1
|
Dong Z, Reese TG, Lee HH, Huang SY, Polimeni JR, Wald LL, Wang F. Romer-EPTI: Rotating-view motion-robust super-resolution EPTI for SNR-efficient distortion-free in-vivo mesoscale diffusion MRI and microstructure imaging. Magn Reson Med 2024. [PMID: 39552568 DOI: 10.1002/mrm.30365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/28/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024]
Abstract
PURPOSE To overcome the major challenges in diffusion MRI (dMRI) acquisition, including limited SNR, distortion/blurring, and susceptibility to motion artifacts. THEORY AND METHODS A novel Romer-EPTI technique is developed to achieve SNR-efficient acquisition while providing distortion-free imaging, minimal spatial blurring, high motion robustness, and simultaneous multi-TE imaging. It introduces a ROtating-view Motion-robust supEr-Resolution technique (Romer) combined with a distortion/blurring-free Echo Planar Time-resolved Imaging (EPTI) readout. Romer enhances SNR through simultaneous multi-thick-slice acquisition with rotating-view encoding, while providing high motion-robustness via a high-fidelity, motion-aware super-resolution reconstruction. Instead of EPI, the in-plane encoding is performed using EPTI readout to prevent geometric distortion, T2/T2*-blurring, and importantly, dynamic distortions that could introduce additional blurring/artifacts after super-resolution reconstruction due to combining volumes with inconsistent geometries. This further improves effective spatial resolution and motion robustness. Additional developments include strategies to address slab-boundary artifacts, achieve minimized TE and optimized readout for additional SNR gain, and increase robustness to strong phase variations at high b-values. RESULTS Using Romer-EPTI, we demonstrated distortion-free whole-brain mesoscale in-vivo dMRI at both 3T (500-μm isotropic [iso] resolution) and 7T (485-μm iso resolution) for the first time. Motion experiments demonstrated the technique's motion robustness and its ability to obtain high-resolution diffusion images in the presence of subject motion. Romer-EPTI also demonstrated high SNR gain and robustness in high b-value (b = 5000 s/mm2) and time-dependent dMRI. CONCLUSION The high SNR efficiency, improved image quality, and motion robustness of Romer-EPTI make it a highly efficient acquisition for high-resolution dMRI and microstructure imaging.
Collapse
Affiliation(s)
- Zijing Dong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Timothy G Reese
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hong-Hsi Lee
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Susie Y Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA
| | - Fuyixue Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Michael ES, Hennel F, Pruessmann KP. Motion-compensated diffusion encoding in multi-shot human brain acquisitions: Insights using high-performance gradients. Magn Reson Med 2024; 92:556-572. [PMID: 38441339 DOI: 10.1002/mrm.30069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/12/2023] [Accepted: 02/09/2024] [Indexed: 06/02/2024]
Abstract
PURPOSE To evaluate the utility of up to second-order motion-compensated diffusion encoding in multi-shot human brain acquisitions. METHODS Experiments were performed with high-performance gradients using three forms of diffusion encoding motion-compensated through different orders: conventional zeroth-order-compensated pulsed gradients (PG), first-order-compensated gradients (MC1), and second-order-compensated gradients (MC2). Single-shot acquisitions were conducted to correlate the order of motion compensation with resultant phase variability. Then, multi-shot acquisitions were performed at varying interleaving factors. Multi-shot images were reconstructed using three levels of shot-to-shot phase correction: no correction, channel-wise phase correction based on FID navigation, and correction based on explicit phase mapping (MUSE). RESULTS In single-shot acquisitions, MC2 diffusion encoding most effectively suppressed phase variability and sensitivity to brain pulsation, yielding residual variations of about 10° and of low spatial order. Consequently, multi-shot MC2 images were largely satisfactory without phase correction and consistently improved with the navigator correction, which yielded repeatable high-quality images; contrarily, PG and MC1 images were inadequately corrected using the navigator approach. With respect to MUSE reconstructions, the MC2 navigator-corrected images were in close agreement for a standard interleaving factor and considerably more reliable for higher interleaving factors, for which MUSE images were corrupted. Finally, owing to the advanced gradient hardware, the relative SNR penalty of motion-compensated diffusion sensitization was substantially more tolerable than that faced previously. CONCLUSION Second-order motion-compensated diffusion encoding mitigates and simplifies shot-to-shot phase variability in the human brain, rendering the multi-shot acquisition strategy an effective means to circumvent limitations of retrospective phase correction methods.
Collapse
Affiliation(s)
- Eric Seth Michael
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Franciszek Hennel
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Klaas Paul Pruessmann
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Chen X, Wu W, Chiew M. Motion compensated structured low-rank reconstruction for 3D multi-shot EPI. Magn Reson Med 2024; 91:2443-2458. [PMID: 38361309 DOI: 10.1002/mrm.30019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/08/2023] [Accepted: 01/05/2024] [Indexed: 02/17/2024]
Abstract
PURPOSE The 3D multi-shot EPI imaging offers several benefits including higher SNR and high isotropic resolution compared to 2D single shot EPI. However, it suffers from shot-to-shot inconsistencies arising from physiologically induced phase variations and bulk motion. This work proposed a motion compensated structured low-rank (mcSLR) reconstruction method to address both issues for 3D multi-shot EPI. METHODS Structured low-rank reconstruction has been successfully used in previous work to deal with inter-shot phase variations for 3D multi-shot EPI imaging. It circumvents the estimation of phase variations by reconstructing an individual image for each phase state which are then sum-of-squares combined, exploiting their linear interdependency encoded in structured low-rank constraints. However, structured low-rank constraints become less effective in the presence of inter-shot motion, which corrupts image magnitude consistency and invalidates the linear relationship between shots. Thus, this work jointly models inter-shot phase variations and motion corruptions by incorporating rigid motion compensation for structured low-rank reconstruction, where motion estimates are obtained in a fully data-driven way without relying on external hardware or imaging navigators. RESULTS Simulation and in vivo experiments at 7T have demonstrated that the mcSLR method can effectively reduce image artifacts and improve the robustness of 3D multi-shot EPI, outperforming existing methods which only address inter-shot phase variations or motion, but not both. CONCLUSION The proposed mcSLR reconstruction compensates for rigid motion, and thus improves the validity of structured low-rank constraints, resulting in improved robustness of 3D multi-shot EPI to both inter-shot motion and phase variations.
Collapse
Affiliation(s)
- Xi Chen
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Wenchuan Wu
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, UK
| | - Mark Chiew
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, UK
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Dong Z, Reese TG, Lee HH, Huang SY, Polimeni JR, Wald LL, Wang F. Romer-EPTI: rotating-view motion-robust super-resolution EPTI for SNR-efficient distortion-free in-vivo mesoscale dMRI and microstructure imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577343. [PMID: 38352481 PMCID: PMC10862730 DOI: 10.1101/2024.01.26.577343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Purpose To overcome the major challenges in dMRI acquisition, including low SNR, distortion/blurring, and motion vulnerability. Methods A novel Romer-EPTI technique is developed to provide distortion-free dMRI with significant SNR gain, high motion-robustness, sharp spatial resolution, and simultaneous multi-TE imaging. It introduces a ROtating-view Motion-robust supEr-Resolution technique (Romer) combined with a distortion/blurring-free EPTI encoding. Romer enhances SNR by a simultaneous multi-thick-slice acquisition with rotating-view encoding, while providing high motion-robustness through a motion-aware super-resolution reconstruction, which also incorporates slice-profile and real-value diffusion, to resolve high-isotropic-resolution volumes. The in-plane encoding is performed using distortion/blurring-free EPTI, which further improves effective spatial resolution and motion robustness by preventing not only T2/T2*-blurring but also additional blurring resulting from combining encoded volumes with inconsistent geometries caused by dynamic distortions. Self-navigation was incorporated to enable efficient phase correction. Additional developments include strategies to address slab-boundary artifacts, achieve minimal TE for SNR gain at 7T, and achieve high robustness to strong phase variations at high b-values. Results Using Romer-EPTI, we demonstrate distortion-free whole-brain mesoscale in-vivo dMRI at both 3T (500-μm-iso) and 7T (485-μm-iso) for the first time, with high SNR efficiency (e.g., 25 × ), and high image quality free from distortion and slab-boundary artifacts with minimal blurring. Motion experiments demonstrate Romer-EPTI's high motion-robustness and ability to recover sharp images in the presence of motion. Romer-EPTI also demonstrates significant SNR gain and robustness in high b-value (b=5000s/mm2) and time-dependent dMRI. Conclusion Romer-EPTI significantly improves SNR, motion-robustness, and image quality, providing a highly efficient acquisition for high-resolution dMRI and microstructure imaging.
Collapse
Affiliation(s)
- Zijing Dong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Timothy G. Reese
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hong-Hsi Lee
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Susie Y. Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA
| | - Jonathan R. Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA
| | - Lawrence L. Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA
| | - Fuyixue Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Li B, Li N, Wang Z, Balan R, Ernst T. Simultaneous multislice EPI prospective motion correction by real-time receiver phase correction and coil sensitivity map interpolation. Magn Reson Med 2023; 90:1932-1948. [PMID: 37448116 PMCID: PMC10795703 DOI: 10.1002/mrm.29789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023]
Abstract
PURPOSE To improve the image reconstruction for prospective motion correction (PMC) of simultaneous multislice (SMS) EPI of the brain, an update of receiver phase and resampling of coil sensitivities are proposed and evaluated. METHODS A camera-based system was used to track head motion (3 translations and 3 rotations) and dynamically update the scan position and orientation. We derived the change in receiver phase associated with a shifted field of view (FOV) and applied it in real-time to each k-space line of the EPI readout trains. Second, for the SMS reconstruction, we adapted resampled coil sensitivity profiles reflecting the movement of slices. Single-shot gradient-echo SMS-EPI scans were performed in phantoms and human subjects for validation. RESULTS Brain SMS-EPI scans in the presence of motion with PMC and no phase correction for scan plane shift showed noticeable artifacts. These artifacts were visually and quantitatively attenuated when corrections were enabled. Correcting misaligned coil sensitivity maps improved the temporal SNR (tSNR) of time series by 24% (p = 0.0007) for scans with large movements (up to ˜35 mm and 30°). Correcting the receiver phase improved the tSNR of a scan with minimal head movement by 50% from 50 to 75 for a United Kingdom biobank protocol. CONCLUSION Reconstruction-induced motion artifacts in single-shot SMS-EPI scans acquired with PMC can be removed by dynamically adjusting the receiver phase of each line across EPI readout trains and updating coil sensitivity profiles during reconstruction. The method may be a valuable tool for SMS-EPI scans in the presence of subject motion.
Collapse
Affiliation(s)
- Bo Li
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD, United States
| | - Ningzhi Li
- U.S. Food Drug Administration, Silver Spring, MD, United States
| | - Ze Wang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD, United States
| | - Radu Balan
- Department of Mathematics, University of Maryland, College Park, MD, United States
| | - Thomas Ernst
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
6
|
Tourais J, Ploem T, van Zadelhoff TA, van de Steeg-Henzen C, Oei EHG, Weingartner S. Rapid Whole-Knee Quantification of Cartilage Using T 1, T 2*, and T RAFF2 Mapping With Magnetic Resonance Fingerprinting. IEEE Trans Biomed Eng 2023; 70:3197-3205. [PMID: 37227911 DOI: 10.1109/tbme.2023.3280115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
OBJECTIVE Quantitative Magnetic Resonance Imaging (MRI) holds great promise for the early detection of cartilage deterioration. Here, a Magnetic Resonance Fingerprinting (MRF) framework is proposed for comprehensive and rapid quantification of T1, T2*, and TRAFF2 with whole-knee coverage. METHODS A MRF framework was developed to achieve quantification of Relaxation Along a Fictitious Field in the 2nd rotating frame of reference ( TRAFF2) along with T1 and T2*. The proposed sequence acquires 65 measurements of 25 high-resolution slices, interleaved with 7 inversion pulses and 40 RAFF2 trains, for whole-knee quantification in a total acquisition time of 3:25 min. Comparison with reference T1, T2*, and TRAFF2 methods was performed in phantom and in seven healthy subjects at 3 T. Repeatability (test-retest) with and without repositioning was also assessed. RESULTS Phantom measurements resulted in good agreement between MRF and the reference with mean biases of -54, 2, and 5 ms for T1, T2*, and TRAFF2, respectively. Complete characterization of the whole-knee cartilage was achieved for all subjects, and, for the femoral and tibial compartments, a good agreement between MRF and reference measurements was obtained. Across all subjects, the proposed MRF method yielded acceptable repeatability without repositioning ( R2 ≥ 0.94) and with repositioning ( R2 ≥ 0.57) for T1, T2*, and TRAFF2. SIGNIFICANCE The short scan time combined with the whole-knee coverage makes the proposed MRF framework a promising candidate for the early assessment of cartilage degeneration with quantitative MRI, but further research may be warranted to improve repeatability after repositioning and assess clinical value in patients.
Collapse
|
7
|
Dong Z, Wang F, Setsompop K. Motion-corrected 3D-EPTI with efficient 4D navigator acquisition for fast and robust whole-brain quantitative imaging. Magn Reson Med 2022; 88:1112-1125. [PMID: 35481604 PMCID: PMC9246907 DOI: 10.1002/mrm.29277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE To develop a motion estimation and correction method for motion-robust three-dimensional (3D) quantitative imaging with 3D-echo-planar time-resolved imaging. THEORY AND METHODS The 3D-echo-planar time-resolved imaging technique was designed with additional four-dimensional navigator acquisition (x-y-z-echoes) to achieve fast and motion-robust quantitative imaging of the human brain. The four-dimensional-navigator is inserted into the relaxation-recovery deadtime of the sequence in every pulse TR (∼2 s) to avoid extra scan time, and to provide continuous tracking of the 3D head motion and B0 -inhomogeneity changes. By using an optimized spatiotemporal encoding combined with a partial-Fourier scheme, the navigator acquires a large central k-t data block for accurate motion estimation using only four small-flip-angle excitations and readouts, resulting in negligible signal-recovery reduction to the 3D-echo-planar time-resolved imaging acquisition. By incorporating the estimated motion and B0 -inhomogeneity changes into the reconstruction, multi-contrast images can be recovered with reduced motion artifacts. RESULTS Simulation shows the cost to the SNR efficiency from the added navigator acquisitions is <1%. Both simulation and in vivo retrospective experiments were conducted, that demonstrate the four-dimensional navigator provided accurate estimation of the 3D motion and B0 -inhomogeneity changes, allowing effective reduction of image artifacts in quantitative maps. Finally, in vivo prospective undersampling acquisition was performed with and without head motion, in which the motion corrupted data after correction show close image quality and consistent quantifications to the motion-free scan, providing reliable quantitative measurements even with head motion. CONCLUSION The proposed four-dimensional navigator acquisition provides reliable tracking of the head motion and B0 change with negligible SNR cost, equips the 3D-echo-planar time-resolved imaging technique for motion-robust and efficient quantitative imaging.
Collapse
Affiliation(s)
- Zijing Dong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA
| | - Fuyixue Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, MA, USA
| | - Kawin Setsompop
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
8
|
Dong Z, Wang F, Wald L, Setsompop K. SNR
‐efficient distortion‐free diffusion relaxometry imaging using accelerated echo‐train shifted echo‐planar time‐resolving imaging (
ACE‐EPTI
). Magn Reson Med 2022; 88:164-179. [DOI: 10.1002/mrm.29198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Zijing Dong
- Athinoula A. Martinos Center for Biomedical Imaging Massachusetts General Hospital Charlestown Massachusetts USA
- Department of Electrical Engineering and Computer Science MIT Cambridge Massachusetts USA
| | - Fuyixue Wang
- Athinoula A. Martinos Center for Biomedical Imaging Massachusetts General Hospital Charlestown Massachusetts USA
- Harvard‐MIT Health Sciences and Technology, MIT Cambridge Massachusetts USA
| | - Lawrence Wald
- Athinoula A. Martinos Center for Biomedical Imaging Massachusetts General Hospital Charlestown Massachusetts USA
- Harvard‐MIT Health Sciences and Technology, MIT Cambridge Massachusetts USA
| | - Kawin Setsompop
- Department of Radiology Stanford University Stanford California USA
- Department of Electrical Engineering Stanford University Stanford California USA
| |
Collapse
|
9
|
Dai E, Lee PK, Dong Z, Fu F, Setsompop K, McNab JA. Distortion-Free Diffusion Imaging Using Self-Navigated Cartesian Echo-Planar Time Resolved Acquisition and Joint Magnitude and Phase Constrained Reconstruction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:63-74. [PMID: 34383645 PMCID: PMC8799377 DOI: 10.1109/tmi.2021.3104291] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Echo-planar time resolved imaging (EPTI) is an effective approach for acquiring high-quality distortion-free images with a multi-shot EPI (ms-EPI) readout. As with traditional ms-EPI acquisitions, inter-shot phase variations present a main challenge when incorporating EPTI into a diffusion-prepared pulse sequence. The aim of this study is to develop a self-navigated Cartesian EPTI-based (scEPTI) acquisition together with a magnitude and phase constrained reconstruction for distortion-free diffusion imaging. A self-navigated Cartesian EPTI-based diffusion-prepared pulse sequence is designed. The different phase components in EPTI diffusion signal are analyzed and an approach to synthesize a fully phase-matched navigator for the inter-shot phase correction is demonstrated. Lastly, EPTI contains richer magnitude and phase information than conventional ms-EPI, such as the magnitude and phase correlations along the temporal dimension. The potential of these magnitude and phase correlations to enhance the reconstruction is explored. The reconstruction results with and without phase matching and with and without phase or magnitude constraints are compared. Compared with reconstruction without phase matching, the proposed phase matching method can improve the accuracy of inter-shot phase correction and reduce signal corruption in the final diffusion images. Magnitude constraints further improve image quality by suppressing the background noise and thereby increasing SNR, while phase constraints can mitigate possible image blurring from adding magnitude constraints. The high-quality distortion-free diffusion images and simultaneous diffusion-relaxometry imaging capacity provided by the proposed EPTI design represent a highly valuable tool for both clinical and neuroscientific assessments of tissue microstructure.
Collapse
|
10
|
Manhard MK, Stockmann J, Liao C, Park D, Han S, Fair M, van den Boomen M, Polimeni J, Bilgic B, Setsompop K. A multi-inversion multi-echo spin and gradient echo echo planar imaging sequence with low image distortion for rapid quantitative parameter mapping and synthetic image contrasts. Magn Reson Med 2021; 86:866-880. [PMID: 33764563 PMCID: PMC8793364 DOI: 10.1002/mrm.28761] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 02/02/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE Brain imaging exams typically take 10-20 min and involve multiple sequential acquisitions. A low-distortion whole-brain echo planar imaging (EPI)-based approach was developed to efficiently encode multiple contrasts in one acquisition, allowing for calculation of quantitative parameter maps and synthetic contrast-weighted images. METHODS Inversion prepared spin- and gradient-echo EPI was developed with slice-order shuffling across measurements for efficient acquisition with T1 , T2 , and T 2 ∗ weighting. A dictionary-matching approach was used to fit the images to quantitative parameter maps, which in turn were used to create synthetic weighted images with typical clinical contrasts. Dynamic slice-optimized multi-coil shimming with a B0 shim array was used to reduce B0 inhomogeneity and, therefore, image distortion by >50%. Multi-shot EPI was also implemented to minimize distortion and blurring while enabling high in-plane resolution. A low-rank reconstruction approach was used to mitigate errors from shot-to-shot phase variation. RESULTS The slice-optimized shimming approach was combined with in-plane parallel-imaging acceleration of 4× to enable single-shot EPI with more than eight-fold distortion reduction. The proposed sequence efficiently obtained 40 contrasts across the whole-brain in just over 1 min at 1.2 × 1.2 × 3 mm resolution. The multi-shot variant of the sequence achieved higher in-plane resolution of 1 × 1 × 4 mm with good image quality in 4 min. Derived quantitative maps showed comparable values to conventional mapping methods. CONCLUSION The approach allows fast whole-brain imaging with quantitative parameter maps and synthetic weighted contrasts. The slice-optimized multi-coil shimming and multi-shot reconstruction approaches result in minimal EPI distortion, giving the sequence the potential to be used in rapid screening applications.
Collapse
Affiliation(s)
- Mary Kate Manhard
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Jason Stockmann
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Congyu Liao
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Daniel Park
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Sohyun Han
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Korea, Republic of
| | - Merlin Fair
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Maaike van den Boomen
- Department of Radiology, Harvard Medical School, Boston, MA, USA
- Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jon Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| | - Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Kawin Setsompop
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| |
Collapse
|
11
|
Riedel Né Steinhoff M, Setsompop K, Mertins A, Börnert P. Segmented simultaneous multi-slice diffusion-weighted imaging with navigated 3D rigid motion correction. Magn Reson Med 2021; 86:1701-1717. [PMID: 33955588 DOI: 10.1002/mrm.28813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 11/09/2022]
Abstract
PURPOSE To improve the robustness of diffusion-weighted imaging (DWI) data acquired with segmented simultaneous multi-slice (SMS) echo-planar imaging (EPI) against in-plane and through-plane rigid motion. THEORY AND METHODS The proposed algorithm incorporates a 3D rigid motion correction and wavelet denoising into the image reconstruction of segmented SMS-EPI diffusion data. Low-resolution navigators are used to estimate shot-specific diffusion phase corruptions and 3D rigid motion parameters through SMS-to-volume registration. The shot-wise rigid motion and phase parameters are integrated into a SENSE-based full-volume reconstruction for each diffusion direction. The algorithm is compared to a navigated SMS reconstruction without gross motion correction in simulations and in vivo studies with four-fold interleaved 3-SMS diffusion tensor acquisitions. RESULTS Simulations demonstrate high fidelity was achieved in the SMS-to-volume registration, with submillimeter registration errors and improved image reconstruction quality. In vivo experiments validate successful artifact reduction in 3D motion-compromised in vivo scans with a temporal motion resolution of approximately 0.3 s. CONCLUSION This work demonstrates the feasibility of retrospective 3D rigid motion correction from shot navigators for segmented SMS DWI.
Collapse
Affiliation(s)
| | - Kawin Setsompop
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA.,Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA
| | - Alfred Mertins
- Institute for Signal Processing, University of Luebeck, Luebeck, Germany
| | - Peter Börnert
- Philips Research, Hamburg, Germany.,Radiology, C.J. Gorter Center for High-Field MRI, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
12
|
Variable flip angle echo planar time-resolved imaging (vFA-EPTI) for fast high-resolution gradient echo myelin water imaging. Neuroimage 2021; 232:117897. [PMID: 33621694 PMCID: PMC8221177 DOI: 10.1016/j.neuroimage.2021.117897] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/01/2021] [Accepted: 02/16/2021] [Indexed: 12/14/2022] Open
Abstract
Myelin water imaging techniques based on multi-compartment relaxometry have been developed as an important tool to measure myelin concentration in vivo, but are limited by the long scan time of multi-contrast multi-echo acquisition. In this work, a fast imaging technique, termed variable flip angle Echo Planar Time-Resolved Imaging (vFA-EPTI), is developed to acquire multi-echo and multi-flip-angle gradient-echo data with significantly reduced acquisition time, providing rich information for multi-compartment analysis of gradient-echo myelin water imaging (GRE-MWI). The proposed vFA-EPTI method achieved 26 folds acceleration with good accuracy by utilizing an efficient continuous readout, optimized spatiotemporal encoding across echoes and flip angles, as well as a joint subspace reconstruction. An approach to estimate off-resonance field changes between different flip-angle acquisitions was also developed to ensure high-quality joint reconstruction across flip angles. The accuracy of myelin water fraction (MWF) estimate under high acceleration was first validated by a retrospective undersampling experiment using a lengthy fully-sampled data as reference. Prospective experiments were then performed where whole-brain MWF and multi-compartment quantitative maps were obtained in 5 min at 1.5 mm isotropic resolution and 24 min at 1 mm isotropic resolution at 3T. Additionally, ultra-high resolution data at 600 μm isotropic resolution were acquired at 7T, which show detailed structures within the cortex such as the line of Gennari, demonstrating the ability of the proposed method for submillimeter GRE-MWI that can be used to study cortical myeloarchitecture in vivo.
Collapse
|
13
|
Berglund J, van Niekerk A, Rydén H, Sprenger T, Avventi E, Norbeck O, Glimberg SL, Olesen OV, Skare S. Prospective motion correction for diffusion weighted EPI of the brain using an optical markerless tracker. Magn Reson Med 2020; 85:1427-1440. [PMID: 32989859 PMCID: PMC7756594 DOI: 10.1002/mrm.28524] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/31/2020] [Accepted: 08/28/2020] [Indexed: 01/25/2023]
Abstract
PURPOSE To enable motion-robust diffusion weighted imaging of the brain using well-established imaging techniques. METHODS An optical markerless tracking system was used to estimate and correct for rigid body motion of the head in real time during scanning. The imaging coordinate system was updated before each excitation pulse in a single-shot EPI sequence accelerated by GRAPPA with motion-robust calibration. Full Fourier imaging was used to reduce effects of motion during diffusion encoding. Subjects were imaged while performing prescribed motion patterns, each repeated with prospective motion correction on and off. RESULTS Prospective motion correction with dynamic ghost correction enabled high quality DWI in the presence of fast and continuous motion within a 10° range. Images acquired without motion were not degraded by the prospective correction. Calculated diffusion tensors tolerated the motion well, but ADC values were slightly increased. CONCLUSIONS Prospective correction by markerless optical tracking minimizes patient interaction and appears to be well suited for EPI-based DWI of patient groups unable to remain still including those who are not compliant with markers.
Collapse
Affiliation(s)
- Johan Berglund
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Adam van Niekerk
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Henric Rydén
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Tim Sprenger
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,MR Applied Science Laboratory, GE Healthcare, Stockholm, Sweden
| | - Enrico Avventi
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Ola Norbeck
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | | | | | - Stefan Skare
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
14
|
Dong Z, Wang F, Reese TG, Bilgic B, Setsompop K. Echo planar time-resolved imaging with subspace reconstruction and optimized spatiotemporal encoding. Magn Reson Med 2020; 84:2442-2455. [PMID: 32333478 DOI: 10.1002/mrm.28295] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/01/2020] [Accepted: 03/31/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE To develop new encoding and reconstruction techniques for fast multi-contrast/quantitative imaging. METHODS The recently proposed Echo Planar Time-resolved Imaging (EPTI) technique can achieve fast distortion- and blurring-free multi-contrast/quantitative imaging. In this work, a subspace reconstruction framework is developed to improve the reconstruction accuracy of EPTI at high encoding accelerations. The number of unknowns in the reconstruction is significantly reduced by modeling the temporal signal evolutions using low-rank subspace. As part of the proposed reconstruction approach, a B0 -update algorithm and a shot-to-shot B0 variation correction method are developed to enable the reconstruction of high-resolution tissue phase images and to mitigate artifacts from shot-to-shot phase variations. Moreover, the EPTI concept is extended to 3D k-space for 3D GE-EPTI, where a new "temporal-variant" of CAIPI encoding is proposed to further improve performance. RESULTS The effectiveness of the proposed subspace reconstruction was demonstrated first in 2D GESE EPTI, where the reconstruction achieved higher accuracy when compared to conventional B0 -informed GRAPPA. For 3D GE-EPTI, a retrospective undersampling experiment demonstrates that the new temporal-variant CAIPI encoding can achieve up to 72× acceleration with close to 2× reduction in reconstruction error when compared to conventional spatiotemporal-CAIPI encoding. In a prospective undersampling experiment, high-quality whole-brain T 2 ∗ and tissue phase maps at 1 mm isotropic resolution were acquired in 52 seconds at 3T using 3D GE-EPTI with temporal-variant CAIPI encoding. CONCLUSION The proposed subspace reconstruction and optimized temporal-variant CAIPI encoding can further improve the performance of EPTI for fast quantitative mapping.
Collapse
Affiliation(s)
- Zijing Dong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Electrical Engineering and Computer Science, MIT, Cambridge, Massachusetts, USA
| | - Fuyixue Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA
| | - Timothy G Reese
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kawin Setsompop
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Hermann I, Chacon-Caldera J, Brumer I, Rieger B, Weingärtner S, Schad LR, Zöllner FG. Magnetic resonance fingerprinting for simultaneous renal T 1 and T 2 * mapping in a single breath-hold. Magn Reson Med 2020; 83:1940-1948. [PMID: 31900983 DOI: 10.1002/mrm.28160] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE To evaluate the use of magnetic resonance fingerprinting (MRF) for simultaneous quantification of T 1 and T 2 ∗ in a single breath-hold in the kidneys. METHODS The proposed kidney MRF sequence was based on MRF echo-planar imaging. Thirty-five measurements per slice and overall 4 slices were measured in 15.4 seconds. Group matching was performed for in-line quantification of T 1 and T 2 ∗ . Images were acquired in a phantom and 8 healthy volunteers in coronal orientation. To evaluate our approach, region of interests were drawn in the kidneys to calculate mean values and standard deviations of the T 1 and T 2 ∗ times. Precision was calculated across multiple repeated MRF scans. Gaussian filtering is applied on baseline images to improve SNR and match stability. RESULTS T 1 and T 2 ∗ times acquired with MRF in the phantom showed good agreement with reference measurements and conventional mapping methods with deviations of less than 5% for T 1 and less than 10% for T 2 ∗ . Baseline images in vivo were free of artifacts and relaxation times yielded good agreement with conventional methods and literature (deviation T 1 : 7 ± 4 % , T 2 ∗ : 6 ± 3 % ). CONCLUSIONS In this feasibility study, the proposed renal MRF sequence resulted in accurate T 1 and T 2 ∗ quantification in a single breath-hold.
Collapse
Affiliation(s)
- Ingo Hermann
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Magnetic Resonance Systems Lab, Department of Imaging Physics, Delft University of Technology, Delft, Netherlands
| | - Jorge Chacon-Caldera
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Irène Brumer
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Benedikt Rieger
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sebastian Weingärtner
- Magnetic Resonance Systems Lab, Department of Imaging Physics, Delft University of Technology, Delft, Netherlands
| | - Lothar R Schad
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frank G Zöllner
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
16
|
Fair MJ, Wang F, Dong Z, Reese TG, Setsompop K. Propeller echo-planar time-resolved imaging with dynamic encoding (PEPTIDE). Magn Reson Med 2019; 83:2124-2137. [PMID: 31703154 DOI: 10.1002/mrm.28071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/25/2019] [Accepted: 10/18/2019] [Indexed: 11/09/2022]
Abstract
PURPOSE To develop a motion-robust extension to the recently developed echo-planar time-resolved imaging (EPTI) approach, referred to as PROPELLER EPTI with dynamic encoding (PEPTIDE), by incorporating rotations into the rapid, multishot acquisition to enable shot-to-shot motion correction. METHODS Echo-planar time-resolved imaging is a multishot EPI-based approach that allows extremely rapid acquisition of distortion-free and blurring-free multicontrast imaging and quantitative mapping. By combining k-space encoding rotations into the EPTI sampling strategy to repeatedly sample the low-resolution k-space center, PEPTIDE enables significant tolerance to shot-to-shot motion and B0 phase variations. Retrospective PEPTIDE data sets are created through a combination of in vivo EPTI data sets with rotationally acquired protocols, to enable direct comparison of the 2 methods and their robustness to identical motion. The PEPTIDE data sets are also prospectively acquired and again compared with EPTI, in the presence of true subject motion. RESULTS The PEPTIDE approach is shown to be motion-robust to even severe subject motion (demonstrated > 30° in-plane rotation, alongside translational and through-plane motion), while maintaining the rapid encoding benefits of the EPTI technique. The technique enables accurate quantitative maps to be calculated from even severe motion data sets. While the performance of the motion correction depends on the type and severity of motion encountered, in all cases PEPTIDE significantly increases image quality in the presence of motion comparative to conventional EPTI. CONCLUSION The newly developed PEPTIDE technique combines a high degree of motion tolerance into the EPTI framework, enabling highly rapid acquisition of distortion-free and blurring-free images at multiple TEs in the presence of motion.
Collapse
Affiliation(s)
- Merlin J Fair
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts.,Department of Radiology, Harvard Medical School, Boston, Massachusetts
| | - Fuyixue Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts.,Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts
| | - Zijing Dong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts.,Department of Electrical Engineering and Computer Science, MIT, Cambridge, Massachusetts
| | - Timothy G Reese
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts.,Department of Radiology, Harvard Medical School, Boston, Massachusetts
| | - Kawin Setsompop
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts.,Department of Radiology, Harvard Medical School, Boston, Massachusetts.,Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts
| |
Collapse
|
17
|
Wang F, Dong Z, Reese TG, Bilgic B, Manhard MK, Chen J, Polimeni JR, Wald LL, Setsompop K. Echo planar time-resolved imaging (EPTI). Magn Reson Med 2019; 81:3599-3615. [PMID: 30714198 PMCID: PMC6435385 DOI: 10.1002/mrm.27673] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/06/2018] [Accepted: 01/06/2019] [Indexed: 01/15/2023]
Abstract
PURPOSE To develop an efficient distortion- and blurring-free multi-shot EPI technique for time-resolved multiple-contrast and/or quantitative imaging. METHODS EPI is a commonly used sequence but suffers from geometric distortions and blurring. Here, we introduce a new multi-shot EPI technique termed echo planar time-resolved imaging (EPTI), which has the ability to rapidly acquire distortion- and blurring-free multi-contrast data set. The EPTI approach performs encoding in ky -t space and uses a new highly accelerated spatio-temporal CAIPI sampling trajectory to take advantage of signal correlation along these dimensions. Through this acquisition and a B0 -informed parallel imaging reconstruction, hundreds of "time-resolved" distortion- and blurring-free images at different TEs across the EPI readout window can be created at sub-millisecond temporal increments using a small number of EPTI shots. Moreover, a method for self-estimation and correction of shot-to-shot B0 variations was developed. Simultaneous multi-slice acquisition was also incorporated to further improve the acquisition efficiency. RESULTS We evaluated EPTI under varying simulated acceleration factors, B0 -inhomogeneity, and shot-to-shot B0 variations to demonstrate its ability to provide distortion- and blurring-free images at multiple TEs. Two variants of EPTI were demonstrated in vivo at 3T: (1) a combined gradient- and spin-echo EPTI for quantitative mapping of T2 , T2* , proton density, and susceptibility at 1.1 × 1.1 × 3 mm3 whole-brain in 28 s (0.8 s/slice), and (2) a gradient-echo EPTI, for multi-echo and quantitative T2* fMRI at 2 × 2 × 3 mm3 whole-brain at a 3.3 s temporal resolution. CONCLUSION EPTI is a new approach for multi-contrast and/or quantitative imaging that can provide fast acquisition of distortion- and blurring-free images at multiple TEs.
Collapse
Affiliation(s)
- Fuyixue Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts
| | - Zijing Dong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, Massachusetts
| | - Timothy G. Reese
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts
- Department of Radiology, Harvard Medical School, Boston, Massachusetts
| | - Mary Katherine Manhard
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Jingyuan Chen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Jonathan R. Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts
- Department of Radiology, Harvard Medical School, Boston, Massachusetts
| | - Lawrence L. Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts
- Department of Radiology, Harvard Medical School, Boston, Massachusetts
| | - Kawin Setsompop
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts
- Department of Radiology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
18
|
Wu Y, Ma X, Huang F, Guo H. Common Information Enhanced Reconstruction for Accelerated High-resolution Multi-shot Diffusion Imaging. Magn Reson Imaging 2019; 62:28-37. [PMID: 31108152 DOI: 10.1016/j.mri.2019.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/03/2019] [Accepted: 05/14/2019] [Indexed: 11/29/2022]
Abstract
PURPOSE Multi-shot technique can effectively achieve high-resolution diffusion weighted images, but the acquisition time of multi-shot technique is prolonged, especially for multiple direction diffusion encoding. Thus, increasing acquisition efficiency is highly desirable for high-resolution diffusion tensor imaging (DTI). In this study, based on the assumption that different diffusion directions share the common information, image ratio constrained reconstruction (IRCR) combined with iterative self-consistent parallel imaging reconstruction (SPIRiT) is proposed to improve data sampling efficiency and image reconstruction fidelity for high-resolution DTI. THEORY AND METHODS The proposed reconstruction framework is named Common Information Enhanced Reconstruction (CIER). Inter-image correlation among different direction diffusion-weighted images is used through common information, which is an isotropic component and structure, for improving the performance of reconstruction. The framework consists of three steps. (i) Pre-processing: three intermediate multi-shot images, low-resolution composite image, high-resolution composite image and low-resolution diffusion weighted image, are generated based on the SPIRiT method. (ii) IRCR: the initial high-resolution diffusion weighted image is calculated from the images in step (i) based on that the ratio map between high-resolution images is approximated by the ratio map between the corresponding low-resolution images. (iii) Final SPIRiT reconstruction: the final image is generated with the image from IRCR as initialization by considering data consistency only in the SPIRiT calculation. A specific implementation based on multishot variable density spiral (VDS) DTI is used to demonstrate the method. RESULTS The proposed CIER method was compared with the traditional reconstruction methods, conjugate gradient SENSE (CG-SENSE), L1-regularized SPIRiT (L1-SPIRiT), and anisotropic-sparsity SPIRiT (AS-SPIRiT) in brain DTI at acceleration factors of 3 to 7. CIER provided better diffusion image quality than other methods shown by both qualitative and quantitative results, especially at higher undersampling acceleration factors. CONCLUSION CIER offers better diffusion image quality at higher undersampling acceleration factors for high-resolution DTI. Both qualitative and quantitative results prove that common information can be used to improve sampling efficiency and maintain the image quality of diffusion-weighted images.
Collapse
Affiliation(s)
- Yuhsuan Wu
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Xiaodong Ma
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong, China; Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Feng Huang
- Neusoft Medical System (Shanghai), Shanghai, China
| | - Hua Guo
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
19
|
Xu Z, Huang F, Wu Z, Mei Y, Jeong HK, Fang W, Chen Z, Wang Y, Dong Z, Guo H, Zhang X, Chen W, Feng Q, Feng Y. Technical Note: Clustering-based motion compensation scheme for multishot diffusion tensor imaging. Med Phys 2018; 45:5515-5524. [PMID: 30307624 DOI: 10.1002/mp.13232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/26/2018] [Accepted: 09/28/2018] [Indexed: 12/25/2022] Open
Abstract
PURPOSE To extend image reconstruction using image-space sampling function (IRIS) to address large-scale motion in multishot diffusion-weighted imaging (DWI). METHODS A clustered IRIS (CIRIS) algorithm that would extend IRIS was proposed to correct for large-scale motion. For DWI, CIRIS initially groups the shots into clusters without intracluster large-scale motion and reconstructs each cluster by using IRIS. Then, CIRIS registers these cluster images and combines the registered images by using a weighted average to correct for voxel mismatch caused by intercluster large-scale motion. For diffusion tensor imaging (DTI), CIRIS further reduces the effect of motion on diffusion directions by treating motion-induced direction changes as additional diffusion directions. CIRIS also introduces the detection and rejection of motion-corrupted data to avoid corresponding image degradation. The proposed method was evaluated by simulation and in vivo diffusion datasets. RESULTS Experiments demonstrated that CIRIS can reduce motion-induced blurring and artifacts in DWI and provide more accurate DTI estimations in the presence of large-scale motion, compared with IRIS. CONCLUSION The proposed method presents a novel approach to correct for large-scale in-plane motion for multishot DWI and is expected to benefit the practical application of high-resolution diffusion imaging.
Collapse
Affiliation(s)
- Zhongbiao Xu
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, China.,Key Laboratory of Mental Health of the Ministry of Education, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Feng Huang
- Neusoft Medical System, Shanghai, 200000, China
| | - Zhigang Wu
- Neusoft Medical System, Shanghai, 200000, China
| | - Yingjie Mei
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, China.,Key Laboratory of Mental Health of the Ministry of Education, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China.,Philips Healthcare, Guangzhou, 510515, China
| | | | | | - Zhifeng Chen
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, China.,Key Laboratory of Mental Health of the Ministry of Education, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Yishi Wang
- Department of Biomedical Engineering, Tsinghua University, Beijing, 100000, China
| | - Zijing Dong
- Department of Biomedical Engineering, Tsinghua University, Beijing, 100000, China
| | - Hua Guo
- Department of Biomedical Engineering, Tsinghua University, Beijing, 100000, China
| | - Xinyuan Zhang
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, China.,Key Laboratory of Mental Health of the Ministry of Education, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Wufan Chen
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, China.,Key Laboratory of Mental Health of the Ministry of Education, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Qianjin Feng
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, China.,Key Laboratory of Mental Health of the Ministry of Education, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Yanqiu Feng
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, 510515, China.,Key Laboratory of Mental Health of the Ministry of Education, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
20
|
Dong Z, Wang F, Reese TG, Manhard MK, Bilgic B, Wald LL, Guo H, Setsompop K. Tilted-CAIPI for highly accelerated distortion-free EPI with point spread function (PSF) encoding. Magn Reson Med 2018; 81:377-392. [PMID: 30229562 DOI: 10.1002/mrm.27413] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/31/2018] [Accepted: 05/31/2018] [Indexed: 12/14/2022]
Abstract
PURPOSE To develop a method for fast distortion- and blurring-free imaging. THEORY EPI with point-spread-function (PSF) mapping can achieve distortion- and blurring-free imaging at a cost of long acquisition time. In this study, an acquisition/reconstruction technique, termed "tilted-CAIPI," is proposed to achieve >20× acceleration for PSF-EPI. The proposed method systematically optimized the k-space sampling trajectory with B0 -inhomogeneity-informed reconstruction, to exploit the inherent signal correlation in PSF-EPI and take full advantage of coil sensitivity. Susceptibility-induced phase accumulation is regarded as an additional encoding that is estimated by calibration data and integrated into reconstruction. Self-navigated phase correction was developed to correct shot-to-shot phase variation in diffusion imaging. METHODS Tilted-CAIPI was implemented at 3T, with incorporation of partial Fourier and simultaneous multislice to achieve further accelerations. T2 -weighted, T2 * -weighted, and diffusion-weighted imaging experiments were conducted to evaluate the proposed method. RESULTS The ability of tilted-CAIPI to provide highly accelerated imaging without distortion and blurring was demonstrated through in vivo brain experiments, where only 8 shots per simultaneous slice group were required to provide high-quality, high-SNR imaging at 0.8-1 mm resolution. CONCLUSION Tilted-CAIPI achieved fast distortion- and blurring-free imaging with high SNR. Whole-brain T2 -weighted, T2 * -weighted, and diffusion imaging can be obtained in just 15-60 s.
Collapse
Affiliation(s)
- Zijing Dong
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Fuyixue Wang
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts.,Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts
| | - Timothy G Reese
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Mary Katherine Manhard
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Berkin Bilgic
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Lawrence L Wald
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts.,Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts
| | - Hua Guo
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Kawin Setsompop
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts.,Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts
| |
Collapse
|
21
|
Wang F, Bilgic B, Dong Z, Manhard MK, Ohringer N, Zhao B, Haskell M, Cauley SF, Fan Q, Witzel T, Adalsteinsson E, Wald LL, Setsompop K. Motion-robust sub-millimeter isotropic diffusion imaging through motion corrected generalized slice dithered enhanced resolution (MC-gSlider) acquisition. Magn Reson Med 2018; 80:1891-1906. [PMID: 29607548 DOI: 10.1002/mrm.27196] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/06/2018] [Accepted: 03/06/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE To develop an efficient MR technique for ultra-high resolution diffusion MRI (dMRI) in the presence of motion. METHODS gSlider is an SNR-efficient high-resolution dMRI acquisition technique. However, subject motion is inevitable during a prolonged scan for high spatial resolution, leading to potential image artifacts and blurring. In this study, an integrated technique termed Motion Corrected gSlider (MC-gSlider) is proposed to obtain high-quality, high-resolution dMRI in the presence of large in-plane and through-plane motion. A motion-aware reconstruction with spatially adaptive regularization is developed to optimize the conditioning of the image reconstruction under difficult through-plane motion cases. In addition, an approach for intra-volume motion estimation and correction is proposed to achieve motion correction at high temporal resolution. RESULTS Theoretical SNR and resolution analysis validated the efficiency of MC-gSlider with regularization, and aided in selection of reconstruction parameters. Simulations and in vivo experiments further demonstrated the ability of MC-gSlider to mitigate motion artifacts and recover detailed brain structures for dMRI at 860 μm isotropic resolution in the presence of motion with various ranges. CONCLUSION MC-gSlider provides motion-robust, high-resolution dMRI with a temporal motion correction sensitivity of 2 s, allowing for the recovery of fine detailed brain structures in the presence of large subject movements.
Collapse
Affiliation(s)
- Fuyixue Wang
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts.,Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts
| | - Berkin Bilgic
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Zijing Dong
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Mary Kate Manhard
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Ned Ohringer
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Bo Zhao
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Melissa Haskell
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts.,Department of Biophysics, Harvard University, Cambridge, Massachusetts
| | - Stephen F Cauley
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Qiuyun Fan
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Thomas Witzel
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts.,Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts
| | - Elfar Adalsteinsson
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts.,Department of Electrical Engineering and Computer Science, MIT, Cambridge, Massachusetts.,Institute for Medical Engineering and Science, MIT, Cambridge, Massachusetts
| | - Lawrence L Wald
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts.,Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts
| | - Kawin Setsompop
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts.,Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts
| |
Collapse
|