1
|
Tian Y, Nayak KS. New clinical opportunities of low-field MRI: heart, lung, body, and musculoskeletal. MAGMA (NEW YORK, N.Y.) 2024; 37:1-14. [PMID: 37902898 PMCID: PMC10876830 DOI: 10.1007/s10334-023-01123-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 11/01/2023]
Abstract
Contemporary whole-body low-field MRI scanners (< 1 T) present new and exciting opportunities for improved body imaging. The fundamental reason is that the reduced off-resonance and reduced SAR provide substantially increased flexibility in the design of MRI pulse sequences. Promising body applications include lung parenchyma imaging, imaging adjacent to metallic implants, cardiac imaging, and dynamic imaging in general. The lower cost of such systems may make MRI favorable for screening high-risk populations and population health research, and the more open configurations allowed may prove favorable for obese subjects and for pregnant women. This article summarizes promising body applications for contemporary whole-body low-field MRI systems, with a focus on new platforms developed within the past 5 years. This is an active area of research, and one can expect many improvements as MRI physicists fully explore the landscape of pulse sequences that are feasible, and as clinicians apply these to patient populations.
Collapse
Affiliation(s)
- Ye Tian
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, 3740 McClintock Ave, EEB 406, Los Angeles, CA, 90089-2564, USA.
| | - Krishna S Nayak
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, 3740 McClintock Ave, EEB 406, Los Angeles, CA, 90089-2564, USA
| |
Collapse
|
2
|
Traechtler J, Fuetterer M, Albannay MM, Hoh T, Kozerke S. Considerations for hyperpolarized 13 C MR at reduced field: Comparing 1.5T versus 3T. Magn Reson Med 2023; 89:1945-1960. [PMID: 36598063 DOI: 10.1002/mrm.29579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/09/2022] [Accepted: 12/22/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE In contrast to conventional MR, signal-to-noise ratio (SNR) is not linearly dependent on field strength in hyperpolarized MR, as polarization is generated outside the MR system. Moreover, field inhomogeneity-induced artifacts and other practical limitations associated with field strengths ≥ $$ \ge $$ 3T are alleviated at lower fields. The potential of hyperpolarized 13 $$ {}^{13} $$ C spectroscopy and imaging at 1.5T versus 3T is demonstrated in silico, in vitro, and in vivo for applications on clinical MR systems. THEORY AND METHODS Theoretical noise and SNR behavior at different field strengths are investigated based on simulations. A thorough field comparison between 1.5T and 3T is performed using thermal and hyperpolarized 13 $$ {}^{13} $$ C spectroscopy and imaging. Cardiac in vivo data is obtained in pigs using hyperpolarized [1- 13 $$ {}^{13} $$ C]pyruvate spectroscopy and imaging at 1.5T and 3T. RESULTS Based on theoretical considerations and simulations, the SNR of hyperpolarized MR at identical acquisition bandwidths is independent of the field strength for typical coil setups, while adaptively changing the acquisition bandwidth proportional to the static magnetic field allows for net SNR gains of up to 40% at 1.5T compared to 3T. In vitro 13 $$ {}^{13} $$ C data verified these considerations with less than 7% deviation. In vivo feasibility of hyperpolarized [1- 13 $$ {}^{13} $$ C]pyruvate dynamic metabolic spectroscopy and imaging at 1.5T is demonstrated in the pig heart with comparable SNR between 1.5T and 3T while B 0 $$ {}_0 $$ artifacts are noticeably reduced at 1.5T. CONCLUSION Hyperpolarized 13 $$ {}^{13} $$ C MR at lower field strengths is favorable in terms of SNR and off-resonance effects, which makes 1.5T a promising alternative to 3T, especially for clinical cardiac metabolic imaging.
Collapse
Affiliation(s)
- Julia Traechtler
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Maximilian Fuetterer
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Mohammed M Albannay
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland.,Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Tobias Hoh
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Shirbandi K, Rikhtegar R, Khalafi M, Mirza Aghazadeh Attari M, Rahmani F, Javanmardi P, Iraji S, Babaei Aghdam Z, Rezaei Rashnoudi AM. Functional Magnetic Resonance Spectroscopy of Lactate in Alzheimer Disease: A Comprehensive Review of Alzheimer Disease Pathology and the Role of Lactate. Top Magn Reson Imaging 2023; 32:15-26. [PMID: 37093700 PMCID: PMC10121369 DOI: 10.1097/rmr.0000000000000303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/27/2023] [Accepted: 02/17/2023] [Indexed: 04/13/2023]
Abstract
ABSTRACT Functional 1H magnetic resonance spectroscopy (fMRS) is a derivative of dynamic MRS imaging. This modality links physiologic metabolic responses with available activity and measures absolute or relative concentrations of various metabolites. According to clinical evidence, the mitochondrial glycolysis pathway is disrupted in many nervous system disorders, especially Alzheimer disease, resulting in the activation of anaerobic glycolysis and an increased rate of lactate production. Our study evaluates fMRS with J-editing as a cutting-edge technique to detect lactate in Alzheimer disease. In this modality, functional activation is highlighted by signal subtractions of lipids and macromolecules, which yields a much higher signal-to-noise ratio and enables better detection of trace levels of lactate compared with other modalities. However, until now, clinical evidence is not conclusive regarding the widespread use of this diagnostic method. The complex machinery of cellular and noncellular modulators in lactate metabolism has obscured the potential roles fMRS imaging can have in dementia diagnosis. Recent developments in MRI imaging such as the advent of 7 Tesla machines and new image reconstruction methods, coupled with a renewed interest in the molecular and cellular basis of Alzheimer disease, have reinvigorated the drive to establish new clinical options for the early detection of Alzheimer disease. Based on the latter, lactate has the potential to be investigated as a novel diagnostic and prognostic marker for Alzheimer disease.
Collapse
Affiliation(s)
- Kiarash Shirbandi
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Rikhtegar
- Department of Intracranial Endovascular Therapy, Alfried Krupp Krankenhaus Essen, Essen, Germany
| | - Mohammad Khalafi
- Medical Imaging Sciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Farzaneh Rahmani
- Department of Radiology, Washington University in St. Louis, St. Louis, MO
| | - Pouya Javanmardi
- Radiologic Technology Department, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajjad Iraji
- Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Babaei Aghdam
- Medical Imaging Sciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
4
|
Perron S, Ouriadov A. Hyperpolarized 129Xe MRI at low field: Current status and future directions. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 348:107387. [PMID: 36731353 DOI: 10.1016/j.jmr.2023.107387] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/07/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Magnetic Resonance Imaging (MRI) is dictated by the magnetization of the sample, and is thus a low-sensitivity imaging method. Inhalation of hyperpolarized (HP) noble gases, such as helium-3 and xenon-129, is a non-invasive, radiation-risk free imaging technique permitting high resolution imaging of the lungs and pulmonary functions, such as the lung microstructure, diffusion, perfusion, gas exchange, and dynamic ventilation. Instead of increasing the magnetic field strength, the higher spin polarization achievable from this method results in significantly higher net MR signal independent of tissue/water concentration. Moreover, the significantly longer apparent transverse relaxation time T2* of these HP gases at low magnetic field strengths results in fewer necessary radiofrequency (RF) pulses, permitting larger flip angles; this allows for high-sensitivity imaging of in vivo animal and human lungs at conventionally low (<0.5 T) field strengths and suggests that the low field regime is optimal for pulmonary MRI using hyperpolarized gases. In this review, theory on the common spin-exchange optical-pumping method of hyperpolarization and the field dependence of the MR signal of HP gases are presented, in the context of human lung imaging. The current state-of-the-art is explored, with emphasis on both MRI hardware (low field scanners, RF coils, and polarizers) and image acquisition techniques (pulse sequences) advancements. Common challenges surrounding imaging of HP gases and possible solutions are discussed, and the future of low field hyperpolarized gas MRI is posed as being a clinically-accessible and versatile imaging method, circumventing the siting restrictions of conventional high field scanners and bringing point-of-care pulmonary imaging to global facilities.
Collapse
Affiliation(s)
- Samuel Perron
- Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, Canada.
| | - Alexei Ouriadov
- Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada; School of Biomedical Engineering, Faculty of Engineering, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
5
|
Shammi UA, D'Alessandro MF, Altes T, Hersman FW, Ruset IC, Mugler J, Meyer C, Mata J, Qing K, Thomen R. Comparison of Hyperpolarized 3He and 129Xe MR Imaging in Cystic Fibrosis Patients. Acad Radiol 2022; 29 Suppl 2:S82-S90. [PMID: 33487537 DOI: 10.1016/j.acra.2021.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/24/2020] [Accepted: 01/06/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE In this study, we compared hyperpolarized 3He and 129Xe images from patients with cystic fibrosis using two commonly applied magnetic resonance sequences, standard gradient echo (GRE) and balanced steady-state free precession (TrueFISP) to quantify regional similarities and differences in signal distribution and defect analysis. MATERIALS AND METHODS Ten patients (7M/3F) with cystic fibrosis underwent hyperpolarized gas MR imaging with both 3He and 129Xe. Six had MRI with both GRE, and TrueFISP sequences and four patients had only GRE sequence but not TrueFISP. Ventilation defect percentages (VDPs) were calculated as lung voxels with <60% of the whole-lung hyperpolarized gas signal mean and was measured in all datasets. The voxel signal distributions of both 129Xe and 3He gases were visualized and compared using violin plots. VDPs of hyperpolarized 3 He and 129 Xe were compared in Bland-Altman plots; Pearson correlation coefficients were used to evaluate the relationships between inter-gas and inter-scan to assess the reproducibility. RESULTS A significant correlation was demonstrated between 129Xe VDP and 3He VDP for both GRE and TrueFISP sequences (ρ = 0.78, p<0.0004). The correlation between the GRE and TrueFISP VDP for 3He was ρ = 0.98 and was ρ = 0.91 for 129Xe. Overall, 129Xe (27.2±9.4) VDP was higher than 3He (24.3±6.9) VDP on average on cystic fibrosis patients. CONCLUSION In patients with cystic fibrosis, the selection of hyperpolarized 129Xe or 3He gas is most likely inconsequential when it comes to measure the overall lung function by VDP although 129Xe may be more sensitive to starker lung defects, particularly when using a TrueFISP sequence.
Collapse
Affiliation(s)
- Ummul Afia Shammi
- Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, Missouri
| | | | - Talissa Altes
- Radiology, School of Medicine, University of Missouri, Columbia, Missouri
| | | | | | - John Mugler
- Radiology and Medical Imaging, University of Virginia School of Medicine, Charlottesville, Virginia; Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Craig Meyer
- Radiology and Medical Imaging, University of Virginia School of Medicine, Charlottesville, Virginia; Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Jamie Mata
- Radiology and Medical Imaging, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Kun Qing
- Radiology and Medical Imaging, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Robert Thomen
- Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, Missouri; Radiology, School of Medicine, University of Missouri, Columbia, Missouri.
| |
Collapse
|
6
|
Dong M, Sun Q, Yu Q, Tao X, Yang C, Qiu W. Determining the optimal magnetic resonance imaging sequences for the efficient diagnosis of temporomandibular joint disorders. Quant Imaging Med Surg 2021; 11:1343-1353. [PMID: 33816173 DOI: 10.21037/qims-20-67] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background To compare and analyze nine MRI sequences of the TMJ and determine the optimum sequence for the rapid diagnosis of TMDs so as to develop new clinical guidelines. Methods Twenty young volunteers (a total of 40 joints) aged 22-26 years were recruited. Three basic sequences, T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), and proton density-weighted imaging (PDWI), together with three positions, oblique sagittal (OSag) with closed mouth, oblique coronal (OCor) with closed mouth, and OSag with opened mouth, were selected in combination for testing. In the OCor position, four regions of interest (ROIs), the condyle (C), the disc (D), the disc outside (DO), and fat (F), were analyzed. For the OSag with closed mouth position and the OSag with opened mouth position sequences, the four ROIs were the condyle (C), the disc (D), the disc ahead (DA), and the disc rear (DR). The signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and signal intensity ratio (SIR) were calculated and analyzed using independent sample t-tests and one-way analysis of variance. Two senior radiologists scored the images of the nine MRI sequences subjectively and selected three optimal sequences. Using the three selected sequences, 1479 patients with anterior disc displacement with reduction (ADDwR) or anterior disk displacement without reduction (ADDwoR) were evaluated by comparing the preoperative TMJ MRI with the outcomes of the maxillofacial arthroscopy or open surgery. Results The T1WI sequence showed the highest SNR while the T2WI group had the lowest SNR. The ROIs of the T2WI group had the highest CNR and SIR values in the OCor and OSag sequences. In the OCor sequence, the value for the SIR F/DO group was higher than the SIR C/D and SIR C/DO values. Using subjective analysis to evaluate the quality of the scans, the highest total scores were obtained for the OSag T2WI with opened mouth and OSag PDWI with closed mouth sequences. From the objective and subjective analysis, the three optimal sequences selected were OSag PDWI, OCor T2WI with closed mouth, and OSag T2WI with opened mouth. In patients with anterior disc displacement, the comparisons of the surgery and the selected MRI sequences indicated that the total diagnostic accuracy of the MRI was 96.3% (1,425/1,479 cases). For patients with ADDwoR, the diagnostic accuracy was 98.5% (1,372/1,393 cases), and for those with ADDwR it was 61.6% (53/86 cases). There were significant differences between the ADDwoR and ADDwR groups (χ2=312.92, P<0.01). Conclusions The three optimal MRI sequences for the rapid and efficient diagnosis of TMD were determined to be OSag PDWI, OCor T2WI with closed mouth, and OSag T2WI with opened mouth.
Collapse
Affiliation(s)
- Minjun Dong
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Sun
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Yu
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofeng Tao
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chi Yang
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Key Lab of Stomatology, Shanghai, China
| | - Weiliu Qiu
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Key Lab of Stomatology, Shanghai, China
| |
Collapse
|
7
|
Maunder A, Chan HF, Hughes PJC, Collier G, Norquay G, Rodgers O, Thelwall P, Robb F, Rao M, Wild JM. MR properties of 19 F C 3 F 8 gas in the lungs of healthy volunteers: T 2 ∗ and apparent diffusion coefficient at 1.5T and T 2 ∗ at 3T. Magn Reson Med 2020; 85:1561-1570. [PMID: 32926448 DOI: 10.1002/mrm.28511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/08/2020] [Accepted: 08/17/2020] [Indexed: 01/07/2023]
Abstract
PURPOSE To measure the transverse relaxation time ( T 2 ∗ ) and apparent diffusion coefficient (ADC) of 19 F-C3 F8 gas in vivo in human lungs at 1.5T and 3T, and to determine the representative distribution of values of these parameters in a cohort of healthy volunteers. METHODS Mapping of ADC at lung inflation levels of functional residual capacity (FRC) and total lung capacity (TLC) was performed with inhaled 19 F-C3 F8 (eight subjects) and 129 Xe (six subjects) at 1.5T. T 2 ∗ mapping with 19 F-C3 F8 was performed at 1.5T (at FRC and TLC) for 8 subjects and at 3T (at TLC for seven subjects). RESULTS At both FRC and TLC, the 19 F-C3 F8 ADC was smaller than the free diffusion coefficient demonstrating airway microstructural diffusion restriction. From FRC to TLC, the mean ADC significantly increased from 1.56 mm2 /s to 1.83 mm2 /s (P = .0017) for 19 F-C3 F8, and from 2.49 mm2 /s to 3.38 mm2 /s (P = .0015) for 129 Xe. The posterior-to-anterior gradient in ADC for FRC versus TLC in the superior half of the lungs was measured as 0.0308 mm2 /s per cm versus 0.0168 mm2 /s per cm for 19 F-C3 F8 and 0.0871 mm2 /s per cm versus 0.0326 mm2 /s per cm for 129 Xe. A consistent distribution of 19 F-C3 F8 T 2 ∗ values was observed in the lungs, with low values observed near the diaphragm and large pulmonary vessels. The mean T 2 ∗ across volunteers was 4.48 ms at FRC and 5.33 ms at TLC for 1.5T, and 3.78 ms at TLC for 3T. CONCLUSION In this feasibility study, values of physiologically relevant parameters of lung microstructure measurable by MRI ( T 2 ∗ , and ADC) were established for C3 F8 in vivo lung imaging in healthy volunteers.
Collapse
Affiliation(s)
- Adam Maunder
- POLARIS, Imaging Group, Department of IICD, University of Sheffield, Sheffield, United Kingdom
| | - Ho-Fung Chan
- POLARIS, Imaging Group, Department of IICD, University of Sheffield, Sheffield, United Kingdom
| | - Paul J C Hughes
- POLARIS, Imaging Group, Department of IICD, University of Sheffield, Sheffield, United Kingdom
| | - Guillhem Collier
- POLARIS, Imaging Group, Department of IICD, University of Sheffield, Sheffield, United Kingdom
| | - Graham Norquay
- POLARIS, Imaging Group, Department of IICD, University of Sheffield, Sheffield, United Kingdom
| | - Oliver Rodgers
- POLARIS, Imaging Group, Department of IICD, University of Sheffield, Sheffield, United Kingdom
| | - Peter Thelwall
- Newcastle Magnetic Resonance Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Fraser Robb
- POLARIS, Imaging Group, Department of IICD, University of Sheffield, Sheffield, United Kingdom.,GE Healthcare, Aurora, Ohio, USA
| | - Madhwesha Rao
- POLARIS, Imaging Group, Department of IICD, University of Sheffield, Sheffield, United Kingdom
| | - Jim M Wild
- POLARIS, Imaging Group, Department of IICD, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
8
|
Niedbalski PJ, Cochran AS, Akinyi TG, Thomen RP, Fugate EM, Lindquist DM, Pratt RG, Cleveland ZI. Preclinical hyperpolarized 129 Xe MRI: ventilation and T 2 * mapping in mouse lungs at 7 T using multi-echo flyback UTE. NMR IN BIOMEDICINE 2020; 33:e4302. [PMID: 32285574 PMCID: PMC7702724 DOI: 10.1002/nbm.4302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/28/2020] [Accepted: 03/07/2020] [Indexed: 05/13/2023]
Abstract
Fast apparent transverse relaxation (short T2 *) is a common obstacle when attempting to perform quantitative 1 H MRI of the lungs. While T2 * times are longer for pulmonary hyperpolarized (HP) gas functional imaging (in particular for gaseous 129 Xe), T2 * can still lead to quantitative inaccuracies for sequences requiring longer echo times (such as diffusion weighted images) or longer readout duration (such as spiral sequences). This is especially true in preclinical studies, where high magnetic fields lead to shorter relaxation times than are typically seen in human studies. However, the T2 * of HP 129 Xe in the most common animal model of human disease (mice) has not been reported. Herein, we present a multi-echo radial flyback imaging sequence and use it to measure HP 129 Xe T2 * at 7 T under a variety of respiratory conditions. This sequence mitigates the impact of T1 relaxation outside the animal by using multiple gradient-refocused echoes to acquire images at a number of effective echo times for each RF excitation. After validating the sequence using a phantom containing water doped with superparamagnetic iron oxide nanoparticles, we measured the 129 Xe T2 * in vivo for 10 healthy C57Bl/6 J mice and found T2 * ~ 5 ms in the lung airspaces. Interestingly, T2 * was relatively constant over all experimental conditions, and varied significantly with sex, but not age, mass, or the O2 content of the inhaled gas mixture. These results are discussed in the context of T2 * relaxation within porous media.
Collapse
Affiliation(s)
- Peter J. Niedbalski
- Center for Pulmonary Imaging Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Alexander S. Cochran
- Center for Pulmonary Imaging Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221
| | - Teckla G. Akinyi
- Center for Pulmonary Imaging Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221
| | - Robert P. Thomen
- Center for Pulmonary Imaging Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Elizabeth M. Fugate
- Imaging Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Diana M. Lindquist
- Imaging Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ronald G. Pratt
- Imaging Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Zackary I. Cleveland
- Center for Pulmonary Imaging Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221
- Imaging Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
9
|
Topping GJ, Hundshammer C, Nagel L, Grashei M, Aigner M, Skinner JG, Schulte RF, Schilling F. Acquisition strategies for spatially resolved magnetic resonance detection of hyperpolarized nuclei. MAGMA (NEW YORK, N.Y.) 2020; 33:221-256. [PMID: 31811491 PMCID: PMC7109201 DOI: 10.1007/s10334-019-00807-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/08/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Hyperpolarization is an emerging method in magnetic resonance imaging that allows nuclear spin polarization of gases or liquids to be temporarily enhanced by up to five or six orders of magnitude at clinically relevant field strengths and administered at high concentration to a subject at the time of measurement. This transient gain in signal has enabled the non-invasive detection and imaging of gas ventilation and diffusion in the lungs, perfusion in blood vessels and tissues, and metabolic conversion in cells, animals, and patients. The rapid development of this method is based on advances in polarizer technology, the availability of suitable probe isotopes and molecules, improved MRI hardware and pulse sequence development. Acquisition strategies for hyperpolarized nuclei are not yet standardized and are set up individually at most sites depending on the specific requirements of the probe, the object of interest, and the MRI hardware. This review provides a detailed introduction to spatially resolved detection of hyperpolarized nuclei and summarizes novel and previously established acquisition strategies for different key areas of application.
Collapse
Affiliation(s)
- Geoffrey J Topping
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christian Hundshammer
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Luca Nagel
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Martin Grashei
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maximilian Aigner
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jason G Skinner
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Franz Schilling
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
10
|
Ouriadov A, Guo F, McCormack DG, Parraga G. Accelerated 129 Xe MRI morphometry of terminal airspace enlargement: Feasibility in volunteers and those with alpha-1 antitrypsin deficiency. Magn Reson Med 2019; 84:416-426. [PMID: 31765497 DOI: 10.1002/mrm.28091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE Multi-b diffusion-weighted hyperpolarized inhaled-gas MRI provides imaging biomarkers of terminal airspace enlargement including ADC and mean linear intercept (Lm ), but clinical translation has been limited because image acquisition requires relatively long or multiple breath-holds that are not well-tolerated by patients. Therefore, we aimed to accelerate single breath-hold 3D multi-b diffusion-weighted 129 Xe MRI, using k-space undersampling in imaging direction using a different undersampling pattern for different b-values combined with the stretched exponential model to generate maps of ventilation, apparent transverse relaxation time constant ( T 2 ∗ ), ADC, and Lm values in a single, short breath-hold; accelerated and non-accelerated measurements were directly compared. METHODS We evaluated multi-b (0, 12, 20, 30, and 45.5 s/cm2 ) diffusion-weighted 129 Xe T 2 ∗ /ADC/morphometry estimates using acceleration factor (AF = 1 and 7) and multi-breath sampling in 3 volunteers (HV), and 6 participants with alpha-1 antitrypsin deficiency (AATD). RESULTS For the HV subgroup, mean differences of 5%, 2%, and 8% were observed between fully sampled and undersampled k-space for ADC, Lm , and T 2 ∗ values, respectively. For the AATD subgroup, mean differences were 9%, 6%, and 12% between fully sampled and undersampled k-space for ADC, Lm and T 2 ∗ values, respectively. Although mean differences of 1% and 4.5% were observed between accelerated and multi-breath sampled ADC and Lm values, respectively, mean ADC/Lm estimates were not significantly different from corresponding mean ADCM /Lm M or mean ADCA /Lm A estimates (all P > 0.60 , A = undersampled and M = multi-breath sampled). CONCLUSIONS Accelerated multi-b diffusion-weighted 129 Xe MRI is feasible at AF = 7 for generating pulmonary ADC and Lm in AATD and normal lung.
Collapse
Affiliation(s)
- Alexei Ouriadov
- Department of Physics and Astronomy, The University of Western Ontario, London, Canada.,Lawson Health Research Institute, London, Canada
| | - Fumin Guo
- Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - David G McCormack
- Division of Respirology, Department of Medicine, The University of Western Ontario, London, Canada
| | - Grace Parraga
- Division of Respirology, Department of Medicine, The University of Western Ontario, London, Canada.,Robarts Research Institute, The University of Western Ontario, London, Canada.,Department of Medical Biophysics, The University of Western Ontario, London, Canada
| |
Collapse
|
11
|
Ouriadov AV, Santyr GE. High spatial resolution hyperpolarized3He MRI of the rodent lung using a single breath X-centric gradient-recalled echo approach. Magn Reson Med 2017; 78:2334-2341. [DOI: 10.1002/mrm.26602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/22/2016] [Accepted: 12/14/2016] [Indexed: 01/05/2023]
Affiliation(s)
- Alexei V. Ouriadov
- Imaging Research Laboratories, Robarts Research Institute; London Canada
- Department of Medical Biophysics; The University of Western Ontario; London Canada
| | - Giles E. Santyr
- Department of Medical Biophysics; University of Toronto; Toronto Canada
- Physiology & Experimental Medicine Program, Peter Gilgan Centre for Research and Learning, the Hospital for Sick Children; Toronto Canada
| |
Collapse
|
12
|
Komlosi P, Altes TA, Qing K, Mooney KE, Miller GW, Mata JF, de Lange EE, Tobias WA, Cates GD, Mugler JP. Signal-to-noise ratio, T 2 , and T2* for hyperpolarized helium-3 MRI of the human lung at three magnetic field strengths. Magn Reson Med 2016; 78:1458-1463. [PMID: 27791285 DOI: 10.1002/mrm.26516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/07/2016] [Accepted: 09/26/2016] [Indexed: 11/08/2022]
Abstract
PURPOSE To evaluate T2 , T2*, and signal-to-noise ratio (SNR) for hyperpolarized helium-3 (3 He) MRI of the human lung at three magnetic field strengths ranging from 0.43T to 1.5T. METHODS Sixteen healthy volunteers were imaged using a commercial whole body scanner at 0.43T, 0.79T, and 1.5T. Whole-lung T2 values were calculated from a Carr-Purcell-Meiboom-Gill spin-echo-train acquisition. T2* maps and SNR were determined from dual-echo and single-echo gradient-echo images, respectively. Mean whole-lung SNR values were normalized by ventilated lung volume and administered 3 He dose. RESULTS As expected, T2 and T2* values demonstrated a significant inverse relationship to field strength. Hyperpolarized 3 He images acquired at all three field strengths had comparable SNR values and thus appeared visually very similar. Nonetheless, the relatively small SNR differences among field strengths were statistically significant. CONCLUSIONS Hyperpolarized 3 He images of the human lung with similar image quality were obtained at three field strengths ranging from 0.43T and 1.5T. The decrease in susceptibility effects at lower fields that are reflected in longer T2 and T2* values may be advantageous for optimizing pulse sequences inherently sensitive to such effects. The three-fold increase in T2* at lower field strength would allow lower receiver bandwidths, providing a concomitant decrease in noise and relative increase in SNR. Magn Reson Med 78:1458-1463, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Peter Komlosi
- Center for In-vivo Hyperpolarized Gas MR Imaging, Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| | - Talissa A Altes
- Center for In-vivo Hyperpolarized Gas MR Imaging, Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| | - Kun Qing
- Center for In-vivo Hyperpolarized Gas MR Imaging, Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| | - Karen E Mooney
- Department of Physics, University of Virginia, Charlottesville, Virginia, USA
| | - G Wilson Miller
- Center for In-vivo Hyperpolarized Gas MR Imaging, Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| | - Jaime F Mata
- Center for In-vivo Hyperpolarized Gas MR Imaging, Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| | - Eduard E de Lange
- Center for In-vivo Hyperpolarized Gas MR Imaging, Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| | - William A Tobias
- Department of Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Gordon D Cates
- Department of Physics, University of Virginia, Charlottesville, Virginia, USA
| | - John P Mugler
- Center for In-vivo Hyperpolarized Gas MR Imaging, Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|