1
|
Dong Z, Wald LL, Polimeni JR, Wang F. Single-shot echo planar time-resolved imaging for multi-echo functional MRI and distortion-free diffusion imaging. Magn Reson Med 2025; 93:993-1013. [PMID: 39428674 DOI: 10.1002/mrm.30327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 09/07/2024] [Accepted: 09/13/2024] [Indexed: 10/22/2024]
Abstract
PURPOSE To develop a single-shot SNR-efficient distortion-free multi-echo imaging technique for dynamic imaging applications. METHODS Echo planar time-resolved imaging (EPTI) was first introduced as a multi-shot technique for distortion-free multi-echo imaging. This work aims to develop single-shot EPTI (ss-EPTI) to achieve improved robustness to motion/physiological noise, increased temporal resolution, and higher SNR efficiency. A new spatiotemporal encoding that enables reduced phase-encoding blips and minimized echo spacing under the single-shot regime was developed, which improves sampling efficiency and enhances spatiotemporal correlation in the k-TE space for improved reconstruction. A continuous readout with minimized deadtime was employed to optimize SNR efficiency. Moreover, k-TE partial Fourier and simultaneous multi-slice acquisition were integrated for further acceleration. RESULTS ss-EPTI provided distortion-free imaging with densely sampled multi-echo images at standard resolutions (e.g., ˜1.25 to 3 mm) in a single-shot. Improved SNR efficiency was observed in ss-EPTI due to improved motion/physiological-noise robustness and efficient continuous readout. Its ability to eliminate dynamic distortions-geometric changes across dynamics due to field changes induced by physiological variations or eddy currents-further improved the data's temporal stability. For multi-echo fMRI, ss-EPTI's multi-echo images recovered signal dropout in short-T 2 * $$ {\mathrm{T}}_2^{\ast } $$ regions and provided TE-dependent functional information to distinguish non-BOLD noise for further tSNR improvement. For diffusion MRI, it achieved shortened TEs for improved SNR and provided images free from both B0-induced and diffusion-encoding-dependent eddy-current-induced distortions with multi-TE diffusion metrics. CONCLUSION ss-EPTI provides SNR-efficient distortion-free multi-echo imaging with comparable temporal resolutions to ss-EPI, offering a new acquisition tool for dynamic imaging.
Collapse
Affiliation(s)
- Zijing Dong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA
| | - Fuyixue Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Hu Z, Berman AJL, Dong Z, Grissom WA, Reese TG, Wald LL, Wang F, Polimeni JR. Reduced physiology-induced temporal instability achieved with variable-flip-angle fast low-angle excitation echo-planar technique with multishot echo planar time-resolved imaging. Magn Reson Med 2025; 93:597-614. [PMID: 39323238 DOI: 10.1002/mrm.30301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024]
Abstract
PURPOSE Echo planar time-resolved imaging (EPTI) is a new imaging approach that addresses the limitations of EPI by providing high-resolution, distortion- and T2/T 2 * $$ {\mathrm{T}}_2^{\ast } $$ blurring-free imaging for functional MRI (fMRI). However, as in all multishot sequences, intershot phase variations induced by physiological processes can introduce temporal instabilities to the reconstructed time-series data. This study aims to reduce these instabilities in multishot EPTI. THEORY AND METHODS In conventional multishot EPTI, the time intervals between the shots comprising each slice can introduce intershot phase variations. Here, the fast low-angle excitation echo-planar technique (FLEET), in which all shots of each slice are acquired consecutively with minimal time delays, was combined with a variable flip angle (VFA) technique to improve intershot consistency and maximize signal. A recursive Shinnar-Le Roux RF pulse design algorithm was used to generate pulses for different shots to produce consistent slice profiles and signal intensities across shots. Blipped controlled aliasing in parallel imaging simultaneous multislice was also combined with the proposed VFA-FLEET EPTI to improve temporal resolution and increase spatial coverage. RESULTS The temporal stability of VFA-FLEET EPTI was compared with conventional EPTI at 7 T. The results demonstrated that VFA-FLEET can provide spatial-specific increase of temporal stability. We performed high-resolution task-fMRI experiments at 7 T using VFA-FLEET EPTI, and reliable BOLD responses to a visual stimulus were detected. CONCLUSION The intershot phase variations induced by physiological processes in multishot EPTI can manifest as specific spatial patterns of physiological noise enhancement and lead to reduced temporal stability. The VFA-FLEET technique can substantially reduce these physiology-induced instabilities in multishot EPTI acquisitions. The proposed method provides sufficient stability and sensitivity for high-resolution fMRI studies.
Collapse
Affiliation(s)
- Zhangxuan Hu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Avery J L Berman
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Physics, Carleton University, Ottawa, Ontario, Canada
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada
| | - Zijing Dong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - William A Grissom
- Department of Biomedical Engineering, School of Medicine, Case School of Engineering, Cleveland, Ohio, USA
| | - Timothy G Reese
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Fuyixue Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
3
|
Wang N, Liao C, Cao X, Nishimura M, Brackenier YWE, Yurt M, Gao M, Abraham D, Alkan C, Iyer SS, Zhou Z, Jeong H, Kerr A, Haldar JP, Setsompop K. Spherical echo-planar time-resolved imaging (sEPTI) for rapid 3D quantitative T 2 * and susceptibility imaging. Magn Reson Med 2025; 93:121-137. [PMID: 39250435 DOI: 10.1002/mrm.30255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 09/11/2024]
Abstract
PURPOSE To develop a 3D spherical EPTI (sEPTI) acquisition and a comprehensive reconstruction pipeline for rapid high-quality whole-brain submillimeterT 2 * $$ {\mathrm{T}}_2^{\ast } $$ and QSM quantification. METHODS For the sEPTI acquisition, spherical k-space coverage is utilized with variable echo-spacing and maximum kx ramp-sampling to improve efficiency and signal incoherency compared to existing EPTI approaches. For reconstruction, an iterative rank-shrinking B0 estimation and odd-even high-order phase correction algorithms were incorporated into the reconstruction to better mitigate artifacts from field imperfections. A physics-informed unrolled network was utilized to boost the SNR, where 1-mm and 0.75-mm isotropic whole-brain imaging were performed in 45 and 90 s at 3 T, respectively. These protocols were validated through simulations, phantom, and in vivo experiments. Ten healthy subjects were recruited to provide sufficient data for the unrolled network. The entire pipeline was validated on additional five healthy subjects where different EPTI sampling approaches were compared. Two additional pediatric patients with epilepsy were recruited to demonstrate the generalizability of the unrolled reconstruction. RESULTS sEPTI achieved 1.4× $$ \times $$ faster imaging with improved image quality and quantitative map precision compared to existing EPTI approaches. The B0 update and the phase correction provide improved reconstruction performance with lower artifacts. The unrolled network boosted the SNR, achieving high-qualityT 2 * $$ {\mathrm{T}}_2^{\ast } $$ and QSM quantification with single average data. High-quality reconstruction was also obtained in the pediatric patients using this network. CONCLUSION sEPTI achieved whole-brain distortion-free multi-echo imaging andT 2 * $$ {\mathrm{T}}_2^{\ast } $$ and QSM quantification at 0.75 mm in 90 s which has the potential to be useful for wide clinical applications.
Collapse
Affiliation(s)
- Nan Wang
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Congyu Liao
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Xiaozhi Cao
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Mark Nishimura
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | | | - Mahmut Yurt
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Mengze Gao
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Daniel Abraham
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Cagan Alkan
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Siddharth Srinivasan Iyer
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, Massachusetts, USA
| | - Zihan Zhou
- Department of Radiology, Stanford University, Stanford, California, USA
| | | | - Adam Kerr
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
- Cognitive and Neurobiological Imaging Center, Stanford University, Stanford, California, USA
| | - Justin P Haldar
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California, USA
| | - Kawin Setsompop
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| |
Collapse
|
4
|
Cui D, Liu X, Larson PEZ, Xu D. Time-resolved MR fingerprinting for T 2* signal extraction: MR fingerprinting meets echo planar time-resolved imaging. Magn Reson Med 2024. [PMID: 39567357 DOI: 10.1002/mrm.30381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024]
Abstract
PURPOSE This study leverages the echo planar time-resolved imaging (EPTI) concept in MR fingerprinting (MRF) framework for a new time-resolved MRF (TRMRF) approach, and explores its capability for fast simultaneous quantification of multiple MR parameters including T1, T2, T2*, proton density, off resonance, and B1 +. METHODS The proposed TRMRF method uses the concept of EPTI to track the signal change along the EPI echo train for T2* weighting with a k-t Poisson-based sampling order designed for acquisition. A two-dimensional decomposition algorithm was designed for the image reconstruction, enabling fast and precise subspace modeling. The accuracy of proposed method was evaluated by a T1/T2 phantom. The feasibility was demonstrated through 5 healthy volunteer brain studies. RESULTS In the phantom studies, T1, T2, and T2* maps of TRMRF correlated strongly with gold-standard methods. The concordance correlation coefficients are 0.9999, 0.9984 and 0.9978, and R2s are 0.9998, 0.9971, and 0.9983. In the in vivo studies, quantitative maps were acquired with 5 healthy volunteers. TRMRF was demonstrated to have comparable results with spiral MRF and gradient-echo EPTI. TRMRF scans using 16, 10, and 6 s per slice were also evaluated to demonstrate the capability of shorter scan times. CONCLUSION A new approach is proposed to exploit the advantage of EPTI in the MRF framework. We demonstrate in phantom and in vivo experiments that T1, T2, T2*, proton density, off resonance, and B1 + can be simultaneously quantified within 6 s/slice by TRMRF.
Collapse
Affiliation(s)
- Di Cui
- Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Xiaoxi Liu
- Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Peder E Z Larson
- Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- Graduate Program in Bioengineering, University of California, Berkeley and San Francisco, San Francisco, California, USA
| | - Duan Xu
- Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
5
|
Dong Z, Reese TG, Lee HH, Huang SY, Polimeni JR, Wald LL, Wang F. Romer-EPTI: Rotating-view motion-robust super-resolution EPTI for SNR-efficient distortion-free in-vivo mesoscale diffusion MRI and microstructure imaging. Magn Reson Med 2024. [PMID: 39552568 DOI: 10.1002/mrm.30365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/28/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024]
Abstract
PURPOSE To overcome the major challenges in diffusion MRI (dMRI) acquisition, including limited SNR, distortion/blurring, and susceptibility to motion artifacts. THEORY AND METHODS A novel Romer-EPTI technique is developed to achieve SNR-efficient acquisition while providing distortion-free imaging, minimal spatial blurring, high motion robustness, and simultaneous multi-TE imaging. It introduces a ROtating-view Motion-robust supEr-Resolution technique (Romer) combined with a distortion/blurring-free Echo Planar Time-resolved Imaging (EPTI) readout. Romer enhances SNR through simultaneous multi-thick-slice acquisition with rotating-view encoding, while providing high motion-robustness via a high-fidelity, motion-aware super-resolution reconstruction. Instead of EPI, the in-plane encoding is performed using EPTI readout to prevent geometric distortion, T2/T2*-blurring, and importantly, dynamic distortions that could introduce additional blurring/artifacts after super-resolution reconstruction due to combining volumes with inconsistent geometries. This further improves effective spatial resolution and motion robustness. Additional developments include strategies to address slab-boundary artifacts, achieve minimized TE and optimized readout for additional SNR gain, and increase robustness to strong phase variations at high b-values. RESULTS Using Romer-EPTI, we demonstrated distortion-free whole-brain mesoscale in-vivo dMRI at both 3T (500-μm isotropic [iso] resolution) and 7T (485-μm iso resolution) for the first time. Motion experiments demonstrated the technique's motion robustness and its ability to obtain high-resolution diffusion images in the presence of subject motion. Romer-EPTI also demonstrated high SNR gain and robustness in high b-value (b = 5000 s/mm2) and time-dependent dMRI. CONCLUSION The high SNR efficiency, improved image quality, and motion robustness of Romer-EPTI make it a highly efficient acquisition for high-resolution dMRI and microstructure imaging.
Collapse
Affiliation(s)
- Zijing Dong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Timothy G Reese
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hong-Hsi Lee
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Susie Y Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA
| | - Fuyixue Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Meyer NK, In MH, Black DF, Campeau NG, Welker KM, Huston J, Halverson MA, Bernstein MA, Trzasko JD. Model-based iterative reconstruction for direct imaging with point spread function encoded echo planar MRI. Magn Reson Imaging 2024; 109:189-202. [PMID: 38490504 PMCID: PMC11075760 DOI: 10.1016/j.mri.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Echo planar imaging (EPI) is a fast measurement technique commonly used in magnetic resonance imaging (MRI), but is highly sensitive to measurement non-idealities in reconstruction. Point spread function (PSF)-encoded EPI is a multi-shot strategy which alleviates distortion, but acquisition of encodings suitable for direct distortion-free imaging prolongs scan time. In this work, a model-based iterative reconstruction (MBIR) framework is introduced for direct imaging with PSF-EPI to improve image quality and acceleration potential. METHODS An MBIR platform was developed for accelerated PSF-EPI. The reconstruction utilizes a subspace representation, is regularized to promote local low-rankedness (LLR), and uses variable splitting for efficient iteration. Comparisons were made against standard reconstructions from prospectively accelerated PSF-EPI data and with retrospective subsampling. Exploring aggressive partial Fourier acceleration of the PSF-encoding dimension, additional comparisons were made against an extension of Homodyne to direct PSF-EPI in numerical experiments. A neuroradiologists' assessment was completed comparing images reconstructed with MBIR from retrospectively truncated data directly against images obtained with standard reconstructions from non-truncated datasets. RESULTS Image quality results were consistently superior for MBIR relative to standard and Homodyne reconstructions. As the MBIR signal model and reconstruction allow for arbitrary sampling of the PSF space, random sampling of the PSF-encoding dimension was also demonstrated, with quantitative assessments indicating best performance achieved through nonuniform PSF sampling combined with partial Fourier. With retrospective subsampling, MBIR reconstructs high-quality images from sub-minute scan datasets. MBIR was shown to be superior in a neuroradiologists' assessment with respect to three of five performance criteria, with equivalence for the remaining two. CONCLUSIONS A novel image reconstruction framework is introduced for direct imaging with PSF-EPI, enabling arbitrary PSF space sampling and reconstruction of diagnostic-quality images from highly accelerated PSF-encoded EPI data.
Collapse
Affiliation(s)
- Nolan K Meyer
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Myung-Ho In
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - David F Black
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Norbert G Campeau
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Kirk M Welker
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - John Huston
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Maria A Halverson
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Matt A Bernstein
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Joshua D Trzasko
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
7
|
Brackenier Y, Wang N, Liao C, Cao X, Schauman S, Yurt M, Cordero-Grande L, Malik SJ, Kerr A, Hajnal JV, Setsompop K. Rapid and accurate navigators for motion and B 0 tracking using QUEEN: Quantitatively enhanced parameter estimation from navigators. Magn Reson Med 2024; 91:2028-2043. [PMID: 38173304 DOI: 10.1002/mrm.29976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
PURPOSE To develop a framework that jointly estimates rigid motion and polarizing magnetic field (B0 ) perturbations (δ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ ) for brain MRI using a single navigator of a few milliseconds in duration, and to additionally allow for navigator acquisition at arbitrary timings within any type of sequence to obtain high-temporal resolution estimates. THEORY AND METHODS Methods exist that match navigator data to a low-resolution single-contrast image (scout) to estimate either motion orδ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ . In this work, called QUEEN (QUantitatively Enhanced parameter Estimation from Navigators), we propose combined motion andδ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ estimation from a fast, tailored trajectory with arbitrary-contrast navigator data. To this end, the concept of a quantitative scout (Q-Scout) acquisition is proposed from which contrast-matched scout data is predicted for each navigator. Finally, navigator trajectories, contrast-matched scout, andδ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ are integrated into a motion-informed parallel-imaging framework. RESULTS Simulations and in vivo experiments show the need to modelδ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ to obtain accurate motion parameters estimated in the presence of strongδ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ . Simulations confirm that tailored navigator trajectories are needed to robustly estimate both motion andδ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ . Furthermore, experiments show that a contrast-matched scout is needed for parameter estimation from multicontrast navigator data. A retrospective, in vivo reconstruction experiment shows improved image quality when using the proposed Q-Scout and QUEEN estimation. CONCLUSIONS We developed a framework to jointly estimate rigid motion parameters andδ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ from navigators. Combing a contrast-matched scout with the proposed trajectory allows for navigator deployment in almost any sequence and/or timing, which allows for higher temporal-resolution motion andδ B 0 $$ \delta {\mathbf{B}}_{\mathbf{0}} $$ estimates.
Collapse
Affiliation(s)
| | - Nan Wang
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Congyu Liao
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Xiaozhi Cao
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Sophie Schauman
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Mahmut Yurt
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Lucilio Cordero-Grande
- Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid and CIBER-BNN, Madrid, Spain
| | - Shaihan J Malik
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Center for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Adam Kerr
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
- Cognitive and Neurobiological Imaging, Stanford University, Stanford, California, USA
| | - Joseph V Hajnal
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Center for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Kawin Setsompop
- Department of Radiology, Stanford University, Stanford, California, USA
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| |
Collapse
|
8
|
Dong Z, Reese TG, Lee HH, Huang SY, Polimeni JR, Wald LL, Wang F. Romer-EPTI: rotating-view motion-robust super-resolution EPTI for SNR-efficient distortion-free in-vivo mesoscale dMRI and microstructure imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577343. [PMID: 38352481 PMCID: PMC10862730 DOI: 10.1101/2024.01.26.577343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Purpose To overcome the major challenges in dMRI acquisition, including low SNR, distortion/blurring, and motion vulnerability. Methods A novel Romer-EPTI technique is developed to provide distortion-free dMRI with significant SNR gain, high motion-robustness, sharp spatial resolution, and simultaneous multi-TE imaging. It introduces a ROtating-view Motion-robust supEr-Resolution technique (Romer) combined with a distortion/blurring-free EPTI encoding. Romer enhances SNR by a simultaneous multi-thick-slice acquisition with rotating-view encoding, while providing high motion-robustness through a motion-aware super-resolution reconstruction, which also incorporates slice-profile and real-value diffusion, to resolve high-isotropic-resolution volumes. The in-plane encoding is performed using distortion/blurring-free EPTI, which further improves effective spatial resolution and motion robustness by preventing not only T2/T2*-blurring but also additional blurring resulting from combining encoded volumes with inconsistent geometries caused by dynamic distortions. Self-navigation was incorporated to enable efficient phase correction. Additional developments include strategies to address slab-boundary artifacts, achieve minimal TE for SNR gain at 7T, and achieve high robustness to strong phase variations at high b-values. Results Using Romer-EPTI, we demonstrate distortion-free whole-brain mesoscale in-vivo dMRI at both 3T (500-μm-iso) and 7T (485-μm-iso) for the first time, with high SNR efficiency (e.g., 25 × ), and high image quality free from distortion and slab-boundary artifacts with minimal blurring. Motion experiments demonstrate Romer-EPTI's high motion-robustness and ability to recover sharp images in the presence of motion. Romer-EPTI also demonstrates significant SNR gain and robustness in high b-value (b=5000s/mm2) and time-dependent dMRI. Conclusion Romer-EPTI significantly improves SNR, motion-robustness, and image quality, providing a highly efficient acquisition for high-resolution dMRI and microstructure imaging.
Collapse
Affiliation(s)
- Zijing Dong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Timothy G. Reese
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hong-Hsi Lee
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Susie Y. Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA
| | - Jonathan R. Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA
| | - Lawrence L. Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA
| | - Fuyixue Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Dong Z, Wald LL, Polimeni JR, Wang F. Single-shot Echo Planar Time-resolved Imaging for multi-echo functional MRI and distortion-free diffusion imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577002. [PMID: 38328081 PMCID: PMC10849706 DOI: 10.1101/2024.01.24.577002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Purpose To develop EPTI, a multi-shot distortion-free multi-echo imaging technique, into a single-shot acquisition to achieve improved robustness to motion and physiological noise, increased temporal resolution, and high SNR efficiency for dynamic imaging applications. Methods A new spatiotemporal encoding was developed to achieve single-shot EPTI by enhancing spatiotemporal correlation in k-t space. The proposed single-shot encoding improves reconstruction conditioning and sampling efficiency, with additional optimization under various accelerations to achieve optimized performance. To achieve high SNR efficiency, continuous readout with minimized deadtime was employed that begins immediately after excitation and extends for an SNR-optimized length. Moreover, k-t partial Fourier and simultaneous multi-slice acquisition were integrated to further accelerate the acquisition and achieve high spatial and temporal resolution. Results We demonstrated that ss-EPTI achieves higher tSNR efficiency than multi-shot EPTI, and provides distortion-free imaging with densely-sampled multi-echo images at resolutions ~1.25-3 mm at 3T and 7T-with high SNR efficiency and with comparable temporal resolutions to ss-EPI. The ability of ss-EPTI to eliminate dynamic distortions common in EPI also further improves temporal stability. For fMRI, ss-EPTI also provides early-TE images (e.g., 2.9ms) to recover signal-intensity and functional-sensitivity dropout in challenging regions. The multi-echo images provide TE-dependent information about functional fluctuations, successfully distinguishing noise-components from BOLD signals and further improving tSNR. For diffusion MRI, ss-EPTI provides high-quality distortion-free diffusion images and multi-echo diffusion metrics. Conclusion ss-EPTI provides distortion-free imaging with high image quality, rich multi-echo information, and enhanced efficiency within comparable temporal resolution to ss-EPI, offering a robust and efficient acquisition for dynamic imaging.
Collapse
Affiliation(s)
- Zijing Dong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Lawrence L. Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA
| | - Jonathan R. Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA
| | - Fuyixue Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Dvorak AV, Kumar D, Zhang J, Gilbert G, Balaji S, Wiley N, Laule C, Moore GW, MacKay AL, Kolind SH. The CALIPR framework for highly accelerated myelin water imaging with improved precision and sensitivity. SCIENCE ADVANCES 2023; 9:eadh9853. [PMID: 37910622 PMCID: PMC10619933 DOI: 10.1126/sciadv.adh9853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023]
Abstract
Quantitative magnetic resonance imaging (MRI) techniques are powerful tools for the study of human tissue, but, in practice, their utility has been limited by lengthy acquisition times. Here, we introduce the Constrained, Adaptive, Low-dimensional, Intrinsically Precise Reconstruction (CALIPR) framework in the context of myelin water imaging (MWI); a quantitative MRI technique generally regarded as the most rigorous approach for noninvasive, in vivo measurement of myelin content. The CALIPR framework exploits data redundancy to recover high-quality images from a small fraction of an imaging dataset, which allowed MWI to be acquired with a previously unattainable sequence (fully sampled acquisition 2 hours:57 min:20 s) in 7 min:26 s (4.2% of the dataset, acceleration factor 23.9). CALIPR quantitative metrics had excellent precision (myelin water fraction mean coefficient of variation 3.2% for the brain and 3.0% for the spinal cord) and markedly increased sensitivity to demyelinating disease pathology compared to a current, widely used technique. The CALIPR framework facilitates drastically improved MWI and could be similarly transformative for other quantitative MRI applications.
Collapse
Affiliation(s)
- Adam V. Dvorak
- Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
| | - Dushyant Kumar
- Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jing Zhang
- Global MR Applications & Workflow, GE HealthCare Canada, Mississauga, ON, Canada
| | | | - Sharada Balaji
- Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
| | - Neale Wiley
- Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
| | - Cornelia Laule
- Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- Radiology, University of British Columbia, Vancouver, BC, Canada
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - G.R. Wayne Moore
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Alex L. MacKay
- Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
- Radiology, University of British Columbia, Vancouver, BC, Canada
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Shannon H. Kolind
- Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- Radiology, University of British Columbia, Vancouver, BC, Canada
- Medicine (Neurology), University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
11
|
Arefeen Y, Xu J, Zhang M, Dong Z, Wang F, White J, Bilgic B, Adalsteinsson E. Latent signal models: Learning compact representations of signal evolution for improved time-resolved, multi-contrast MRI. Magn Reson Med 2023; 90:483-501. [PMID: 37093775 DOI: 10.1002/mrm.29657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 04/25/2023]
Abstract
PURPOSE To improve time-resolved reconstructions by training auto-encoders to learn compact representations of Bloch-simulated signal evolution and inserting the decoder into the forward model. METHODS Building on model-based nonlinear and linear subspace techniques, we train auto-encoders on dictionaries of simulated signal evolution to learn compact, nonlinear, latent representations. The proposed latent signal model framework inserts the decoder portion of the auto-encoder into the forward model and directly reconstructs the latent representation. Latent signal models essentially serve as a proxy for fast and feasible differentiation through the Bloch equations used to simulate signal. This work performs experiments in the context of T2 -shuffling, gradient echo EPTI, and MPRAGE-shuffling. We compare how efficiently auto-encoders represent signal evolution in comparison to linear subspaces. Simulation and in vivo experiments then evaluate if reducing degrees of freedom by incorporating our proxy for the Bloch equations, the decoder portion of the auto-encoder, into the forward model improves reconstructions in comparison to subspace constraints. RESULTS An auto-encoder with 1 real latent variable represents single-tissue fast spin echo, EPTI, and MPRAGE signal evolution to within 0.15% normalized RMS error, enabling reconstruction problems with 3 degrees of freedom per voxel (real latent variable + complex scaling) in comparison to linear models with 4-8 degrees of freedom per voxel. In simulated/in vivo T2 -shuffling and in vivo EPTI experiments, the proposed framework achieves consistent quantitative normalized RMS error improvement over linear approaches. From qualitative evaluation, the proposed approach yields images with reduced blurring and noise amplification in MPRAGE-shuffling experiments. CONCLUSION Directly solving for nonlinear latent representations of signal evolution improves time-resolved MRI reconstructions.
Collapse
Affiliation(s)
- Yamin Arefeen
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Junshen Xu
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Molin Zhang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Zijing Dong
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
| | - Fuyixue Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
| | - Jacob White
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Elfar Adalsteinsson
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
12
|
Li B, Lee NG, Cui SX, Nayak KS. Lung parenchyma transverse relaxation rates at 0.55 T. Magn Reson Med 2023; 89:1522-1530. [PMID: 36404674 PMCID: PMC10100111 DOI: 10.1002/mrm.29541] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/14/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022]
Abstract
PURPOSE To determine R2 and R 2 ' $$ {R}_2^{\prime } $$ transverse relaxation rates in healthy lung parenchyma at 0.55 T. This is important in that it informs the design and optimization of new imaging methods for 0.55T lung MRI. METHODS Experiments were performed in 3 healthy adult volunteers on a prototype whole-body 0.55T MRI, using a custom free-breathing electrocardiogram-triggered, single-slice echo-shifted multi-echo spin echo (ES-MCSE) pulse sequence with respiratory navigation. Transverse relaxation rates R2 and R 2 ' $$ {R}_2^{\prime } $$ and off-resonance ∆f were jointly estimated using nonlinear least-squares estimation. These measurements were compared against R2 estimates from T2 -prepared balanced SSFP (T2 -Prep bSSFP) and R 2 * $$ {R}_2^{\ast } $$ estimates from multi-echo gradient echo, which are used widely but prone to error due to different subvoxel weighting. RESULTS The mean R2 and R 2 ' $$ {R}_2^{\prime } $$ values of lung parenchyma obtained from ES-MCSE were 17.3 ± 0.7 Hz and 127.5 ± 16.4 Hz (T2 = 61.6 ± 1.7 ms; T 2 ' $$ {\mathrm{T}}_2^{\prime } $$ = 9.5 ms ± 1.6 ms), respectively. The off-resonance estimates ranged from -60 to 30 Hz. The R2 from T2 -Prep bSSFP was 15.7 ± 1.7 Hz (T2 = 68.6 ± 8.6 ms) and R 2 * $$ {R}_2^{\ast } $$ from multi-echo gradient echo was 131.2 ± 30.4 Hz ( T 2 * $$ {\mathrm{T}}_2^{\ast } $$ = 8.0 ± 2.5 ms). Paired t-test indicated that there is a significant difference between the proposed and reference methods (p < 0.05). The mean R2 estimate from T2 -Prep bSSFP was slightly smaller than that from ES-MCSE, whereas the mean R 2 ' $$ {R}_2^{\prime } $$ and R 2 * $$ {R}_2^{\ast } $$ estimates from ES-MCSE and multi-echo gradient echo were similar to each other across all subjects. CONCLUSIONS Joint estimation of transverse relaxation rates and off-resonance is feasible at 0.55 T with a free-breathing electrocardiogram-gated and navigator-gated ES-MCSE sequence. At 0.55 T, the mean R2 of 17.3 Hz is similar to the reported mean R2 of 16.7 Hz at 1.5 T, but the mean R 2 ' $$ {R}_2^{\prime } $$ of 127.5 Hz is about 5-10 times smaller than that reported at 1.5 T.
Collapse
Affiliation(s)
- Bochao Li
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, California, Los Angeles, USA
| | - Nam G Lee
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, California, Los Angeles, USA
| | - Sophia X Cui
- Siemens Medical Solutions USA, Los Angeles, California, USA
| | - Krishna S Nayak
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, California, Los Angeles, USA.,Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, California, Los Angeles, USA
| |
Collapse
|
13
|
Slavkova KP, DiCarlo JC, Wadhwa V, Kumar S, Wu C, Virostko J, Yankeelov TE, Tamir JI. An untrained deep learning method for reconstructing dynamic MR images from accelerated model-based data. Magn Reson Med 2023; 89:1617-1633. [PMID: 36468624 PMCID: PMC9892348 DOI: 10.1002/mrm.29547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 12/09/2022]
Abstract
PURPOSE To implement physics-based regularization as a stopping condition in tuning an untrained deep neural network for reconstructing MR images from accelerated data. METHODS The ConvDecoder (CD) neural network was trained with a physics-based regularization term incorporating the spoiled gradient echo equation that describes variable-flip angle data. Fully-sampled variable-flip angle k-space data were retrospectively accelerated by factors of R = {8, 12, 18, 36} and reconstructed with CD, CD with the proposed regularization (CD + r), locally low-rank (LR) reconstruction, and compressed sensing with L1-wavelet regularization (L1). Final images from CD + r training were evaluated at the "argmin" of the regularization loss; whereas the CD, LR, and L1 reconstructions were chosen optimally based on ground truth data. The performance measures used were the normalized RMS error, the concordance correlation coefficient, and the structural similarity index. RESULTS The CD + r reconstructions, chosen using the stopping condition, yielded structural similarity indexs that were similar to the CD (p = 0.47) and LR structural similarity indexs (p = 0.95) across R and that were significantly higher than the L1 structural similarity indexs (p = 0.04). The concordance correlation coefficient values for the CD + r T1 maps across all R and subjects were greater than those corresponding to the L1 (p = 0.15) and LR (p = 0.13) T1 maps, respectively. For R ≥ 12 (≤4.2 min scan time), L1 and LR T1 maps exhibit a loss of spatially refined details compared to CD + r. CONCLUSION The use of an untrained neural network together with a physics-based regularization loss shows promise as a measure for determining the optimal stopping point in training without relying on fully-sampled ground truth data.
Collapse
Affiliation(s)
| | - Julie C. DiCarlo
- The Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX USA
| | - Viraj Wadhwa
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX USA
| | - Sidharth Kumar
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX USA
| | - Chengyue Wu
- The Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, USA
| | - John Virostko
- The Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX USA
- Department of Diagnostic Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX USA
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX USA
| | - Thomas E. Yankeelov
- The Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, USA
- Department of Diagnostic Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX USA
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX USA
| | - Jonathan I. Tamir
- The Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, USA
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX USA
- Department of Diagnostic Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX USA
| |
Collapse
|
14
|
Otikovs M, Basak A, Frydman L. Spatiotemporal encoding MRI using subspace-constrained sampling and locally-low-rank regularization: Applications to diffusion weighted and diffusion kurtosis imaging of human brain and prostate. Magn Reson Imaging 2022; 94:151-160. [PMID: 36216145 DOI: 10.1016/j.mri.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/21/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
The benefits of performing locally low-rank (LLR) reconstructions on subsampled diffusion weighted and diffusion kurtosis imaging data employing spatiotemporal encoding (SPEN) methods, is investigated. SPEN allows for self-referenced correction of motion-induced phase errors in case of interleaved diffusion-oriented acquisitions, and allows one to overcome distortions otherwise observed along EPI's phase-encoded dimension. In combination with LLR-based reconstructions of the pooled imaging data and with a joint subsampling of b-weighted and interleaved images, additional improvements in terms of sensitivity as well as shortened acquisition times are demonstrated, without noticeable penalties. Details on how the LLR-regularized, subspace-constrained image reconstructions were adapted to SPEN are given; the improvements introduced by adopting these reconstruction frameworks for the accelerated acquisition of diffusivity and of kurtosis imaging data in both relatively homogeneous regions like the human brain and in more challenging regions like the human prostate, are presented and discussed within the context of similar efforts in the field.
Collapse
Affiliation(s)
- Martins Otikovs
- Department of Chemical and Biological Physics and Azrieli National Center for Brain Imaging, Weizmann Institute of Science, Rehovot, Israel
| | - Ankit Basak
- Department of Chemical and Biological Physics and Azrieli National Center for Brain Imaging, Weizmann Institute of Science, Rehovot, Israel
| | - Lucio Frydman
- Department of Chemical and Biological Physics and Azrieli National Center for Brain Imaging, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
15
|
Dong Z, Wang F, Setsompop K. Motion-corrected 3D-EPTI with efficient 4D navigator acquisition for fast and robust whole-brain quantitative imaging. Magn Reson Med 2022; 88:1112-1125. [PMID: 35481604 PMCID: PMC9246907 DOI: 10.1002/mrm.29277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE To develop a motion estimation and correction method for motion-robust three-dimensional (3D) quantitative imaging with 3D-echo-planar time-resolved imaging. THEORY AND METHODS The 3D-echo-planar time-resolved imaging technique was designed with additional four-dimensional navigator acquisition (x-y-z-echoes) to achieve fast and motion-robust quantitative imaging of the human brain. The four-dimensional-navigator is inserted into the relaxation-recovery deadtime of the sequence in every pulse TR (∼2 s) to avoid extra scan time, and to provide continuous tracking of the 3D head motion and B0 -inhomogeneity changes. By using an optimized spatiotemporal encoding combined with a partial-Fourier scheme, the navigator acquires a large central k-t data block for accurate motion estimation using only four small-flip-angle excitations and readouts, resulting in negligible signal-recovery reduction to the 3D-echo-planar time-resolved imaging acquisition. By incorporating the estimated motion and B0 -inhomogeneity changes into the reconstruction, multi-contrast images can be recovered with reduced motion artifacts. RESULTS Simulation shows the cost to the SNR efficiency from the added navigator acquisitions is <1%. Both simulation and in vivo retrospective experiments were conducted, that demonstrate the four-dimensional navigator provided accurate estimation of the 3D motion and B0 -inhomogeneity changes, allowing effective reduction of image artifacts in quantitative maps. Finally, in vivo prospective undersampling acquisition was performed with and without head motion, in which the motion corrupted data after correction show close image quality and consistent quantifications to the motion-free scan, providing reliable quantitative measurements even with head motion. CONCLUSION The proposed four-dimensional navigator acquisition provides reliable tracking of the head motion and B0 change with negligible SNR cost, equips the 3D-echo-planar time-resolved imaging technique for motion-robust and efficient quantitative imaging.
Collapse
Affiliation(s)
- Zijing Dong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA
| | - Fuyixue Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, MA, USA
| | - Kawin Setsompop
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
16
|
Han P, Chen J, Xiao J, Han F, Hu Z, Yang W, Cao M, Ling DC, Li D, Christodoulou AG, Fan Z. Single projection driven real-time multi-contrast (SPIDERM) MR imaging using pre-learned spatial subspace and linear transformation. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac783e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/13/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. To develop and test the feasibility of a novel Single ProjectIon DrivEn Real-time Multi-contrast (SPIDERM) MR imaging technique that can generate real-time 3D images on-the-fly with flexible contrast weightings and a low latency. Approach. In SPIDERM, a ‘prep’ scan is first performed, with sparse k-space sampling periodically interleaved with the central k-space line (navigator data), to learn a subject-specific model, incorporating a spatial subspace and a linear transformation between navigator data and subspace coordinates. A ‘live’ scan is then performed by repeatedly acquiring the central k-space line only to dynamically determine subspace coordinates. With the ‘prep’-learned subspace and ‘live’ coordinates, real-time 3D images are generated on-the-fly with computationally efficient matrix multiplication. When implemented based on a multi-contrast pulse sequence, SPIDERM further allows for data-driven image contrast regeneration to convert real-time contrast-varying images into contrast-frozen images at user’s discretion while maintaining motion states. Both digital phantom and in-vivo experiments were performed to evaluate the technical feasibility of SPIDERM. Main results. The elapsed time from the input of the central k-space line to the generation of real-time contrast-frozen 3D images was approximately 45 ms, permitting a latency of 55 ms or less. Motion displacement measured from SPIDERM and reference images showed excellent correlation (
R
2
≥
0.983
). Geometric variation from the ground truth in the digital phantom was acceptable as demonstrated by pancreas contour analysis (Dice ≥ 0.84, mean surface distance ≤ 0.95 mm). Quantitative image quality metrics showed good consistency between reference images and contrast-varying SPIDREM images in in-vivo studies (mean
NMRSE
=
0.141
,
PSNR
=
3
0.12
,
SSIM
=
0.88
). Significance. SPIDERM is capable of generating real-time multi-contrast 3D images with a low latency. An imaging framework based on SPIDERM has the potential to serve as a standalone package for MR-guided radiation therapy by offering adaptive simulation through a ‘prep’ scan and real-time image guidance through a ‘live’ scan.
Collapse
|
17
|
Hwang KP, Fujita S. Synthetic MR: Physical principles, clinical implementation, and new developments. Med Phys 2022; 49:4861-4874. [PMID: 35535442 DOI: 10.1002/mp.15686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 11/07/2022] Open
Abstract
Current clinical MR imaging practices rely on the qualitative assessment of images for diagnosis and treatment planning. While contrast in MR images is dependent on the spin parameters of the imaged tissue, pixel values on MR images are relative and are not scaled to represent any tissue properties. Synthetic MR is a fully featured imaging workflow consisting of efficient multiparameter mapping acquisition, synthetic image generation, and volume quantitation of brain tissues. As the application becomes more widely available on multiple vendors and scanner platforms, it has also gained widespread adoption as clinicians begin to recognize the benefits of rapid quantitation. This review will provide details about the sequence with a focus on the physical principles behind its relaxometry mechanisms. It will present an overview of the products in their current form and some potential issues when implementing it in the clinic. It will conclude by highlighting some recent advances of the technique, including a 3D mapping method and its associated applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ken-Pin Hwang
- Department of Imaging Physics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030
| | - Shohei Fujita
- Department of Radiology, Graduate School of Medicine, The University of Tokyo.,Department of Radiology, Juntendo University, Tokyo, Japan
| |
Collapse
|
18
|
Wang F, Dong Z, Reese TG, Rosen B, Wald LL, Setsompop K. 3D Echo Planar Time-resolved Imaging (3D-EPTI) for ultrafast multi-parametric quantitative MRI. Neuroimage 2022; 250:118963. [PMID: 35122969 PMCID: PMC8920906 DOI: 10.1016/j.neuroimage.2022.118963] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 12/09/2021] [Accepted: 02/01/2022] [Indexed: 12/11/2022] Open
Abstract
Multi-parametric quantitative MRI has shown great potential to improve the sensitivity and specificity of clinical diagnosis and to enhance our understanding of complex brain processes, but suffers from long scan time especially at high spatial resolution. To address this longstanding challenge, we introduce a novel approach, termed 3D Echo Planar Time-resolved Imaging (3D-EPTI), which significantly increases the acceleration capacity of MRI sampling, and provides high acquisition efficiency for multi-parametric MRI. This is achieved by exploiting the spatiotemporal correlation of MRI data at multiple timescales through new encoding strategies within and between efficient continuous readouts. Specifically, an optimized spatiotemporal CAIPI encoding within the readouts combined with a radial-block sampling strategy across the readouts enables an acceleration rate of 800 fold in the k-t space. A subspace reconstruction was employed to resolve thousands of high-quality multi-contrast images. We have demonstrated the ability of 3D-EPTI to provide robust and repeatable whole-brain simultaneous T1, T2, T2*, PD and B1+ mapping at high isotropic resolution within minutes (e.g., 1-mm isotropic resolution in 3 minutes), and to enable submillimeter multi-parametric imaging to study detailed brain structures.
Collapse
Affiliation(s)
- Fuyixue Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA; Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA; Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA.
| | - Zijing Dong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA; Electrical Engineering and Computer Science, MIT, Cambridge, Massachusetts, USA
| | - Timothy G Reese
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA; Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Bruce Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA; Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA; Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA; Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA; Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kawin Setsompop
- Department of Radiology, Stanford University, Stanford, USA; Department of Electrical Engineering, Stanford University, Stanford, USA
| |
Collapse
|
19
|
Dong Z, Wang F, Wald L, Setsompop K. SNR
‐efficient distortion‐free diffusion relaxometry imaging using accelerated echo‐train shifted echo‐planar time‐resolving imaging (
ACE‐EPTI
). Magn Reson Med 2022; 88:164-179. [DOI: 10.1002/mrm.29198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Zijing Dong
- Athinoula A. Martinos Center for Biomedical Imaging Massachusetts General Hospital Charlestown Massachusetts USA
- Department of Electrical Engineering and Computer Science MIT Cambridge Massachusetts USA
| | - Fuyixue Wang
- Athinoula A. Martinos Center for Biomedical Imaging Massachusetts General Hospital Charlestown Massachusetts USA
- Harvard‐MIT Health Sciences and Technology, MIT Cambridge Massachusetts USA
| | - Lawrence Wald
- Athinoula A. Martinos Center for Biomedical Imaging Massachusetts General Hospital Charlestown Massachusetts USA
- Harvard‐MIT Health Sciences and Technology, MIT Cambridge Massachusetts USA
| | - Kawin Setsompop
- Department of Radiology Stanford University Stanford California USA
- Department of Electrical Engineering Stanford University Stanford California USA
| |
Collapse
|
20
|
Cao X, Liao C, Iyer SS, Wang Z, Zhou Z, Dai E, Liberman G, Dong Z, Gong T, He H, Zhong J, Bilgic B, Setsompop K. Optimized multi-axis spiral projection MR fingerprinting with subspace reconstruction for rapid whole-brain high-isotropic-resolution quantitative imaging. Magn Reson Med 2022; 88:133-150. [PMID: 35199877 DOI: 10.1002/mrm.29194] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/16/2021] [Accepted: 01/21/2022] [Indexed: 11/07/2022]
Abstract
PURPOSE To improve image quality and accelerate the acquisition of 3D MR fingerprinting (MRF). METHODS Building on the multi-axis spiral-projection MRF technique, a subspace reconstruction with locally low-rank constraint and a modified spiral-projection spatiotemporal encoding scheme called tiny golden-angle shuffling were implemented for rapid whole-brain high-resolution quantitative mapping. Reconstruction parameters such as the locally low-rank regularization parameter and the subspace rank were tuned using retrospective in vivo data and simulated examinations. B0 inhomogeneity correction using multifrequency interpolation was incorporated into the subspace reconstruction to further improve the image quality by mitigating blurring caused by off-resonance effect. RESULTS The proposed MRF acquisition and reconstruction framework yields high-quality 1-mm isotropic whole-brain quantitative maps in 2 min at better quality compared with 6-min acquisitions of prior approaches. The proposed method was validated to not induce bias in T1 and T2 mapping. High-quality whole-brain MRF data were also obtained at 0.66-mm isotropic resolution in 4 min using the proposed technique, where the increased resolution was shown to improve visualization of subtle brain structures. CONCLUSIONS The proposed tiny golden-angle shuffling, MRF with optimized spiral-projection trajectory and subspace reconstruction enables high-resolution quantitative mapping in ultrafast acquisition time.
Collapse
Affiliation(s)
- Xiaozhi Cao
- Department of Radiology, Stanford University, Stanford, California, USA.,Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Congyu Liao
- Department of Radiology, Stanford University, Stanford, California, USA.,Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Siddharth Srinivasan Iyer
- Department of Radiology, Stanford University, Stanford, California, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Zhixing Wang
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Zihan Zhou
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, China
| | - Erpeng Dai
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Gilad Liberman
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Zijing Dong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ting Gong
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, China
| | - Hongjian He
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, China
| | - Jianhui Zhong
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, China.,Department of Imaging Sciences, University of Rochester, Rochester, New York, USA
| | - Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Cambridge, Massachusetts, USA.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kawin Setsompop
- Department of Radiology, Stanford University, Stanford, California, USA.,Department of Electrical Engineering, Stanford University, Stanford, California, USA
| |
Collapse
|
21
|
Dai E, Lee PK, Dong Z, Fu F, Setsompop K, McNab JA. Distortion-Free Diffusion Imaging Using Self-Navigated Cartesian Echo-Planar Time Resolved Acquisition and Joint Magnitude and Phase Constrained Reconstruction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:63-74. [PMID: 34383645 PMCID: PMC8799377 DOI: 10.1109/tmi.2021.3104291] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Echo-planar time resolved imaging (EPTI) is an effective approach for acquiring high-quality distortion-free images with a multi-shot EPI (ms-EPI) readout. As with traditional ms-EPI acquisitions, inter-shot phase variations present a main challenge when incorporating EPTI into a diffusion-prepared pulse sequence. The aim of this study is to develop a self-navigated Cartesian EPTI-based (scEPTI) acquisition together with a magnitude and phase constrained reconstruction for distortion-free diffusion imaging. A self-navigated Cartesian EPTI-based diffusion-prepared pulse sequence is designed. The different phase components in EPTI diffusion signal are analyzed and an approach to synthesize a fully phase-matched navigator for the inter-shot phase correction is demonstrated. Lastly, EPTI contains richer magnitude and phase information than conventional ms-EPI, such as the magnitude and phase correlations along the temporal dimension. The potential of these magnitude and phase correlations to enhance the reconstruction is explored. The reconstruction results with and without phase matching and with and without phase or magnitude constraints are compared. Compared with reconstruction without phase matching, the proposed phase matching method can improve the accuracy of inter-shot phase correction and reduce signal corruption in the final diffusion images. Magnitude constraints further improve image quality by suppressing the background noise and thereby increasing SNR, while phase constraints can mitigate possible image blurring from adding magnitude constraints. The high-quality distortion-free diffusion images and simultaneous diffusion-relaxometry imaging capacity provided by the proposed EPTI design represent a highly valuable tool for both clinical and neuroscientific assessments of tissue microstructure.
Collapse
|
22
|
Wang F, Dong Z, Wald LL, Polimeni JR, Setsompop K. Simultaneous pure T 2 and varying T 2'-weighted BOLD fMRI using Echo Planar Time-resolved Imaging for mapping cortical-depth dependent responses. Neuroimage 2021; 245:118641. [PMID: 34655771 PMCID: PMC8820652 DOI: 10.1016/j.neuroimage.2021.118641] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/12/2022] Open
Abstract
Spin-echo (SE) BOLD fMRI has high microvascular specificity, and thus provides a more reliable means to localize neural activity compared to conventional gradient-echo BOLD fMRI. However, the most common SE BOLD acquisition method, SE-EPI, is known to suffer from T2' contrast contamination with undesirable draining vein bias. To address this, in this study, we extended a recently developed distortion/blurring-free multi-shot EPI technique, Echo-Planar Time-resolved Imaging (EPTI), to cortical-depth dependent SE-fMRI at 7T to test whether it could provide purer SE BOLD contrast with minimal T2' contamination for improved neuronal specificity. From the same acquisition, the time-resolved feature of EPTI also provides a series of asymmetric SE (ASE) images with varying T2' weightings, and enables extraction of data equivalent to conventional SE EPI with different echo train lengths (ETLs). This allows us to systematically examine how T2'-contribution affects different SE acquisition strategies using a single dataset. A low-rank spatiotemporal subspace reconstruction was implemented for the SE-EPTI acquisition, which incorporates corrections for both shot-to-shot phase variations and dynamic B0 drifts. SE-EPTI was used in a visual task fMRI experiment to demonstrate that i) the pure SE image provided by EPTI results in the highest microvascular specificity; ii) the ASE EPTI series, with a graded introduction of T2' weightings at time points farther away from the pure SE, show a gradual sensitivity increase along with increasing draining vein bias; iii) the longer ETL seen in conventional SE EPI acquisitions will induce more draining vein bias. Consistent results were observed across multiple subjects, demonstrating the robustness of the proposed technique for SE-BOLD fMRI with high specificity.
Collapse
Affiliation(s)
- Fuyixue Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Harvard-MIT Health Sciences and Technology, MIT, Cambridge, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA.
| | - Zijing Dong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Harvard-MIT Health Sciences and Technology, MIT, Cambridge, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Harvard-MIT Health Sciences and Technology, MIT, Cambridge, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Kawin Setsompop
- Department of Radiology, Stanford University, Stanford, USA; Department of Electrical Engineering, Stanford University, Stanford, USA
| |
Collapse
|
23
|
Wang X, Tan Z, Scholand N, Roeloffs V, Uecker M. Physics-based reconstruction methods for magnetic resonance imaging. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200196. [PMID: 33966457 PMCID: PMC8107652 DOI: 10.1098/rsta.2020.0196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/01/2021] [Indexed: 05/03/2023]
Abstract
Conventional magnetic resonance imaging (MRI) is hampered by long scan times and only qualitative image contrasts that prohibit a direct comparison between different systems. To address these limitations, model-based reconstructions explicitly model the physical laws that govern the MRI signal generation. By formulating image reconstruction as an inverse problem, quantitative maps of the underlying physical parameters can then be extracted directly from efficiently acquired k-space signals without intermediate image reconstruction-addressing both shortcomings of conventional MRI at the same time. This review will discuss basic concepts of model-based reconstructions and report on our experience in developing several model-based methods over the last decade using selected examples that are provided complete with data and code. This article is part of the theme issue 'Synergistic tomographic image reconstruction: part 1'.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany
- Partner Site Göttingen, German Centre for Cardiovascular Research (DZHK), Göttingen, Germany
| | - Zhengguo Tan
- Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany
- Partner Site Göttingen, German Centre for Cardiovascular Research (DZHK), Göttingen, Germany
| | - Nick Scholand
- Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany
- Partner Site Göttingen, German Centre for Cardiovascular Research (DZHK), Göttingen, Germany
| | - Volkert Roeloffs
- Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany
| | - Martin Uecker
- Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany
- Partner Site Göttingen, German Centre for Cardiovascular Research (DZHK), Göttingen, Germany
- Cluster of Excellence ‘Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells’ (MBExC), University of Göttingen, Göttingen, Germany
- Campus Institute Data Science (CIDAS), University of Göttingen, Göttingen, Germany
| |
Collapse
|
24
|
Variable flip angle echo planar time-resolved imaging (vFA-EPTI) for fast high-resolution gradient echo myelin water imaging. Neuroimage 2021; 232:117897. [PMID: 33621694 PMCID: PMC8221177 DOI: 10.1016/j.neuroimage.2021.117897] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/01/2021] [Accepted: 02/16/2021] [Indexed: 12/14/2022] Open
Abstract
Myelin water imaging techniques based on multi-compartment relaxometry have been developed as an important tool to measure myelin concentration in vivo, but are limited by the long scan time of multi-contrast multi-echo acquisition. In this work, a fast imaging technique, termed variable flip angle Echo Planar Time-Resolved Imaging (vFA-EPTI), is developed to acquire multi-echo and multi-flip-angle gradient-echo data with significantly reduced acquisition time, providing rich information for multi-compartment analysis of gradient-echo myelin water imaging (GRE-MWI). The proposed vFA-EPTI method achieved 26 folds acceleration with good accuracy by utilizing an efficient continuous readout, optimized spatiotemporal encoding across echoes and flip angles, as well as a joint subspace reconstruction. An approach to estimate off-resonance field changes between different flip-angle acquisitions was also developed to ensure high-quality joint reconstruction across flip angles. The accuracy of myelin water fraction (MWF) estimate under high acceleration was first validated by a retrospective undersampling experiment using a lengthy fully-sampled data as reference. Prospective experiments were then performed where whole-brain MWF and multi-compartment quantitative maps were obtained in 5 min at 1.5 mm isotropic resolution and 24 min at 1 mm isotropic resolution at 3T. Additionally, ultra-high resolution data at 600 μm isotropic resolution were acquired at 7T, which show detailed structures within the cortex such as the line of Gennari, demonstrating the ability of the proposed method for submillimeter GRE-MWI that can be used to study cortical myeloarchitecture in vivo.
Collapse
|
25
|
Fair MJ, Liao C, Manhard MK, Setsompop K. Diffusion-PEPTIDE: Distortion- and blurring-free diffusion imaging with self-navigated motion-correction and relaxometry capabilities. Magn Reson Med 2020; 85:2417-2433. [PMID: 33314281 DOI: 10.1002/mrm.28579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE To implement the time-resolved relaxometry PEPTIDE technique into a diffusion acquisition to provide self-navigated, distortion- and blurring-free diffusion imaging that is robust to motion, while simultaneously providing T2 and T 2 ∗ mapping. THEORY AND METHODS The PEPTIDE readout was implemented into a spin-echo diffusion acquisition, enabling reconstruction of a time-series of T2 - and T 2 ∗ -weighted images, free from conventional echo planar imaging (EPI) distortion and blurring, for each diffusion-encoding. Robustness of PEPTIDE to motion and shot-to-shot phase variation was examined through a deliberate motion-corrupted diffusion experiment. Two diffusion-relaxometry in vivo brain protocols were also examined: (1)1 × 1 × 3 mm3 across 32 diffusion directions in 20 min, (2)1.5 × 1.5 × 3.0 mm3 across 6 diffusion-weighted images in 3.4 min. T2 , T 2 ∗ , and diffusion parameter maps were calculated from these data. As initial exploration of the rich diffusion-relaxometry data content for use in multi-compartment modeling, PEPTIDE data were acquired of a gadolinium-doped asparagus phantom. These datasets contained two compartments with different relaxation parameters and different diffusion orientation properties, and T2 relaxation variations across these diffusion directions were explored. RESULTS Diffusion-PEPTIDE showed the capability to provide high quality diffusion images and T2 and T 2 ∗ maps from both protocols. The reconstructions were distortion-free, avoided potential resolution losses exceeding 100% in equivalent EPI acquisitions, and showed tolerance to nearly 30° of rotational motion. Expected variation in T2 values as a function of diffusion direction was observed in the two-compartment asparagus phantom (P < .01), demonstrating potential to explore diffusion-PEPTIDE data for multi-compartment modeling. CONCLUSIONS Diffusion-PEPTIDE provides highly robust diffusion and relaxometry data and offers potential for future applications in diffusion-relaxometry multi-compartment modeling.
Collapse
Affiliation(s)
- Merlin J Fair
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Congyu Liao
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Mary Kate Manhard
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kawin Setsompop
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA.,Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA
| |
Collapse
|
26
|
Chan KS, Marques JP. Multi-compartment relaxometry and diffusion informed myelin water imaging – Promises and challenges of new gradient echo myelin water imaging methods. Neuroimage 2020; 221:117159. [DOI: 10.1016/j.neuroimage.2020.117159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 01/08/2023] Open
|
27
|
Meng Z, Guo R, Li Y, Guan Y, Wang T, Zhao Y, Sutton B, Li Y, Liang ZP. Accelerating T 2 mapping of the brain by integrating deep learning priors with low-rank and sparse modeling. Magn Reson Med 2020; 85:1455-1467. [PMID: 32989816 DOI: 10.1002/mrm.28526] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/07/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE To accelerate T2 mapping with highly sparse sampling by integrating deep learning image priors with low-rank and sparse modeling. METHODS The proposed method achieves high-speed T2 mapping by highly sparsely sampling (k, TE)-space. Image reconstruction from the undersampled data was done by exploiting the low-rank structure and sparsity in the T2 -weighted image sequence and image priors learned from training data. The image priors for a single TE were generated from the public Human Connectome Project data using a tissue-based deep learning method; the image priors were then transferred to other TEs using a generalized series-based method. With these image priors, the proposed reconstruction method used a low-rank model and a sparse model to capture subject-dependent novel features. RESULTS The proposed method was evaluated using experimental data obtained from both healthy subjects and tumor patients using a turbo spin-echo sequence. High-quality T2 maps at the resolution of 0.9 × 0.9 × 3.0 mm3 were obtained successfully from highly undersampled data with an acceleration factor of 8. Compared with the existing compressed sensing-based methods, the proposed method produced significantly reduced reconstruction errors. Compared with the deep learning-based methods, the proposed method recovered novel features better. CONCLUSION This paper demonstrates the feasibility of learning T2 -weighted image priors for multiple TEs using tissue-based deep learning and generalized series-based learning. A new method was proposed to effectively integrate these image priors with low-rank and sparse modeling to reconstruct high-quality images from highly undersampled data. The proposed method will supplement other acquisition-based methods to achieve high-speed T2 mapping.
Collapse
Affiliation(s)
- Ziyu Meng
- Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Rong Guo
- Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yudu Li
- Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yue Guan
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Tianyao Wang
- Department of Radiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Yibo Zhao
- Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Brad Sutton
- Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yao Li
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi-Pei Liang
- Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
28
|
Dong Z, Wang F, Reese TG, Bilgic B, Setsompop K. Echo planar time-resolved imaging with subspace reconstruction and optimized spatiotemporal encoding. Magn Reson Med 2020; 84:2442-2455. [PMID: 32333478 DOI: 10.1002/mrm.28295] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/01/2020] [Accepted: 03/31/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE To develop new encoding and reconstruction techniques for fast multi-contrast/quantitative imaging. METHODS The recently proposed Echo Planar Time-resolved Imaging (EPTI) technique can achieve fast distortion- and blurring-free multi-contrast/quantitative imaging. In this work, a subspace reconstruction framework is developed to improve the reconstruction accuracy of EPTI at high encoding accelerations. The number of unknowns in the reconstruction is significantly reduced by modeling the temporal signal evolutions using low-rank subspace. As part of the proposed reconstruction approach, a B0 -update algorithm and a shot-to-shot B0 variation correction method are developed to enable the reconstruction of high-resolution tissue phase images and to mitigate artifacts from shot-to-shot phase variations. Moreover, the EPTI concept is extended to 3D k-space for 3D GE-EPTI, where a new "temporal-variant" of CAIPI encoding is proposed to further improve performance. RESULTS The effectiveness of the proposed subspace reconstruction was demonstrated first in 2D GESE EPTI, where the reconstruction achieved higher accuracy when compared to conventional B0 -informed GRAPPA. For 3D GE-EPTI, a retrospective undersampling experiment demonstrates that the new temporal-variant CAIPI encoding can achieve up to 72× acceleration with close to 2× reduction in reconstruction error when compared to conventional spatiotemporal-CAIPI encoding. In a prospective undersampling experiment, high-quality whole-brain T 2 ∗ and tissue phase maps at 1 mm isotropic resolution were acquired in 52 seconds at 3T using 3D GE-EPTI with temporal-variant CAIPI encoding. CONCLUSION The proposed subspace reconstruction and optimized temporal-variant CAIPI encoding can further improve the performance of EPTI for fast quantitative mapping.
Collapse
Affiliation(s)
- Zijing Dong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Electrical Engineering and Computer Science, MIT, Cambridge, Massachusetts, USA
| | - Fuyixue Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA
| | - Timothy G Reese
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kawin Setsompop
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|