxel reached only55 . 7 % $$ 55.7\% $$ of the optimal SNR. At 7T, the performance of the two designs decreased to79 . 7 % $$ 79.7\% $$ and49 . 8 % $$ 49.8\% $$ , respectively, suggesting that loops could be suboptimal at ultra-high field MRI. CONCLUSION ICP can be calculated for human tissue models, potentially guiding the design of application-specific RF coil arrays.
Collapse
Affiliation(s)
- Ilias I. Giannakopoulos
- The Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, United States
| | | | - Daniel K. Sodickson
- The Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, United States
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, United States
| | - Riccardo Lattanzi
- The Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, United States
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, United States
| |
Collapse
|
8
|
Choi CH, Webb A, Orzada S, Kelenjeridze M, Shah NJ, Felder J. A Review of Parallel Transmit Arrays for Ultra-High Field MR Imaging. IEEE Rev Biomed Eng 2024; 17:351-368. [PMID: 37022919 DOI: 10.1109/rbme.2023.3244132] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Parallel transmission (pTX) techniques are required to tackle a number of challenges, e.g., the inhomogeneous distribution of the transmit field and elevated specific absorption rate (SAR), in ultra-high field (UHF) MR imaging. Additionally, they offer multiple degrees of freedom to create temporally- and spatially-tailored transverse magnetization. Given the increasing availability of MRI systems at 7 T and above, it is anticipated that interest in pTX applications will grow accordingly. One of the key components in MR systems capable of pTX is the design of the transmit array, as this has a major impact on performance in terms of power requirements, SAR and RF pulse design. While several reviews on pTX pulse design and the clinical applicability of UHF exist, there is currently no systematic review of pTX transmit/transceiver coils and their associated performance. In this article, we analyze transmit array concepts to determine the strengths and weaknesses of different types of design. We systematically review the different types of individual antennas employed for UHF, their combination into pTX arrays, and methods to decouple the individual elements. We also reiterate figures-of-merit (FoMs) frequently employed to describe the performance of pTX arrays and summarize published array designs in terms of these FoMs.
Collapse
|
9
|
Alkandari D, Bosshard JC, Huang CH, Wright SM. Multiple slot modules for high field magnetic resonance imaging array coils. Magn Reson Med 2023; 89:2485-2498. [PMID: 36763854 DOI: 10.1002/mrm.29610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 02/12/2023]
Abstract
PURPOSE Mitigating coupling effects between coil elements represents a continuing challenge. Here, we present a 16-bowtie slot volume coil arranged in eight independent dual-slot modules without the use of any decoupling circuits. METHODS Two electrically short "bowtie" slot antennas were used to form a "module." A bowtie configuration was chosen because electromagnetic modeling results show that bowtie slots exhibit improved B 1 + P in $$ \frac{B_1^{+}}{\sqrt{P_{in}}} $$ efficiency when compared to thin rectangular slots. An eight-module volume coil was evaluated through electromagnetic modeling, bench tests, and MRI experiments at 4.7 T. RESULTS Bench tests indicate that worst-case coupling between modules did not exceed -14.5 dB. MR images demonstrate well-localized patterns about single excited modules confirming the low coupling between modules. Homogeneous MR images were acquired from a synthesized quadrature birdcage transmit mode. MRI experiments show that the RF power requirements for the proposed coil are 9.2 times more than a birdcage coil. Whereas from simulations performed to assess the proposed coil losses, the total power dissipated in the phantom was 1.1 times more for the birdcage. Simulation results at 7 T reveal an equivalent B1 + homogeneity when compared with an eight-dipole coil. CONCLUSION Although exhibiting higher RF power requirements, as a transmit coil when the power availability is not a restriction, the inherently low coupling between electrically short slots should enable the use of many slot elements around the imaging volume. The slot module described in this paper should be useful in the design of multi-channel transmit coils.
Collapse
Affiliation(s)
- Dheyaa Alkandari
- Department of Electrical Engineering, Kuwait University, Kuwait City, Kuwait
| | - John C Bosshard
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA
| | - Chung-Huan Huang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA
| | - Steven M Wright
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA.,Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
10
|
Orzada S, Akash S, Fiedler TM, Kratzer FJ, Ladd ME. An investigation into the dependence of virtual observation point‐based specific absorption rate calculation complexity on number of channels. Magn Reson Med 2022; 89:469-476. [DOI: 10.1002/mrm.29434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/13/2022] [Accepted: 08/10/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Stephan Orzada
- Medical Physics in Radiology German Cancer Research Center (DKFZ) Heidelberg Germany
- Erwin L. Hahn Institute for MRI University Duisburg‐Essen Essen Germany
- Radiation Oncology University Hospital Heidelberg Heidelberg Germany
| | - Safi Akash
- Medical Physics in Radiology German Cancer Research Center (DKFZ) Heidelberg Germany
| | - Thomas M. Fiedler
- Medical Physics in Radiology German Cancer Research Center (DKFZ) Heidelberg Germany
| | - Fabian J. Kratzer
- Medical Physics in Radiology German Cancer Research Center (DKFZ) Heidelberg Germany
| | - Mark E. Ladd
- Medical Physics in Radiology German Cancer Research Center (DKFZ) Heidelberg Germany
- Erwin L. Hahn Institute for MRI University Duisburg‐Essen Essen Germany
- Faculty of Physics and Astronomy Heidelberg University Heidelberg Germany
- Faculty of Medicine Heidelberg University Heidelberg Germany
| |
Collapse
|
11
|
Stelter JK, Ladd ME, Fiedler TM. Numerical comparison of local transceiver arrays of fractionated dipoles and microstrip antennas for body imaging at 7 T. NMR IN BIOMEDICINE 2022; 35:e4722. [PMID: 35226966 DOI: 10.1002/nbm.4722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/28/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Longitudinally orientated dipoles and microstrip antennas have both demonstrated superior results as RF transmit elements for body imaging at 7 T MRI, and are as of today the most commonly used transmit elements. In this study, the performances of the two antenna concepts were compared for use in local RF antenna arrays by numerical simulations. Antenna elements investigated are the fractionated dipole and the microstrip line with meander structures. Phantom simulations with a single antenna element were performed and evaluated with regard to specific absorption rate (SAR) efficiency in the center of the subject. Simulations of array configurations with 8 and 16 elements were performed with anatomical body models. Both antenna elements were combined with a loop coil to compare hybrid configurations. Singular value decomposition of the B1+ fields, RF shimming, and calculation of the voxel-wise power and SAR efficiencies were performed in regions of interest with varying sizes to evaluate the transmit performance. The signal-to-noise ratio (SNR) was evaluated to estimate the receive performance. Simulated data show similar transmit profiles for the two antenna types in the center of the phantom (penetration depth > 20 mm). For body imaging, no considerable differences were determined for the different antenna configurations with regard to the transmit performance. Results show the advantage of 16 transmit channels compared with today's commonly used 8-channel systems (minimum RF shimming excitation error of 4.7% (4.3%) versus 2.7% (2.8%) for the 8-channel and 16-channel configurations with the microstrip antennas in a (5 cm)3 cube in the center of a male (female) body model). Highest SNR is achieved for the 16-channel configuration with fractionated dipoles. The combination of either fractionated dipoles or microstrip antennas with loop coils is more favorable with regard to the transmit performance compared with only increasing the number of elements.
Collapse
Affiliation(s)
- Jonathan K Stelter
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mark E Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, Germany
- Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Thomas M Fiedler
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
12
|
Fiedler TM, Orzada S, Flöser M, Rietsch SHG, Schmidt S, Stelter JK, Wittrich M, Quick HH, Bitz AK, Ladd ME. Performance and safety assessment of an integrated transmit array for body imaging at 7 T under consideration of specific absorption rate, tissue temperature, and thermal dose. NMR IN BIOMEDICINE 2022; 35:e4656. [PMID: 34962689 DOI: 10.1002/nbm.4656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 10/18/2021] [Accepted: 11/05/2021] [Indexed: 05/12/2023]
Abstract
In this study, the performance of an integrated body-imaging array for 7 T with 32 radiofrequency (RF) channels under consideration of local specific absorption rate (SAR), tissue temperature, and thermal dose limits was evaluated and the imaging performance was compared with a clinical 3 T body coil. Thirty-two transmit elements were placed in three rings between the bore liner and RF shield of the gradient coil. Slice-selective RF pulse optimizations for B1 shimming and spokes were performed for differently oriented slices in the body under consideration of realistic constraints for power and local SAR. To improve the B1+ homogeneity, safety assessments based on temperature and thermal dose were performed to possibly allow for higher input power for the pulse optimization than permissible with SAR limits. The results showed that using two spokes, the 7 T array outperformed the 3 T birdcage in all the considered regions of interest. However, a significantly higher SAR or lower duty cycle at 7 T is necessary in some cases to achieve similar B1+ homogeneity as at 3 T. The homogeneity in up to 50 cm-long coronal slices can particularly benefit from the high RF shim performance provided by the 32 RF channels. The thermal dose approach increases the allowable input power and the corresponding local SAR, in one example up to 100 W/kg, without limiting the exposure time necessary for an MR examination. In conclusion, the integrated antenna array at 7 T enables a clinical workflow for body imaging and comparable imaging performance to a conventional 3 T clinical body coil.
Collapse
Affiliation(s)
- Thomas M Fiedler
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephan Orzada
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martina Flöser
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan H G Rietsch
- Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Simon Schmidt
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Jonathan K Stelter
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marco Wittrich
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Harald H Quick
- Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Andreas K Bitz
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Electromagnetic Theory and Applied Mathematics, Faculty of Electrical Engineering and Information Technology, FH Aachen - University of Applied Sciences, Aachen, Germany
| | - Mark E Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, Germany
- Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
- Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
13
|
Sadeghi-Tarakameh A, Jungst S, Lanagan M, DelaBarre L, Wu X, Adriany G, Metzger GJ, Van de Moortele PF, Ugurbil K, Atalar E, Eryaman Y. A nine-channel transmit/receive array for spine imaging at 10.5 T: Introduction to a nonuniform dielectric substrate antenna. Magn Reson Med 2021; 87:2074-2088. [PMID: 34825735 DOI: 10.1002/mrm.29096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE The purpose of this study is to introduce a new antenna element with improved transmit performance, named the nonuniform dielectric substrate (NODES) antenna, for building transmit arrays at ultrahigh-field. METHODS We optimized a dipole antenna at 10.5 Tesla by maximizing the B 1 + -SAR efficiency in a phantom for a human spine target. The optimization parameters included permittivity variation in the substrate, substrate thickness, antenna length, and conductor geometry. We conducted electromagnetic simulations as well as phantom experiments to compare the transmit/receive performance of the proposed NODES antenna design with existing coil elements from the literature. RESULTS Single NODES element showed up to 18% and 30% higher B 1 + -SAR efficiency than the fractionated dipole and loop elements, respectively. The new element is substantially shorter than a commonly used dipole, which enables z-stacked array formation; it is additionally capable of providing a relatively uniform current distribution along its conductors. The nine-channel transmit/receive NODES array achieved 7.5% higher B 1 + homogeneity than a loop array with the same number of elements. Excitation with the NODES array resulted in 33% lower peak 10g-averaged SAR and required 34% lower input power than the loop array for the target anatomy of the spine. CONCLUSION In this study, we introduced a new RF coil element: the NODES antenna. NODES antenna outperformed the widely used loop and dipole elements and may provide improved transmit/receive performance for future ultrahigh field MRI applications.
Collapse
Affiliation(s)
- Alireza Sadeghi-Tarakameh
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA.,Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey.,National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Steve Jungst
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Mike Lanagan
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Lance DelaBarre
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Xiaoping Wu
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Gregor Adriany
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Gregory J Metzger
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Kamil Ugurbil
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Ergin Atalar
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey.,National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Yigitcan Eryaman
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
14
|
Yetisir F, Abaci Turk E, Guerin B, Gagoski BA, Grant PE, Adalsteinsson E, Wald LL. Safety and imaging performance of two-channel RF shimming for fetal MRI at 3T. Magn Reson Med 2021; 86:2810-2821. [PMID: 34240759 DOI: 10.1002/mrm.28895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 11/07/2022]
Abstract
PURPOSE This study investigates whether two-channel radiofrequency (RF) shimming can improve imaging without increasing specific absorption rate (SAR) for fetal MRI at 3T. METHODS Transmit field ( B 1 + ) average and variation in the fetus was simulated in seven numerical pregnant body models. Safety was quantified by maternal and fetal peak local SAR and fetal average SAR. The shim parameter space was divided into improved B 1 + (magnitude and homogeneity) and improved SAR regions, and an overlap where RF shimming improved both classes of metrics compared with birdcage mode was assessed. Additionally, the effect of fetal position, tissue detail, and dielectric properties on transmit field and SAR was studied. RESULTS A region of subject-specific RF shim parameter space improving both B 1 + and SAR metrics was found for five of the seven models. Optimizing only B 1 + metrics improved B 1 + efficiency across models by 15% on average and 28% for the best-case model. B 1 + variation improved by 26% on average and 49% for the best case. However, for these shim settings, fetal SAR increased by up to 106%. The overlap region, where both B 1 + and SAR metrics improve, showed an average B 1 + efficiency improvement of 6% on average across models and 19% for the best-case model. B 1 + variation improved by 13% on average and 40% for the best case. RFS could also decrease maternal/fetal SAR by up to 49%/58%. CONCLUSION RF shimming can improve imaging compared with birdcage mode without increasing fetal and maternal SAR when a patient-specific SAR model is incorporated into the shimming procedure.
Collapse
Affiliation(s)
- Filiz Yetisir
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Esra Abaci Turk
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Bastien Guerin
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Borjan A Gagoski
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - P Ellen Grant
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Elfar Adalsteinsson
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
15
|
Fiedler TM, Orzada S, Flöser M, Rietsch SHG, Quick HH, Ladd ME, Bitz AK. Performance analysis of integrated RF microstrip transmit antenna arrays with high channel count for body imaging at 7 T. NMR IN BIOMEDICINE 2021; 34:e4515. [PMID: 33942938 DOI: 10.1002/nbm.4515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 02/18/2021] [Accepted: 03/09/2021] [Indexed: 05/12/2023]
Abstract
The aim of the current study was to investigate the performance of integrated RF transmit arrays with high channel count consisting of meander microstrip antennas for body imaging at 7 T and to optimize the position and number of transmit elements. RF simulations using multiring antenna arrays placed behind the bore liner were performed for realistic exposure conditions for body imaging. Simulations were performed for arrays with as few as eight elements and for arrays with high channel counts of up to 48 elements. The B1+ field was evaluated regarding the degrees of freedom for RF shimming in the abdomen. Worst-case specific absorption rate (SARwc ), SAR overestimation in the matrix compression, the number of virtual observation points (VOPs) and SAR efficiency were evaluated. Constrained RF shimming was performed in differently oriented regions of interest in the body, and the deviation from a target B1+ field was evaluated. Results show that integrated multiring arrays are able to generate homogeneous B1+ field distributions for large FOVs, especially for coronal/sagittal slices, and thus enable body imaging at 7 T with a clinical workflow; however, a low duty cycle or a high SAR is required to achieve homogeneous B1+ distributions and to exploit the full potential. In conclusion, integrated arrays allow for high element counts that have high degrees of freedom for the pulse optimization but also produce high SARwc , which reduces the SAR accuracy in the VOP compression for low-SAR protocols, leading to a potential reduction in array performance. Smaller SAR overestimations can increase SAR accuracy, but lead to a high number of VOPs, which increases the computational cost for VOP evaluation and makes online SAR monitoring or pulse optimization challenging. Arrays with interleaved rings showed the best results in the study.
Collapse
Affiliation(s)
- Thomas M Fiedler
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephan Orzada
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Martina Flöser
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan H G Rietsch
- Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Harald H Quick
- Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Mark E Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, Germany
- Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
- Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Andreas K Bitz
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Electromagnetic Theory and Applied Mathematics, Faculty of Electrical Engineering and Information Technology, FH Aachen - University of Applied Sciences, Aachen, Germany
| |
Collapse
|
16
|
Tavaf N, Lagore RL, Jungst S, Gunamony S, Radder J, Grant A, Moeller S, Auerbach E, Ugurbil K, Adriany G, Van de Moortele PF. A self-decoupled 32-channel receive array for human-brain MRI at 10.5 T. Magn Reson Med 2021; 86:1759-1772. [PMID: 33780032 DOI: 10.1002/mrm.28788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/02/2021] [Accepted: 03/07/2021] [Indexed: 11/10/2022]
Abstract
PURPOSE Receive array layout, noise mitigation, and B0 field strength are crucial contributors to SNR and parallel-imaging performance. Here, we investigate SNR and parallel-imaging gains at 10.5 T compared with 7 T using 32-channel receive arrays at both fields. METHODS A self-decoupled 32-channel receive array for human brain imaging at 10.5 T (10.5T-32Rx), consisting of 31 loops and one cloverleaf element, was co-designed and built in tandem with a 16-channel dual-row loop transmitter. Novel receive array design and self-decoupling techniques were implemented. Parallel imaging performance, in terms of SNR and noise amplification (g-factor), of the 10.5T-32Rx was compared with the performance of an industry-standard 32-channel receiver at 7 T (7T-32Rx) through experimental phantom measurements. RESULTS Compared with the 7T-32Rx, the 10.5T-32Rx provided 1.46 times the central SNR and 2.08 times the peripheral SNR. Minimum inverse g-factor value of the 10.5T-32Rx (min[1/g] = 0.56) was 51% higher than that of the 7T-32Rx (min[1/g] = 0.37) with R = 4 × 4 2D acceleration, resulting in significantly enhanced parallel-imaging performance at 10.5 T compared with 7 T. The g-factor values of 10.5 T-32 Rx were on par with those of a 64-channel receiver at 7 T (eg, 1.8 vs 1.9, respectively, with R = 4 × 4 axial acceleration). CONCLUSION Experimental measurements demonstrated effective self-decoupling of the receive array as well as substantial gains in SNR and parallel-imaging performance at 10.5 T compared with 7 T.
Collapse
Affiliation(s)
- Nader Tavaf
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Russell L Lagore
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Steve Jungst
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Shajan Gunamony
- Center for Cognitive Neuroimaging, University of Glasgow, Glasgow, Scotland
| | - Jerahmie Radder
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Andrea Grant
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Steen Moeller
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Edward Auerbach
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kamil Ugurbil
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gregor Adriany
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | | |
Collapse
|
17
|
Li X, Pan JW, Avdievich NI, Hetherington HP, Rispoli JV. Electromagnetic simulation of a 16-channel head transceiver at 7 T using circuit-spatial optimization. Magn Reson Med 2021; 85:3463-3478. [PMID: 33533500 DOI: 10.1002/mrm.28672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 11/07/2022]
Abstract
PURPOSE With increased interest in parallel transmission in ultrahigh-field MRI, methods are needed to correctly calculate the S-parameters and complex field maps of the parallel transmission coil. We present S-parameters paired with spatial field optimization to fully simulate a double-row 16-element transceiver array for brain MRI at 7 T. METHODS We implemented a closed-form equation of the coil S-parameters and overall spatial B 1 + field. We minimized a cost function, consisting of coil S-parameters and the B 1 + homogeneity in brain tissue, by optimizing transceiver components, including matching, decoupling circuits, and lumped capacitors. With this, we are able to compare the in silico results determined with and without B 1 + homogeneity weighting. Using the known voltage range from the host console, we reconstructed the B 1 + maps of the array and performed RF shimming with four realistic head models. RESULTS As performed with B 1 + homogeneity weighting, the optimized coil circuit components were highly consistent over the four heads, producing well-tuned, matched, and decoupled coils. The mean peak forward powers and B 1 + statistics for the head models are consistent with in vivo human results (N = 8). There are systematic differences in the transceiver components as optimized with or without B 1 + homogeneity weighting, resulting in an improvement of 28.4 ± 7.5% in B 1 + homogeneity with a small 1.9 ± 1.5% decline in power efficiency. CONCLUSION This co-simulation methodology accurately simulates the transceiver, predicting consistent S-parameters, component values, and B 1 + field. The RF shimming of the calculated field maps match the in vivo performance.
Collapse
Affiliation(s)
- Xin Li
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Jullie W Pan
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nikolai I Avdievich
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Hoby P Hetherington
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joseph V Rispoli
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
18
|
Kazemivalipour E, Sadeghi-Tarakameh A, Atalar E. Eigenmode analysis of the scattering matrix for the design of MRI transmit array coils. Magn Reson Med 2020; 85:1727-1741. [PMID: 33034125 DOI: 10.1002/mrm.28533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 02/02/2023]
Abstract
PURPOSE To obtain efficient operation modes of transmit array (TxArray) coils using a general design technique based on the eigenmode analysis of the scattering matrix. METHODS We introduce the concept of modal reflected power and excitation eigenmodes, which are calculated as the eigenvalues and eigenvectors of SH S, where the superscript H denotes the Hermitian transpose. We formulate the normalized reflected power, which is the ratio of the total reflected power to the total incident power of TxArray coils for a given excitation signal as the weighted sum of the modal reflected power. By minimizing the modal reflected power of TxArray coils, we increase the excitation space with a low total reflection. The algorithm was tested on 4 dual-row TxArray coils with 8 to 32 channels. RESULTS By minimizing the modal reflected power, we designed an 8-element TxArray coil to have a low reflection for 7 out of 8 dimensions of the excitation space. Similarly, the minimization of the modal reflected power of a 16-element TxArray coil enabled us to enlarge the dimension of the excitation space by 50% compared with commonly employed design techniques. Moreover, we demonstrated that the low total reflected power for some critical excitation modes, such as the circularly polarized mode, can be achieved for all TxArray coils even with a high level of coupling. CONCLUSION Eigenmode analysis is an efficient method that intuitively provides a quantitative and compact representation of the coil's power transmission capabilities. This method also provides insight into the excitation modes with low reflection.
Collapse
Affiliation(s)
- Ehsan Kazemivalipour
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey.,National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Alireza Sadeghi-Tarakameh
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey.,National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Ergin Atalar
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey.,National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| |
Collapse
|
19
|
Gudino N, de Zwart JA, Duyn JH. Eight-channel parallel transmit-receive system for 7 T MRI with optically controlled and monitored on-coil current-mode RF amplifiers. Magn Reson Med 2020; 84:3494-3501. [PMID: 32662913 DOI: 10.1002/mrm.28392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/12/2020] [Accepted: 06/02/2020] [Indexed: 12/27/2022]
Abstract
PURPOSE To demonstrate a practical implementation of an eight-channel parallel-transmit system for brain imaging at 7 T based on on-coil amplifier technology. METHODS An eight-channel parallel transmit-receive system was built with optimized on-coil switch-mode current RF power amplifiers. The amplifiers were optically controlled from an eight-channel interface that was connected to a 7 T MRI scanner. The interface also optically received a down-converted version of the coil current sensed in each amplifier for monitoring and feedback adjustments. RESULTS Each on-coil amplifier delivered more than 100 W peak power and provided enough amplifier decoupling (<-15 dB) for the implemented eight-channel array configuration. Phantom and human images were acquired to demonstrate practical operation of this new technology in a 7 T MRI scanner. CONCLUSION Further development and improvement of previously demonstrated on-coil technology led to successful implementation of an eight-channel parallel-transmit system able to deliver strong B1 fields for typical brain imaging applications. This is an important step forward toward implementation of on-coil RF amplification for high-field MRI.
Collapse
Affiliation(s)
- Natalia Gudino
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Jacco A de Zwart
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeff H Duyn
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
20
|
Abadi E, Segars WP, Tsui BMW, Kinahan PE, Bottenus N, Frangi AF, Maidment A, Lo J, Samei E. Virtual clinical trials in medical imaging: a review. J Med Imaging (Bellingham) 2020; 7:042805. [PMID: 32313817 PMCID: PMC7148435 DOI: 10.1117/1.jmi.7.4.042805] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/23/2020] [Indexed: 12/13/2022] Open
Abstract
The accelerating complexity and variety of medical imaging devices and methods have outpaced the ability to evaluate and optimize their design and clinical use. This is a significant and increasing challenge for both scientific investigations and clinical applications. Evaluations would ideally be done using clinical imaging trials. These experiments, however, are often not practical due to ethical limitations, expense, time requirements, or lack of ground truth. Virtual clinical trials (VCTs) (also known as in silico imaging trials or virtual imaging trials) offer an alternative means to efficiently evaluate medical imaging technologies virtually. They do so by simulating the patients, imaging systems, and interpreters. The field of VCTs has been constantly advanced over the past decades in multiple areas. We summarize the major developments and current status of the field of VCTs in medical imaging. We review the core components of a VCT: computational phantoms, simulators of different imaging modalities, and interpretation models. We also highlight some of the applications of VCTs across various imaging modalities.
Collapse
Affiliation(s)
- Ehsan Abadi
- Duke University, Department of Radiology, Durham, North Carolina, United States
| | - William P. Segars
- Duke University, Department of Radiology, Durham, North Carolina, United States
| | - Benjamin M. W. Tsui
- Johns Hopkins University, Department of Radiology, Baltimore, Maryland, United States
| | - Paul E. Kinahan
- University of Washington, Department of Radiology, Seattle, Washington, United States
| | - Nick Bottenus
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
- University of Colorado Boulder, Department of Mechanical Engineering, Boulder, Colorado, United States
| | - Alejandro F. Frangi
- University of Leeds, School of Computing, Leeds, United Kingdom
- University of Leeds, School of Medicine, Leeds, United Kingdom
| | - Andrew Maidment
- University of Pennsylvania, Department of Radiology, Philadelphia, Pennsylvania, United States
| | - Joseph Lo
- Duke University, Department of Radiology, Durham, North Carolina, United States
| | - Ehsan Samei
- Duke University, Department of Radiology, Durham, North Carolina, United States
| |
Collapse
|
21
|
Accelerating the co-simulation method for the design of transmit array coils for MRI. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2020; 34:165-178. [DOI: 10.1007/s10334-020-00858-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 05/18/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023]
|
22
|
Zheng J, Lan Q, Kainz W, Long SA, Chen J. Genetic algorithm search for the worst-case MRI RF exposure for a multiconfiguration implantable fixation system modeled using artificial neural networks. Magn Reson Med 2020; 84:2754-2764. [PMID: 32459032 DOI: 10.1002/mrm.28319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/20/2020] [Accepted: 04/21/2020] [Indexed: 11/09/2022]
Abstract
PURPOSE This paper presents a method to search for the worst-case configuration leading to the highest RF exposure for a multiconfiguration implantable fixation system under MRI. METHODS A two-step method combining an artificial neural network and a genetic algorithm is developed to achieve this purpose. In the first step, the level of RF exposure in terms of peak 1-g and/or 10-g averaged specific absorption rate (SAR1g/10g ), related to the multiconfiguration system, is predicted using an artificial neural network. A genetic algorithm is then used to search for the worst-case configuration of this multidimensional nonlinear problem within both the enumerated discrete sample space and generalized continuous sample space. As an example, a generic plate system with a total of 576 configurations is used for both 1.5T and 3T MRI systems. RESULTS The presented method can effectively identify the worst-case configuration and accurately predict the SAR1g/10g with no more than 20% of the samples in the studied discrete sample space, and can even predict the worst case in the generalized continuous sample space. The worst-case prediction error in the generalized continuous sample space is less than 1.6% for SAR1g and less than 1.3% for SAR10g compared with the simulation results. CONCLUSION The combination of an artificial neural network with genetic algorithm is a robust technique to determine the worst-case RF exposure level for a multiconfiguration system, and only needs a small amount of training data from the entire system.
Collapse
Affiliation(s)
- Jianfeng Zheng
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA
| | - Qianlong Lan
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA
| | - Wolfgang Kainz
- Center for Devices and Radiological Health, Food and Drug Administration, Rockville, Maryland, USA
| | - Stuart A Long
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA
| | - Ji Chen
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA
| |
Collapse
|
23
|
Maunder A, Rao M, Robb F, Wild JM. An 8-element Tx/Rx array utilizing MEMS detuning combined with 6 Rx loops for 19 F and 1 H lung imaging at 1.5T. Magn Reson Med 2020; 84:2262-2277. [PMID: 32281139 DOI: 10.1002/mrm.28260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE To firstly improve the attainable image SNR of 19 F and 1 H C3 F8 lung imaging at 1.5 tesla using an 8-element transmit/receive (Tx/Rx) flexible vest array combined with a 6-element Rx-only array, and to secondly evaluate microelectromechanical systems for switching the array elements between the 2 resonant frequencies. METHODS The Tx efficiency and homogeneity of the 8-element array were measured and simulated for 1 H imaging in a cylindrical phantom and then evaluated for in vivo 19 F/1 H imaging. The added improvement provided by the 6-element Rx-only array was quantified through simulation and measurement and compared to the ultimate SNR. It was verified through the measurement of isolation that microelectromechanical systems switches provided broadband isolation of Tx/Rx circuitry such that the 19 F tuned Tx/Rx array could be effectively used for both 19 F and 1 H nuclei. RESULTS For 1 H imaging, the measured Tx efficiency/homogeneity (mean ± percent SD; 6.79 μ T / kW ± 26 % ) was comparable to that simulated ( 7.57 μ T / kW ± 20 % ). The 6 additional Rx-only loops increased the mean Rx sensitivity when compared to the 8-element array by a factor of 1.41× and 1.45× in simulation and measurement, respectively. In regions central to the thorax, the simulated SNR of the 14-element array achieves ≥70% of the ultimate SNR when including noise from the matching circuits and preamplifiers. A measured microelectromechanical systems switching speed of 12 µs and added minimum 22 dB of isolation between Tx and Rx were sufficient for Tx/Rx switching in this application. CONCLUSION The described single-tuned array driven at 19 F and 1 H, utilizing microelectromechanical systems technology, provides excellent results for 19 F and 1 H dual-nuclear lung ventilation imaging.
Collapse
Affiliation(s)
- Adam Maunder
- POLARIS, Imaging Group, Department of IICD, University of Sheffield, Sheffield, United Kingdom
| | - Madhwesha Rao
- POLARIS, Imaging Group, Department of IICD, University of Sheffield, Sheffield, United Kingdom
| | - Fraser Robb
- POLARIS, Imaging Group, Department of IICD, University of Sheffield, Sheffield, United Kingdom.,GE Healthcare, Aurora, OH, USA
| | - Jim M Wild
- POLARIS, Imaging Group, Department of IICD, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
24
|
Guerin B, Angelone LM, Dougherty D, Wald LL. Parallel transmission to reduce absorbed power around deep brain stimulation devices in MRI: Impact of number and arrangement of transmit channels. Magn Reson Med 2020; 83:299-311. [PMID: 31389069 PMCID: PMC6778698 DOI: 10.1002/mrm.27905] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/04/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE To assess the mean and variance performance of parallel transmission (pTx) coils for reduction of the absorbed power around electrodes (APAE) in patients implanted with deep brain stimulation (DBS) devices. METHODS We simulated 4 pTx coils (8 and 16 channels, head and body coils) and a birdcage body coil. We characterized the RF safety risk using the APAE, which is the integral of the deposited power (in Watts) in a small cylindrical volume of brain tissue surrounding the electrode tips. We assessed the APAE mean and variance by simulation of 5 realistic DBS patient models that include the full DBS implant length, extracranial loops, and implanted pulse generator. RESULTS PTx coils with 8 (16) channels were able to reduce the APAE by >18× (>169×) compared to the birdcage coil in average for all patient models, at no cost in term of flip angle uniformity or global specific absorption rate (SAR). Moreover, local pTx coils performed significantly better than body arrays. CONCLUSION PTx is a possible solution to the problem of RF heating of DBS patients when performing MRI, but the large interpatient variability of the APAE indicates that patient-specific safety monitoring may be needed.
Collapse
Affiliation(s)
- Bastien Guerin
- Radiology, Massachusetts General Hospital, Charlestown, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Leonardo M. Angelone
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, United States
| | - Darin Dougherty
- Harvard Medical School, Boston, MA, United States
- Psychiatry, Massachusetts General Hospital, Charlestown, MA, United States
| | - Lawrence L. Wald
- Radiology, Massachusetts General Hospital, Charlestown, MA, United States
- Harvard Medical School, Boston, MA, United States
| |
Collapse
|
25
|
Sica CT, Rupprecht S, Hou RJ, Lanagan MT, Gandji NP, Lanagan MT, Yang QX. Toward whole-cortex enhancement with an ultrahigh dielectric constant helmet at 3T. Magn Reson Med 2019; 83:1123-1134. [PMID: 31502708 DOI: 10.1002/mrm.27962] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/15/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE To present a 3T brain imaging study using a conformal prototype helmet constructed with an ultra-high dielectric constant (uHDC; εr ~ 1000) materials that can be inserted into standard receive head-coils. METHODS A helmet conformal to a standard human head constructed with uHDC materials was characterized through electromagnetic simulations and experimental work. The signal-to-noise ratio (SNR), transmit efficiency, and power deposition with the uHDC helmet inserted within a 20-channel head coil were measured in vivo and compared with a 64-channel head coil and the 20-channel coil without the helmet. Seven healthy volunteers were analyzed. RESULTS Simulation and in vivo experimental results showed that transmit efficiency was improved by nearly 3 times within localized regions for a quadrature excitation, with a measured global increase of 58.21 ± 6.54% over 7 volunteers. The use of a parallel transmit spokes pulse compensated for severe degradation of B 1 + homogeneity, at the expense of higher global and local specific absorption rate levels. A SNR histogram analysis with statistical testing demonstrated that the uHDC helmet enhanced a 20-channel head coil to the level of the 64-channel head coil, with the improvements mainly within the cortical brain regions. CONCLUSION A prototype uHDC helmet enhanced the SNR of a standard head coil to the level of a high density 64-channel coil, although transmit homogeneity was compromised. Further improvements in SNR may be achievable with optimization of this technology, and could be a low-cost approach for future radiofrequency engineering work in the brain at 3T.
Collapse
Affiliation(s)
- Christopher T Sica
- Department of Radiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | | | - Ryan J Hou
- Department of Radiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | | | - Navid P Gandji
- Department of Radiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Michael T Lanagan
- Department of Engineering Science and Mechanics, University Park, Pennsylvania.,Department of Neurosurgery, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Qing X Yang
- Department of Radiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania.,HyQ Research Solutions, LLC, State College, Pennsylvania.,Department of Neurosurgery, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
26
|
Uğurbil K, Auerbach E, Moeller S, Grant A, Wu X, Van de Moortele PF, Olman C, DelaBarre L, Schillak S, Radder J, Lagore R, Adriany G. Brain imaging with improved acceleration and SNR at 7 Tesla obtained with 64-channel receive array. Magn Reson Med 2019; 82:495-509. [PMID: 30803023 DOI: 10.1002/mrm.27695] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/28/2018] [Accepted: 01/25/2019] [Indexed: 12/27/2022]
Abstract
PURPOSE Despite the clear synergy between high channel counts in a receive array and magnetic fields ≥ 7 Tesla, to date such systems have been restricted to a maximum of 32 channels. Here, we examine SNR gains at 7 Tesla in unaccelerated and accelerated images with a 64-receive channel (64Rx) RF coil. METHODS A 64Rx coil was built using circular loops tiled in 2 separable sections of a close-fitting form; custom designed preamplifier boards were integrated into each coil element. A 16-channel transmitter arranged in 2 rows along the z-axis was employed. The performance of the 64Rx array was experimentally compared to that of an industry-standard 32-channel receive (32Rx) array for SNR in unaccelerated images and for noise amplification under parallel imaging. RESULTS SNR gains were observed in the periphery but not in the center of the brain in unaccelerated imaging compared to the 32Rx coil. With either 1D or 2D undersampling of k-space, or with slice acceleration together with 1D undersampling of k-space, significant reductions in g-factor noise were observed throughout the brain, yielding effective gains in SNR in the entire brain compared to the 32Rx coil. Task-based FMRI data with 12-fold 2D (slice and phase-encode) acceleration yielded excellent quality functional maps with the 64Rx coil but was significantly beyond the capabilities of the 32Rx coil. CONCLUSION The results confirm the expectations from modeling studies and demonstrate that whole-brain studies with up to 16-fold, 2D acceleration would be feasible with the 64Rx coil.
Collapse
Affiliation(s)
- Kamil Uğurbil
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota
| | - Edward Auerbach
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota
| | - Steen Moeller
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota
| | - Andrea Grant
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota
| | - Xiaoping Wu
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota
| | | | - Cheryl Olman
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota
| | - Lance DelaBarre
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota
| | | | - Jerahmie Radder
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota
| | - Russell Lagore
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota
| | - Gregor Adriany
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
27
|
Guerin B, Iacono MI, Davids M, Dougherty D, Angelone LM, Wald LL. The 'virtual DBS population': five realistic computational models of deep brain stimulation patients for electromagnetic MR safety studies. Phys Med Biol 2019; 64:035021. [PMID: 30625451 PMCID: PMC6530797 DOI: 10.1088/1361-6560/aafce8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We design, develop, and disseminate a 'virtual population' of five realistic computational models of deep brain stimulation (DBS) patients for electromagnetic (EM) analysis. We found five DBS patients in our institution' research patient database who received high quality post-DBS surgery computer tomography (CT) examinations of the head and neck. Three patients have a single implanted pulse generator (IPG) and the two others have two IPGs (one for each lead). Moreover, one patient has two abandoned leads on each side of the head. For each patient, we combined the head and neck volumes into a 'virtual CT', from which we extracted the full-length DBS path including the IPG, extension cables, and leads. We corrected topology errors in this path, such as self-intersections, using a previously published optimization procedure. We segmented the virtual CT volume into bones, internal air, and soft tissue classes and created two-manifold, watertight surface meshes of these distributions. In addition, we added a segmented model of the brain (grey matter, white matter, eyes and cerebrospinal fluid) to one of the model (nickname Freddie) that was derived from a T1-weighted MR image obtained prior to the DBS implantation. We simulated the EM fields and specific absorption rate (SAR) induced at 3 Tesla by a quadrature birdcage body coil in each of the five patient models using a co-simulation strategy. We found that inter-subject peak SAR variability across models was independent of the target averaging mass and equal to ~45%. In our simulations of the full brain segmentation and six simplified versions of the Freddie model, the error associated with incorrect dielectric property assignment around the DBS electrodes was greater than the error associated with modeling the whole model as a single tissue class. Our DBS patient models are freely available on our lab website (Webpage of the Martinos Center Phantom Resource 2018 https://phantoms.martinos.org/Main_Page).
Collapse
Affiliation(s)
- Bastien Guerin
- Radiology, Massachusetts General Hospital, Charlestown, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Maria Ida Iacono
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, United States of America
| | - Mathias Davids
- Radiology, Massachusetts General Hospital, Charlestown, MA, United States of America
- Computer Assisted Clinical Medicine, Heidelberg University, Heidelberg, Germany
| | - Darin Dougherty
- Harvard Medical School, Boston, MA, United States of America
- Psychiatry, Massachusetts General Hospital, Charlestown, MA, United States of America
| | - Leonardo M Angelone
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, United States of America
| | - Lawrence L Wald
- Radiology, Massachusetts General Hospital, Charlestown, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
28
|
Klein V, Davids M, Wald LL, Schad LR, Guérin B. Sensitivity analysis of neurodynamic and electromagnetic simulation parameters for robust prediction of peripheral nerve stimulation. Phys Med Biol 2018; 64:015005. [PMID: 30523884 DOI: 10.1088/1361-6560/aaf308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Peripheral nerve stimulation (PNS) has become an important limitation for fast MR imaging using the latest gradient hardware. We have recently developed a simulation framework to predict PNS thresholds and stimulation locations in the body for arbitrary coil geometries to inform the gradient coil optimization process. Our approach couples electromagnetic field simulations in realistic body models to a neurodynamic model of peripheral nerve fibers. In this work, we systematically analyze the impact of key parameters on the predicted PNS thresholds to assess the robustness of the simulation results. We analyze the sensitivity of the simulated thresholds to variations of the most important simulation parameters, including parameters of the electromagnetic field simulations (dielectric tissue properties, body model size, position, spatial resolution, and coil model discretization) and parameters of the neurodynamic simulation (length of the simulated nerves, position of the nerve model relative to the extracellular potential, temporal resolution of the nerve membrane dynamics). We found that for the investigated setup, the subject-dependent parameters (e.g. tissue properties or body size) can affect PNS prediction by up to ~26% when varied in a natural range. This is in accordance with the standard deviation of ~30% reported in human subject studies. Parameters related to numerical aspects can cause significant simulation errors (>30%), if not chosen cautiously. However, these perturbations can be controlled to yield errors below 5% for all investigated parameters without an excessive increase in computation time. Our sensitivity analysis shows that patient-specific parameter fluctuations yield PNS threshold variations similar to the variations observed in experimental PNS studies. This may become useful to estimate population-average PNS thresholds and understand their standard deviation. Our analysis indicates that the simulated PNS thresholds are numerically robust, which is important for ranking different MRI gradient coil designs or assessing different PNS mitigation strategies.
Collapse
Affiliation(s)
- Valerie Klein
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany. Author to whom any correspondence should be addressed
| | | | | | | | | |
Collapse
|
29
|
Wu X, Auerbach EJ, Vu AT, Moeller S, Van de Moortele PF, Yacoub E, Uğurbil K. Human Connectome Project-style resting-state functional MRI at 7 Tesla using radiofrequency parallel transmission. Neuroimage 2018; 184:396-408. [PMID: 30237033 DOI: 10.1016/j.neuroimage.2018.09.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/13/2018] [Accepted: 09/15/2018] [Indexed: 01/16/2023] Open
Abstract
We investigate the utility of radiofrequency (RF) parallel transmission (pTx) for whole-brain resting-state functional MRI (rfMRI) acquisition at 7 Tesla (7T). To this end, Human Connectome Project (HCP)-style data acquisitions were chosen as a showcase example. Five healthy subjects were scanned in pTx and single-channel transmit (1Tx) modes. The pTx data were acquired using a prototype 16-channel transmit system and a commercially available Nova 8-channel transmit 32-channel receive RF head coil. Additionally, pTx single-spoke multiband (MB) pulses were designed to image sagittal slices. HCP-style 7T rfMRI data (1.6-mm isotropic resolution, 5-fold slice and 2-fold in-plane acceleration, 3600 image volumes and ∼ 1-h scan) were acquired with pTx and the results were compared to those acquired with the original 7T HCP rfMRI protocol. The use of pTx significantly improved flip-angle uniformity across the brain, with coefficient of variation (i.e., std/mean) of whole-brain flip-angle distribution reduced on average by ∼39%. This in turn yielded ∼17% increase in group temporal SNR (tSNR) as averaged across the entire brain and ∼10% increase in group functional contrast-to-noise ratio (fCNR) as averaged across the grayordinate space (including cortical surfaces and subcortical voxels). Furthermore, when placing a seed in either the posterior parietal lobe or putamen to estimate seed-based dense connectome, the increase in fCNR was observed to translate into stronger correlation of the seed with the rest of the grayordinate space. We have demonstrated the utility of pTx for slice-accelerated high-resolution whole-brain rfMRI at 7T; as compared to current state-of-the-art, the use of pTx improves flip-angle uniformity, increases tSNR, enhances fCNR and strengthens functional connectivity estimation.
Collapse
Affiliation(s)
- Xiaoping Wu
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, MN, United States.
| | - Edward J Auerbach
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - An T Vu
- Center for Imaging of Neurodegenerative Diseases, VA Healthcare System, San Francisco, CA, United States
| | - Steen Moeller
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, MN, United States
| | | | - Essa Yacoub
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - Kâmil Uğurbil
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
30
|
Yan X, Gore JC, Grissom WA. Self-decoupled radiofrequency coils for magnetic resonance imaging. Nat Commun 2018; 9:3481. [PMID: 30154408 PMCID: PMC6113296 DOI: 10.1038/s41467-018-05585-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 07/06/2018] [Indexed: 11/08/2022] Open
Abstract
Arrays of radiofrequency coils are widely used in magnetic resonance imaging to achieve high signal-to-noise ratios and flexible volume coverage, to accelerate scans using parallel reception, and to mitigate field non-uniformity using parallel transmission. However, conventional coil arrays require complex decoupling technologies to reduce electromagnetic coupling between coil elements, which would otherwise amplify noise and limit transmitted power. Here we report a novel self-decoupled RF coil design with a simple structure that requires only an intentional redistribution of electrical impedances around the length of the coil loop. We show that self-decoupled coils achieve high inter-coil isolation between adjacent and non-adjacent elements of loop arrays and mixed arrays of loops and dipoles. Self-decoupled coils are also robust to coil separation, making them attractive for size-adjustable and flexible coil arrays.
Collapse
Affiliation(s)
- Xinqiang Yan
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, USA.
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, 37232, USA.
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA
| | - William A Grissom
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Electrical Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
31
|
Garwood M, Uğurbil K. RF pulse methods for use with surface coils: Frequency-modulated pulses and parallel transmission. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 291:84-93. [PMID: 29705035 PMCID: PMC5943143 DOI: 10.1016/j.jmr.2018.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/24/2018] [Indexed: 06/08/2023]
Abstract
The first use of a surface coil to obtain a 31P NMR spectrum from an intact rat by Ackerman and colleagues initiated a revolution in magnetic resonance imaging (MRI) and spectroscopy (MRS). Today, we take it for granted that one can detect signals in regions external to an RF coil; at the time, however, this concept was most unusual. In the approximately four decade long period since its introduction, this simple idea gave birth to an increasing number of innovations that has led to transformative changes in the way we collect data in an in vivo magnetic resonance experiment, particularly with MRI of humans. These innovations include spatial localization and/or encoding based on the non-uniform B1 field generated by the surface coil, leading to new spectroscopic localization methods, image acceleration, and unique RF pulses that deal with B1 inhomogeneities and even reduce power deposition. Without the surface coil, many of the major technological advances that define the extraordinary success of MRI in clinical diagnosis and in biomedical research, as exemplified by projects like the Human Connectome Project, would not have been possible.
Collapse
Affiliation(s)
- Michael Garwood
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN 55455 USA.
| | - Kamil Uğurbil
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
32
|
Guerin B, Serano P, Iacono MI, Herrington TM, Widge AS, Dougherty DD, Bonmassar G, Angelone LM, Wald LL. Realistic modeling of deep brain stimulation implants for electromagnetic MRI safety studies. Phys Med Biol 2018; 63:095015. [PMID: 29637905 PMCID: PMC5935557 DOI: 10.1088/1361-6560/aabd50] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We propose a framework for electromagnetic (EM) simulation of deep brain stimulation (DBS) patients in radiofrequency (RF) coils. We generated a model of a DBS patient using post-operative head and neck computed tomography (CT) images stitched together into a 'virtual CT' image covering the entire length of the implant. The body was modeled as homogeneous. The implant path extracted from the CT data contained self-intersections, which we corrected automatically using an optimization procedure. Using the CT-derived DBS path, we built a model of the implant including electrodes, helicoidal internal conductor wires, loops, extension cables, and the implanted pulse generator. We also built four simplified models with straight wires, no extension cables and no loops to assess the impact of these simplifications on safety predictions. We simulated EM fields induced by the RF birdcage body coil in the body model, including at the DBS lead tip at both 1.5 Tesla (64 MHz) and 3 Tesla (123 MHz). We also assessed the robustness of our simulation results by systematically varying the EM properties of the body model and the position and length of the DBS implant (sensitivity analysis). The topology correction algorithm corrected all self-intersection and curvature violations of the initial path while introducing minimal deformations (open-source code available at http://ptx.martinos.org/index.php/Main_Page). The unaveraged lead-tip peak SAR predicted by the five DBS models (0.1 mm resolution grid) ranged from 12.8 kW kg-1 (full model, helicoidal conductors) to 43.6 kW kg-1 (no loops, straight conductors) at 1.5 T (3.4-fold variation) and 18.6 kW kg-1 (full model, straight conductors) to 73.8 kW kg-1 (no loops, straight conductors) at 3 T (4.0-fold variation). At 1.5 T and 3 T, the variability of lead-tip peak SAR with respect to the conductivity ranged between 18% and 30%. Variability with respect to the position and length of the DBS implant ranged between 9.5% and 27.6%.
Collapse
Affiliation(s)
- Bastien Guerin
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown MA
- Harvard Medical School, Boston MA
| | - Peter Serano
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring MD
| | - Maria Ida Iacono
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring MD
| | - Todd M. Herrington
- Harvard Medical School, Boston MA
- Department of Neurology, Massachusetts General Hospital, Boston MA
| | - Alik S. Widge
- Harvard Medical School, Boston MA
- Department of Psychiatry, Massachusetts General Hospital, Boston MA
| | - Darin D. Dougherty
- Harvard Medical School, Boston MA
- Department of Psychiatry, Massachusetts General Hospital, Boston MA
| | - Giorgio Bonmassar
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown MA
- Harvard Medical School, Boston MA
| | - Leonardo M. Angelone
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring MD
| | - Lawrence L. Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown MA
- Harvard Medical School, Boston MA
- Harvard-MIT Health Science and Technology, Cambridge MA
| |
Collapse
|
33
|
Wu X, Auerbach EJ, Vu AT, Moeller S, Lenglet C, Schmitter S, Van de Moortele PF, Yacoub E, Uğurbil K. High-resolution whole-brain diffusion MRI at 7T using radiofrequency parallel transmission. Magn Reson Med 2018; 80:1857-1870. [PMID: 29603381 DOI: 10.1002/mrm.27189] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 02/20/2018] [Accepted: 03/02/2018] [Indexed: 12/21/2022]
Abstract
PURPOSE Investigating the utility of RF parallel transmission (pTx) for Human Connectome Project (HCP)-style whole-brain diffusion MRI (dMRI) data at 7 Tesla (7T). METHODS Healthy subjects were scanned in pTx and single-transmit (1Tx) modes. Multiband (MB), single-spoke pTx pulses were designed to image sagittal slices. HCP-style dMRI data (i.e., 1.05-mm resolutions, MB2, b-values = 1000/2000 s/mm2 , 286 images and 40-min scan) and data with higher accelerations (MB3 and MB4) were acquired with pTx. RESULTS pTx significantly improved flip-angle detected signal uniformity across the brain, yielding ∼19% increase in temporal SNR (tSNR) averaged over the brain relative to 1Tx. This allowed significantly enhanced estimation of multiple fiber orientations (with ∼21% decrease in dispersion) in HCP-style 7T dMRI datasets. Additionally, pTx pulses achieved substantially lower power deposition, permitting higher accelerations, enabling collection of the same data in 2/3 and 1/2 the scan time or of more data in the same scan time. CONCLUSION pTx provides a solution to two major limitations for slice-accelerated high-resolution whole-brain dMRI at 7T; it improves flip-angle uniformity, and enables higher slice acceleration relative to current state-of-the-art. As such, pTx provides significant advantages for rapid acquisition of high-quality, high-resolution truly whole-brain dMRI data.
Collapse
Affiliation(s)
- Xiaoping Wu
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Edward J Auerbach
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - An T Vu
- Center for Imaging of Neurodegenerative Diseases, VA Healthcare System, San Francisco, California
| | - Steen Moeller
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Christophe Lenglet
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Sebastian Schmitter
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota.,Physikalisch-Technische Bundesanstalt, Berlin, Germany
| | | | - Essa Yacoub
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Kâmil Uğurbil
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
34
|
Uğurbil K. Imaging at ultrahigh magnetic fields: History, challenges, and solutions. Neuroimage 2018; 168:7-32. [PMID: 28698108 PMCID: PMC5758441 DOI: 10.1016/j.neuroimage.2017.07.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 01/06/2023] Open
Abstract
Following early efforts in applying nuclear magnetic resonance (NMR) spectroscopy to study biological processes in intact systems, and particularly since the introduction of 4 T human scanners circa 1990, rapid progress was made in imaging and spectroscopy studies of humans at 4 T and animal models at 9.4 T, leading to the introduction of 7 T and higher magnetic fields for human investigation at about the turn of the century. Work conducted on these platforms has provided numerous technological solutions to challenges posed at these ultrahigh fields, and demonstrated the existence of significant advantages in signal-to-noise ratio and biological information content. Primary difference from lower fields is the deviation from the near field regime at the radiofrequencies (RF) corresponding to hydrogen resonance conditions. At such ultrahigh fields, the RF is characterized by attenuated traveling waves in the human body, which leads to image non-uniformities for a given sample-coil configuration because of destructive and constructive interferences. These non-uniformities were initially considered detrimental to progress of imaging at high field strengths. However, they are advantageous for parallel imaging in signal reception and transmission, two critical technologies that account, to a large extend, for the success of ultrahigh fields. With these technologies and improvements in instrumentation and imaging methods, today ultrahigh fields have provided unprecedented gains in imaging of brain function and anatomy, and started to make inroads into investigation of the human torso and extremities. As extensive as they are, these gains still constitute a prelude to what is to come given the increasingly larger effort committed to ultrahigh field research and development of ever better instrumentation and techniques.
Collapse
Affiliation(s)
- Kamil Uğurbil
- Center for Magnetic Resonance Research (CMRR), University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
35
|
Haemer GG, Vaidya M, Collins CM, Sodickson DK, Wiggins GC, Lattanzi R. Approaching ultimate intrinsic specific absorption rate in radiofrequency shimming using high-permittivity materials at 7 Tesla. Magn Reson Med 2017; 80:391-399. [PMID: 29193307 DOI: 10.1002/mrm.27022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/18/2017] [Accepted: 10/31/2017] [Indexed: 11/07/2022]
Abstract
PURPOSE The aim of this study was to evaluate the effect of integrated high-permittivity materials (HPMs) on excitation homogeneity and global specific absorption rate (SAR) for transmit arrays at 7T. METHODS A rapid electrodynamic simulation framework was used to calculate L-curves associated with excitation of a uniform 2D profile in a dielectric sphere. We used ultimate intrinsic SAR as an absolute performance reference to compare different transmit arrays in the presence and absence of a layer of HPM. We investigated the optimal permittivity for the HPM as a function of its thickness, the sample size, and the number of array elements. RESULTS Adding a layer of HPM can improve the performance of a 24-element array to match that of a 48-element array without HPM, whereas a 48-element array with HPM can perform as well as a 64-element array without HPM. Optimal relative permittivity values changed based on sample and coil geometry, but were always within a range obtainable with readily available materials (εr = 100-200). CONCLUSION Integration of HPMs could be a practical method to improve RF shimming performance, alternative to increasing the number of coils. The proposed simulation framework could be used to explore the design of novel transmit arrays for head imaging at ultra-high field strength. Magn Reson Med 80:391-399, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Gillian G Haemer
- Center for Advanced Imaging Innovation and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,NYU WIRELESS, New York University Tandon School of Engineering, Brooklyn, New York, USA.,The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA
| | - Manushka Vaidya
- Center for Advanced Imaging Innovation and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,NYU WIRELESS, New York University Tandon School of Engineering, Brooklyn, New York, USA.,The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA
| | - Christopher M Collins
- Center for Advanced Imaging Innovation and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,NYU WIRELESS, New York University Tandon School of Engineering, Brooklyn, New York, USA.,The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA
| | - Daniel K Sodickson
- Center for Advanced Imaging Innovation and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,NYU WIRELESS, New York University Tandon School of Engineering, Brooklyn, New York, USA.,The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA
| | - Graham C Wiggins
- Center for Advanced Imaging Innovation and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Riccardo Lattanzi
- Center for Advanced Imaging Innovation and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,NYU WIRELESS, New York University Tandon School of Engineering, Brooklyn, New York, USA.,The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
36
|
Beqiri A, Price AN, Padormo F, Hajnal JV, Malik SJ. Extended RF shimming: Sequence-level parallel transmission optimization applied to steady-state free precession MRI of the heart. NMR IN BIOMEDICINE 2017; 30:e3701. [PMID: 28195684 PMCID: PMC5484304 DOI: 10.1002/nbm.3701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 12/23/2016] [Accepted: 12/30/2016] [Indexed: 05/12/2023]
Abstract
Cardiac magnetic resonance imaging (MRI) at high field presents challenges because of the high specific absorption rate and significant transmit field (B1+ ) inhomogeneities. Parallel transmission MRI offers the ability to correct for both issues at the level of individual radiofrequency (RF) pulses, but must operate within strict hardware and safety constraints. The constraints are themselves affected by sequence parameters, such as the RF pulse duration and TR, meaning that an overall optimal operating point exists for a given sequence. This work seeks to obtain optimal performance by performing a 'sequence-level' optimization in which pulse sequence parameters are included as part of an RF shimming calculation. The method is applied to balanced steady-state free precession cardiac MRI with the objective of minimizing TR, hence reducing the imaging duration. Results are demonstrated using an eight-channel parallel transmit system operating at 3 T, with an in vivo study carried out on seven male subjects of varying body mass index (BMI). Compared with single-channel operation, a mean-squared-error shimming approach leads to reduced imaging durations of 32 ± 3% with simultaneous improvement in flip angle homogeneity of 32 ± 8% within the myocardium.
Collapse
Affiliation(s)
- Arian Beqiri
- Division of Imaging Sciences and Biomedical EngineeringKing's College LondonLondonUK
| | - Anthony N. Price
- Division of Imaging Sciences and Biomedical EngineeringKing's College LondonLondonUK
- Centre for the Developing BrainKing's College LondonLondonUK
| | - Francesco Padormo
- Division of Imaging Sciences and Biomedical EngineeringKing's College LondonLondonUK
| | - Joseph V. Hajnal
- Division of Imaging Sciences and Biomedical EngineeringKing's College LondonLondonUK
- Centre for the Developing BrainKing's College LondonLondonUK
| | - Shaihan J. Malik
- Division of Imaging Sciences and Biomedical EngineeringKing's College LondonLondonUK
| |
Collapse
|
37
|
Seo Y, Wang ZJ. MRI scanner-independent specific absorption rate measurements using diffusion coefficients. J Appl Clin Med Phys 2017; 18:224-229. [PMID: 28470956 PMCID: PMC5875836 DOI: 10.1002/acm2.12095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/27/2017] [Accepted: 03/29/2017] [Indexed: 01/01/2023] Open
Abstract
Objective The purpose of this study was to measure specific absorption rate (SAR) during MRI scanning using a human torso phantom through quantification of diffusion coefficients independently of those reported by the scanner software for five 1.5 and 3 T clinical MRI systems from different vendors. Methods A quadrature body coil transmitted the RF power and a body array coil received the signals. With diffusion tensor imaging, SAR values for three MRI sequences were measured on the five scanners and compared to the nominal values calculated by the scanners. Results For the GE 1.5 T MRI system, the MRI scanner‐reported SAR value was 1.58 W kg‐1 and the measured SAR value was 1.38 W kg‐1. For the Philips 1.5 T MRI scanner, the MRI system‐reported SAR value was 1.48 W kg‐1 and the measured value was 1.39 W kg‐1. For the Siemens 3 T MRI system, the reported SAR value was 2.5 W kg‐1 and the measured SAR value was 1.96 W kg‐1. For two Philips 3 T MRI scanners, the reported SAR values were 1.5 W kg‐1 and the measured values were 1.94 and 1.96 W kg‐1. The percentage differences between the measured and reported SAR values on the GE 1.5 T, Philips 1.5 T, Siemens 3 T, and Philips 3 T were 13.5, 6.3, 24.2, 25.6, and 26.6% respectively. Conclusion The scanner‐independent SAR measurements using diffusion coefficients described in this study can play a significant role in estimating accurate SAR values as a standardized method.
Collapse
Affiliation(s)
- Youngseob Seo
- Medical Metrology Center, Korea Research Institute of Standards and Science, Yuseong-Gu, Daejeon, 34113, Republic of Korea.,Department of Radiology, University of Texas Southwestern Medical Center and Children's Medical Center Dallas, Dallas, TX, 75390, USA
| | - Zhiyue J Wang
- Department of Radiology, University of Texas Southwestern Medical Center and Children's Medical Center Dallas, Dallas, TX, 75390, USA
| |
Collapse
|
38
|
Rietsch SHG, Orzada S, Bitz AK, Gratz M, Ladd ME, Quick HH. Parallel transmit capability of various RF transmit elements and arrays at 7T MRI. Magn Reson Med 2017; 79:1116-1126. [PMID: 28394080 DOI: 10.1002/mrm.26704] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 02/13/2017] [Accepted: 03/16/2017] [Indexed: 12/28/2022]
Abstract
PURPOSE In this work, 22 configurations for remote radiofrequency (RF) coil arrays consisting of different transmit element designs for 7 Tesla (T) ultrahigh-field MRI are compared by numerical simulations. METHODS Investigated transmit RF element types are rectangular loops, micro striplines, micro striplines with meanders, 250-mm shielded dipoles with meanders, and lambda over two dipoles with and without shield. These elements are combined in four different configurations of circumferential RF body arrays with four or eight transmit elements each. Comparisons included coupling behavior, degrees of freedom offered by the individual transmit patterns, and metrics like power and specific absorption rate efficiency. RESULTS Coupling between neighboring RF elements is elevated (up to -7 dB) for all arrays with eight elements, whereas it is below -25 dB for arrays with only four elements. The cumulative sum of singular values points out highest degrees of freedom for the central transversal, reduced values in the central coronal, and minimum values in the sagittal slice. Concerning power and SAR efficiency, eight lambda over two dipoles are most advantageous. CONCLUSIONS Among the investigated remote arrays and parameters, a combination of eight dipoles appears to be most favorable for potential use in 7T body MRI. Magn Reson Med 79:1116-1126, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Stefan H G Rietsch
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany.,High Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Stephan Orzada
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany
| | - Andreas K Bitz
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Electromagnetic Theory and Applied Mathematics, Faculty of Electrical Engineering and Information Technology, University of Applied Sciences Aachen, Aachen, Germany
| | - Marcel Gratz
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany.,High Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Mark E Ladd
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany.,Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Harald H Quick
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany.,High Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| |
Collapse
|
39
|
Yan X, Gore JC, Grissom WA. New resonator geometries for ICE decoupling of loop arrays. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 277:59-67. [PMID: 28236786 PMCID: PMC5389865 DOI: 10.1016/j.jmr.2017.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 06/06/2023]
Abstract
RF arrays with a large number of independent coil elements are advantageous for parallel transmission (pTx) and reception at high fields. One of the main challenges in designing RF arrays is to minimize the electromagnetic (EM) coupling between the coil elements. The induced current elimination (ICE) method, which uses additional resonator elements to cancel coils' mutual EM coupling, has proven to be a simple and efficient solution for decoupling microstrip, L/C loop, monopole and dipole arrays. However, in previous embodiments of conventional ICE decoupling, the decoupling elements acted as "magnetic-walls" with low transmit fields and consequently low MR signal near them. To solve this problem, new resonator geometries including overlapped and perpendicular decoupling loops are proposed. The new geometries were analyzed theoretically and validated in EM simulations, bench tests and MR experiments. The isolation between two closely-placed loops could be improved from about -5dB to <-45dB by using the new geometries.
Collapse
Affiliation(s)
- Xinqiang Yan
- Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA.
| | - John C Gore
- Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - William A Grissom
- Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
40
|
Chen X, Steckner M. Electromagnetic computation and modeling in MRI. Med Phys 2017; 44:1186-1203. [PMID: 28079264 DOI: 10.1002/mp.12103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 09/26/2016] [Accepted: 01/07/2017] [Indexed: 12/13/2022] Open
Abstract
Electromagnetic (EM) computational modeling is used extensively during the development of a Magnetic Resonance Imaging (MRI) scanner, its installation, and use. MRI, which relies on interactions between nuclear magnetic moments and the applied magnetic fields, uses a range of EM tools to optimize all of the magnetic fields required to produce the image. The main field magnet is designed to exacting specifications but challenges in manufacturing, installation, and use require additional tools to maintain target operational performance. The gradient magnetic fields, which provide the primary signal localization mechanism, are designed under another set of complex design trade-offs which include conflicting imaging performance specifications and patient physiology. Gradients are largely impervious to external influences, but are also used to enhance main field operational performance. The radiofrequency (RF) magnetic fields, which are used to elicit the signals fundamental to the MR image, are a challenge to optimize for a host of reasons that include patient safety, image quality, cost optimization, and secondary signal localization capabilities. This review outlines these issues and the EM modeling used to optimize MRI system performance.
Collapse
Affiliation(s)
- Xin Chen
- Toshiba Medical Research Institute USA, Inc. 777 Beta Drive, Mayfield Village, OH, 44143, USA
| | - Michael Steckner
- Toshiba Medical Research Institute USA, Inc. 777 Beta Drive, Mayfield Village, OH, 44143, USA
| |
Collapse
|
41
|
Avdievich NI, Hoffmann J, Shajan G, Pfrommer A, Giapitzakis IA, Scheffler K, Henning A. Evaluation of transmit efficiency and SAR for a tight fit transceiver human head phased array at 9.4 T. NMR IN BIOMEDICINE 2017; 30:e3680. [PMID: 28028862 DOI: 10.1002/nbm.3680] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/18/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
Ultra-high field (UHF, ≥7 T) tight fit transceiver phased arrays improve transmit (Tx) efficiency (B1+ /√P) in comparison with Tx-only arrays, which are usually larger to fit receive (Rx)-only arrays inside. One of the major problems limiting applications of tight fit arrays at UHFs is the anticipated increase of local tissue heating, which is commonly evaluated by the local specific absorption rate (SAR). To investigate the tradeoff between Tx efficiency and SAR when a tight fit UHF human head transceiver phased array is used instead of a Tx-only/Rx-only RF system, a single-row eight-element prototype of a 400 MHz transceiver head phased array was constructed. The Tx efficiency and SAR of the array were evaluated and compared with that of a larger Tx-only array, which could also be used in combination with an 18-channel Rx-only array. Data were acquired on the Siemens Magnetom whole body 9.4 T human MRI system. Depending on the head size, positioning and the RF shim strategy, the smaller array provides from 11 to 23% higher Tx efficiency. In general, the Tx performance, evaluated as B1+ /√SAR, i.e. the safety excitation efficiency (SEE), is also not compromised. The two arrays provide very similar SEEs evaluated over 1000 random RF shim sets. We demonstrated that, in general, the tight fit transceiver array improves Tx performance without compromising SEE. However, in specific cases, the SEE value may vary, favoring one of the arrays, and therefore must be carefully evaluated.
Collapse
Affiliation(s)
- N I Avdievich
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - J Hoffmann
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - G Shajan
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - A Pfrommer
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - I A Giapitzakis
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - K Scheffler
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - A Henning
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
42
|
Weinberger O, Winter L, Dieringer MA, Els A, Oezerdem C, Rieger J, Kuehne A, Cassara AM, Pfeiffer H, Wetterling F, Niendorf T. Local Multi-Channel RF Surface Coil versus Body RF Coil Transmission for Cardiac Magnetic Resonance at 3 Tesla: Which Configuration Is Winning the Game? PLoS One 2016; 11:e0161863. [PMID: 27598923 PMCID: PMC5012568 DOI: 10.1371/journal.pone.0161863] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/20/2016] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION The purpose of this study was to demonstrate the feasibility and efficiency of cardiac MR at 3 Tesla using local four-channel RF coil transmission and benchmark it against large volume body RF coil excitation. METHODS Electromagnetic field simulations are conducted to detail RF power deposition, transmission field uniformity and efficiency for local and body RF coil transmission. For both excitation regimes transmission field maps are acquired in a human torso phantom. For each transmission regime flip angle distributions and blood-myocardium contrast are examined in a volunteer study of 12 subjects. The feasibility of the local transceiver RF coil array for cardiac chamber quantification at 3 Tesla is demonstrated. RESULTS Our simulations and experiments demonstrate that cardiac MR at 3 Tesla using four-channel surface RF coil transmission is competitive versus current clinical CMR practice of large volume body RF coil transmission. The efficiency advantage of the 4TX/4RX setup facilitates shorter repetition times governed by local SAR limits versus body RF coil transmission at whole-body SAR limit. No statistically significant difference was found for cardiac chamber quantification derived with body RF coil versus four-channel surface RF coil transmission. Our simulation also show that the body RF coil exceeds local SAR limits by a factor of ~2 when driven at maximum applicable input power to reach the whole-body SAR limit. CONCLUSION Pursuing local surface RF coil arrays for transmission in cardiac MR is a conceptually appealing alternative to body RF coil transmission, especially for patients with implants.
Collapse
Affiliation(s)
- Oliver Weinberger
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Lukas Winter
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Matthias A. Dieringer
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Antje Els
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Celal Oezerdem
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | | | | | - Antonino M. Cassara
- Medical Metrology Department, Physikalisch Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Harald Pfeiffer
- Medical Metrology Department, Physikalisch Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | | | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrueck Center for Molecular Medicine, Berlin, Germany
- MRI.TOOLS GmbH, Berlin, Germany
| |
Collapse
|
43
|
Padormo F, Beqiri A, Hajnal JV, Malik SJ. Parallel transmission for ultrahigh-field imaging. NMR IN BIOMEDICINE 2016; 29:1145-61. [PMID: 25989904 PMCID: PMC4995736 DOI: 10.1002/nbm.3313] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 03/27/2015] [Accepted: 03/29/2015] [Indexed: 05/24/2023]
Abstract
The development of MRI systems operating at or above 7 T has provided researchers with a new window into the human body, yielding improved imaging speed, resolution and signal-to-noise ratio. In order to fully realise the potential of ultrahigh-field MRI, a range of technical hurdles must be overcome. The non-uniformity of the transmit field is one of such issues, as it leads to non-uniform images with spatially varying contrast. Parallel transmission (i.e. the use of multiple independent transmission channels) provides previously unavailable degrees of freedom that allow full spatial and temporal control of the radiofrequency (RF) fields. This review discusses the many ways in which these degrees of freedom can be used, ranging from making more uniform transmit fields to the design of subject-tailored RF pulses for both uniform excitation and spatial selection, and also the control of the specific absorption rate. © 2015 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Francesco Padormo
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - Arian Beqiri
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - Joseph V Hajnal
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - Shaihan J Malik
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| |
Collapse
|
44
|
Guérin B, Stockmann JP, Baboli M, Torrado-Carvajal A, Stenger AV, Wald LL. Robust time-shifted spoke pulse design in the presence of large B0 variations with simultaneous reduction of through-plane dephasing, B1+ effects, and the specific absorption rate using parallel transmission. Magn Reson Med 2016; 76:540-54. [PMID: 26444717 PMCID: PMC4824674 DOI: 10.1002/mrm.25902] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 11/09/2022]
Abstract
PURPOSE To design parallel transmission spokes pulses with time-shifted profiles for joint mitigation of intensity variations due to B1+ effects, signal loss due to through-plane dephasing, and the specific absorption rate (SAR) at 7T. METHODS We derived a slice-averaged small tip angle (SA-STA) approximation of the magnetization signal at echo time that depends on the B1+ transmit profiles, the through-slice B0 gradient and the amplitude and time-shifts of the spoke waveforms. We minimize a magnitude least-squares objective based on this signal equation using a fast interior-point approach with analytical expressions of the Jacobian and Hessian. RESULTS Our algorithm runs in less than three minutes for the design of two-spoke pulses subject to hundreds of local SAR constraints. On a B0/B1+ head phantom, joint optimization of the channel-dependent time-shifts and spoke amplitudes allowed signal recovery in high-B0 regions at no increase of SAR. Although the method creates uniform magnetization profiles (ie, uniform intensity), the flip angle varies across the image, which makes it ill-suited to T1-weighted applications. CONCLUSIONS The SA-STA approach presented in this study is best suited to T2*-weighted applications with long echo times that require signal recovery around high B0 regions. Magn Reson Med 76:540-554, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bastien Guérin
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Jason P Stockmann
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Physics Department, Harvard University, Cambridge, Massachusetts, USA
| | - Mehran Baboli
- John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Angel Torrado-Carvajal
- Medical Image Analysis and Biometry Laboratory, University Rey Juan Carlos, Mostoles Spain
- Madrid-MIT M+ Vision Consortium, Madrid, Spain
| | - Andrew V Stenger
- John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Lawrence L Wald
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard-MIT Division of Health Sciences Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
45
|
Wu X, Tian J, Schmitter S, Vaughan JT, Uğurbil K, Van de Moortele PF. Distributing coil elements in three dimensions enhances parallel transmission multiband RF performance: A simulation study in the human brain at 7 Tesla. Magn Reson Med 2016; 75:2464-72. [PMID: 26997332 PMCID: PMC6014621 DOI: 10.1002/mrm.26194] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/18/2016] [Accepted: 02/10/2016] [Indexed: 12/26/2022]
Abstract
PURPOSE We explore the advantages of using a double-ring radiofrequency (RF) array and slice orientation to design parallel transmission (pTx) multiband (MB) pulses for simultaneous multislice (SMS) imaging with whole-brain coverage at 7 Tesla (T). METHODS A double-ring head array with 16 elements split evenly in two rings stacked in the z-direction was modeled and compared with two single-ring arrays consisting of 8 or 16 elements. The array performance was evaluated by designing band-specific pTx MB pulses with local specific absorption rate (SAR) control. The impact of slice orientations was also investigated. RESULTS The double-ring array consistently and significantly outperformed the other two single-ring arrays, with peak local SAR reduced by up to 40% at a fixed excitation error of 0.024. For all three arrays, exciting sagittal or coronal slices yielded better RF performance than exciting axial or oblique slices. CONCLUSIONS A double-ring RF array can be used to drastically improve SAR versus excitation fidelity tradeoff for pTx MB pulse design for brain imaging at 7 T; therefore, it is preferable against single-ring RF array designs when pursuing various biomedical applications of pTx SMS imaging. In comparing the stripline arrays, coronal and sagittal slices are more advantageous than axial and oblique slices for pTx MB pulses. Magn Reson Med 75:2464-2472, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiaoping Wu
- University of Minnesota Medical School, Center for Magnetic Resonance Research, Minneapolis, MN
| | - Jinfeng Tian
- University of Minnesota Medical School, Center for Magnetic Resonance Research, Minneapolis, MN
| | - Sebastian Schmitter
- University of Minnesota Medical School, Center for Magnetic Resonance Research, Minneapolis, MN
| | - J Tommy Vaughan
- University of Minnesota Medical School, Center for Magnetic Resonance Research, Minneapolis, MN
| | - Kâmil Uğurbil
- University of Minnesota Medical School, Center for Magnetic Resonance Research, Minneapolis, MN
| | | |
Collapse
|
46
|
Martin A, Schiavi E, Eryaman Y, Herraiz JL, Gagoski B, Adalsteinsson E, Wald LL, Guerin B. Parallel transmission pulse design with explicit control for the specific absorption rate in the presence of radiofrequency errors. Magn Reson Med 2016; 75:2493-504. [PMID: 26147916 PMCID: PMC4760911 DOI: 10.1002/mrm.25820] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 05/28/2015] [Accepted: 05/30/2015] [Indexed: 02/05/2023]
Abstract
PURPOSE A new framework for the design of parallel transmit (pTx) pulses is presented introducing constraints for local and global specific absorption rate (SAR) in the presence of errors in the radiofrequency (RF) transmit chain. METHODS The first step is the design of a pTx RF pulse with explicit constraints for global and local SAR. Then, the worst possible SAR associated with that pulse due to RF transmission errors ("worst-case SAR") is calculated. Finally, this information is used to re-calculate the pulse with lower SAR constraints, iterating this procedure until its worst-case SAR is within safety limits. RESULTS Analysis of an actual pTx RF transmit chain revealed amplitude errors as high as 8% (20%) and phase errors above 3° (15°) for spokes (spiral) pulses. Simulations show that using the proposed framework, pulses can be designed with controlled "worst-case SAR" in the presence of errors of this magnitude at minor cost of the excitation profile quality. CONCLUSION Our worst-case SAR-constrained pTx design strategy yields pulses with local and global SAR within the safety limits even in the presence of RF transmission errors. This strategy is a natural way to incorporate SAR safety factors in the design of pTx pulses. Magn Reson Med 75:2493-2504, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Adrian Martin
- Applied Mathematics, Universidad Rey Juan Carlos, Mostoles, Madrid, Spain
- Electrical Engineering and Computer Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Correspondence to: Adrian Martin Fernandez, M.Sc., Calle Tulipan S/N. Departamental II. Despacho 021, Universidad Rey Juan Carlos, Mostoles, Madrid. 28933 Spain.
| | - Emanuele Schiavi
- Applied Mathematics, Universidad Rey Juan Carlos, Mostoles, Madrid, Spain
| | - Yigitcan Eryaman
- A.A. Martinos Center for Biomedical Imaging, Radiology Department, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Madrid-MIT M+Vision Consortium in RLE, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Joaquin L. Herraiz
- Madrid-MIT M+Vision Consortium in RLE, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Borjan Gagoski
- Fetal Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Elfar Adalsteinsson
- Electrical Engineering and Computer Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Lawrence L. Wald
- A.A. Martinos Center for Biomedical Imaging, Radiology Department, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Bastien Guerin
- A.A. Martinos Center for Biomedical Imaging, Radiology Department, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| |
Collapse
|
47
|
Budinger TF, Bird MD, Frydman L, Long JR, Mareci TH, Rooney WD, Rosen B, Schenck JF, Schepkin VD, Sherry AD, Sodickson DK, Springer CS, Thulborn KR, Uğurbil K, Wald LL. Toward 20 T magnetic resonance for human brain studies: opportunities for discovery and neuroscience rationale. MAGMA (NEW YORK, N.Y.) 2016; 29:617-39. [PMID: 27194154 PMCID: PMC5538368 DOI: 10.1007/s10334-016-0561-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 12/16/2022]
Abstract
An initiative to design and build magnetic resonance imaging (MRI) and spectroscopy (MRS) instruments at 14 T and beyond to 20 T has been underway since 2012. This initiative has been supported by 22 interested participants from the USA and Europe, of which 15 are authors of this review. Advances in high temperature superconductor materials, advances in cryocooling engineering, prospects for non-persistent mode stable magnets, and experiences gained from large-bore, high-field magnet engineering for the nuclear fusion endeavors support the feasibility of a human brain MRI and MRS system with 1 ppm homogeneity over at least a 16-cm diameter volume and a bore size of 68 cm. Twelve neuroscience opportunities are presented as well as an analysis of the biophysical and physiological effects to be investigated before exposing human subjects to the high fields of 14 T and beyond.
Collapse
Affiliation(s)
- Thomas F Budinger
- Lawrence Berkeley National Laboratory, University of California, Berkeley, CA, USA.
| | - Mark D Bird
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | - Lucio Frydman
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
- Weizmann Institute, Rehovot, Israel
| | - Joanna R Long
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Thomas H Mareci
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | | | - Bruce Rosen
- Massachusetts General Hospital, Harvard Medical School, Harvard, MA, USA
| | - John F Schenck
- General Electric Corporate Research, Schenectady, NY, USA
| | - Victor D Schepkin
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | - A Dean Sherry
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | | | | | - Lawrence L Wald
- Massachusetts General Hospital, Harvard Medical School, Harvard, MA, USA
| |
Collapse
|
48
|
Murbach M, Neufeld E, Samaras T, Córcoles J, Robb FJ, Kainz W, Kuster N. Pregnant women models analyzed for RF exposure and temperature increase in 3T RF shimmed birdcages. Magn Reson Med 2016; 77:2048-2056. [PMID: 27174499 DOI: 10.1002/mrm.26268] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 04/15/2016] [Accepted: 04/15/2016] [Indexed: 12/31/2022]
Abstract
PURPOSE MRI is increasingly used to scan pregnant patients. We investigated the effect of 3 Tesla (T) two-port radiofrequency (RF) shimming in anatomical pregnant women models. THEORY AND METHODS RF shimming improves B1+ uniformity, but may at the same time significantly alter the induced current distribution and result in large changes in both the level and location of the absorbed RF energy. In this study, we evaluated the electrothermal exposure of pregnant women in the third, seventh, and ninth month of gestation at various imaging landmarks in RF body coils, including modes with RF shimming. RESULTS Although RF shimmed configurations may lower the local RF exposure for the mother, they can increase the thermal load on the fetus. In worst-case configurations, whole-body exposure and local peak temperatures-up to 40.8°C-are equal in fetus and mother. CONCLUSIONS Two-port RF shimming can significantly increase the fetal exposure in pregnant women, requiring further research to derive a very robust safety management. For the time being, restriction to the CP mode, which reduces fetal SAR exposure compared with linear-horizontal polarization modes, may be advisable. Results from this study do not support scanning pregnant patients above the normal operating mode. Magn Reson Med 77:2048-2056, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
| | | | - Theodoros Samaras
- Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Juan Córcoles
- Department of Electronic and Communication Technology, Universidad Autónoma de Madrid (UAM), Escuela Politécnica Superior, Madrid, Spain
| | | | - Wolfgang Kainz
- US Food and Drug Administration (FDA), Center for Devices and Radiological Health (CDRH), Silver Spring, Maryland, USA
| | - Niels Kuster
- IT'IS Foundation, Zurich, Switzerland.,Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| |
Collapse
|
49
|
Measurements of RF power reflected and radiated by multichannel transmit MR coils at 7T. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2016; 29:371-8. [DOI: 10.1007/s10334-016-0551-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/23/2016] [Accepted: 03/12/2016] [Indexed: 10/22/2022]
|
50
|
|