1
|
Hovagimian JD, Yazdanbakhsh P, Halilibrahimoglu H, Couch MJ, Hoge R, Rudko DA. A birdcage transmit, 24-channel conformal receive array coil for sensitive 31P magnetic resonance spectroscopic imaging of the human brain at 7 T. NMR IN BIOMEDICINE 2024; 37:e5178. [PMID: 38784970 DOI: 10.1002/nbm.5178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Phosphorus (31P) magnetic resonance spectroscopic imaging (MRSI) can serve as a critical tool for more direct quantification of brain energy metabolism, tissue pH, and cell membrane turnover. However, the low concentration of 31P metabolites in biological tissue may result in low signal-to-noise ratio (SNR) in 31P MRS images. In this work, we present an innovative design and construction of a 31P radiofrequency coil for whole-brain MRSI at 7 T. Our coil builds on current literature in ultra-high field 31P coil design and offers complete coverage of the brain, including the cerebellum and brainstem. The coil consists of an actively detunable volume transmit (Tx) resonator and a custom 24-channel receive (Rx) array. The volume Tx resonator is a 16-rung high-pass birdcage coil. The Rx coil consists of a 24-element phased array composed of catered loop shapes and sizes built onto a custom, close-fitting, head-shaped housing. The Rx array was designed to provide complete coverage of the head, while minimizing mutual coupling. The Rx configuration had a mean S 11 reflection coefficient better than -20 decibels (dB) when the coil was loaded with a human head. The mean mutual coupling ( S 21 ) among Rx elements, when loaded with a human head, was -16 dB. In phantom imaging, the phased array produced a central SNR that was 4.4-fold higher than the corresponding central SNR when operating the 31P birdcage as a transceiver. The peripheral SNR was 12-fold higher when applying the optimized phased array. In vivo 3D 31P MRSI experiments produced high-quality spectra in the cerebrum gray and white matter, as well as in the cerebellum. Characteristic phosphorus metabolites related to adenosine triphosphate metabolism and cell membrane turnover were distinguishable across all brain regions. In summary, our results demonstrate the potential of our novel coil for accurate, whole-brain 31P metabolite quantification.
Collapse
Affiliation(s)
- Johnny Der Hovagimian
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Pedram Yazdanbakhsh
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Hande Halilibrahimoglu
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Marcus J Couch
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Siemens Healthcare Limited, Montreal, QC, Canada
| | - Richard Hoge
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - David A Rudko
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
2
|
Li X, Zhu XH, Chen W. A Quantitative Comparison of 31P Magnetic Resonance Spectroscopy RF Coil Sensitivity and SNR between 7T and 10.5T Human MRI Scanners Using a Loop-Dipole 31P- 1H Probe. SENSORS (BASEL, SWITZERLAND) 2024; 24:5793. [PMID: 39275704 PMCID: PMC11398117 DOI: 10.3390/s24175793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024]
Abstract
In vivo phosphorus-31 (31P) magnetic resonance spectroscopy (MRS) imaging (MRSI) is an important non-invasive imaging tool for studying cerebral energy metabolism, intracellular nicotinamide adenine dinucleotide (NAD) and redox ratio, and mitochondrial function. However, it is challenging to achieve high signal-to-noise ratio (SNR) 31P MRS/MRSI results owing to low phosphorus metabolites concentration and low phosphorous gyromagnetic ratio (γ). Many works have demonstrated that ultrahigh field (UHF) could significantly improve the 31P-MRS SNR. However, there is a lack of studies of the 31P MRSI SNR in the 10.5 Tesla (T) human scanner. In this study, we designed and constructed a novel 31P-1H dual-frequency loop-dipole probe that can operate at both 7T and 10.5T for a quantitative comparison of 31P MRSI SNR between the two magnetic fields, taking into account the RF coil B1 fields (RF coil receive and transmit fields) and relaxation times. We found that the SNR of the 31P MRS signal is 1.5 times higher at 10.5T as compared to 7T, and the power dependence of SNR on magnetic field strength (B0) is 1.9.
Collapse
Affiliation(s)
- Xin Li
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xiao-Hong Zhu
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wei Chen
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
3
|
Zhang B, Lowrance D, Sarma MK, Bartlett M, Zaha D, Nelson MD, Henning A. 3T 31P/ 1H calf muscle coil for 1H and 31P MRI/MRS integrated with NIRS data acquisition. Magn Reson Med 2024; 91:2638-2651. [PMID: 38263948 DOI: 10.1002/mrm.30025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Abstract
PURPOSE Our aim was to design and build a 3T 31P/1H calf coil that is capable of providing both good 31P and 1H transmit and receive performance, as well as being capable of accommodating a near-infrared spectroscopy (NIRS) device for simultaneous NIRS data and MRI/MRS acquisition. METHOD In this work, we propose a new 3T 31P/1H birdcage combination design consisting of two co-centrically positioned birdcages on the same surface to maximize transmit efficiency and sensitivity for both nuclei. The 31P birdcage is a high-pass birdcage, whereas the 1H birdcage is a low-pass one to minimize coupling. The diameter of the 31P/1H birdcage combination was designed to be large enough to accommodate a NIRS device for simultaneous NIRS data and MRI/MRS acquisition. RESULTS The one-layer coil structure of the birdcage combination significantly streamlines the mechanical design and coil assembly process. Full-wave simulation results show that the 31P and 1H are very well decoupled with each other, and the 1H and 31P SNR surpasses that of their standalone counterparts in the central area. Experiment results show that the inclusion of a NIRS device does not significantly affect the performance of the coil, thus enabling simultaneous NIRS and MRI readouts during exercise. CONCLUSION Our findings demonstrate the feasibility and effectiveness of this dual-tuned coil design for combined NIRS and MRS measurements, offering potential benefits for studying metabolic and functional changes in the skeletal muscle in vivo.
Collapse
Affiliation(s)
- Bei Zhang
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Daniel Lowrance
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Manoj Kumar Sarma
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - David Zaha
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Anke Henning
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
4
|
Paška J, Wang B, Chen AM, Madelin G, Brown R. Triple-tuned birdcage and single-tuned dipole array for quadri-nuclear head MRI at 7 T. Magn Reson Med 2024; 91:2188-2199. [PMID: 38116692 PMCID: PMC10950522 DOI: 10.1002/mrm.29977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/31/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023]
Abstract
PURPOSE The purpose of this work was to design and build a coil for quadri-nuclear MRI of the human brain at 7 T. METHODS We built a transmit/receive triple-tuned (45.6 MHz for 2 $$ {}^2 $$ H, 78.6 MHz for 23 $$ {}^{23} $$ Na, and 120.3 MHz for 31 $$ {}^{31} $$ P) quadrature four-rod birdcage that was geometrically interleaved with a transmit/receive four-channel dipole array (297.2 MHz for 1 $$ {}^1 $$ H). The birdcage rods contained passive, two-pole resonant circuits that emulated capacitors required for single-tuning at three frequencies. The birdcage assembly also included triple-tuned matching networks, baluns, and transmit/receive switches. We assessed the performance of the coil with quality factor (Q) and signal-to-noise ratio (SNR) measurements, and performed in vivo multinuclear MRI and MR spectroscopic imaging (MRSI). RESULTS Q measurements showed that the triple-tuned birdcage efficiency was within 33% of that of single-tuned baseline birdcages at all three frequencies. The quadri-tuned coil SNR was 78%, 59%, 44%, and 48% lower than that of single or dual-tuned reference coils for 1 $$ {}^1 $$ H, 2 $$ {}^2 $$ H, 23 $$ {}^{23} $$ Na, and 31 $$ {}^{31} $$ P, respectively. Quadri-nuclear MRI and MRSI was demonstrated in brain in vivo in about 30 min. CONCLUSION While the SNR of the quadruple tuned coil was significantly lower than dual- and single-tuned reference coils, it represents a step toward truly simultaneous quadri-nuclear measurements.
Collapse
Affiliation(s)
- Jan Paška
- Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Bili Wang
- Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Anna M. Chen
- Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Guillaume Madelin
- Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Ryan Brown
- Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
5
|
Sun C, Bauer CC, Hou J, Wright SM. Wideband receive-coil array design using high-impedance amplifiers for broadband decoupling. Magn Reson Med 2023; 90:2198-2210. [PMID: 37382188 DOI: 10.1002/mrm.29755] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/17/2023] [Accepted: 05/21/2023] [Indexed: 06/30/2023]
Abstract
PURPOSE Multinuclear MRI/S is of increasing interest. Currently, most multinuclear receive array coils are constructed by nesting multiple single-tuned array coils or using switching elements to control the operating frequency, in which case more than one set of conventional isolation preamplifiers and associated decoupling circuits is required. These conventional configurations rapidly become complicated when greater numbers of channels or nuclei are needed. In this work, a novel coil decoupling mechanism is proposed to enable broadband decoupling for array coils with one set of preamplifiers. METHODS Instead of using conventional isolation preamplifiers, a high-input impedance preamplifier is proposed to create broadband decoupling of the array elements. A matching network consisting of a single inductor-capacitor-capacitor multi-tuned network and a wire-wound transformer was used to interface the surface coil to the high-impedance preamplifier. To validate the concept, the proposed configuration was compared to the conventional preamplifier decoupling configuration on both bench and scanner. RESULTS 2 The approach can provide more than 15dB decoupling over a range of 25MHz, covering the Larmor frequencies of 23 Na and 2 H at 4.7T. This multi-tuned prototype obtained 61% and 76% of the imaging SNR at 2 H and 23 Na respectively, 76 and 89% in a higher loading test phantom, when compared to the conventional single-tuned preamplifier decoupling configuration. CONCLUSION With the multinuclear array operation and decoupling achieved using only one layer of array coil and preamplifiers, this work provides a simple approach of building high element-count arrays to enable accelerated imaging or SNR improvement from multiple nuclei.
Collapse
Affiliation(s)
- Chenhao Sun
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
| | - Courtney C Bauer
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA
| | - Jue Hou
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA
| | - Steven M Wright
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
6
|
Zhang G, Zhu W, Li X, Zhu XH, Chen W. Dual-frequency resonant coil design for low-γ X-nuclear and proton magnetic resonance imaging at ultrahigh fields. NMR IN BIOMEDICINE 2023; 36:e4930. [PMID: 36939997 PMCID: PMC11089849 DOI: 10.1002/nbm.4930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 02/13/2023] [Accepted: 03/13/2023] [Indexed: 05/04/2023]
Abstract
Low-γ X-nuclear MRS and imaging have played a key role in studying metabolism and physiopathology, especially at ultrahigh fields. We design and demonstrate a novel and simple dual-frequency RF resonant coil that can operate at both low-γ X-nuclear and proton frequencies. The dual-frequency resonant coil comprises an LC coil loop and a tuning-matching circuit bridged by two short wires of the desired length to generate two resonant modes: one for proton MRI and the other for low-γ X-nuclear MRS imaging with a large difference in their Larmor frequencies at ultrahigh fields. The coil parameters for the desired coil size and resonant frequencies can be determined via numerical simulations based on LC circuit theory. We designed, constructed, and evaluated several prototype surface coils and quadrature array coils for 1 H and 2 H or 17 O imaging, with small-sized (diameter ≤ 5 cm) coils evaluated using a 16.4 T animal scanner, and a large-sized (15 cm diameter) coil on a 7 T human scanner. All coils could be tuned/matched and driven in the single coil or array coil mode to the resonant frequencies of 1 H (698 and 298 MHz), 2 H (107 and 45.8 MHz), or 17 O (94.7 and 40.4 MHz) for imaging measurements and evaluation at 16.4 and 7 T, respectively. The dual-frequency resonant coil or array provides adequate detection sensitivity for 1 H MRI and excellent performance for low-γ X-nuclear MRS imaging applications, and excellent coil decoupling efficiency between the array coils at both resonant frequencies with an optimal geometric overlap. It provides a simple, cost-effective dual-frequency RF coil solution to perform low-γ X-nuclear MRS imaging for preclinical and human applications, especially at ultrahigh fields.
Collapse
Affiliation(s)
- Guangle Zhang
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, Minnesota, USA
| | - Wei Zhu
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, Minnesota, USA
| | - Xin Li
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, Minnesota, USA
| | - Xiao-Hong Zhu
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, Minnesota, USA
| | - Wei Chen
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, Minnesota, USA
| |
Collapse
|
7
|
Schmidt R, Keban E, Bollmann S, Wiggins CJ, Niendorf T. Scaling the mountains: what lies above 7 Tesla magnetic resonance? MAGMA (NEW YORK, N.Y.) 2023; 36:151-157. [PMID: 37072540 PMCID: PMC10140119 DOI: 10.1007/s10334-023-01087-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 04/20/2023]
Affiliation(s)
- Rita Schmidt
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Elena Keban
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, University of Bern, Bern, Switzerland
| | - Saskia Bollmann
- School of Information Technology and Electrical Engineering, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, Brisbane, Australia
| | - Christopher J Wiggins
- Imaging Core Facility, Institute for Neurology and Medicine, Forschungszentrum Julich, Julich, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility, Max-Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
| |
Collapse
|
8
|
Roig ES, De Feyter HM, Nixon TW, Ruhm L, Nikulin AV, Scheffler K, Avdievich NI, Henning A, de Graaf RA. Deuterium metabolic imaging of the human brain in vivo at 7 T. Magn Reson Med 2023; 89:29-39. [PMID: 36063499 PMCID: PMC9756916 DOI: 10.1002/mrm.29439] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/25/2022] [Accepted: 08/11/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE To explore the potential of deuterium metabolic imaging (DMI) in the human brain in vivo at 7 T, using a multi-element deuterium (2 H) RF coil for 3D volume coverage. METHODS 1 H-MR images and localized 2 H MR spectra were acquired in vivo in the human brain of 3 healthy subjects to generate DMI maps of 2 H-labeled water, glucose, and glutamate/glutamine (Glx). In addition, non-localized 2 H-MR spectra were acquired both in vivo and in vitro to determine T1 and T2 relaxation times of deuterated metabolites at 7 T. The performance of the 2 H coil was assessed through numeric simulations and experimentally acquired B1 + maps. RESULTS 3D DMI maps covering the entire human brain in vivo were obtained from well-resolved deuterated (2 H) metabolite resonances of water, glucose, and Glx. The T1 and T2 relaxation times were consistent with those reported at adjacent field strengths. Experimental B1 + maps were in good agreement with simulations, indicating efficient and homogeneous B1 + transmission and low RF power deposition for 2 H, consistent with a similar array coil design reported at 9.4 T. CONCLUSION Here, we have demonstrated the successful implementation of 3D DMI in the human brain in vivo at 7 T. The spatial and temporal nominal resolutions achieved at 7 T (i.e., 2.7 mL in 28 min, respectively) were close to those achieved at 9.4 T and greatly outperformed DMI at lower magnetic fields. DMI at 7 T and beyond has clear potential in applications dealing with small brain lesions.
Collapse
Affiliation(s)
- Eulalia Serés Roig
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Henk M. De Feyter
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Terence W. Nixon
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Loreen Ruhm
- High-Field MR Centre, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- IMPRS for Cognitive and Systems Neuroscience, Eberhard-Karls University of Tübingen, Tübingen, Germany
- Advanced Imaging Research Centre, University of Texas Southwestern Medical Centre, Dallas, Texas, USA
| | - Anton V. Nikulin
- High-Field MR Centre, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Biomedical Magnetic Resonance, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Klaus Scheffler
- High-Field MR Centre, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Biomedical Magnetic Resonance, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Nikolai I. Avdievich
- High-Field MR Centre, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Anke Henning
- High-Field MR Centre, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Advanced Imaging Research Centre, University of Texas Southwestern Medical Centre, Dallas, Texas, USA
| | - Robin A. de Graaf
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| |
Collapse
|
9
|
Parasoglou P, Osorio RS, Khegai O, Kovbasyuk Z, Miller M, Ho A, Dehkharghani S, Wisniewski T, Convit A, Mosconi L, Brown R. Phosphorus metabolism in the brain of cognitively normal midlife individuals at risk for Alzheimer's disease. NEUROIMAGE. REPORTS 2022; 2:100121. [PMID: 36532654 PMCID: PMC9757821 DOI: 10.1016/j.ynirp.2022.100121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Background Neurometabolic abnormalities and amyloid-beta plaque deposition are important early pathophysiologic changes in Alzheimer's disease (AD). This study investigated the relationship between high-energy phosphorus-containing metabolites, glucose uptake, and amyloid plaque using phosphorus magnetic resonance spectroscopy (31P-MRS) and positron emission tomography (PET). Methods We measured 31P-MRS, fluorodeoxyglucose (FDG)-PET, and Pittsburgh Compound B (PiB)-PET in a cohort of 20 cognitively normal middle-aged adults at risk for AD. We assessed 31P-MRS reliability by scanning a separate cohort of 13 healthy volunteers twice each. We calculated the coefficient-of-variation (CV) of metabolite ratios phosphocreatine-to-adenosine triphosphate (PCr/α-ATP), inorganic phosphate (Pi)-to-α-ATP, and phosphomonoesters-to-phosphodiesters (PME/PDE), and pH in pre-defined brain regions. We performed linear regression analysis to determine the relationship between 31P measurements and tracer uptake, and Dunn's multiple comparison tests to investigate regional differences in phosphorus metabolism. Finally, we performed linear regression analysis on 31P-MRS measurements in both cohorts to investigate the relationship of phosphorus metabolism with age. Results Most regional 31P metabolite ratio and pH inter- and intra-day CVs were well below 10%. There was an inverse relationship between FDG-SUV levels and metabolite ratios PCr/α-ATP, Pi/α-ATP, and PME/PDE in several brain regions in the AD risk group. There were also several regional differences among 31P metabolites and pH in the AD risk group including elevated PCr/α-ATP, depressed PME/PDE, and elevated pH in the temporal cortices. Increased PCr/α-ATP throughout the brain was associated with aging. Conclusions Phosphorus spectroscopy in the brain can be performed with high repeatability. Phosphorus metabolism varies with region and age, and is related to glucose uptake in adults at risk for AD. Phosphorus spectroscopy may be a valuable approach to study early changes in brain energetics in high-risk populations.
Collapse
Affiliation(s)
- Prodromos Parasoglou
- Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ricardo S. Osorio
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Oleksandr Khegai
- Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Zanetta Kovbasyuk
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Margo Miller
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Amanda Ho
- Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Seena Dehkharghani
- Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Neurology, Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Thomas Wisniewski
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
- Department of Neurology, Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Antonio Convit
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
- Nathan S Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Lisa Mosconi
- Department of Neurology, Weill Cornell Medical College, New York, NY, USA
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | - Ryan Brown
- Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
10
|
Lopez Kolkovsky AL, Carlier PG, Marty B, Meyerspeer M. Interleaved and simultaneous multi-nuclear magnetic resonance in vivo. Review of principles, applications and potential. NMR IN BIOMEDICINE 2022; 35:e4735. [PMID: 35352440 PMCID: PMC9542607 DOI: 10.1002/nbm.4735] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Magnetic resonance signals from different nuclei can be excited or received at the same time,rendering simultaneous or rapidly interleaved multi-nuclear acquisitions feasible. The advan-tages are a reduction of total scan time compared to sequential multi-nuclear acquisitions or that additional information from heteronuclear data is obtained at thesame time and anatomical position. Information content can be qualitatively increased by delivering a more comprehensive MR-based picture of a transient state (such as an exercise bout). Also, combiningnon-proton MR acquisitions with 1 Hinformation (e.g., dynamic shim updates and motion correction) can be used to improve data quality during long scans and benefits image coregistration. This work reviews the literature on interleaved and simultaneous multi-nuclear MRI and MRS in vivo. Prominent use cases for this methodology in clinical and research applications are brain and muscle, but studies have also been carried out in other targets, including the lung, knee, breast and heart. Simultaneous multi-nuclear measurements in the liver and kidney have also been performed, but exclusively in rodents. In this review, a consistent nomenclature is proposed, to help clarify the terminology used for this principle throughout the literature on in-vivo MR. An overview covers the basic principles, the technical requirements on the MR scanner and the implementations realised either by MR system vendors or research groups, from the early days until today. Considerations regarding the multi-tuned RF coils required and heteronuclear polarisation interactions are briefly discussed, and fields for future in-vivo applications for interleaved multi-nuclear MR pulse sequences are identified.
Collapse
Affiliation(s)
- Alfredo L. Lopez Kolkovsky
- NMR Laboratory, Neuromuscular Investigation CenterInstitute of MyologyParisFrance
- NMR laboratoryCEA, DRF, IBFJParisFrance
| | - Pierre G. Carlier
- NMR Laboratory, Neuromuscular Investigation CenterInstitute of MyologyParisFrance
- NMR laboratoryCEA, DRF, IBFJParisFrance
| | - Benjamin Marty
- NMR Laboratory, Neuromuscular Investigation CenterInstitute of MyologyParisFrance
- NMR laboratoryCEA, DRF, IBFJParisFrance
| | - Martin Meyerspeer
- High‐Field MR Center, Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
| |
Collapse
|
11
|
Dorst J, Borbath T, Ruhm L, Henning A. Phosphorus transversal relaxation times and metabolite concentrations in the human brain at 9.4 T. NMR IN BIOMEDICINE 2022; 35:e4776. [PMID: 35607903 DOI: 10.1002/nbm.4776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/14/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
A method to estimate phosphorus (31 P) transversal relaxation times (T2 s) of coupled spin systems is demonstrated. Additionally, intracellular and extracellular pH and relaxation-corrected metabolite concentrations are reported. Echo time (TE) series of 31 P metabolite spectra were acquired using stimulated echo acquisition mode (STEAM) localization. Spectra were fitted using LCModel with accurately modeled Versatile Simulation, Pulses and Analysis (VeSPA) basis sets accounting for J-evolution of the coupled spin systems. T2 s were estimated by fitting a single exponential two-parameter model across the TE series. Fitted inorganic phosphate frequencies were used to calculate pH, and estimated relaxation times were used to determine the relaxation-corrected brain metabolite concentrations on an assumption of 3 mM γ-ATP. The method was demonstrated in healthy human brain at a field strength of 9.4 T. T2 times of ATP and nicotinamide adenine dinucleotide (NAD) were shortest between 8 and 20 ms, followed by T2 s of inorganic phosphate between 25 and 50 ms, and phosphocreatine with a T2 of 100 ms. Phosphomonoesters and phosphodiesters had the longest T2 s of about 130 ms. The measured T2 s are comparable with literature values and fit in a decreasing trend with increasing field strengths. Calculated pHs and metabolite concentrations are also comparable with literature values.
Collapse
Affiliation(s)
- Johanna Dorst
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- International Max Planck Research School for Cognitive and Systems Neuroscience (IMPRS), University of Tübingen, Tübingen, Germany
| | - Tamas Borbath
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Faculty of Science, University of Tübingen, Tübingen, Germany
| | - Loreen Ruhm
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- International Max Planck Research School for Cognitive and Systems Neuroscience (IMPRS), University of Tübingen, Tübingen, Germany
| | - Anke Henning
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
12
|
Vaidya MV, Zhang B, Hong D, Brown R, Batsios G, Viswanath P, Paska J, Wulf G, Grant AK, Ronen SM, Larson PEZ. A 13C/ 31P surface coil to visualize metabolism and energetics in the rodent brain at 3 Tesla. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 343:107286. [PMID: 36075133 PMCID: PMC9721620 DOI: 10.1016/j.jmr.2022.107286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/04/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
PURPOSE We constructed a 13C/31P surface coil at 3 T for studying cancer metabolism and bioenergetics. In a single scan session, hyperpolarized 13C-pyruvate MRS and 31P MRS was carried out for a healthy rat brain. METHODS All experiments were carried out at 3 Tesla. The multinuclear surface coil was designed as two coplanar loops each tuned to either the 13C or 31P operating frequency with an LCC trap on the 13C loop. A commercial volume proton coil was used for anatomical localization and B0 shimming. Single tuned coils operating at either the 13C or 31P frequency were built to evaluate the relative performance of the multinuclear coil. Coil performance metrics consisted of measuring Q factor ratio, calculating system input power using a single-pulse acquisition, and acquiring SNR and flip angle maps using 2D CSI sequences. To observe in vivo spectra, a bolus of hyperpolarized [1-13C] pyruvate was administered via tail vein. In vivo13C and endogenous 31P spectra were obtained in a single scan session using 1D slice selective acquisitions. RESULTS When compared with single tuned surface coils, the multinuclear coil performance showed a decrease in Q factor ratio, SNR, and transmit efficiency. Flip angle maps showed adequate flip angles within the phantom when the transmit voltage was set using an external phantom. Results show good detection of 13C labeled lactate, alanine, and bicarbonate in addition to ATP from 31P MRS. CONCLUSIONS The coil enables obtaining complementary information within a scan session, thus reducing the number of trials and minimizing biological variability for studies of metabolism and bioenergetics.
Collapse
Affiliation(s)
- Manushka V Vaidya
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.
| | - Bei Zhang
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - DongHyun Hong
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Ryan Brown
- Center for Advanced Imaging Innovation and Research, and Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Georgios Batsios
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Jan Paska
- Center for Advanced Imaging Innovation and Research, and Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Gerburg Wulf
- Department of Hematology-Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Aaron K Grant
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
13
|
Hangel G, Niess E, Lazen P, Bednarik P, Bogner W, Strasser B. Emerging methods and applications of ultra-high field MR spectroscopic imaging in the human brain. Anal Biochem 2022; 638:114479. [PMID: 34838516 DOI: 10.1016/j.ab.2021.114479] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/15/2021] [Accepted: 11/16/2021] [Indexed: 12/21/2022]
Abstract
Magnetic Resonance Spectroscopic Imaging (MRSI) of the brain enables insights into the metabolic changes and fluxes in diseases such as tumors, multiple sclerosis, epilepsy, or hepatic encephalopathy, as well as insights into general brain functionality. However, the routine application of MRSI is mostly hampered by very low signal-to-noise ratios (SNR) due to the low concentrations of metabolites, about 10000 times lower than water. Furthermore, MRSI spectra have a dense information content with many overlapping metabolite resonances, especially for proton MRSI. MRI scanners at ultra-high field strengths, like 7 T or above, offer the opportunity to increase SNR, as well as the separation between resonances, thus promising to solve both challenges. Yet, MRSI at ultra-high field strengths is challenged by decreased B0- and B1-homogeneity, shorter T2 relaxation times, stronger chemical shift displacement errors, and aggravated lipid contamination. Therefore, to capitalize on the advantages of ultra-high field strengths, these challenges must be overcome. This review focuses on the challenges MRSI of the human brain faces at ultra-high field strength, as well as the possible applications to this date.
Collapse
Affiliation(s)
- Gilbert Hangel
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria; Department of Neurosurgery, Medical University of Vienna, Austria
| | - Eva Niess
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Philipp Lazen
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Petr Bednarik
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Wolfgang Bogner
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Bernhard Strasser
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria.
| |
Collapse
|
14
|
Ruhm L, Avdievich N, Ziegs T, Nagel AM, De Feyter HM, de Graaf RA, Henning A. Deuterium metabolic imaging in the human brain at 9.4 Tesla with high spatial and temporal resolution. Neuroimage 2021; 244:118639. [PMID: 34637905 PMCID: PMC8591372 DOI: 10.1016/j.neuroimage.2021.118639] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/10/2021] [Accepted: 10/05/2021] [Indexed: 01/09/2023] Open
Abstract
PURPOSE To present first highly spatially resolved deuterium metabolic imaging (DMI) measurements of the human brain acquired with a dedicated coil design and a fast chemical shift imaging (CSI) sequence at an ultrahigh field strength of B0 = 9.4 T. 2H metabolic measurements with a temporal resolution of 10 min enabled the investigation of the glucose metabolism in healthy human subjects. METHODS The study was performed with a double-tuned coil with 10 TxRx channels for 1H and 8TxRx/2Rx channels for 2H and an Ernst angle 3D CSI sequence with a nominal spatial resolution of 2.97 ml and a temporal resolution of 10 min. RESULTS The metabolism of [6,6'-2H2]-labeled glucose due to the TCA cycle could be made visible in high resolution metabolite images of deuterated water, glucose and Glx over the entire human brain. CONCLUSION X-nuclei MRSI as DMI can highly benefit from ultrahigh field strength enabling higher temporal and spatial resolutions.
Collapse
Affiliation(s)
- Loreen Ruhm
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany; IMPRS for Cognitive and Systems Neuroscience, Eberhard-Karls University of Tübingen, Germany.
| | - Nikolai Avdievich
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Theresia Ziegs
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany; IMPRS for Cognitive and Systems Neuroscience, Eberhard-Karls University of Tübingen, Germany
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany; Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Henk M De Feyter
- Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States
| | - Robin A de Graaf
- Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States
| | - Anke Henning
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany; Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas/Texas, United States
| |
Collapse
|
15
|
Wang B, Zhang B, Yu Z, Ianniello C, Lakshmanan K, Paska J, Madelin G, Cloos M, Brown R. A radially interleaved sodium and proton coil array for brain MRI at 7 T. NMR IN BIOMEDICINE 2021; 34:e4608. [PMID: 34476861 PMCID: PMC9362999 DOI: 10.1002/nbm.4608] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
The objective of the current study was to design and build a dual-tuned coil array for simultaneous 23 Na/1 H MRI of the human brain at 7 T. Quality factor, experimental B1+ measurements, and electromagnetic simulations in prototypes showed that setups consisting of geometrically interleaved 1 H and 23 Na loops performed better than or similar to 1 H or 23 Na loops in isolation. Based on these preliminary findings, we built a transmit/receive eight-channel 23 Na loop array that was geometrically interleaved with a transmit/receive eight-channel 1 H loop array. We assessed the performance of the manufactured array with mononuclear signal-to-noise ratio (SNR) and B1+ measurements, along with multinuclear magnetic resonance fingerprinting maps and images. The 23 Na array within the developed dual-tuned device provided more than 50% gain in peripheral SNR and similar B1+ uniformity and coverage as a reference birdcage coil of similar size. The 1 H array provided good B1+ uniformity in the brain, excluding the cerebellum and brain stem. The integrated 23 Na and 1 H arrays were used to demonstrate truly simultaneous quantitative 1 H mapping and 23 Na imaging.
Collapse
Affiliation(s)
- Bili Wang
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Bei Zhang
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Advanced Imaging Research Center, Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Zidan Yu
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA
| | - Carlotta Ianniello
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA
| | - Karthik Lakshmanan
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Jan Paska
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Guillaume Madelin
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA
| | - Martijn Cloos
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Ryan Brown
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
16
|
Avdievich NI, Solomakha G, Ruhm L, Henning A, Scheffler K. 9.4 T double-tuned 13 C/ 1 H human head array using a combination of surface loops and dipole antennas. NMR IN BIOMEDICINE 2021; 34:e4577. [PMID: 34169590 DOI: 10.1002/nbm.4577] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/17/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
MRI at ultra-high field (UHF, ≥7 T) provides a natural strategy for improving the quality of X-nucleus magnetic resonance spectroscopy and imaging due to the intrinsic benefit of increased signal-to-noise ratio. Considering that RF coils require both local transmission and reception at UHF, the designs of double-tuned coils, which often consist of several layers of transmit and receive resonant elements, become quite complex. A few years ago, a new type of RF coil, ie a dipole antenna, was developed and used for human body and head imaging at UHF. Due to the mechanical and electrical simplicity of dipole antennas, combining an X-nucleus surface loop array with 1 H dipoles can substantially simplify the design of a double-tuned UHF human head array coil. Recently, we developed a novel bent folded-end dipole transceiver array for human head imaging at 9.4 T. The new eight-element dipole array demonstrated full brain coverage, and transmit efficiency comparable to that of the substantially more complex 16-element surface loop array. In this work, we developed, constructed and evaluated a double-tuned 13 C/1 H human head 9.4 T array consisting of eight 13 C transceiver surface loops and eight 1 H transceiver bent folded-end dipole antennas all placed in a single layer. We showed that interaction between loops and dipoles can be minimized by placing four 1 H traps into each 13 C loop. The presented double-tuned RF array coil substantially simplifies the design as compared with the common double-tuned surface loop arrays. At the same time, the coil demonstrated an improved 1 H longitudinal coverage and good transmit efficiency.
Collapse
Affiliation(s)
- Nikolai I Avdievich
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Georgiy Solomakha
- Department of Physics and Engineering, ITMO University, St. Petersburg, Russia
| | - Loreen Ruhm
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Anke Henning
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Klaus Scheffler
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| |
Collapse
|
17
|
Ruhm L, Dorst J, Avdievitch N, Wright AM, Henning A. 3D 31 P MRSI of the human brain at 9.4 Tesla: Optimization and quantitative analysis of metabolic images. Magn Reson Med 2021; 86:2368-2383. [PMID: 34219281 DOI: 10.1002/mrm.28891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 05/14/2021] [Accepted: 05/28/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE To present 31 P whole brain MRSI with a high spatial resolution to probe quantitative tissue analysis of 31 P MRSI at an ultrahigh field strength of 9.4 Tesla. METHODS The study protocol included a 31 P MRSI measurement with an effective resolution of 2.47 mL. For SNR optimization, the nuclear Overhauser enhancement at 9.4 Tesla was investigated. A sensitivity correction was achieved by applying a low rank approximation of the γ-adenosine triphosphate signal. Group analysis and regression on individual volunteers were performed to investigate quantitative concentration differences between different tissue types. RESULTS Differences in gray and white matter tissue 31 P concentrations could be investigated for 12 different 31 P resonances. In addition, the first highly resolved quantitative MRSI images measured at B0 = 9.4 Tesla of 31 P detectable metabolites with high SNR could be presented. CONCLUSION With an ultrahigh field strength B0 = 9.4 Tesla, 31 P MRSI moves further toward quantitative metabolic imaging, and subtle differences in concentrations between different tissue types can be detected.
Collapse
Affiliation(s)
- Loreen Ruhm
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,IMPRS for Cognitive and Systems Neuroscience, Eberhard-Karls University of Tübingen, Germany
| | - Johanna Dorst
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,IMPRS for Cognitive and Systems Neuroscience, Eberhard-Karls University of Tübingen, Germany
| | - Nikolai Avdievitch
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Andrew Martin Wright
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,IMPRS for Cognitive and Systems Neuroscience, Eberhard-Karls University of Tübingen, Germany
| | - Anke Henning
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
18
|
Li X, Pan JW, Avdievich NI, Hetherington HP, Rispoli JV. Electromagnetic simulation of a 16-channel head transceiver at 7 T using circuit-spatial optimization. Magn Reson Med 2021; 85:3463-3478. [PMID: 33533500 DOI: 10.1002/mrm.28672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 11/07/2022]
Abstract
PURPOSE With increased interest in parallel transmission in ultrahigh-field MRI, methods are needed to correctly calculate the S-parameters and complex field maps of the parallel transmission coil. We present S-parameters paired with spatial field optimization to fully simulate a double-row 16-element transceiver array for brain MRI at 7 T. METHODS We implemented a closed-form equation of the coil S-parameters and overall spatial B 1 + field. We minimized a cost function, consisting of coil S-parameters and the B 1 + homogeneity in brain tissue, by optimizing transceiver components, including matching, decoupling circuits, and lumped capacitors. With this, we are able to compare the in silico results determined with and without B 1 + homogeneity weighting. Using the known voltage range from the host console, we reconstructed the B 1 + maps of the array and performed RF shimming with four realistic head models. RESULTS As performed with B 1 + homogeneity weighting, the optimized coil circuit components were highly consistent over the four heads, producing well-tuned, matched, and decoupled coils. The mean peak forward powers and B 1 + statistics for the head models are consistent with in vivo human results (N = 8). There are systematic differences in the transceiver components as optimized with or without B 1 + homogeneity weighting, resulting in an improvement of 28.4 ± 7.5% in B 1 + homogeneity with a small 1.9 ± 1.5% decline in power efficiency. CONCLUSION This co-simulation methodology accurately simulates the transceiver, predicting consistent S-parameters, component values, and B 1 + field. The RF shimming of the calculated field maps match the in vivo performance.
Collapse
Affiliation(s)
- Xin Li
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Jullie W Pan
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nikolai I Avdievich
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Hoby P Hetherington
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joseph V Rispoli
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
19
|
Dorst J, Ruhm L, Avdievich N, Bogner W, Henning A. Comparison of four 31P single-voxel MRS sequences in the human brain at 9.4 T. Magn Reson Med 2021; 85:3010-3026. [PMID: 33427322 DOI: 10.1002/mrm.28658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/03/2020] [Accepted: 12/06/2020] [Indexed: 01/30/2023]
Abstract
PURPOSE In this study, different single-voxel localization sequences were implemented and systematically compared for the first time for phosphorous MRS (31 P-MRS) in the human brain at 9.4 T. METHODS Two multishot sequences, image-selected in vivo spectroscopy (ISIS) and a conventional slice-selective excitation combined with localization by adiabatic selective refocusing (semiLASER) variant of the spin-echo full intensity-acquired localized spectroscopy (SPECIAL-semiLASER), and two single-shot sequences, semiLASER and stimulated echo acquisition mode (STEAM), were implemented and optimized for 31 P-MRS in the human brain at 9.4 T. Pulses and coil setup were optimized, localization accuracy was tested in phantom experiments, and absolute SNR of the sequences was compared in vivo. The SNR per unit time (SNR/t) was derived and compared for all four sequences and verified experimentally for ISIS in two different voxel sizes (3 × 3 × 3 cm3 , 5 × 5 × 5 cm3 , 10-minute measurement time). Metabolite signals obtained with ISIS were quantified. The possible spectral quality in vivo acquired in clinically feasible time (3:30 minutes, 3 × 3 × 3 cm3 ) was explored for two different coil setups. RESULTS All evaluated sequences performed with good localization accuracy in phantom experiments and provided well-resolved spectra in vivo. However, ISIS has the lowest chemical shift displacement error, the best localization accuracy, the highest SNR/t for most metabolites, provides metabolite concentrations comparable to literature values, and is the only one of the sequences that allows for the detection of the whole 31 P spectrum, including β-adenosine triphosphate, with the used setup. The SNR/t of STEAM is comparable to the SNR/t of ISIS. The semiLASER and SPECIAL-semiLASER sequences provide good results for metabolites with long T2 . CONCLUSION At 9.4 T, high-quality single-voxel localized 31 P-MRS can be performed in the human brain with different localization methods, each with inherent characteristics suitable for different research issues.
Collapse
Affiliation(s)
- Johanna Dorst
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,IMPRS for Cognitive and Systems Neuroscience, University of Tübingen, Tübingen, Germany
| | - Loreen Ruhm
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,IMPRS for Cognitive and Systems Neuroscience, University of Tübingen, Tübingen, Germany
| | - Nikolai Avdievich
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Wolfgang Bogner
- High-Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Anke Henning
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
20
|
Wilcox M, Wright SM, McDougall M. A Review of Non- 1H RF Receive Arrays in Magnetic Resonance Imaging and Spectroscopy. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2020; 1:290-300. [PMID: 35402958 PMCID: PMC8975242 DOI: 10.1109/ojemb.2020.3030531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 11/16/2022] Open
Abstract
It is now common practice to use radiofrequency (RF) coils to increase the signal-to-noise ratio (SNR) in 1H magnetic resonance imaging and spectroscopy experiments. Use of array coils for non-1H experiments, however, has been historically more limited despite the fact that these nuclei suffer inherently lower sensitivity and could benefit greatly from an increased SNR. Recent advancements in receiver technology and increased support from scanner manufacturers have now opened greater options for the use of array coils for non-1H magnetic resonance experiments. This paper reviews the research in adopting array coil technology with an emphasis on studies of the most commonly studied non-1H nuclei including 31P, 13C, 23Na, and 19F. These nuclei offer complementary information to 1H imaging and spectroscopy and have proven themselves important in the study of numerous disease processes. While recent work with non-1H array coils has shown promising results, the technology is not yet widely utilized and should see substantial developments in the coming years.
Collapse
|
21
|
Choi CH, Hong SM, Felder J, Shah NJ. The state-of-the-art and emerging design approaches of double-tuned RF coils for X-nuclei, brain MR imaging and spectroscopy: A review. Magn Reson Imaging 2020; 72:103-116. [DOI: 10.1016/j.mri.2020.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/16/2020] [Accepted: 07/01/2020] [Indexed: 12/18/2022]
|