1
|
Ruppert K, Loza L, Hamedani H, Ismail M, Chen J, Duncan IF, Profka H, Kadlecek S, Rizi RR. Regional variations in hyperpolarized 129Xe lung MRI: Insights from CSI-CSSR and CSSR in healthy and irradiated rat models. Magn Reson Med 2025; 93:902-915. [PMID: 39503293 DOI: 10.1002/mrm.30313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 11/08/2024]
Abstract
PURPOSE To compare pulmonary function metrics obtained with hyperpolarized xenon-129 (HXe) MRS, using chemical shift saturation recovery (CSSR) and CSI-CSSR, in healthy rats and a rat model of radiation-induced lung injury. METHODS HXe-MR data were acquired in two healthy rats and one rat with radiation-induced lung injury using whole-lung spectroscopy and CSI-CSSR techniques. The CSI-CSSR acquisitions were performed with both fixed TE and variable TE. Apparent alveolar septal wall thickness, gas transfer dynamics, and regional lung function were quantified and compared across acquisition methods. Spectral analysis included alignment of dissolved-phase frequency spectra using the membrane resonance as reference, segmentation of gas-phase (GP) frequency distribution, and characterization of gas uptake in the vasculature. RESULTS Complex GP line shapes were observed in rat lungs, necessitating pixel-wise CSI analysis and membrane resonance alignment for improved quantification. Notable differences in alveolar septal wall thickness, dissolved-phase GP ratios, and GP and red blood cell frequencies were found between acquisition techniques and lung conditions. CSI-CSSR provided unique insights into regional lung function, including the identification of distinct GP frequency zones potentially corresponding to different airway structures, and the ability to map relative xenon gas transport. Metrics from fixed-TE and variable-TE acquisitions usually differed by less than 10%, but the latter yielded a 20% SNR gain. CONCLUSION HXe-MRS and CSI-CSSR techniques provide similar but not universally interchangeable insights into lung function, particularly in the presence of pathology.
Collapse
Affiliation(s)
- Kai Ruppert
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Luis Loza
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hooman Hamedani
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mostafa Ismail
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jiawei Chen
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ian F Duncan
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Harrilla Profka
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephen Kadlecek
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rahim R Rizi
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Willmering MM, Albert BJ, Plummer JW, Greer J, Walkup LL, Lindquist DM, Cleveland ZI. A thermally polarized, dissolved-phase 129Xe phantom for quality-control and multisite comparisons of gas-exchange imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2025; 371:107829. [PMID: 39809025 PMCID: PMC11807756 DOI: 10.1016/j.jmr.2025.107829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/11/2024] [Accepted: 01/05/2025] [Indexed: 01/16/2025]
Abstract
Harmonizing and validating 129Xe gas exchange imaging across multiple sites is hampered by a lack of a quantitative standard that 1) displays the unique spectral properties of 129Xe observed from human subjects in vivo and 2) has short enough T1 times to enable practical imaging. This work describes and demonstrates the development of two dissolved-phase, thermally polarized phantoms that mimic the in-vivo, red blood cell and membrane resonances of 129Xe dissolved in human lungs. Following optimization, combinations of two common organic solvents, acetone and dimethyl sulfoxide, resulted in two in-vivo-like dissolved-phase 129Xe phantoms yielding chemical shifts of 212.4 ppm and 193.9 ppm. By doping the solutions with iron(iii) acetylacetonate, the longitudinal relaxation time was reduced T1 = 1.2 s for both phantoms at 3 T and 7 T. There was minimal change in chemical shift (+1.58 ppm) and T1 (+1.2 %) over 1 year. In a 2D Dixon-type acquisition with 3 mm2 in-plane resolution, 129Xe dissolved-phase images yielded signal-to-noise ratios 6 and 12 for the RBC and membrane phantoms, respectively. A simple scaling of these phantoms to clinically relevant volumes of several liters would result in an SNR of 7 for the RBC phantom acquired in less than one minute. These findings demonstrate the ability to fabricate robust, quantitative, thermally polarized dissolved-phase phantoms, which will be needed to validate and harmonize gas exchange imaging in multi-site clinical trials.
Collapse
Affiliation(s)
- Matthew M Willmering
- Center for Pulmonary Imaging Research (CPIR), Division of Pulmonary Medicine Cincinnati Children's Hospital Medical Center Cincinnati OH USA; Department of Pediatrics, University of Cincinnati OH USA
| | - Brice J Albert
- Center for Pulmonary Imaging Research (CPIR), Division of Pulmonary Medicine Cincinnati Children's Hospital Medical Center Cincinnati OH USA
| | - Joseph W Plummer
- Center for Pulmonary Imaging Research (CPIR), Division of Pulmonary Medicine Cincinnati Children's Hospital Medical Center Cincinnati OH USA; Department of Biomedical Engineering, University of Cincinnati OH USA
| | | | - Laura L Walkup
- Center for Pulmonary Imaging Research (CPIR), Division of Pulmonary Medicine Cincinnati Children's Hospital Medical Center Cincinnati OH USA; Department of Pediatrics, University of Cincinnati OH USA; Department of Biomedical Engineering, University of Cincinnati OH USA; Imaging Research Center (IRC), Department of Radiology Cincinnati Children's Hospital Medical Center Cincinnati OH USA
| | - Diana M Lindquist
- Department of Pediatrics, University of Cincinnati OH USA; Imaging Research Center (IRC), Department of Radiology Cincinnati Children's Hospital Medical Center Cincinnati OH USA; Department of Radiology, University of Cincinnati OH USA
| | - Zackary I Cleveland
- Center for Pulmonary Imaging Research (CPIR), Division of Pulmonary Medicine Cincinnati Children's Hospital Medical Center Cincinnati OH USA; Department of Pediatrics, University of Cincinnati OH USA; Department of Biomedical Engineering, University of Cincinnati OH USA; Imaging Research Center (IRC), Department of Radiology Cincinnati Children's Hospital Medical Center Cincinnati OH USA.
| |
Collapse
|
3
|
Yang Y, Yue S, Shen L, Dong H, Li H, Zhao X, Guo Q, Zhou X. Ultrasensitive 129Xe Magnetic Resonance Imaging: From Clinical Monitoring to Molecular Sensing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2413426. [PMID: 39836636 DOI: 10.1002/advs.202413426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/16/2024] [Indexed: 01/23/2025]
Abstract
Magnetic resonance imaging (MRI) is a cornerstone technology in clinical diagnostics and in vivo research, offering unparalleled visualization capabilities. Despite significant advancements in the past century, traditional 1H MRI still faces sensitivity limitations that hinder its further development. To overcome this challenge, hyperpolarization methods have been introduced, disrupting the thermal equilibrium of nuclear spins and leading to an increased proportion of hyperpolarized spins, thereby enhancing sensitivity by hundreds to tens of thousands of times. Among these methods, hyperpolarized (HP) 129Xe MRI, also known as ultrasensitive 129Xe MRI, stands out for achieving the highest polarization enhancement and has recently received clinical approval. It effectively tackles the challenge of weak MRI signals from low proton density in the lungs. HP 129Xe MRI is valuable for assessing structural and functional changes in lung physiology during pulmonary disease progression, tracking cells, and detecting target molecules at pico-molar concentrations. This review summarizes recent developments in HP 129Xe MRI, including its physical principles, manufacturing methods, in vivo characteristics, and diverse applications in biomedical, chemical, and material sciences. In addition, it carefully discusses potential technical improvements and future prospects for enhancing its utility in these fields, further establishing HP 129Xe MRI's importance in advancing medical imaging and research.
Collapse
Affiliation(s)
- Yuqi Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sen Yue
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Luyang Shen
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huiling Dong
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haidong Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiuchao Zhao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianni Guo
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Kern AL, Park DH, Fuge J, Hohlfeld JM, Wacker F, Hoeper MM, Olsson KM, Vogel-Claussen J. Loss of pulmonary capillaries in idiopathic pulmonary arterial hypertension with low diffusion capacity is accompanied by early diffuse emphysema detected by 129Xe MRI. Eur Radiol 2024:10.1007/s00330-024-11209-1. [PMID: 39645621 DOI: 10.1007/s00330-024-11209-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/11/2024] [Accepted: 10/14/2024] [Indexed: 12/09/2024]
Abstract
OBJECTIVES Recent studies suggest the existence of an idiopathic pulmonary arterial hypertension (IPAH) phenotype affecting mostly patients with a smoking history, characterised by low diffusion capacity for carbon monoxide (DLCO) without clinically significant emphysema. This study's objective was to test the hypothesis of a loss of pulmonary capillaries as an underlying mechanism by comparison to other patient groups with and without pulmonary hypertension (PH). MATERIALS AND METHODS Between March 2019 and June 2023, patients of four groups were recruited for this observational study: IPAH with preserved (1) and low DLCO (2), combined pulmonary fibrosis and emphysema with PH (3), and emphysema without PH (4). Patients underwent clinical CT and 129Xe MRI including dissolved-phase imaging yielding the ratio of 129Xe in red blood cells and membrane tissues (RBC-M), chemical shift saturation recovery for determining RBC fraction η and diffusion-weighted imaging yielding surface-volume ratio. Kruskal-Wallis tests were used for statistical analysis. RESULTS Twenty-nine participants were recruited, of which 22 (age 64 ± 10, 11 male, 5/5/7/5 for the individual groups) could be included in the analysis. RBC-M and η were reduced in IPAH with low versus preserved DLCO and emphysema groups (p ≤ 0.01). CT low-attenuation area percentage was not increased in IPAH with low DLCO compared to any group. 129Xe MRI-derived surface-volume ratio was reduced in IPAH with low versus preserved DLCO (p = 0.04). CONCLUSION Results are consistent with a loss of pulmonary capillaries in patients with IPAH and low DLCO along with destruction of alveolar tissue, likely due to early diffuse emphysema. KEY POINTS Question A loss of pulmonary capillaries has been suggested in patients with IPAH and low diffusion capacity without clinically significant emphysema on CT. Findings 129Xe uptake in red blood cells and lung surface-volume ratio were reduced in IPAH patients with low compared to preserved diffusion capacity. Clinical relevance This study furthers the understanding of the underlying pathological mechanisms in IPAH with low diffusion capacity, providing evidence that loss of pulmonary capillaries is accompanied by alveolar tissue destruction despite near-normal CT.
Collapse
Affiliation(s)
- Agilo Luitger Kern
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Da-Hee Park
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany
| | - Jan Fuge
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany
| | - Jens M Hohlfeld
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany
- Clinical Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Frank Wacker
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Marius M Hoeper
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany
| | - Karen M Olsson
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany
| | - Jens Vogel-Claussen
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany.
| |
Collapse
|
5
|
Taylor Y, Wilson FJ, Kim M, Parker GJM. Sensitivity analysis of models of gas exchange for lung hyperpolarised 129Xe MR. NMR IN BIOMEDICINE 2024; 37:e5239. [PMID: 39183451 DOI: 10.1002/nbm.5239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024]
Abstract
Sensitivity analysis enables the identification of influential parameters and the optimisation of model composition. Such methods have not previously been applied systematically to models describing hyperpolarised 129Xe gas exchange in the lung. Here, we evaluate the current 129Xe gas exchange models to assess their precision for identifying alterations in pulmonary vascular function and lung microstructure. We assess sensitivity using established univariate methods and scatter plots for parameter interactions. We apply them to the model described by Patz et al and the Model of Xenon Exchange (MOXE), examining their ability to measure: i) importance (rank), ii) temporal dependence and iii) interaction effects of each parameter across healthy and diseased ranges. The univariate methods and scatter plot analyses demonstrate consistently similar results for the importance of parameters common to both models evaluated. Alveolar surface area to volume ratio is identified as the parameter to which model signals are most sensitive. The alveolar-capillary barrier thickness is identified as a low-sensitivity parameter for the MOXE model. An acquisition window of at least 200 ms effectively demonstrates model sensitivity to most parameters. Scatter plots reveal interaction effects in both models, impacting output variability and sensitivity. Our sensitivity analysis ranks the parameters within the model described by Patz et al and within the MOXE model. The MOXE model shows low sensitivity to alveolar-capillary barrier thickness, highlighting the need for designing acquisition protocols optimised for the measurement of this parameter. The presence of parameter interaction effects highlights the requirement for care in interpreting model outputs.
Collapse
Affiliation(s)
- Yohn Taylor
- Centre for Medical Image Computing, Quantitative Imaging Group, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | | | - Mina Kim
- Centre for Medical Image Computing, Quantitative Imaging Group, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Geoff J M Parker
- Centre for Medical Image Computing, Quantitative Imaging Group, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- Bioxydyn Limited, Manchester, UK
| |
Collapse
|
6
|
Rao Q, Li H, Zhou Q, Zhang M, Zhao X, Shi L, Xie J, Fan L, Han Y, Guo F, Liu S, Zhou X. Assessment of pulmonary physiological changes caused by aging, cigarette smoking, and COPD with hyperpolarized 129Xe magnetic resonance. Eur Radiol 2024; 34:7450-7459. [PMID: 38748243 DOI: 10.1007/s00330-024-10800-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/14/2024] [Accepted: 04/05/2024] [Indexed: 06/01/2024]
Abstract
OBJECTIVE To comprehensively assess the impact of aging, cigarette smoking, and chronic obstructive pulmonary disease (COPD) on pulmonary physiology using 129Xe MR. METHODS A total of 90 subjects were categorized into four groups, including healthy young (HY, n = 20), age-matched control (AMC, n = 20), asymptomatic smokers (AS, n = 28), and COPD patients (n = 22). 129Xe MR was utilized to obtain pulmonary physiological parameters, including ventilation defect percent (VDP), alveolar sleeve depth (h), apparent diffusion coefficient (ADC), total septal wall thickness (d), and ratio of xenon signal from red blood cells and interstitial tissue/plasma (RBC/TP). RESULTS Significant differences were found in the measured VDP (p = 0.035), h (p = 0.003), and RBC/TP (p = 0.003) between the HY and AMC groups. Compared with the AMC group, higher VDP (p = 0.020) and d (p = 0.048) were found in the AS group; higher VDP (p < 0.001), d (p < 0.001) and ADC (p < 0.001), and lower h (p < 0.001) and RBC/TP (p < 0.001) were found in the COPD group. Moreover, significant differences were also found in the measured VDP (p < 0.001), h (p < 0.001), ADC (p < 0.001), d (p = 0.008), and RBC/TP (p = 0.032) between the AS and COPD groups. CONCLUSION Our findings indicate that pulmonary structure and functional changes caused by aging, cigarette smoking, and COPD are various, and show a progressive deterioration with the accumulation of these risk factors, including cigarette smoking and COPD. CLINICAL RELEVANCE STATEMENT Pathophysiological changes can be difficult to comprehensively understand due to limitations in common techniques and multifactorial etiologies. 129Xe MRI can demonstrate structural and functional changes caused by several common factors and can be used to better understand patients' underlying pathology. KEY POINTS Standard techniques for assessing pathophysiological lung function changes, spirometry, and chest CT come with limitations. 129Xe MR demonstrated progressive deterioration with accumulation of the investigated risk factors, without these limitations. 129Xe MR can assess lung changes related to these risk factors to stage and evaluate the etiology of the disease.
Collapse
Affiliation(s)
- Qiuchen Rao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
| | - Haidong Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
| | - Ming Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiuchao Zhao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Shi
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junshuai Xie
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Fan
- Department of Radiology, Changzheng Hospital of the Second Military Medical University, Shanghai, 200003, China
| | - Yeqing Han
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fumin Guo
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
| | - Shiyuan Liu
- Department of Radiology, Changzheng Hospital of the Second Military Medical University, Shanghai, 200003, China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Biomedical Engineering, Hainan University, Haikou, 570228, China.
| |
Collapse
|
7
|
Bechtel A, Lu J, Mummy D, Bier E, Leewiwatwong S, Mugler J, Kabir S, Church A, Driehuys B. Establishing a hemoglobin adjustment for 129 Xe gas exchange MRI and MRS. Magn Reson Med 2023; 90:1555-1568. [PMID: 37246900 PMCID: PMC10524939 DOI: 10.1002/mrm.29712] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/10/2023] [Accepted: 05/02/2023] [Indexed: 05/30/2023]
Abstract
PURPOSE 129 Xe MRI and MRS signals from airspaces, membrane tissues (M), and red blood cells (RBCs) provide measurements of pulmonary gas exchange. However, 129 Xe MRI/MRS studies have yet to account for hemoglobin concentration (Hb), which is expected to affect the uptake of 129 Xe in the membrane and RBC compartments. We propose a framework to adjust the membrane and RBC signals for Hb and use this to assess sex-specific differences in RBC/M and establish a Hb-adjusted healthy reference range for the RBC/M ratio. METHODS We combined the 1D model of xenon gas exchange (MOXE) with the principle of TR-flip angle equivalence to establish scaling factors that normalize the dissolved-phase signals with respect to a standardH b 0 $$ H{b}^0 $$ (14 g/dL). 129 Xe MRI/MRS data from a healthy, young cohort (n = 18, age = 25.0± $$ \pm $$ 3.4 years) were used to validate this model and assess the impact of Hb adjustment on M/gas and RBC/gas images and RBC/M. RESULTS Adjusting for Hb caused RBC/M to change by up to 20% in healthy individuals with normal Hb and had marked impacts on M/gas and RBC/gas distributions in 3D gas-exchange maps. RBC/M was higher in males than females both before and after Hb adjustment (p < 0.001). After Hb adjustment, the healthy reference value for RBC/M for a consortium-recommended acquisition of TR = 15 ms and flip = 20° was 0.589± $$ \pm $$ 0.083 (mean± $$ \pm $$ SD). CONCLUSION MOXE provides a useful framework for evaluating the Hb dependence of the membrane and RBC signals. This work indicates that adjusting for Hb is essential for accurately assessing 129 Xe gas-exchange MRI/MRS metrics.
Collapse
Affiliation(s)
- Aryil Bechtel
- Radiology, Duke University Medical Center, Durham, North Carolina, United States
| | - Junlan Lu
- Medical Physics Graduate Program, Duke University, Durham, North Carolina
| | - David Mummy
- Radiology, Duke University Medical Center, Durham, North Carolina, United States
| | - Elianna Bier
- Biomedical Engineering, Duke University, Durham, North Carolina, United States
| | | | - John Mugler
- Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia
| | - Sakib Kabir
- Radiology, Duke University Medical Center, Durham, North Carolina, United States
| | - Alex Church
- Radiology, Duke University Medical Center, Durham, North Carolina, United States
| | - Bastiaan Driehuys
- Radiology, Duke University Medical Center, Durham, North Carolina, United States
- Medical Physics Graduate Program, Duke University, Durham, North Carolina
- Biomedical Engineering, Duke University, Durham, North Carolina, United States
| |
Collapse
|
8
|
Garrison WJ, Qing K, He M, Zhao L, Tustison NJ, Patrie JT, Mata JF, Shim YM, Ropp AM, Altes TA, Mugler JP, Miller GW. Lung Volume Dependence and Repeatability of Hyperpolarized 129Xe MRI Gas Uptake Metrics in Healthy Volunteers and Participants with COPD. Radiol Cardiothorac Imaging 2023; 5:e220096. [PMID: 37404786 PMCID: PMC10316289 DOI: 10.1148/ryct.220096] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 04/05/2023] [Accepted: 05/08/2023] [Indexed: 07/06/2023]
Abstract
Purpose To assess the effect of lung volume on measured values and repeatability of xenon 129 (129Xe) gas uptake metrics in healthy volunteers and participants with chronic obstructive pulmonary disease (COPD). Materials and Methods This Health Insurance Portability and Accountability Act-compliant prospective study included data (March 2014-December 2015) from 49 participants (19 with COPD [mean age, 67 years ± 9 (SD)]; nine women]; 25 older healthy volunteers [mean age, 59 years ± 10; 20 women]; and five young healthy women [mean age, 23 years ± 3]). Thirty-two participants underwent repeated 129Xe and same-breath-hold proton MRI at residual volume plus one-third forced vital capacity (RV+FVC/3), with 29 also undergoing one examination at total lung capacity (TLC). The remaining 17 participants underwent imaging at TLC, RV+FVC/3, and residual volume (RV). Signal ratios between membrane, red blood cell (RBC), and gas-phase compartments were calculated using hierarchical iterative decomposition of water and fat with echo asymmetry and least-squares estimation (ie, IDEAL). Repeatability was assessed using coefficient of variation and intraclass correlation coefficient, and volume relationships were assessed using Spearman correlation and Wilcoxon rank sum tests. Results Gas uptake metrics were repeatable at RV+FVC/3 (intraclass correlation coefficient = 0.88 for membrane/gas; 0.71 for RBC/gas, and 0.88 for RBC/membrane). Relative ratio changes were highly correlated with relative volume changes for membrane/gas (r = -0.97) and RBC/gas (r = -0.93). Membrane/gas and RBC/gas measured at RV+FVC/3 were significantly lower in the COPD group than the corresponding healthy group (P ≤ .001). However, these differences lessened upon correction for individual volume differences (P = .23 for membrane/gas; P = .09 for RBC/gas). Conclusion Dissolved-phase 129Xe MRI-derived gas uptake metrics were repeatable but highly dependent on lung volume during measurement.Keywords: Blood-Air Barrier, MRI, Chronic Obstructive Pulmonary Disease, Pulmonary Gas Exchange, Xenon Supplemental material is available for this article © RSNA, 2023.
Collapse
Affiliation(s)
- William J. Garrison
- From the Departments of Biomedical Engineering (W.J.G., J.P.M.,
G.W.M.), Radiology and Medical Imaging (K.Q., N.J.T., J.F.M., A.M.R., J.P.M.,
G.W.M.), Medicine (M.H., Y.M.S.), Public Health Sciences (J.T.P.), and Physics
(G.W.M.), University of Virginia, 480 Ray C. Hunt Dr, Box 801339,
Charlottesville, VA 22908; Department of Radiation Oncology, City of Hope
National Medical Center, Duarte, Calif (K.Q.); Department of Biomedical
Engineering, Zhejiang University, Hangzhou, China (L.Z.); and Department of
Radiology, University of Missouri, Columbia, Mo (T.A.A.)
| | - Kun Qing
- From the Departments of Biomedical Engineering (W.J.G., J.P.M.,
G.W.M.), Radiology and Medical Imaging (K.Q., N.J.T., J.F.M., A.M.R., J.P.M.,
G.W.M.), Medicine (M.H., Y.M.S.), Public Health Sciences (J.T.P.), and Physics
(G.W.M.), University of Virginia, 480 Ray C. Hunt Dr, Box 801339,
Charlottesville, VA 22908; Department of Radiation Oncology, City of Hope
National Medical Center, Duarte, Calif (K.Q.); Department of Biomedical
Engineering, Zhejiang University, Hangzhou, China (L.Z.); and Department of
Radiology, University of Missouri, Columbia, Mo (T.A.A.)
| | - Mu He
- From the Departments of Biomedical Engineering (W.J.G., J.P.M.,
G.W.M.), Radiology and Medical Imaging (K.Q., N.J.T., J.F.M., A.M.R., J.P.M.,
G.W.M.), Medicine (M.H., Y.M.S.), Public Health Sciences (J.T.P.), and Physics
(G.W.M.), University of Virginia, 480 Ray C. Hunt Dr, Box 801339,
Charlottesville, VA 22908; Department of Radiation Oncology, City of Hope
National Medical Center, Duarte, Calif (K.Q.); Department of Biomedical
Engineering, Zhejiang University, Hangzhou, China (L.Z.); and Department of
Radiology, University of Missouri, Columbia, Mo (T.A.A.)
| | - Li Zhao
- From the Departments of Biomedical Engineering (W.J.G., J.P.M.,
G.W.M.), Radiology and Medical Imaging (K.Q., N.J.T., J.F.M., A.M.R., J.P.M.,
G.W.M.), Medicine (M.H., Y.M.S.), Public Health Sciences (J.T.P.), and Physics
(G.W.M.), University of Virginia, 480 Ray C. Hunt Dr, Box 801339,
Charlottesville, VA 22908; Department of Radiation Oncology, City of Hope
National Medical Center, Duarte, Calif (K.Q.); Department of Biomedical
Engineering, Zhejiang University, Hangzhou, China (L.Z.); and Department of
Radiology, University of Missouri, Columbia, Mo (T.A.A.)
| | - Nicholas J. Tustison
- From the Departments of Biomedical Engineering (W.J.G., J.P.M.,
G.W.M.), Radiology and Medical Imaging (K.Q., N.J.T., J.F.M., A.M.R., J.P.M.,
G.W.M.), Medicine (M.H., Y.M.S.), Public Health Sciences (J.T.P.), and Physics
(G.W.M.), University of Virginia, 480 Ray C. Hunt Dr, Box 801339,
Charlottesville, VA 22908; Department of Radiation Oncology, City of Hope
National Medical Center, Duarte, Calif (K.Q.); Department of Biomedical
Engineering, Zhejiang University, Hangzhou, China (L.Z.); and Department of
Radiology, University of Missouri, Columbia, Mo (T.A.A.)
| | - James T. Patrie
- From the Departments of Biomedical Engineering (W.J.G., J.P.M.,
G.W.M.), Radiology and Medical Imaging (K.Q., N.J.T., J.F.M., A.M.R., J.P.M.,
G.W.M.), Medicine (M.H., Y.M.S.), Public Health Sciences (J.T.P.), and Physics
(G.W.M.), University of Virginia, 480 Ray C. Hunt Dr, Box 801339,
Charlottesville, VA 22908; Department of Radiation Oncology, City of Hope
National Medical Center, Duarte, Calif (K.Q.); Department of Biomedical
Engineering, Zhejiang University, Hangzhou, China (L.Z.); and Department of
Radiology, University of Missouri, Columbia, Mo (T.A.A.)
| | - Jaime F. Mata
- From the Departments of Biomedical Engineering (W.J.G., J.P.M.,
G.W.M.), Radiology and Medical Imaging (K.Q., N.J.T., J.F.M., A.M.R., J.P.M.,
G.W.M.), Medicine (M.H., Y.M.S.), Public Health Sciences (J.T.P.), and Physics
(G.W.M.), University of Virginia, 480 Ray C. Hunt Dr, Box 801339,
Charlottesville, VA 22908; Department of Radiation Oncology, City of Hope
National Medical Center, Duarte, Calif (K.Q.); Department of Biomedical
Engineering, Zhejiang University, Hangzhou, China (L.Z.); and Department of
Radiology, University of Missouri, Columbia, Mo (T.A.A.)
| | - Y. Michael Shim
- From the Departments of Biomedical Engineering (W.J.G., J.P.M.,
G.W.M.), Radiology and Medical Imaging (K.Q., N.J.T., J.F.M., A.M.R., J.P.M.,
G.W.M.), Medicine (M.H., Y.M.S.), Public Health Sciences (J.T.P.), and Physics
(G.W.M.), University of Virginia, 480 Ray C. Hunt Dr, Box 801339,
Charlottesville, VA 22908; Department of Radiation Oncology, City of Hope
National Medical Center, Duarte, Calif (K.Q.); Department of Biomedical
Engineering, Zhejiang University, Hangzhou, China (L.Z.); and Department of
Radiology, University of Missouri, Columbia, Mo (T.A.A.)
| | - Alan M. Ropp
- From the Departments of Biomedical Engineering (W.J.G., J.P.M.,
G.W.M.), Radiology and Medical Imaging (K.Q., N.J.T., J.F.M., A.M.R., J.P.M.,
G.W.M.), Medicine (M.H., Y.M.S.), Public Health Sciences (J.T.P.), and Physics
(G.W.M.), University of Virginia, 480 Ray C. Hunt Dr, Box 801339,
Charlottesville, VA 22908; Department of Radiation Oncology, City of Hope
National Medical Center, Duarte, Calif (K.Q.); Department of Biomedical
Engineering, Zhejiang University, Hangzhou, China (L.Z.); and Department of
Radiology, University of Missouri, Columbia, Mo (T.A.A.)
| | - Talissa A. Altes
- From the Departments of Biomedical Engineering (W.J.G., J.P.M.,
G.W.M.), Radiology and Medical Imaging (K.Q., N.J.T., J.F.M., A.M.R., J.P.M.,
G.W.M.), Medicine (M.H., Y.M.S.), Public Health Sciences (J.T.P.), and Physics
(G.W.M.), University of Virginia, 480 Ray C. Hunt Dr, Box 801339,
Charlottesville, VA 22908; Department of Radiation Oncology, City of Hope
National Medical Center, Duarte, Calif (K.Q.); Department of Biomedical
Engineering, Zhejiang University, Hangzhou, China (L.Z.); and Department of
Radiology, University of Missouri, Columbia, Mo (T.A.A.)
| | - John P. Mugler
- From the Departments of Biomedical Engineering (W.J.G., J.P.M.,
G.W.M.), Radiology and Medical Imaging (K.Q., N.J.T., J.F.M., A.M.R., J.P.M.,
G.W.M.), Medicine (M.H., Y.M.S.), Public Health Sciences (J.T.P.), and Physics
(G.W.M.), University of Virginia, 480 Ray C. Hunt Dr, Box 801339,
Charlottesville, VA 22908; Department of Radiation Oncology, City of Hope
National Medical Center, Duarte, Calif (K.Q.); Department of Biomedical
Engineering, Zhejiang University, Hangzhou, China (L.Z.); and Department of
Radiology, University of Missouri, Columbia, Mo (T.A.A.)
| | - G. Wilson Miller
- From the Departments of Biomedical Engineering (W.J.G., J.P.M.,
G.W.M.), Radiology and Medical Imaging (K.Q., N.J.T., J.F.M., A.M.R., J.P.M.,
G.W.M.), Medicine (M.H., Y.M.S.), Public Health Sciences (J.T.P.), and Physics
(G.W.M.), University of Virginia, 480 Ray C. Hunt Dr, Box 801339,
Charlottesville, VA 22908; Department of Radiation Oncology, City of Hope
National Medical Center, Duarte, Calif (K.Q.); Department of Biomedical
Engineering, Zhejiang University, Hangzhou, China (L.Z.); and Department of
Radiology, University of Missouri, Columbia, Mo (T.A.A.)
| |
Collapse
|
9
|
Foo CT, Langton D, Thompson BR, Thien F. Functional lung imaging using novel and emerging MRI techniques. Front Med (Lausanne) 2023; 10:1060940. [PMID: 37181360 PMCID: PMC10166823 DOI: 10.3389/fmed.2023.1060940] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Respiratory diseases are leading causes of death and disability in the world. While early diagnosis is key, this has proven difficult due to the lack of sensitive and non-invasive tools. Computed tomography is regarded as the gold standard for structural lung imaging but lacks functional information and involves significant radiation exposure. Lung magnetic resonance imaging (MRI) has historically been challenging due to its short T2 and low proton density. Hyperpolarised gas MRI is an emerging technique that is able to overcome these difficulties, permitting the functional and microstructural evaluation of the lung. Other novel imaging techniques such as fluorinated gas MRI, oxygen-enhanced MRI, Fourier decomposition MRI and phase-resolved functional lung imaging can also be used to interrogate lung function though they are currently at varying stages of development. This article provides a clinically focused review of these contrast and non-contrast MR imaging techniques and their current applications in lung disease.
Collapse
Affiliation(s)
- Chuan T. Foo
- Department of Respiratory Medicine, Eastern Health, Melbourne, VIC, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - David Langton
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
- Department of Thoracic Medicine, Peninsula Health, Frankston, VIC, Australia
| | - Bruce R. Thompson
- Melbourne School of Health Science, Melbourne University, Melbourne, VIC, Australia
| | - Francis Thien
- Department of Respiratory Medicine, Eastern Health, Melbourne, VIC, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Preclinical MRI Using Hyperpolarized 129Xe. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238338. [PMID: 36500430 PMCID: PMC9738892 DOI: 10.3390/molecules27238338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022]
Abstract
Although critical for development of novel therapies, understanding altered lung function in disease models is challenging because the transport and diffusion of gases over short distances, on which proper function relies, is not readily visualized. In this review we summarize progress introducing hyperpolarized 129Xe imaging as a method to follow these processes in vivo. The work is organized in sections highlighting methods to observe the gas replacement effects of breathing (Gas Dynamics during the Breathing Cycle) and gas diffusion throughout the parenchymal airspaces (3). We then describe the spectral signatures indicative of gas dissolution and uptake (4), and how these features can be used to follow the gas as it enters the tissue and capillary bed, is taken up by hemoglobin in the red blood cells (5), re-enters the gas phase prior to exhalation (6), or is carried via the vasculature to other organs and body structures (7). We conclude with a discussion of practical imaging and spectroscopy techniques that deliver quantifiable metrics despite the small size, rapid motion and decay of signal and coherence characteristic of the magnetically inhomogeneous lung in preclinical models (8).
Collapse
|
11
|
MR Imaging for the Evaluation of Diffuse Lung Disease. Radiol Clin North Am 2022; 60:1021-1032. [DOI: 10.1016/j.rcl.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Anikeeva M, Sangal M, Speck O, Norquay G, Zuhayra M, Lützen U, Peters J, Jansen O, Hövener JB. Nichtinvasive funktionelle Lungenbildgebung mit hyperpolarisiertem Xenon. ZEITSCHRIFT FÜR PNEUMOLOGIE 2022. [PMCID: PMC9387426 DOI: 10.1007/s10405-022-00462-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hintergrund Die Magnetresonanztomographie (MRT) ist ein nichtinvasives Verfahren mit hervorragendem Weichteilkontrast. Aufgrund der geringen Protonendichte und vielen Luft-Gewebe-Übergängen ist die Anwendung in der Lunge jedoch eingeschränkt, so dass hier häufig röntgenbasierte Methoden eingesetzt werden (mit den bekannten Nachteilen ionisierender Strahlung). Fragestellung In dieser Übersichtsarbeit wird die Lungen-MRT mit hyperpolarisiertem Xenon-129 (Xe-MRT) dargestellt. Die Xe-MRT erlaubt einzigartige wertvolle Einblicke in die Mikrostruktur und Funktion der Lunge, einschließlich des Gasaustauschs mit roten Blutkörperchen – Parameter, die mit klinischen Standardmethoden nicht zugänglich sind. Material und Methoden Durch die magnetische Markierung, die Hyperpolarisierung, wird das Signal von Xenon-129 um bis zu 100.000-fach verstärkt. Hierbei werden die Elektronen von Rubidium mittels Laserlicht zunächst auf 100 % polarisiert und dann durch Stöße auf Xenon übertragen. Danach wird das hyperpolarisierte Gas in einem Beutel zum Patienten gebracht und eingeatmet, kurz bevor die MRT-Aufnahmen beginnen. Ergebnisse Durch spezielle Programmierungen (Sequenzen) in der MRT kann die Ventilation, Mikrostruktur oder der Gasaustausch der Lunge in 3‑D dargestellt werden. Dies ermöglicht z. B. die quantitative Darstellung von Belüftungsdefekten, der Größe der Alveolen, der Gasaufnahme im Gewebe und des Gastransfers ins Blut. Schlussfolgerung Die Xe-MRT liefert einzigartige Informationen über den Zustand der Lunge – nichtinvasiv, in vivo und in weniger als einer Minute.
Collapse
Affiliation(s)
- Mariia Anikeeva
- Sektion Biomedizinische Bildgebung, Molecular Imaging North Competence Center (MOIN CC), Klinik für Radiologie und Neuroradiologie, Universtätsklinikum Schleswig-Holstein, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 14, 24118 Kiel, Deutschland
- Klinik für Radiologie und Neuroradiologie, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel, Deutschland
| | - Maitreyi Sangal
- Abteilung Biomedizinische Magnetresonanz, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Deutschland
| | - Oliver Speck
- Abteilung Biomedizinische Magnetresonanz, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Deutschland
| | - Graham Norquay
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, Großbritannien
| | - Maaz Zuhayra
- Klinik für Radiologie und Neuroradiologie, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel, Deutschland
| | - Ulf Lützen
- Klinik für Radiologie und Neuroradiologie, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel, Deutschland
| | - Josh Peters
- Sektion Biomedizinische Bildgebung, Molecular Imaging North Competence Center (MOIN CC), Klinik für Radiologie und Neuroradiologie, Universtätsklinikum Schleswig-Holstein, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 14, 24118 Kiel, Deutschland
- Klinik für Radiologie und Neuroradiologie, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel, Deutschland
| | - Olav Jansen
- Klinik für Radiologie und Neuroradiologie, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel, Deutschland
| | - Jan-Bernd Hövener
- Sektion Biomedizinische Bildgebung, Molecular Imaging North Competence Center (MOIN CC), Klinik für Radiologie und Neuroradiologie, Universtätsklinikum Schleswig-Holstein, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 14, 24118 Kiel, Deutschland
- Klinik für Radiologie und Neuroradiologie, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel, Deutschland
| |
Collapse
|
13
|
Shepelytskyi Y, Grynko V, Rao MR, Li T, Agostino M, Wild JM, Albert MS. Hyperpolarized 129 Xe imaging of the brain: Achievements and future challenges. Magn Reson Med 2022; 88:83-105. [PMID: 35253919 PMCID: PMC9314594 DOI: 10.1002/mrm.29200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/22/2021] [Accepted: 01/25/2022] [Indexed: 11/25/2022]
Abstract
Hyperpolarized (HP) xenon-129 (129 Xe) brain MRI is a promising imaging modality currently under extensive development. HP 129 Xe is nontoxic, capable of dissolving in pulmonary blood, and is extremely sensitive to the local environment. After dissolution in the pulmonary blood, HP 129 Xe travels with the blood flow to the brain and can be used for functional imaging such as perfusion imaging, hemodynamic response detection, and blood-brain barrier permeability assessment. HP 129 Xe MRI imaging of the brain has been performed in animals, healthy human subjects, and in patients with Alzheimer's disease and stroke. In this review, the overall progress in the field of HP 129 Xe brain imaging is discussed, along with various imaging approaches and pulse sequences used to optimize HP 129 Xe brain MRI. In addition, current challenges and limitations of HP 129 Xe brain imaging are discussed, as well as possible methods for their mitigation. Finally, potential pathways for further development are also discussed. HP 129 Xe MRI of the brain has the potential to become a valuable novel perfusion imaging technique and has the potential to be used in the clinical setting in the future.
Collapse
Affiliation(s)
- Yurii Shepelytskyi
- Chemistry Department, Lakehead University, Thunder Bay, Ontario, Canada.,Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada
| | - Vira Grynko
- Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada.,Chemistry and Materials Science Program, Lakehead University, Thunder Bay, Ontario, Canada
| | - Madhwesha R Rao
- POLARIS, Unit of Academic Radiology, Department of IICD, University of Sheffield, Sheffield, UK
| | - Tao Li
- Chemistry Department, Lakehead University, Thunder Bay, Ontario, Canada
| | - Martina Agostino
- Chemistry Department, Lakehead University, Thunder Bay, Ontario, Canada
| | - Jim M Wild
- POLARIS, Unit of Academic Radiology, Department of IICD, University of Sheffield, Sheffield, UK.,Insigneo Institute for in Silico Medicine, Sheffield, UK
| | - Mitchell S Albert
- Chemistry Department, Lakehead University, Thunder Bay, Ontario, Canada.,Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada.,Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada
| |
Collapse
|
14
|
Anikeeva M, Sangal M, Speck O, Norquay G, Zuhayra M, Lützen U, Peters J, Jansen O, Hövener JB. Nichtinvasive funktionelle Lungenbildgebung mit hyperpolarisiertem Xenon. Radiologe 2022; 62:475-485. [PMID: 35403905 PMCID: PMC8996207 DOI: 10.1007/s00117-022-00993-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Mariia Anikeeva
- Sektion Biomedizinische Bildgebung, Molecular Imaging North Competence Center (MOIN CC), Klinik für Radiologie und Neuroradiologie, Universtätsklinikum Schleswig-Holstein, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 14, 24118, Kiel, Deutschland.
- Klinik für Radiologie und Neuroradiologie, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel, Deutschland.
| | - Maitreyi Sangal
- Abteilung Biomedizinische Magnetresonanz, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Deutschland
| | - Oliver Speck
- Abteilung Biomedizinische Magnetresonanz, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Deutschland
| | - Graham Norquay
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, Großbritannien
| | - Maaz Zuhayra
- Klinik für Radiologie und Neuroradiologie, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel, Deutschland
| | - Ulf Lützen
- Klinik für Radiologie und Neuroradiologie, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel, Deutschland
| | - Josh Peters
- Sektion Biomedizinische Bildgebung, Molecular Imaging North Competence Center (MOIN CC), Klinik für Radiologie und Neuroradiologie, Universtätsklinikum Schleswig-Holstein, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 14, 24118, Kiel, Deutschland
- Klinik für Radiologie und Neuroradiologie, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel, Deutschland
| | - Olav Jansen
- Klinik für Radiologie und Neuroradiologie, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel, Deutschland
| | - Jan-Bernd Hövener
- Sektion Biomedizinische Bildgebung, Molecular Imaging North Competence Center (MOIN CC), Klinik für Radiologie und Neuroradiologie, Universtätsklinikum Schleswig-Holstein, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 14, 24118, Kiel, Deutschland.
- Klinik für Radiologie und Neuroradiologie, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel, Deutschland.
| |
Collapse
|
15
|
Niedbalski PJ, Hall CS, Castro M, Eddy RL, Rayment JH, Svenningsen S, Parraga G, Zanette B, Santyr GE, Thomen RP, Stewart NJ, Collier GJ, Chan HF, Wild JM, Fain SB, Miller GW, Mata JF, Mugler JP, Driehuys B, Willmering MM, Cleveland ZI, Woods JC. Protocols for multi-site trials using hyperpolarized 129 Xe MRI for imaging of ventilation, alveolar-airspace size, and gas exchange: A position paper from the 129 Xe MRI clinical trials consortium. Magn Reson Med 2021; 86:2966-2986. [PMID: 34478584 DOI: 10.1002/mrm.28985] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/13/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022]
Abstract
Hyperpolarized (HP) 129 Xe MRI uniquely images pulmonary ventilation, gas exchange, and terminal airway morphology rapidly and safely, providing novel information not possible using conventional imaging modalities or pulmonary function tests. As such, there is mounting interest in expanding the use of biomarkers derived from HP 129 Xe MRI as outcome measures in multi-site clinical trials across a range of pulmonary disorders. Until recently, HP 129 Xe MRI techniques have been developed largely independently at a limited number of academic centers, without harmonizing acquisition strategies. To promote uniformity and adoption of HP 129 Xe MRI more widely in translational research, multi-site trials, and ultimately clinical practice, this position paper from the 129 Xe MRI Clinical Trials Consortium (https://cpir.cchmc.org/XeMRICTC) recommends standard protocols to harmonize methods for image acquisition in HP 129 Xe MRI. Recommendations are described for the most common HP gas MRI techniques-calibration, ventilation, alveolar-airspace size, and gas exchange-across MRI scanner manufacturers most used for this application. Moreover, recommendations are described for 129 Xe dose volumes and breath-hold standardization to further foster consistency of imaging studies. The intention is that sites with HP 129 Xe MRI capabilities can readily implement these methods to obtain consistent high-quality images that provide regional insight into lung structure and function. While this document represents consensus at a snapshot in time, a roadmap for technical developments is provided that will further increase image quality and efficiency. These standardized dosing and imaging protocols will facilitate the wider adoption of HP 129 Xe MRI for multi-site pulmonary research.
Collapse
Affiliation(s)
- Peter J Niedbalski
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Chase S Hall
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Mario Castro
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Rachel L Eddy
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jonathan H Rayment
- Division of Respiratory Medicine, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarah Svenningsen
- Firestone Institute for Respiratory Health, St Joseph's Healthcare, McMaster University, Hamilton, Ontario, Canada.,Department of Medicine, Division of Respirology, McMaster University, Hamilton, Ontario, Canada
| | - Grace Parraga
- Robarts Research Institute, Western University, London, Ontario, Canada
| | - Brandon Zanette
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Giles E Santyr
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Robert P Thomen
- Departments of Radiology and Bioengineering, University of Missouri, Columbia, Missouri, USA
| | - Neil J Stewart
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Guilhem J Collier
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Ho-Fung Chan
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Jim M Wild
- POLARIS, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Sean B Fain
- Departments of Medical Physics, Radiology, and Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, USA
| | - G Wilson Miller
- Center for In-vivo Hyperpolarized Gas MR Imaging, Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| | - Jaime F Mata
- Center for In-vivo Hyperpolarized Gas MR Imaging, Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| | - John P Mugler
- Center for In-vivo Hyperpolarized Gas MR Imaging, Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| | - Bastiaan Driehuys
- Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Matthew M Willmering
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Zackary I Cleveland
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Departments of Pediatrics (Pulmonary Medicine) and Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jason C Woods
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Departments of Pediatrics (Pulmonary Medicine) and Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
16
|
Grynko V, Shepelytskyi Y, Li T, Hassan A, Granberg K, Albert MS. Hyperpolarized 129 Xe multi-slice imaging of the human brain using a 3D gradient echo pulse sequence. Magn Reson Med 2021; 86:3175-3181. [PMID: 34272774 DOI: 10.1002/mrm.28932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/10/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE To demonstrate the possibility of performing multi-slice in-vivo human brain MRI using hyperpolarized (HP) xenon-129 (129 Xe) in two different orientations and to calculate the signal-to-noise ratio (SNR). METHODS Two healthy female participants were imaged during a single breath-hold of HP 129 Xe using a Philips Achieva 3.0T MRI scanner (Philips, Andover, MA). Each HP 129 Xe multi-slice brain image was acquired during separate HP 129 Xe breath-holds using 3D gradient echo (GRE) imaging. The acquisition started 10 s after the inhalation of 1 L of HP 129 Xe. Overall, four sagittal and three axial images were acquired (seven imaging sessions per participant). The SNR was calculated for each slice in both orientations. RESULTS The first ever HP 129 Xe multi-slice images of the brain were acquired in axial and sagittal orientations. The HP 129 Xe signal distribution correlated well with the gray matter distribution. The highest SNR values were close in the axial and sagittal orientations (19.46 ± 3.25 and 18.76 ± 4.94, respectively). Additionally, anatomical features, such as the ventricles, were observed in both orientations. CONCLUSION The possibility of using multi-slice HP 129 Xe human brain magnetic resonance imaging was demonstrated for the first time. HP 129 Xe multi-slice MRI can be implemented for brain imaging to improve current diagnostic methods.
Collapse
Affiliation(s)
- Vira Grynko
- Chemistry and Materials Science Program, Lakehead University, Thunder Bay, Ontario, Canada.,Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada
| | - Yurii Shepelytskyi
- Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada.,Chemistry Department, Lakehead University, Thunder Bay, Ontario, Canada
| | - Tao Li
- Chemistry Department, Lakehead University, Thunder Bay, Ontario, Canada
| | - Ayman Hassan
- Thunder Bay Regional Health Sciences Centre, Thunder Bay, Ontario, Canada.,Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada
| | - Karl Granberg
- Thunder Bay Regional Health Sciences Centre, Thunder Bay, Ontario, Canada
| | - Mitchell S Albert
- Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada.,Chemistry Department, Lakehead University, Thunder Bay, Ontario, Canada.,Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada
| |
Collapse
|
17
|
Shepelytskyi Y, Grynko V, Li T, Hassan A, Granberg K, Albert MS. The effects of an initial depolarization pulse on dissolved phase hyperpolarized 129 Xe brain MRI. Magn Reson Med 2021; 86:3147-3155. [PMID: 34254356 DOI: 10.1002/mrm.28918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/01/2021] [Accepted: 06/16/2021] [Indexed: 12/27/2022]
Abstract
PURPOSE To evaluate the effect of an initial 90° depolarization RF pulse on the dissolved-phase hyperpolarized (HP) xenon-129 (129 Xe) brain imaging and to compare the SNR variability of HP 129 Xe images acquired without an initial depolarization RF pulse to those following the initial depolarization pulse. METHODS Five cognitive normal healthy volunteers were imaged using a Philips Achieva 3.0T MRI scanner during a single breath-hold following inhalation of 1 L of HP 129 Xe. Each participant underwent six HP 129 Xe scans. Three scans were performed using conventional single-slice projection HP 129 Xe brain imaging, and the other three scans were performed using the HP 129 Xe time-of-flight imaging with an initial rectangular depolarization pulse. RESULTS Although the utilization of an initial depolarization results in the reduction of the mean image SNR, the presence of an initial depolarization RF pulse reduces the SNR variability of the HP 129 Xe brain image by a factor of 2.26. The highest SNR variability was observed from the posterior brain region, where the anterior region possessed the lower level of signal variability. CONCLUSION An initial 90° depolarization RF pulse, applied prior to the HP 129 Xe image acquisition, reduced the HP 129 Xe signal variability more than two times between the different breath-hold images.
Collapse
Affiliation(s)
- Yurii Shepelytskyi
- Department of Chemistry, Lakehead University, Thunder Bay, Ontario, Canada.,Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada
| | - Vira Grynko
- Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada.,Chemistry and Materials Science Program, Lakehead University, Thunder Bay, Ontario, Canada
| | - Tao Li
- Department of Chemistry, Lakehead University, Thunder Bay, Ontario, Canada
| | - Ayman Hassan
- Thunder Bay Regional Health Sciences Centre, Thunder Bay, Ontario, Canada.,Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada
| | - Karl Granberg
- Thunder Bay Regional Health Sciences Centre, Thunder Bay, Ontario, Canada
| | - Mitchell S Albert
- Department of Chemistry, Lakehead University, Thunder Bay, Ontario, Canada.,Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada.,Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada
| |
Collapse
|
18
|
Ohno Y, Seo JB, Parraga G, Lee KS, Gefter WB, Fain SB, Schiebler ML, Hatabu H. Pulmonary Functional Imaging: Part 1-State-of-the-Art Technical and Physiologic Underpinnings. Radiology 2021; 299:508-523. [PMID: 33825513 DOI: 10.1148/radiol.2021203711] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Over the past few decades, pulmonary imaging technologies have advanced from chest radiography and nuclear medicine methods to high-spatial-resolution or low-dose chest CT and MRI. It is currently possible to identify and measure pulmonary pathologic changes before these are obvious even to patients or depicted on conventional morphologic images. Here, key technological advances are described, including multiparametric CT image processing methods, inhaled hyperpolarized and fluorinated gas MRI, and four-dimensional free-breathing CT and MRI methods to measure regional ventilation, perfusion, gas exchange, and biomechanics. The basic anatomic and physiologic underpinnings of these pulmonary functional imaging techniques are explained. In addition, advances in image analysis and computational and artificial intelligence (machine learning) methods pertinent to functional lung imaging are discussed. The clinical applications of pulmonary functional imaging, including both the opportunities and challenges for clinical translation and deployment, will be discussed in part 2 of this review. Given the technical advances in these sophisticated imaging methods and the wealth of information they can provide, it is anticipated that pulmonary functional imaging will be increasingly used in the care of patients with lung disease. © RSNA, 2021 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Yoshiharu Ohno
- From the Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan (Y.O.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Department of Medicine, Robarts Research Institute, and Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Departments of Medical Physics and Radiology (S.B.F., M.L.S.), UW-Madison School of Medicine and Public Health, Madison, Wis; and Center for Pulmonary Functional Imaging, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02215 (H.H.)
| | - Joon Beom Seo
- From the Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan (Y.O.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Department of Medicine, Robarts Research Institute, and Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Departments of Medical Physics and Radiology (S.B.F., M.L.S.), UW-Madison School of Medicine and Public Health, Madison, Wis; and Center for Pulmonary Functional Imaging, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02215 (H.H.)
| | - Grace Parraga
- From the Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan (Y.O.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Department of Medicine, Robarts Research Institute, and Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Departments of Medical Physics and Radiology (S.B.F., M.L.S.), UW-Madison School of Medicine and Public Health, Madison, Wis; and Center for Pulmonary Functional Imaging, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02215 (H.H.)
| | - Kyung Soo Lee
- From the Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan (Y.O.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Department of Medicine, Robarts Research Institute, and Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Departments of Medical Physics and Radiology (S.B.F., M.L.S.), UW-Madison School of Medicine and Public Health, Madison, Wis; and Center for Pulmonary Functional Imaging, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02215 (H.H.)
| | - Warren B Gefter
- From the Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan (Y.O.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Department of Medicine, Robarts Research Institute, and Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Departments of Medical Physics and Radiology (S.B.F., M.L.S.), UW-Madison School of Medicine and Public Health, Madison, Wis; and Center for Pulmonary Functional Imaging, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02215 (H.H.)
| | - Sean B Fain
- From the Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan (Y.O.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Department of Medicine, Robarts Research Institute, and Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Departments of Medical Physics and Radiology (S.B.F., M.L.S.), UW-Madison School of Medicine and Public Health, Madison, Wis; and Center for Pulmonary Functional Imaging, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02215 (H.H.)
| | - Mark L Schiebler
- From the Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan (Y.O.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Department of Medicine, Robarts Research Institute, and Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Departments of Medical Physics and Radiology (S.B.F., M.L.S.), UW-Madison School of Medicine and Public Health, Madison, Wis; and Center for Pulmonary Functional Imaging, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02215 (H.H.)
| | - Hiroto Hatabu
- From the Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y.O.); Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan (Y.O.); Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea (J.B.S.); Department of Medicine, Robarts Research Institute, and Department of Medical Biophysics, Western University, London, Canada (G.P.); Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea (K.S.L.); Department of Radiology, Penn Medicine, University of Pennsylvania, Philadelphia, Pa (W.B.G.); Departments of Medical Physics and Radiology (S.B.F., M.L.S.), UW-Madison School of Medicine and Public Health, Madison, Wis; and Center for Pulmonary Functional Imaging, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02215 (H.H.)
| |
Collapse
|
19
|
Marshall H, Stewart NJ, Chan HF, Rao M, Norquay G, Wild JM. In vivo methods and applications of xenon-129 magnetic resonance. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 122:42-62. [PMID: 33632417 PMCID: PMC7933823 DOI: 10.1016/j.pnmrs.2020.11.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 05/28/2023]
Abstract
Hyperpolarised gas lung MRI using xenon-129 can provide detailed 3D images of the ventilated lung airspaces, and can be applied to quantify lung microstructure and detailed aspects of lung function such as gas exchange. It is sensitive to functional and structural changes in early lung disease and can be used in longitudinal studies of disease progression and therapy response. The ability of 129Xe to dissolve into the blood stream and its chemical shift sensitivity to its local environment allow monitoring of gas exchange in the lungs, perfusion of the brain and kidneys, and blood oxygenation. This article reviews the methods and applications of in vivo129Xe MR in humans, with a focus on the physics of polarisation by optical pumping, radiofrequency coil and pulse sequence design, and the in vivo applications of 129Xe MRI and MRS to examine lung ventilation, microstructure and gas exchange, blood oxygenation, and perfusion of the brain and kidneys.
Collapse
Affiliation(s)
- Helen Marshall
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Neil J Stewart
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Ho-Fung Chan
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Madhwesha Rao
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Graham Norquay
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Jim M Wild
- POLARIS, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
20
|
Hahn AD, Malkus A, Kammerman J, Higano N, Walkup LL, Woods J, Fain SB. Effects of neonatal lung abnormalities on parenchymal R 2 * estimates. J Magn Reson Imaging 2021; 53:1853-1861. [PMID: 33404085 DOI: 10.1002/jmri.27487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 11/09/2022] Open
Abstract
Infants admitted to the neonatal intensive care unit (NICU) often suffer from multifaceted pulmonary morbidities that are not well understood. Ultrashort echo time (UTE) magnetic resonance imaging (MRI) is a promising technique for pulmonary imaging in this population without requiring exposure to ionizing radiation. The aims of this study were to investigate the effect of neonatal pulmonary disease on R2 * and tissue density and to utilize numerical simulations to evaluate the effect of different alveolar structures on predicted R2 *.This was a prospective study, in which 17 neonatal human subjects (five control, seven with bronchopulmonary dysplasia [BPD], five with congenital diaphragmatic hernia [CDH]) were enrolled. Twelve subjects were male and five were female, with postmenstrual age (PMA) at MRI of 39.7 ± 4.7 weeks. A 1.5T/multiecho three-dimensional UTE MRI was used. Pulmonary R2 * and tissue density were compared across disease groups over the whole lung and regionally. A spherical shell alveolar model was used to predict the expected R2 * over a range of tissue densities and tissue susceptibilities. Tests for significantly different mean R2 * and tissue densities across disease groups were evaluated using analysis of variance, with subsequent pairwise group comparisons performed using t tests. Lung tissue density was lower in the ipsilateral lung in CDH compared to both controls and BPD patients (both p < 0.05), while only the contralateral lung in CDH (CDHc) had higher whole-lung R2 * than both controls and BPD (both p < 0.05). R2 * differences were significant between controls and CDHc within all tissue density ranges (all p < 0.05) with the exception of the 80%-90% range (p = 0.17). Simulations predicted an inverse relationship between alveolar tissue density and R2 * that matches empirical human data. Alveolar wall thickness had no effect on R2 * independent of density (p = 1). The inverse relationship between R2 * and tissue density is influenced by the presence of disease globally and regionally in neonates with BPD and CDH in the NICU. LEVEL OF EVIDENCE: 2. TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Andrew D Hahn
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA
| | - Annelise Malkus
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA
| | - Jeffery Kammerman
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA
| | - Nara Higano
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Laura L Walkup
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jason Woods
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Sean B Fain
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA.,Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA.,Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
21
|
Inhaled Gas Magnetic Resonance Imaging: Advances, Applications, Limitations, and New Frontiers. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
22
|
Hopkins SR. Ventilation/Perfusion Relationships and Gas Exchange: Measurement Approaches. Compr Physiol 2020; 10:1155-1205. [PMID: 32941684 DOI: 10.1002/cphy.c180042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ventilation-perfusion ( V ˙ A / Q ˙ ) matching, the regional matching of the flow of fresh gas to flow of deoxygenated capillary blood, is the most important mechanism affecting the efficiency of pulmonary gas exchange. This article discusses the measurement of V ˙ A / Q ˙ matching with three broad classes of techniques: (i) those based in gas exchange, such as the multiple inert gas elimination technique (MIGET); (ii) those derived from imaging techniques such as single-photon emission computed tomography (SPECT), positron emission tomography (PET), magnetic resonance imaging (MRI), computed tomography (CT), and electrical impedance tomography (EIT); and (iii) fluorescent and radiolabeled microspheres. The focus is on the physiological basis of these techniques that provide quantitative information for research purposes rather than qualitative measurements that are used clinically. The fundamental equations of pulmonary gas exchange are first reviewed to lay the foundation for the gas exchange techniques and some of the imaging applications. The physiological considerations for each of the techniques along with advantages and disadvantages are briefly discussed. © 2020 American Physiological Society. Compr Physiol 10:1155-1205, 2020.
Collapse
Affiliation(s)
- Susan R Hopkins
- Departments of Medicine and Radiology, University of California, San Diego, California, USA
| |
Collapse
|
23
|
Ruppert K, Amzajerdian F, Xin Y, Hamedani H, Loza L, Achekzai T, Duncan IF, Profka H, Qian Y, Pourfathi M, Kadlecek S, Rizi RR. Investigating biases in the measurement of apparent alveolar septal wall thickness with hyperpolarized 129Xe MRI. Magn Reson Med 2020; 84:3027-3039. [PMID: 32557808 DOI: 10.1002/mrm.28329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/03/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE To investigate biases in the measurement of apparent alveolar septal wall thickness (SWT) with hyperpolarized xenon-129 (HXe) as a function of acquisition parameters. METHODS The HXe MRI scans with simultaneous gas-phase and dissolved-phase excitation were performed using 1-dimensional projection scans in mechanically ventilated rabbits. The dissolved-phase magnetization was periodically saturated, and the dissolved-phase xenon uptake dynamics were measured at end inspiration and end expiration with temporal resolutions up to 10 ms using a Look-Locker-type acquisition. The apparent alveolar septal wall thickness was extracted by fitting the signal to a theoretical model, and the findings were compared with those from the more commonly use chemical shift saturation recovery MRI spectroscopy technique with several different delay time arrangements. RESULTS It was found that repeated application of RF saturation pulses in chemical shift saturation recovery acquisitions caused exchange-dependent gas-phase saturation that heavily biased the derived SWT value. When this bias was reduced by our proposed method, the SWT dependence on lung inflation disappeared due to an inherent insensitivity of HXe dissolved-phase MRI to thin alveolar structures with very short T 2 ∗ . Furthermore, perfusion-based macroscopic gas transport processes were demonstrated to cause increasing apparent SWTs with TE (2.5 μm/ms at end expiration) and a lung periphery-to-center SWT gradient. CONCLUSION The apparent SWT measured with HXe MRI was found to be heavily dependent on the acquisition parameters. A method is proposed that can minimize this measurement bias, add limited spatial resolution, and reduce measurement time to a degree that free-breathing studies are feasible.
Collapse
Affiliation(s)
- Kai Ruppert
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Faraz Amzajerdian
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yi Xin
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hooman Hamedani
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Luis Loza
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tahmina Achekzai
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ian F Duncan
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Harrilla Profka
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Mehrdad Pourfathi
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephen Kadlecek
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rahim R Rizi
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
24
|
Intratracheal Delivery of Nano- and Microparticles and Hyperpolarized Gases. Chest 2020; 157:1579-1590. [DOI: 10.1016/j.chest.2019.11.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/21/2019] [Accepted: 11/29/2019] [Indexed: 12/24/2022] Open
|
25
|
Topping GJ, Hundshammer C, Nagel L, Grashei M, Aigner M, Skinner JG, Schulte RF, Schilling F. Acquisition strategies for spatially resolved magnetic resonance detection of hyperpolarized nuclei. MAGMA (NEW YORK, N.Y.) 2020; 33:221-256. [PMID: 31811491 PMCID: PMC7109201 DOI: 10.1007/s10334-019-00807-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/08/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Hyperpolarization is an emerging method in magnetic resonance imaging that allows nuclear spin polarization of gases or liquids to be temporarily enhanced by up to five or six orders of magnitude at clinically relevant field strengths and administered at high concentration to a subject at the time of measurement. This transient gain in signal has enabled the non-invasive detection and imaging of gas ventilation and diffusion in the lungs, perfusion in blood vessels and tissues, and metabolic conversion in cells, animals, and patients. The rapid development of this method is based on advances in polarizer technology, the availability of suitable probe isotopes and molecules, improved MRI hardware and pulse sequence development. Acquisition strategies for hyperpolarized nuclei are not yet standardized and are set up individually at most sites depending on the specific requirements of the probe, the object of interest, and the MRI hardware. This review provides a detailed introduction to spatially resolved detection of hyperpolarized nuclei and summarizes novel and previously established acquisition strategies for different key areas of application.
Collapse
Affiliation(s)
- Geoffrey J Topping
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christian Hundshammer
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Luca Nagel
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Martin Grashei
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maximilian Aigner
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jason G Skinner
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Franz Schilling
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
26
|
Zhang M, Li H, Li H, Zhao X, Zhou Q, Rao Q, Han Y, Lan Y, Deng H, Sun X, Lou X, Ye C, Zhou X. Quantitative evaluation of lung injury caused by PM 2.5 using hyperpolarized gas magnetic resonance. Magn Reson Med 2019; 84:569-578. [PMID: 31868253 DOI: 10.1002/mrm.28145] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE To demonstrate the feasibility of 129 Xe MR in evaluating the pulmonary physiological changes caused by PM2.5 in animal models. METHODS Six rats were treated with PM2.5 solution (16.2 mg/kg) by intratracheal instillation twice a week for 4 weeks, and another six rats treated with normal saline served as the control cohort. Pulmonary function tests, hyperpolarized 129 Xe multi-b diffusion-weighted imaging, and chemical shift saturation recovery MR spectroscopy were performed on all rats, and the pulmonary structure and functional parameters were obtained from hyperpolarized 129 Xe MR data. Additionally, histological analysis was performed on all rats to evaluate alveolar septal thickness. Statistical analysis of all the obtained parameters was performed using unpaired 2-tailed t tests. RESULTS Compared with the control group, the measured exchange time constant increased from 11.74 ± 2.39 to 14.00 ± 2.84 ms (P < .05), and the septal wall thickness increased from 6.17 ± 0.48 to 6.74 ± 0.52 μm (P < .05) in the PM2.5 cohort by 129 Xe MR spectroscopy, which correlated well with that obtained using quantitative histology (increased from 5.52 ± 0.32 to 6.20 ± 0.36 μm). Additionally, the mean TP/GAS ratio increased from 0.828 ± 0.115 to 1.019 ± 0.140 in the PM2.5 cohort (P = .021). CONCLUSIONS Hyperpolarized 129 Xe MR could quantify the changes in gas exchange physiology caused by PM2.5 , indicating that the technique has the potential to be a useful tool for evaluation of pulmonary injury caused by air pollution in the future.
Collapse
Affiliation(s)
- Ming Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Haidong Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Hongchuang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiuchao Zhao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Qian Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Qiuchen Rao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yeqing Han
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yina Lan
- Department of Radiology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - He Deng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xianping Sun
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xin Lou
- Department of Radiology, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Chaohui Ye
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
27
|
Kern AL, Biller H, Klimeš F, Voskrebenzev A, Gutberlet M, Renne J, Müller M, Holz O, Wacker F, Hohlfeld JM, Vogel-Claussen J. Noninvasive Monitoring of the Response of Human Lungs to Low-Dose Lipopolysaccharide Inhalation Challenge Using MRI: A Feasibility Study. J Magn Reson Imaging 2019; 51:1669-1676. [PMID: 31729119 DOI: 10.1002/jmri.27000] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Development of antiinflammatory drugs for lung diseases demands novel methods for noninvasive assessment of inflammatory processes in the lung. PURPOSE To investigate the feasibility of hyperpolarized 129 Xe MRI, 1 H T1 time mapping, and dynamic contrast-enhanced (DCE) perfusion MRI for monitoring the response of human lungs to low-dose inhaled lipopolysaccharide (LPS) challenge compared to inflammatory cell counts from induced-sputum analysis. STUDY TYPE Prospective feasibility study. POPULATION Ten healthy volunteers underwent MRI before and 6 hours after inhaled LPS challenge with subsequent induced-sputum collection. FIELD STRENGTH/SEQUENCES 1.5T/hyperpolarized 129 Xe MRI: Interleaved multiecho imaging of dissolved and gas phase, ventilation imaging, dissolved-phase spectroscopy, and chemical shift saturation recovery spectroscopy. 1 H MRI: Inversion recovery fast low-angle shot imaging for T1 mapping, time-resolved angiography with stochastic trajectories for DCE MRI. ASSESSMENT Dissolved-phase ratios of 129 Xe in red blood cells (RBC), tissue/plasma (TP) and gas phase (GP), ventilation defect percentage, septal wall thickness, surface-to-volume ratio, capillary transit time, lineshape parameters in dissolved-phase spectroscopy, 1 H T1 time, blood volume, flow, and mean transit time were determined and compared to cell counts. STATISTICAL TESTS Wilcoxon signed-rank test, Pearson correlation. RESULTS The percentage of neutrophils in sputum was markedly increased after LPS inhalation compared to baseline, P = 0.002. The group median RBC-TP ratio was significantly reduced from 0.40 to 0.31, P = 0.004, and 1 H T1 was significantly elevated from 1157.6 msec to 1187.8 msec after LPS challenge, P = 0.027. DCE MRI exhibited no significant changes in blood volume, P = 0.64, flow, P = 0.17, and mean transit time, P = 0.11. DATA CONCLUSION Hyperpolarized 129 Xe dissolved-phase MRI and 1 H T1 mapping may provide biomarkers for noninvasive assessment of the response of human lungs to LPS inhalation. By its specificity to the alveolar region, hyperpolarized 129 Xe MRI together with 1 H T1 mapping adds value to sputum analysis. LEVEL OF EVIDENCE 1 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2020;51:1669-1676.
Collapse
Affiliation(s)
- Agilo L Kern
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Heike Biller
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,Department of Clinical Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Filip Klimeš
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Andreas Voskrebenzev
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Marcel Gutberlet
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Julius Renne
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Meike Müller
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,Department of Clinical Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Olaf Holz
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,Department of Clinical Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Frank Wacker
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Jens M Hohlfeld
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,Department of Clinical Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany.,Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Jens Vogel-Claussen
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
28
|
Xie J, Li H, Zhang H, Zhao X, Shi L, Zhang M, Xiao S, Deng H, Wang K, Yang H, Sun X, Wu G, Ye C, Zhou X. Single breath-hold measurement of pulmonary gas exchange and diffusion in humans with hyperpolarized 129 Xe MR. NMR IN BIOMEDICINE 2019; 32:e4068. [PMID: 30843292 DOI: 10.1002/nbm.4068] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/04/2018] [Accepted: 01/04/2019] [Indexed: 06/09/2023]
Abstract
Pulmonary diseases usually result in changes of the blood-gas exchange function in the early stages. Gas exchange across the respiratory membrane and gas diffusion in the alveoli can be quantified using hyperpolarized 129 Xe MR via chemical shift saturation recovery (CSSR) and diffusion-weighted imaging (DWI), respectively. Generally, CSSR and DWI data have been collected in separate breaths in humans. Unfortunately, the lung inflation level cannot be the exactly same in different breaths, which causes fluctuations in blood-gas exchange and pulmonary microstructure. Here we combine CSSR and DWI obtained with compressed sensing, to evaluate the gas diffusion and exchange function within a single breath-hold in humans. A new parameter, namely the perfusion factor of the respiratory membrane (SVRd/g ), is proposed to evaluate the gas exchange function. Hyperpolarized 129 Xe MR data are compared with pulmonary function tests and computed tomography examinations in healthy young, age-matched control, and chronic obstructive pulmonary disease human cohorts. SVRd/g decreases as the ventilation impairment and emphysema index increase. Our results indicate that the proposed method has the potential to detect the extent of lung parenchyma destruction caused by age and pulmonary diseases, and it would be useful in the early diagnosis of pulmonary diseases in clinical practice.
Collapse
Affiliation(s)
- Junshuai Xie
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haidong Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huiting Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Xiuchao Zhao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei Shi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ming Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Sa Xiao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - He Deng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ke Wang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hao Yang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xianping Sun
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guangyao Wu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chaohui Ye
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
29
|
Zanette B, Santyr G. Accelerated interleaved spiral-IDEAL imaging of hyperpolarized 129 Xe for parametric gas exchange mapping in humans. Magn Reson Med 2019; 82:1113-1119. [PMID: 30989730 DOI: 10.1002/mrm.27765] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 01/22/2019] [Accepted: 03/18/2019] [Indexed: 12/24/2022]
Abstract
PURPOSE To demonstrate the feasibility of mapping gas exchange with single breath-hold hyperpolarized (HP) 129 Xe in humans, acquiring parametric maps of lung physiology. The potential benefit of acceleration using parallel imaging for this application is also explored. METHODS Six healthy volunteers were scanned with a modified spiral-IDEAL sequence to acquire gas exchange-weighted images using a single dose of 129 Xe. These images were fit with the model of xenon exchange (MOXE) on a voxel-wise basis calculating parametric maps of lung physiology, specifically: air-capillary barrier thickness (δ), alveolar septal thickness (d), capillary transit time (tx ), pulmonary hematocrit (HCT), and alveolar surface area-to-volume ratio (SVR). An accelerated version of the sequence was also tested in subset of 4 volunteers and compared to the fully sampled (FS) results. RESULTS Mean image-wide values calculated from MOXE parametric maps derived from FS dissolved 129 Xe spiral-IDEAL images were: δ = 0.89 ± 0.17 μm, d = 7.5 ± 0.5 μm, tx = 1.1 ± 0.2s, HCT = 28.8 ± 2.3%, and SVR = 140 ± 16 cm-1 , in good agreement with previously published values based on whole-lung spectroscopy of healthy human subjects. Parallel imaging sufficiently reduces artifacting in accelerated images, but increases disagreement with MOXE parameters derived from FS data with mean voxel-wise unsigned relative differences of: δ = 39 ± 9%, d = 22 ± 3%, tx = 117 ± 43%, HCT = 11 ± 2%, and SVR = 31 ± 12%. CONCLUSION Dissolved HP 129 Xe spiral-IDEAL imaging for gas exchange mapping is feasible in humans using a single breath-hold. Accelerated gas exchange mapping is also shown to be feasible but requires further improvements to increase quantitative accuracy.
Collapse
Affiliation(s)
- Brandon Zanette
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Giles Santyr
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Hahn AD, Kammerman J, Evans M, Zha W, Cadman RV, Meyer K, Sandbo N, Fain SB. Repeatability of regional pulmonary functional metrics of Hyperpolarized 129 Xe dissolved-phase MRI. J Magn Reson Imaging 2019; 50:1182-1190. [PMID: 30968993 DOI: 10.1002/jmri.26745] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND MRI of hyperpolarized 129 Xenon (HP 129 Xe) is increasingly utilized for investigating pulmonary function. The solubility of HP 129 Xe in lung tissue, blood plasma (Barrier), and red blood cells (RBC), with unique chemical shifts, enables spectroscopic imaging of potential imaging biomarkers of gas exchange and microstructural pulmonary physiology. PURPOSE To quantify global average and regional repeatability of Barrier:gas, RBC:gas, and RBC:Barrier ratios derived from dissolved-phase 129 Xe imaging and their dependence on intervisit changes in lung inflation volume. STUDY TYPE Prospective. POPULATION Fourteen healthy volunteers. One subject was unable to complete the study resulting in 13 subjects for analysis (eight female, five male, ages 24-69, 53.8 ± 13.9). FIELD STRENGTH 1.5T. ASSESSMENT Subjects were imaged using a 3D radial 1-point Dixon method to separate Barrier and RBC component signals, at two different timepoints, with ~1 month between visits. RBC:Gas, Barrier:Gas, and RBC:Barrier measures were compared across time and with pulmonary function tests (PFTs). STATISTICAL TESTS Repeatablilty was quantified using Bland-Altman plots, coefficient of repeatability, coefficient of variation (CV), and intraclass correlation coefficients (ICCs). Dependence of imaging measures on PFTs and lung volume was evaluated using Spearman and Pearson correlation coefficients, respectively. Statistical significance was determined by F-test for intraclass correlations, and t-test for Spearman correlations and regression. RESULTS Mean RBC:Gas, Barrier:Gas, and RBC:Barrier had CVs of 19.2%, 20.0%, and 11.5%, respectively, and had significant ICCs, equal to 0.78, 0.79, and 0.92, respectively. Intervisit differences in RBC:Barrier were significantly correlated with intervisit differences in DLCO (r = 0.93, P = 0.007). Significant correlations with intervisit lung volume differences and intervisit differences in mean RBC:Gas (r = -0.73, P = 0.005) and Barrier:Gas (r = -0.69, P = 0.009) were found. DATA CONCLUSION Three commonly used 129 Xe MRI-based measures of gas-exchange show good repeatability, particularly the Barrier:RBC ratio, which did not depend on lung inflation volume and was strongly associated with intervisit changes in DLCO . LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;50:1182-1190.
Collapse
Affiliation(s)
- Andrew D Hahn
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA
| | - Jeff Kammerman
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA
| | - Michael Evans
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin, USA
| | - Wei Zha
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA
| | - Robert V Cadman
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA
| | - Keith Meyer
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Nathan Sandbo
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Sean B Fain
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA.,Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA.,Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
31
|
Mammarappallil JG, Rankine L, Wild JM, Driehuys B. New Developments in Imaging Idiopathic Pulmonary Fibrosis With Hyperpolarized Xenon Magnetic Resonance Imaging. J Thorac Imaging 2019; 34:136-150. [PMID: 30801449 PMCID: PMC6392051 DOI: 10.1097/rti.0000000000000392] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive pulmonary disease that is ultimately fatal. Although the diagnosis of IPF has been revolutionized by high-resolution computed tomography, this imaging modality still exhibits significant limitations, particularly in assessing disease progression and therapy response. The need for noninvasive regional assessment has become more acute in light of recently introduced novel therapies and numerous others in the pipeline. Thus, it will likely be valuable to complement 3-dimensional imaging of lung structure with 3-dimensional regional assessment of function. This challenge is well addressed by hyperpolarized (HP) Xe magnetic resonance imaging (MRI), exploiting the unique properties of this inert gas to image its distribution, not only in the airspaces, but also in the interstitial barrier tissues and red blood cells. This single-breath imaging exam could ultimately become the ideal, noninvasive tool to assess pulmonary gas-exchange impairment in IPF. This review article will detail the evolution of HP Xe MRI from its early development to its current state as a clinical research platform. It will detail the key imaging biomarkers that can be generated from the Xe MRI examination, as well as their potential in IPF for diagnosis, prognosis, and assessment of therapeutic response. We conclude by discussing the types of studies that must be performed for HP Xe MRI to be incorporated into the IPF clinical algorithm and begin to positively impact IPF disease diagnosis and management.
Collapse
Affiliation(s)
| | - Leith Rankine
- Department of Radiology, Duke University Medical Center, Durham, NC
| | - Jim M Wild
- Department of Infection, Immunity & Cardiovascular Disease, Academic Radiology, University of Sheffield, Western Bank, UK
| | | |
Collapse
|
32
|
Kern AL, Gutberlet M, Voskrebenzev A, Klimeš F, Rotärmel A, Wacker F, Hohlfeld JM, Vogel‐Claussen J. Mapping of regional lung microstructural parameters using hyperpolarized
129
Xe dissolved‐phase MRI in healthy volunteers and patients with chronic obstructive pulmonary disease. Magn Reson Med 2018; 81:2360-2373. [DOI: 10.1002/mrm.27559] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Agilo L. Kern
- Diagnostic and Interventional Radiology Hannover Medical School Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) Member of the German Center for Lung Research (DZL) Hannover Germany
| | - Marcel Gutberlet
- Diagnostic and Interventional Radiology Hannover Medical School Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) Member of the German Center for Lung Research (DZL) Hannover Germany
| | - Andreas Voskrebenzev
- Diagnostic and Interventional Radiology Hannover Medical School Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) Member of the German Center for Lung Research (DZL) Hannover Germany
| | - Filip Klimeš
- Diagnostic and Interventional Radiology Hannover Medical School Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) Member of the German Center for Lung Research (DZL) Hannover Germany
| | - Alexander Rotärmel
- Diagnostic and Interventional Radiology Hannover Medical School Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) Member of the German Center for Lung Research (DZL) Hannover Germany
| | - Frank Wacker
- Diagnostic and Interventional Radiology Hannover Medical School Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) Member of the German Center for Lung Research (DZL) Hannover Germany
| | - Jens M. Hohlfeld
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) Member of the German Center for Lung Research (DZL) Hannover Germany
- Clinical Airway Research Fraunhofer Institute for Toxicology and Experimental Medicine Hannover Germany
- Department of Respiratory Medicine Hannover Medical School Hannover Germany
| | - Jens Vogel‐Claussen
- Diagnostic and Interventional Radiology Hannover Medical School Hannover Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) Member of the German Center for Lung Research (DZL) Hannover Germany
| |
Collapse
|
33
|
Kern AL, Gutberlet M, Qing K, Voskrebenzev A, Klimeš F, Kaireit TF, Czerner C, Biller H, Wacker F, Ruppert K, Hohlfeld JM, Vogel-Claussen J. Regional investigation of lung function and microstructure parameters by localized 129 Xe chemical shift saturation recovery and dissolved-phase imaging: A reproducibility study. Magn Reson Med 2018; 81:13-24. [PMID: 30198113 DOI: 10.1002/mrm.27407] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/03/2018] [Accepted: 05/28/2018] [Indexed: 01/25/2023]
Abstract
PURPOSE To evaluate the reproducibility and regional variation of parameters obtained from localized 129 Xe chemical shift saturation recovery (CSSR) MR spectroscopy in healthy volunteers and patients with chronic obstructive pulmonary disease (COPD) and to compare the results to 129 Xe dissolved-phase MR imaging. METHODS Thirteen healthy volunteers and 10 COPD patients were scanned twice using 129 Xe dissolved-phase imaging, CSSR, and ventilation imaging sequences. A 16-channel phased-array coil in combination with the regularized spectral localization achieved by sensitivity heterogeneity (SPLASH) method was used to perform a regional analysis of CSSR data. Lung function and microstructural parameters were obtained using Patz model functions and their reproducibility was assessed. RESULTS The Patz model alveolar wall thickness parameter shows good reproducibility on a regional basis with a median coefficient of variation of 6.5% in healthy volunteers and 12.4% in COPD patients. Significant regional differences of lung function parameters derived from localized CSSR were found in healthy volunteers and correlations with spirometric indices were found. CONCLUSION Localized 129 Xe CSSR provides reproducible estimates of alveolar wall thickness and is able to detect regional differences of lung microstructure.
Collapse
Affiliation(s)
- Agilo Luitger Kern
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Marcel Gutberlet
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Kun Qing
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia
| | - Andreas Voskrebenzev
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Filip Klimeš
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Till Frederik Kaireit
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Christoph Czerner
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Heike Biller
- Clinical Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Frank Wacker
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Kai Ruppert
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jens M Hohlfeld
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,Clinical Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany.,Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Jens Vogel-Claussen
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
34
|
Li H, Zhang Z, Zhao X, Han Y, Sun X, Ye C, Zhou X. Quantitative evaluation of pulmonary gas-exchange function using hyperpolarized 129 Xe CEST MRS and MRI. NMR IN BIOMEDICINE 2018; 31:e3961. [PMID: 30040165 DOI: 10.1002/nbm.3961] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/14/2018] [Accepted: 05/20/2018] [Indexed: 06/08/2023]
Abstract
Hyperpolarized 129 Xe gas MR has been a powerful tool for evaluating pulmonary structure and function due to the extremely high enhancement in spin polarization, the good solubility in the pulmonary parenchyma, and the excellent chemical sensitivity to its surrounding environment. Generally, the quantitative structural and functional information of the lung are evaluated using hyperpolarized 129 Xe by employing the techniques of chemical shift saturation recovery (CSSR) and xenon polarization transfer contrast (XTC). Hyperpolarized 129 Xe chemical exchange saturation transfer (Hyper-CEST) is another method for quantifying the exchange information of hyperpolarized 129 Xe by using the exchange of xenon signals according to its different chemical shifts, and it has been widely used in biosensor studies in vitro. However, the feasibility of using hyperpolarized 129 Xe CEST to quantify the pulmonary gas exchange function in vivo is still unclear. In this study, the technique of CEST was used to quantitatively evaluate the gas exchange in the lung globally and regionally via hyperpolarized 129 Xe MRS and MRI, respectively. A new parameter, the pulmonary apparent gas exchange time constant (Tapp ), was defined, and it increased from 0.63 s to 0.95 s in chronic obstructive pulmonary disease (COPD) rats (induced by cigarette smoke and lipopolysaccharide exposure) versus the controls with a significant difference (P = 0.001). Additionally, the spatial distribution maps of Tapp in COPD rats' pulmonary parenchyma showed a regionally obvious increase compared with healthy rats. These results indicated that hyperpolarized 129 Xe CEST MR was an effective method for globally and regionally quantifying the pulmonary gas exchange function, which would be helpful in diagnosing lung diseases that are related to gas exchange, such as COPD.
Collapse
Affiliation(s)
- Haidong Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiying Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiuchao Zhao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yeqing Han
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xianping Sun
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chaohui Ye
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
35
|
Kern AL, Vogel-Claussen J. Hyperpolarized gas MRI in pulmonology. Br J Radiol 2018; 91:20170647. [PMID: 29271239 PMCID: PMC5965996 DOI: 10.1259/bjr.20170647] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/12/2017] [Accepted: 12/08/2017] [Indexed: 01/20/2023] Open
Abstract
Lung diseases have a high prevalence amongst the world population and their early diagnosis has been pointed out to be key for successful treatment. However, there is still a lack of non-invasive examination methods with sensitivity to early, local deterioration of lung function. Proton-based lung MRI is particularly challenging due to short T2* times and low proton density within the lung tissue. Hyperpolarized gas MRI is aan emerging technology providing a richness of methodologies which overcome the aforementioned problems. Unlike proton-based MRI, lung MRI of hyperpolarized gases may rely on imaging of spins in the lung's gas spaces or inside the lung tissue and thereby add substantial value and diagnostic potential to lung MRI. This review article gives an introduction to the MR physics of hyperpolarized media and presents the current state of hyperpolarized gas MRI of 3Headvasd and 129Xe in pulmonology. Key applications, ranging from static and dynamic ventilation imaging as well as oxygen-pressure mapping to 129Xe dissolved-phase imaging and spectroscopy are presented. Hyperpolarized gas MRI is compared to alternative examination methods based on MRI and future directions of hyperpolarized gas MRI are discussed.
Collapse
|