1
|
Guo R, Yang S, Wiesner HM, Li Y, Zhao Y, Liang ZP, Chen W, Zhu XH. Mapping intracellular NAD content in entire human brain using phosphorus-31 MR spectroscopic imaging at 7 Tesla. Front Neurosci 2024; 18:1389111. [PMID: 38911598 PMCID: PMC11190064 DOI: 10.3389/fnins.2024.1389111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction Nicotinamide adenine dinucleotide (NAD) is a crucial molecule in cellular metabolism and signaling. Mapping intracellular NAD content of human brain has long been of interest. However, the sub-millimolar level of cerebral NAD concentration poses significant challenges for in vivo measurement and imaging. Methods In this study, we demonstrated the feasibility of non-invasively mapping NAD contents in entire human brain by employing a phosphorus-31 magnetic resonance spectroscopic imaging (31P-MRSI)-based NAD assay at ultrahigh field (7 Tesla), in combination with a probabilistic subspace-based processing method. Results The processing method achieved about a 10-fold reduction in noise over raw measurements, resulting in remarkably reduced estimation errors of NAD. Quantified NAD levels, observed at approximately 0.4 mM, exhibited good reproducibility within repeated scans on the same subject and good consistency across subjects in group data (2.3 cc nominal resolution). One set of higher-resolution data (1.0 cc nominal resolution) unveiled potential for assessing tissue metabolic heterogeneity, showing similar NAD distributions in white and gray matter. Preliminary analysis of age dependence suggested that the NAD level decreases with age. Discussion These results illustrate favorable outcomes of our first attempt to use ultrahigh field 31P-MRSI and advanced processing techniques to generate a whole-brain map of low-concentration intracellular NAD content in the human brain.
Collapse
Affiliation(s)
- Rong Guo
- Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Siemens Medical Solutions USA, Inc., Urbana, IL, United States
| | - Shaolin Yang
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hannes M. Wiesner
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | - Yudu Li
- Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Yibo Zhao
- Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Zhi-Pei Liang
- Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Wei Chen
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | - Xiao-Hong Zhu
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
2
|
Ren J, Dewey RB, Rynders A, Evan J, Evan J, Ligozio S, Ho KS, Sguigna PV, Glanzman R, Hotchkin MT, Dewey RB, Greenberg BM. Evidence of brain target engagement in Parkinson's disease and multiple sclerosis by the investigational nanomedicine, CNM-Au8, in the REPAIR phase 2 clinical trials. J Nanobiotechnology 2023; 21:478. [PMID: 38087362 PMCID: PMC10717868 DOI: 10.1186/s12951-023-02236-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Impaired brain energy metabolism has been observed in many neurodegenerative diseases, including Parkinson's disease (PD) and multiple sclerosis (MS). In both diseases, mitochondrial dysfunction and energetic impairment can lead to neuronal dysfunction and death. CNM-Au8® is a suspension of faceted, clean-surfaced gold nanocrystals that catalytically improves energetic metabolism in CNS cells, supporting neuroprotection and remyelination as demonstrated in multiple independent preclinical models. The objective of the Phase 2 REPAIR-MS and REPAIR-PD clinical trials was to investigate the effects of CNM-Au8, administered orally once daily for twelve or more weeks, on brain phosphorous-containing energy metabolite levels in participants with diagnoses of relapsing MS or idiopathic PD, respectively. RESULTS Brain metabolites were measured using 7-Tesla 31P-MRS in two disease cohorts, 11 participants with stable relapsing MS and 13 participants with PD (n = 24 evaluable post-baseline scans). Compared to pre-treatment baseline, the mean NAD+/NADH ratio in the brain, a measure of energetic capacity, was significantly increased by 10.4% after 12 + weeks of treatment with CNM-Au8 (0.584 units, SD: 1.3; p = 0.037, paired t-test) in prespecified analyses of the combined treatment cohorts. Each disease cohort concordantly demonstrated increases in the NAD+/NADH ratio but did not reach significance individually (p = 0.11 and p = 0.14, PD and MS cohorts, respectively). Significant treatment effects were also observed for secondary and exploratory imaging outcomes, including β-ATP and phosphorylation potential across both cohorts. CONCLUSIONS Our results demonstrate brain target engagement of CNM-Au8 as a direct modulator of brain energy metabolism, and support the further investigation of CNM-Au8 as a potential disease modifying drug for PD and MS.
Collapse
Affiliation(s)
- Jimin Ren
- University of Texas Southwestern Medical Center, Department of Neurology, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Richard B Dewey
- University of Texas Southwestern Medical Center, Department of Neurology, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
- Parkinson's Disease and Movement Disorders Center, Boca Raton, FL, 33486, USA
| | - Austin Rynders
- Clene Nanomedicine, Inc., 6550 S Millrock Dr., Suite G50, Salt Lake City, UT, 84121, USA
| | - Jacob Evan
- Clene Nanomedicine, Inc., 6550 S Millrock Dr., Suite G50, Salt Lake City, UT, 84121, USA
| | - Jeremy Evan
- Clene Nanomedicine, Inc., 6550 S Millrock Dr., Suite G50, Salt Lake City, UT, 84121, USA
| | - Shelia Ligozio
- Instat Clinical Research, A Veristat Company, 1 Wilson St., Chatham, NJ, 07928, USA
| | - Karen S Ho
- Clene Nanomedicine, Inc., 6550 S Millrock Dr., Suite G50, Salt Lake City, UT, 84121, USA.
| | - Peter V Sguigna
- University of Texas Southwestern Medical Center, Department of Neurology, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Robert Glanzman
- Clene Nanomedicine, Inc., 6550 S Millrock Dr., Suite G50, Salt Lake City, UT, 84121, USA
| | - Michael T Hotchkin
- Clene Nanomedicine, Inc., 6550 S Millrock Dr., Suite G50, Salt Lake City, UT, 84121, USA
| | - Richard B Dewey
- University of Texas Southwestern Medical Center, Department of Neurology, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
- Parkinson's Disease and Movement Disorders Center, Boca Raton, FL, 33486, USA
| | - Benjamin M Greenberg
- University of Texas Southwestern Medical Center, Department of Neurology, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| |
Collapse
|
3
|
Lu J, Jerschow A, Korenchan DE. Selective filtration of NMR signals arising from weakly- and strongly-coupled spin systems. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 354:107529. [PMID: 37572586 DOI: 10.1016/j.jmr.2023.107529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for analyzing chemical and biological systems. However, in complex solutions with similar molecular components, NMR signals can overlap, making it challenging to distinguish and quantify individual species. In this paper, we introduce new spectral editing sequences that exploit the differences in nuclear spin interactions (J-couplings) between weakly- and strongly-coupled two-spin systems. These sequences selectively attenuate or nullify undesired spin magnetization while they preserve the desired signals, resulting in simplified NMR spectra and potentially facilitating single-species imaging applications. We demonstrate the effectiveness of our approach using a 31P spectral filtration method on a model system of nicotinamide dinucleotide (NAD), which exists in oxidized (NAD+) and reduced (NADH) forms. The presented sequences are robust to field inhomogeneity, do not require additional sub-spectra, and retain a significant portion of the original signal.
Collapse
Affiliation(s)
- Jiaqi Lu
- Department of Chemistry, New York University, 100 Washington Square East, Room 710, New York, 10003, NY, USA
| | - Alexej Jerschow
- Department of Chemistry, New York University, 100 Washington Square East, Room 710, New York, 10003, NY, USA
| | - David E Korenchan
- Department of Chemistry, New York University, 100 Washington Square East, Room 710, New York, 10003, NY, USA; Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 75 3rd Ave., Room 1400A, Charlestown, 02129, MA, USA.
| |
Collapse
|
4
|
Skupienski R, Steullet P, Do KQ, Xin L. Developmental changes in cerebral NAD and neuroenergetics of an antioxidant compromised mouse model of schizophrenia. Transl Psychiatry 2023; 13:275. [PMID: 37543592 PMCID: PMC10404265 DOI: 10.1038/s41398-023-02568-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/07/2023] Open
Abstract
Defects in essential metabolic regulation for energy supply, increased oxidative stress promoting excitatory/inhibitory imbalance and phospholipid membrane dysfunction have been implicated in the pathophysiology of schizophrenia (SZ). The knowledge about the developmental trajectory of these key pathophysiological components and their interplay is important to develop new preventive and treatment strategies. However, this assertion is so far limited. To investigate the developmental regulations of these key components in the brain, we assessed, for the first time, in vivo redox state from the oxidized (NAD+) and reduced (NADH) form of Nicotinamide Adenine Dinucleotide (NAD), energy and membrane metabolites, inhibitory and excitatory neurotransmitters by 31P and 1H MRS during the neurodevelopment of an SZ animal model with genetically compromised glutathione synthesis (gclm-KO mice). When compared to age-matched wild type (WT), an increase in NAD+/NADH redox ratio was found in gclm-KO mice until early adulthood, followed by a decrease in full adults as observed in patients. Especially, in early postnatal life (P20, corresponding to childhood), levels of several metabolites were altered in gclm-KO mice, including NAD+, NAD+/NADH, ATP, and glutamine + glutamate, suggesting an interactive compensation for redox dysregulation between NAD, energy metabolism, and neurotransmission. The identified temporal neurometabolic regulations under deficits in redox regulation provide insights into preventive treatment targets for at-risk individuals, and other neurodevelopmental disorders involving oxidative stress and energetic dysfunction.
Collapse
Affiliation(s)
- Radek Skupienski
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
| | - Pascal Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Switzerland
| | - Lijing Xin
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland.
- Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
5
|
ATP and NAD + Deficiency in Parkinson's Disease. Nutrients 2023; 15:nu15040943. [PMID: 36839301 PMCID: PMC9961646 DOI: 10.3390/nu15040943] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
The goal of this study is to identify a signature of bioenergetic and functional markers in the muscles of individuals with Parkinson's disease (PD). Quantitative physiological properties of in vivo hand muscle (FDI, first dorsal interosseus) and leg muscle (TA, Tibialis Anterior) of older individuals with PD were compared to historical age/gender-matched controls (N = 30). Magnetic resonance spectroscopy and imaging (MRS) were used to assess in vivo mitochondrial and cell energetic dysfunction, including maximum mitochondrial ATP production (ATPmax), NAD concentrations linked to energy/stress pathways, and muscle size. Muscle function was measured via a single muscle fatigue test. TA ATPmax and NAD levels were significantly lower in the PD cohort compared to controls (ATPmax: 0.66 mM/s ± 0.03 vs. 0.76 ± 0.02; NAD: 0.75 mM ± 0.05 vs. 0.91 ± 0.04). Muscle endurance and specific force were also lower in both hand and leg muscles in the PD subjects. Exploratory analyses of mitochondrial markers and individual symptoms suggested that higher ATPmax was associated with a greater sense of motivation and engagement and less REM sleep behavior disorder (RBD). ATPmax was not associated with clinical severity or individual symptom(s), years since diagnosis, or quality of life. Results from this pilot study contribute to a growing body of evidence that PD is not a brain disease, but a systemic metabolic syndrome with disrupted cellular energetics and function in peripheral tissues. The significant impairment of both mitochondrial ATP production and resting metabolite levels in the TA muscles of the PD patients suggests that skeletal muscle mitochondrial function may be an important tool for mechanistic understanding and clinical application in PD patients. This study looked at individuals with mid-stage PD; future research should evaluate whether the observed metabolic perturbations in muscle dysfunction occur in the early stages of the disease and whether they have value as theragnostic biomarkers.
Collapse
|
6
|
Dorst J, Borbath T, Ruhm L, Henning A. Phosphorus transversal relaxation times and metabolite concentrations in the human brain at 9.4 T. NMR IN BIOMEDICINE 2022; 35:e4776. [PMID: 35607903 DOI: 10.1002/nbm.4776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/14/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
A method to estimate phosphorus (31 P) transversal relaxation times (T2 s) of coupled spin systems is demonstrated. Additionally, intracellular and extracellular pH and relaxation-corrected metabolite concentrations are reported. Echo time (TE) series of 31 P metabolite spectra were acquired using stimulated echo acquisition mode (STEAM) localization. Spectra were fitted using LCModel with accurately modeled Versatile Simulation, Pulses and Analysis (VeSPA) basis sets accounting for J-evolution of the coupled spin systems. T2 s were estimated by fitting a single exponential two-parameter model across the TE series. Fitted inorganic phosphate frequencies were used to calculate pH, and estimated relaxation times were used to determine the relaxation-corrected brain metabolite concentrations on an assumption of 3 mM γ-ATP. The method was demonstrated in healthy human brain at a field strength of 9.4 T. T2 times of ATP and nicotinamide adenine dinucleotide (NAD) were shortest between 8 and 20 ms, followed by T2 s of inorganic phosphate between 25 and 50 ms, and phosphocreatine with a T2 of 100 ms. Phosphomonoesters and phosphodiesters had the longest T2 s of about 130 ms. The measured T2 s are comparable with literature values and fit in a decreasing trend with increasing field strengths. Calculated pHs and metabolite concentrations are also comparable with literature values.
Collapse
Affiliation(s)
- Johanna Dorst
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- International Max Planck Research School for Cognitive and Systems Neuroscience (IMPRS), University of Tübingen, Tübingen, Germany
| | - Tamas Borbath
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Faculty of Science, University of Tübingen, Tübingen, Germany
| | - Loreen Ruhm
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- International Max Planck Research School for Cognitive and Systems Neuroscience (IMPRS), University of Tübingen, Tübingen, Germany
| | - Anke Henning
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
7
|
Hangel G, Niess E, Lazen P, Bednarik P, Bogner W, Strasser B. Emerging methods and applications of ultra-high field MR spectroscopic imaging in the human brain. Anal Biochem 2022; 638:114479. [PMID: 34838516 DOI: 10.1016/j.ab.2021.114479] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/15/2021] [Accepted: 11/16/2021] [Indexed: 12/21/2022]
Abstract
Magnetic Resonance Spectroscopic Imaging (MRSI) of the brain enables insights into the metabolic changes and fluxes in diseases such as tumors, multiple sclerosis, epilepsy, or hepatic encephalopathy, as well as insights into general brain functionality. However, the routine application of MRSI is mostly hampered by very low signal-to-noise ratios (SNR) due to the low concentrations of metabolites, about 10000 times lower than water. Furthermore, MRSI spectra have a dense information content with many overlapping metabolite resonances, especially for proton MRSI. MRI scanners at ultra-high field strengths, like 7 T or above, offer the opportunity to increase SNR, as well as the separation between resonances, thus promising to solve both challenges. Yet, MRSI at ultra-high field strengths is challenged by decreased B0- and B1-homogeneity, shorter T2 relaxation times, stronger chemical shift displacement errors, and aggravated lipid contamination. Therefore, to capitalize on the advantages of ultra-high field strengths, these challenges must be overcome. This review focuses on the challenges MRSI of the human brain faces at ultra-high field strength, as well as the possible applications to this date.
Collapse
Affiliation(s)
- Gilbert Hangel
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria; Department of Neurosurgery, Medical University of Vienna, Austria
| | - Eva Niess
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Philipp Lazen
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Petr Bednarik
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Wolfgang Bogner
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Bernhard Strasser
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria.
| |
Collapse
|
8
|
Korzowski A, Weckesser N, Franke VL, Breitling J, Goerke S, Schlemmer HP, Ladd ME, Bachert P, Paech D. Mapping an Extended Metabolic Profile of Gliomas Using High-Resolution 31P MRSI at 7T. Front Neurol 2022; 12:735071. [PMID: 35002914 PMCID: PMC8733158 DOI: 10.3389/fneur.2021.735071] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Phosphorus magnetic resonance spectroscopic imaging (31P MRSI) is of particular interest for investigations of patients with brain tumors as it enables to non-invasively assess altered energy and phospholipid metabolism in vivo. However, the limited sensitivity of 31P MRSI hampers its broader application at clinical field strengths. This study aimed to identify the additional value of 31P MRSI in patients with glioma at ultra-high B0 = 7T, where the increase in signal-to-noise ratio may foster its applicability for clinical research. High-quality, 3D 31P MRSI datasets with an effective voxel size of 5.7 ml were acquired from the brains of seven patients with newly diagnosed glioma. An optimized quantification model was implemented to reliably extract an extended metabolic profile, including low-concentrated metabolites such as extracellular inorganic phosphate, nicotinamide adenine dinucleotide [NAD(H)], and uridine diphosphoglucose (UDPG), which may act as novel tumor markers; a background signal was extracted as well, which affected measures of phosphomonoesters beneficially. Application of this model to the MRSI datasets yielded high-resolution maps of 12 different 31P metabolites, showing clear metabolic differences between white matter (WM) and gray matter, and between healthy and tumor tissues. Moreover, differences between tumor compartments in patients with high-grade glioma (HGG), i.e., gadolinium contrast-enhancing/necrotic regions (C+N) and peritumoral edema, could also be suggested from these maps. In the group of patients with HGG, the most significant changes in metabolite intensities were observed in C+N compared to WM, i.e., for phosphocholine +340%, UDPG +54%, glycerophosphoethanolamine −45%, and adenosine-5′-triphosphate −29%. Furthermore, a prominent signal from mobile phospholipids appeared in C+N. In the group of patients with low-grade glioma, only the NAD(H) intensity changed significantly by −28% in the tumor compared to WM. Besides the potential of 31P MRSI at 7T to provide novel insights into the biochemistry of gliomas in vivo, the attainable spatial resolutions improve the interpretability of 31P metabolite intensities obtained from malignant tissues, particularly when only subtle differences compared to healthy tissues are expected. In conclusion, this pilot study demonstrates that 31P MRSI at 7T has potential value for the clinical research of glioma.
Collapse
Affiliation(s)
- Andreas Korzowski
- Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nina Weckesser
- Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Vanessa L Franke
- Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Johannes Breitling
- Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Steffen Goerke
- Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Mark E Ladd
- Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Medicine, University of Heidelberg, Heidelberg, Germany.,Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Peter Bachert
- Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Daniel Paech
- Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
9
|
DeVience SJ, Walsworth RL, Rosen MS. NMR of 31P nuclear spin singlet states in organic diphosphates. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 333:107101. [PMID: 34781233 DOI: 10.1016/j.jmr.2021.107101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
31P NMR and MRI are commonly used to study organophosphates that are central to cellular energy metabolism. In some molecules of interest, such as adenosine diphosphate (ADP) and nicotinamide adenine dinucleotide (NAD), pairs of coupled 31P nuclei in the diphosphate moiety should enable the creation of nuclear spin singlet states, which may be long-lived and can be selectively detected via quantum filters. Here, we show that 31P singlet states can be created on ADP and NAD, but their lifetimes are shorter than T1 and are strongly sensitive to pH. Nevertheless, the singlet states were used with a quantum filter to successfully isolate the 31P NMR spectra of those molecules from the adenosine triphosphate (ATP) background signal.
Collapse
Affiliation(s)
- Stephen J DeVience
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, MA 02138, USA.
| | - Ronald L Walsworth
- Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA; Department of Physics, Harvard University, 17 Oxford St., Cambridge, MA 02138, USA.
| | - Matthew S Rosen
- Department of Physics, Harvard University, 17 Oxford St., Cambridge, MA 02138, USA; Athinoula A. Martinos Center for Biomedical Engineering, Massachusetts General Hospital, 149(th) Thirteenth St., Charlestown, MA 02129, USA.
| |
Collapse
|
10
|
Sharma G, Wen X, Maptue NR, Hever T, Malloy CR, Sherry AD, Khemtong C. Co-Polarized [1- 13C]Pyruvate and [1,3- 13C 2]Acetoacetate Provide a Simultaneous View of Cytosolic and Mitochondrial Redox in a Single Experiment. ACS Sens 2021; 6:3967-3977. [PMID: 34761912 DOI: 10.1021/acssensors.1c01225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cellular redox is intricately linked to energy production and normal cell function. Although the redox states of mitochondria and cytosol are connected by shuttle mechanisms, the redox state of mitochondria may differ from redox in the cytosol in response to stress. However, detecting these differences in functioning tissues is difficult. Here, we employed 13C magnetic resonance spectroscopy (MRS) and co-polarized [1-13C]pyruvate and [1,3-13C2]acetoacetate ([1,3-13C2]AcAc) to monitor production of hyperpolarized (HP) lactate and β-hydroxybutyrate as indicators of cytosolic and mitochondrial redox, respectively. Isolated rat hearts were examined under normoxic conditions, during low-flow ischemia, and after pretreatment with either aminooxyacetate (AOA) or rotenone. All interventions were associated with an increase in [Pi]/[ATP] measured by 31P NMR. In well-oxygenated untreated hearts, rapid conversion of HP [1-13C]pyruvate to [1-13C]lactate and [1,3-13C2]AcAc to [1,3-13C2]β-hydroxybutyrate ([1,3-13C2]β-HB) was readily detected. A significant increase in HP [1,3-13C2]β-HB but not [1-13C]lactate was observed in rotenone-treated and ischemic hearts, consistent with an increase in mitochondrial NADH but not cytosolic NADH. AOA treatments did not alter the productions of HP [1-13C]lactate or [1,3-13C2]β-HB. This study demonstrates that biomarkers of mitochondrial and cytosolic redox may be detected simultaneously in functioning tissues using co-polarized [1-13C]pyruvate and [1,3-13C2]AcAc and 13C MRS and that changes in mitochondrial redox may precede changes in cytosolic redox.
Collapse
Affiliation(s)
- Gaurav Sharma
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Xiaodong Wen
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Nesmine R. Maptue
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Thomas Hever
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Craig R. Malloy
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - A. Dean Sherry
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Department of Chemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Chalermchai Khemtong
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, Florida 32610, United States
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
11
|
Ren J, Sherry AD. 31 P-MRS of healthy human brain: Measurement of guanosine diphosphate mannose at 7 T. NMR IN BIOMEDICINE 2021; 34:e4576. [PMID: 34155714 DOI: 10.1002/nbm.4576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/01/2021] [Accepted: 06/05/2021] [Indexed: 06/13/2023]
Abstract
Guanosine diphosphate mannose (GDP-Man) is the donor substrate required for mannosylation in the synthesis of glycoproteins, glycolipids and the newly discovered glycoRNA. Normal GDP-Man biosynthesis plays a crucial role in support of a variety of cellular functions, including cell recognition, cell communication and immune responses against viruses. Here, we report the detection of GDP-Man in human brain for the first time, using 31 P MRS at 7 T. The presence of GDP-Man is evidenced by the detection of a weak 31 P doublet at -10.7 ppm that can be assigned to the phosphomannosyl group (Pβ) of the GDP-Man molecule. This weak but well-resolved signal lies 0.9 ppm upfield of UDP(G) Pβ-multiplet from a mixture of UDP-Glc, UDP-Gal, UDP-GlcNAc and UDP-GalNAc. In reference to ATP (2.8 mM), the concentration of GDP-Man in human brain was estimated to be 0.02 ± 0.01 mM, about 15-fold lower than the total concentration of UDP(G) (0.30 ± 0.04, N = 17) and consistent with previous reports of UDP-Man in cells and brain tissue extracts measured by high-performance liquid chromatography. The reproducibility of the measured GDP-Man between test and 2-week retest was 21% ± 15% compared with 5% ± 4% for UDP(G) (N = 7). The measured concentrations of GDP-Man and UDP(G) are linearly correlated ([UDP(G)] = 4.3 [GDP-Man] + 0.02, with R = 0.66 and p = 0.0043), likely reflecting the effect of shared sugar precursors, which may vary among individuals in response to variation in nutritional intake and consumption. Given that GDP-Man has another set of doublet (Pα) at -8.3 ppm that overlaps with NAD(H) and UDP(G)-Pα signals, the amount of GDP-Man could potentially interfere with the deconvolution of these mixed signals in composition analysis. Importantly, this new finding may be useful in advancing our understanding of glycosylation and its role in the development of cancer, as well as infectious and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jimin Ren
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - A Dean Sherry
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Chemistry, University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
12
|
Ren J, Malloy CR, Sherry AD. 31 P-MRS of the healthy human brain at 7 T detects multiple hexose derivatives of uridine diphosphate glucose. NMR IN BIOMEDICINE 2021; 34:e4511. [PMID: 33772915 DOI: 10.1002/nbm.4511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Nucleotide sugars are required for the synthesis of glycoproteins and glycolipids, which play crucial roles in many cellular functions such as cell communication and immune responses. Uridine diphosphate-glucose (UDP-Glc) was previously believed to be the only nucleotide sugar detectable in brain by 31 P-MRS. Using spectra of high SNR and high resolution acquired at 7 T, we showed that multiple nucleotide sugars are coexistent in brain and can be measured simultaneously. In addition to UDP-Glc, these also include UDP-galactose (UDP-Gal), -N-acetyl-glucosamine (UDP-GlcNAc) and -N-acetyl-galactosamine (UDP-GalNAc), collectively denoted as UDP(G). Coexistence of these UDP(G) species is evident from a quartet-like multiplet at -9.8 ppm (M-9.8 ), which is a common feature seen across a wide age range (24-64 years). Lineshape fitting of M-9.8 allows an evaluation of all four UDP(G) components, which further aids in analysis of a mixed signal at -8.2 ppm (M-8.2 ) for deconvolution of NAD+ and NADH. For a group of seven young healthy volunteers, the concentrations of UDP(G) species were 0.04 ± 0.01 mM for UDP-Gal, 0.07 ± 0.03 mM for UDP-Glc, 0.06 ± 0.02 mM for UDP-GalNAc and 0.08 ± 0.03 mM for UDP-GlcNA, in reference to ATP (2.8 mM). The combined concentration of all UDP(G) species (average 0.26 ± 0.06 mM) was similar to the pooled concentration of NAD+ and NADH (average 0.27 ± 0.06 mM, with a NAD+ /NADH ratio of 6.7 ± 2.1), but slightly lower than previously found in an older cohort (0.31 mM). The in vivo NMR analysis of UDP-sugar composition is consistent with those from tissue extracts by other modalities in the literature. Given that glycosylation is dependent on the availability of nucleotide sugars, assaying multiple nucleotide sugars may provide valuable insights into potential aberrant glycosylation, which has been implicated in certain diseases such as cancer and Alzheimer's disease.
Collapse
Affiliation(s)
- Jimin Ren
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Craig R Malloy
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- VA North Texas Health Care System, Dallas, Texas, USA
| | - A Dean Sherry
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Chemistry, University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
13
|
Dorst J, Ruhm L, Avdievich N, Bogner W, Henning A. Comparison of four 31P single-voxel MRS sequences in the human brain at 9.4 T. Magn Reson Med 2021; 85:3010-3026. [PMID: 33427322 DOI: 10.1002/mrm.28658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/03/2020] [Accepted: 12/06/2020] [Indexed: 01/30/2023]
Abstract
PURPOSE In this study, different single-voxel localization sequences were implemented and systematically compared for the first time for phosphorous MRS (31 P-MRS) in the human brain at 9.4 T. METHODS Two multishot sequences, image-selected in vivo spectroscopy (ISIS) and a conventional slice-selective excitation combined with localization by adiabatic selective refocusing (semiLASER) variant of the spin-echo full intensity-acquired localized spectroscopy (SPECIAL-semiLASER), and two single-shot sequences, semiLASER and stimulated echo acquisition mode (STEAM), were implemented and optimized for 31 P-MRS in the human brain at 9.4 T. Pulses and coil setup were optimized, localization accuracy was tested in phantom experiments, and absolute SNR of the sequences was compared in vivo. The SNR per unit time (SNR/t) was derived and compared for all four sequences and verified experimentally for ISIS in two different voxel sizes (3 × 3 × 3 cm3 , 5 × 5 × 5 cm3 , 10-minute measurement time). Metabolite signals obtained with ISIS were quantified. The possible spectral quality in vivo acquired in clinically feasible time (3:30 minutes, 3 × 3 × 3 cm3 ) was explored for two different coil setups. RESULTS All evaluated sequences performed with good localization accuracy in phantom experiments and provided well-resolved spectra in vivo. However, ISIS has the lowest chemical shift displacement error, the best localization accuracy, the highest SNR/t for most metabolites, provides metabolite concentrations comparable to literature values, and is the only one of the sequences that allows for the detection of the whole 31 P spectrum, including β-adenosine triphosphate, with the used setup. The SNR/t of STEAM is comparable to the SNR/t of ISIS. The semiLASER and SPECIAL-semiLASER sequences provide good results for metabolites with long T2 . CONCLUSION At 9.4 T, high-quality single-voxel localized 31 P-MRS can be performed in the human brain with different localization methods, each with inherent characteristics suitable for different research issues.
Collapse
Affiliation(s)
- Johanna Dorst
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,IMPRS for Cognitive and Systems Neuroscience, University of Tübingen, Tübingen, Germany
| | - Loreen Ruhm
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,IMPRS for Cognitive and Systems Neuroscience, University of Tübingen, Tübingen, Germany
| | - Nikolai Avdievich
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Wolfgang Bogner
- High-Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Anke Henning
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|