1
|
Balanyà-Segura M, Polishchuk A, Just-Borràs L, Cilleros-Mañé V, Silvera C, Ardévol A, Tomàs M, Lanuza MA, Hurtado E, Tomàs J. Molecular Adaptations of BDNF/NT-4 Neurotrophic and Muscarinic Pathways in Ageing Neuromuscular Synapses. Int J Mol Sci 2024; 25:8018. [PMID: 39125587 PMCID: PMC11311581 DOI: 10.3390/ijms25158018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 08/12/2024] Open
Abstract
Age-related conditions, such as sarcopenia, cause physical disabilities for an increasing section of society. At the neuromuscular junction, the postsynaptic-derived neurotrophic factors brain-derived neurotrophic factor (BDNF) and neurotrophin 4 (NT-4) have neuroprotective functions and contribute to the correct regulation of the exocytotic machinery. Similarly, presynaptic muscarinic signalling plays a fundamental modulatory function in this synapse. However, whether or not these signalling pathways are compromised in ageing neuromuscular system has not yet been analysed. The present study analyses, through Western blotting, the differences in expression and activation of the main key proteins of the BDNF/NT-4 and muscarinic pathways related to neurotransmission in young versus ageing Extensor digitorum longus (EDL) rat muscles. The main results show an imbalance in several sections of these pathways: (i) a change in the stoichiometry of BDNF/NT-4, (ii) an imbalance of Tropomyosin-related kinase B receptor (TrkB)-FL/TrkB-T1 and neurotrophic receptor p 75 (p75NTR), (iii) no changes in the cytosol/membrane distribution of phosphorylated downstream protein kinase C (PKC)βI and PKCε, (iv) a reduction in the M2-subtype muscarinic receptor and P/Q-subtype voltage-gated calcium channel, (v) an imbalance of phosphorylated mammalian uncoordinated-18-1 (Munc18-1) (S313) and synaptosomal-associated protein 25 (SNAP-25) (S187), and (vi) normal levels of molecules related to the management of acetylcholine (Ach). Based on this descriptive analysis, we hypothesise that these pathways can be adjusted to ensure neurotransmission rather than undergoing negative alterations caused by ageing. However, further studies are needed to assess this hypothetical suggestion. Our results contribute to the understanding of some previously described neuromuscular functional age-related impairments. Strategies to promote these signalling pathways could improve the neuromuscular physiology and quality of life of older people.
Collapse
Affiliation(s)
- Marta Balanyà-Segura
- Unitat d’Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain; (M.B.-S.); (A.P.); (L.J.-B.); (V.C.-M.); (C.S.); (M.T.); (J.T.)
| | - Aleksandra Polishchuk
- Unitat d’Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain; (M.B.-S.); (A.P.); (L.J.-B.); (V.C.-M.); (C.S.); (M.T.); (J.T.)
| | - Laia Just-Borràs
- Unitat d’Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain; (M.B.-S.); (A.P.); (L.J.-B.); (V.C.-M.); (C.S.); (M.T.); (J.T.)
| | - Víctor Cilleros-Mañé
- Unitat d’Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain; (M.B.-S.); (A.P.); (L.J.-B.); (V.C.-M.); (C.S.); (M.T.); (J.T.)
| | - Carolina Silvera
- Unitat d’Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain; (M.B.-S.); (A.P.); (L.J.-B.); (V.C.-M.); (C.S.); (M.T.); (J.T.)
| | - Anna Ardévol
- MoBioFood Research Group, Campus Sescelades, Universitat Rovira i Virgili, Marcel.lí Domingo 1, 43007 Tarragona, Spain;
| | - Marta Tomàs
- Unitat d’Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain; (M.B.-S.); (A.P.); (L.J.-B.); (V.C.-M.); (C.S.); (M.T.); (J.T.)
| | - Maria A. Lanuza
- Unitat d’Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain; (M.B.-S.); (A.P.); (L.J.-B.); (V.C.-M.); (C.S.); (M.T.); (J.T.)
| | - Erica Hurtado
- Unitat d’Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain; (M.B.-S.); (A.P.); (L.J.-B.); (V.C.-M.); (C.S.); (M.T.); (J.T.)
| | - Josep Tomàs
- Unitat d’Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain; (M.B.-S.); (A.P.); (L.J.-B.); (V.C.-M.); (C.S.); (M.T.); (J.T.)
| |
Collapse
|
2
|
Fogarty MJ, Dasgupta D, Khurram OU, Sieck GC. Chemogenetic inhibition of TrkB signalling reduces phrenic motor neuron survival and size. Mol Cell Neurosci 2023; 125:103847. [PMID: 36958643 PMCID: PMC10247511 DOI: 10.1016/j.mcn.2023.103847] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023] Open
Abstract
Brain derived neurotrophic factor (BDNF) signalling through its high-affinity tropomyosin receptor kinase B (TrkB) is known to have potent effects on motor neuron survival and morphology during development and in neurodegenerative diseases. Here, we employed a novel 1NMPP1 sensitive TrkBF616 rat model to evaluate the effect of 14 days inhibition of TrkB signalling on phrenic motor neurons (PhMNs). Adult female and male TrkBF616 rats were divided into 1NMPP1 or vehicle treated groups. Three days prior to treatment, PhMNs in both groups were initially labeled via intrapleural injection of Alexa-Fluor-647 cholera toxin B (CTB). After 11 days of treatment, retrograde axonal uptake/transport was assessed by secondary labeling of PhMNs by intrapleural injection of Alexa-Fluor-488 CTB. After 14 days of treatment, the spinal cord was excised 100 μm thick spinal sections containing PhMNs were imaged using two-channel confocal microscopy. TrkB inhibition reduced the total number of PhMNs by ∼16 %, reduced the mean PhMN somal surface areas by ∼25 %, impaired CTB uptake 2.5-fold and reduced the estimated PhMN dendritic surface area by ∼38 %. We conclude that inhibition of TrkB signalling alone in adult TrkBF616 rats is sufficient to lead to PhMN loss, morphological degeneration and deficits in retrograde axonal uptake/transport.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Debanjali Dasgupta
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Obaid U Khurram
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
3
|
Mantilla CB, Ermilov LG, Greising SM, Gransee HM, Zhan WZ, Sieck GC. Electrophysiological effects of BDNF and TrkB signaling at type-identified diaphragm neuromuscular junctions. J Neurophysiol 2023; 129:781-792. [PMID: 36883761 PMCID: PMC10069962 DOI: 10.1152/jn.00015.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
Previous studies show that synaptic quantal release decreases during repetitive stimulation, i.e., synaptic depression. Neurotrophin brain-derived neurotrophic factor (BDNF) enhances neuromuscular transmission via activation of tropomyosin-related kinase receptor B (TrkB). We hypothesized that BDNF mitigates synaptic depression at the neuromuscular junction and that the effect is more pronounced at type IIx and/or IIb fibers compared to type I or IIa fibers given the more rapid reduction in docked synaptic vesicles with repetitive stimulation. Rat phrenic nerve-diaphragm muscle preparations were used to determine the effect of BDNF on synaptic quantal release during repetitive stimulation at 50 Hz. An ∼40% decline in quantal release was observed during each 330-ms duration train of nerve stimulation (intratrain synaptic depression), and this intratrain decline was observed across repetitive trains (20 trains at 1/s repeated every 5 min for 30 min for 6 sets). BDNF treatment significantly enhanced quantal release at all fiber types (P < 0.001). BDNF treatment did not change release probability within a stimulation set but enhanced synaptic vesicle replenishment between sets. In agreement, synaptic vesicle cycling (measured using FM4-64 fluorescence uptake) was increased following BDNF [or neurotrophin-4 (NT-4)] treatment (∼40%; P < 0.05). Conversely, inhibiting BDNF/TrkB signaling with the tyrosine kinase inhibitor K252a and TrkB-IgG (which quenches endogenous BDNF or NT-4) decreased FM4-64 uptake (∼34% across fiber types; P < 0.05). The effects of BDNF were generally similar across all fiber types. We conclude that BDNF/TrkB signaling acutely enhances presynaptic quantal release and thereby may serve to mitigate synaptic depression and maintain neuromuscular transmission during repetitive activation.NEW & NOTEWORTHY Neurotrophin brain-derived neurotrophic factor (BDNF) enhances neuromuscular transmission via activation of tropomyosin-related kinase receptor B (TrkB). Rat phrenic nerve-diaphragm muscle preparations were used to determine the rapid effect of BDNF on synaptic quantal release during repetitive stimulation. BDNF treatment significantly enhanced quantal release at all fiber types. BDNF increased synaptic vesicle cycling (measured using FM4-64 fluorescence uptake); conversely, inhibiting BDNF/TrkB signaling decreased FM4-64 uptake.
Collapse
Affiliation(s)
- Carlos B Mantilla
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Leonid G Ermilov
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Sarah M Greising
- School of Kinesiology, University of Minnesota, Minneapolis, Minnesota, United States
| | - Heather M Gransee
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Wen-Zhi Zhan
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Gary C Sieck
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
4
|
Sirago G, Pellegrino MA, Bottinelli R, Franchi MV, Narici MV. Loss of neuromuscular junction integrity and muscle atrophy in skeletal muscle disuse. Ageing Res Rev 2023; 83:101810. [PMID: 36471545 DOI: 10.1016/j.arr.2022.101810] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022]
Abstract
Physical inactivity (PI) is a major risk factor of chronic diseases. A major aspect of PI is loss of muscle mass and strength. The latter phenomenon significantly impacts daily life and represent a major issue for global health. Understandably, skeletal muscle itself has been the major focus of studies aimed at understanding the mechanisms underlying loss of mass and strength. Relatively lesser attention has been given to the contribution of alterations in somatomotor control, despite the fact that these changes can start very early and can occur at multiple levels, from the cortex down to the neuromuscular junction (NMJ). It is well known that exposure to chronic inactivity or immobilization causes a disproportionate loss of force compared to muscle mass, i.e. a loss of specific or intrinsic whole muscle force. The latter phenomenon may be partially explained by the loss of specific force of individual muscle fibres, but several other players are very likely to contribute to such detrimental phenomenon. Irrespective of the length of the disuse period, the loss of force is, in fact, more than two-fold greater than that of muscle size. It is very likely that somatomotor alterations may contribute to this loss in intrinsic muscle force. Here we review evidence that alterations of one component of somatomotor control, namely the neuromuscular junction, occur in disuse. We also discuss some of the novel players in NMJ stability (e.g., homer, bassoon, pannexin) and the importance of new established and emerging molecular markers of neurodegenerative processes in humans such as agrin, neural-cell adhesion molecule and light-chain neurofilaments.
Collapse
Affiliation(s)
- Giuseppe Sirago
- Department of Biomedical Sciences, University of Padova, Padova 35131, Italy.
| | - Maria A Pellegrino
- Department of Molecular Medicine, University of Pavia, Pavia 27100, Italy
| | - Roberto Bottinelli
- Department of Molecular Medicine, University of Pavia, Pavia 27100, Italy; IRCCS Mondino Foundation, Pavia 27100, Italy
| | - Martino V Franchi
- Department of Biomedical Sciences, University of Padova, Padova 35131, Italy
| | - Marco V Narici
- Department of Biomedical Sciences, University of Padova, Padova 35131, Italy; CIR-MYO Myology Center, University of Padova, Padova 35131, Italy.
| |
Collapse
|
5
|
Just-Borràs L, Cilleros-Mañé V, Polishchuk A, Balanyà-Segura M, Tomàs M, Garcia N, Tomàs J, Lanuza MA. TrkB signaling is correlated with muscular fatigue resistance and less vulnerability to neurodegeneration. Front Mol Neurosci 2022; 15:1069940. [PMID: 36618825 PMCID: PMC9813967 DOI: 10.3389/fnmol.2022.1069940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
At the neuromuscular junction (NMJ), motor neurons and myocytes maintain a bidirectional communication that guarantees adequate functionality. Thus, motor neurons' firing pattern, which is influenced by retrograde muscle-derived neurotrophic factors, modulates myocyte contractibility. Myocytes can be fast-twitch fibers and become easily fatigued or slow-twitch fibers and resistant to fatigue. Extraocular muscles (EOM) show mixed properties that guarantee fast contraction speed and resistance to fatigue and the degeneration caused by Amyotrophic lateral sclerosis (ALS) disease. The TrkB signaling is an activity-dependent pathway implicated in the NMJ well-functioning. Therefore, it could mediate the differences between fast and slow myocytes' resistance to fatigue. The present study elucidates a specific protein expression profile concerning the TrkB signaling that correlates with higher resistance to fatigue and better neuroprotective capacity through time. The results unveil that Extra-ocular muscles (EOM) express lower levels of NT-4 that extend TrkB signaling, differential PKC expression, and a higher abundance of phosphorylated synaptic proteins that correlate with continuous neurotransmission requirements. Furthermore, common molecular features between EOM and slow soleus muscles including higher neurotrophic consumption and classic and novel PKC isoforms balance correlate with better preservation of these two muscles in ALS. Altogether, higher resistance of Soleus and EOM to fatigue and ALS seems to be associated with specific protein levels concerning the TrkB neurotrophic signaling.
Collapse
|
6
|
BDNF Spinal Overexpression after Spinal Cord Injury Partially Protects Soleus Neuromuscular Junction from Disintegration, Increasing VAChT and AChE Transcripts in Soleus but Not Tibialis Anterior Motoneurons. Biomedicines 2022; 10:biomedicines10112851. [DOI: 10.3390/biomedicines10112851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/20/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
After spinal cord transection (SCT) the interaction between motoneurons (MNs) and muscle is impaired, due to reorganization of the spinal network after a loss of supraspinal inputs. Rats subjected to SCT, treated with intraspinal injection of a AAV-BDNF (brain-derived neurotrophic factor) construct, partially regained the ability to walk. The central effects of this treatment have been identified, but its impact at the neuromuscular junction (NMJ) has not been characterized. Here, we compared the ability of NMJ pre- and postsynaptic machinery in the ankle extensor (Sol) and flexor (TA) muscles to respond to intraspinal AAV-BDNF after SCT. The gene expression of cholinergic molecules (VAChT, ChAT, AChE, nAChR, mAChR) was investigated in tracer-identified, microdissected MN perikarya, and in muscle fibers with the use of qPCR. In the NMJs, a distribution of VAChT, nAChR and Schwann cells was studied by immunofluorescence, and of synaptic vesicles and membrane active zones by electron microscopy. We showed partial protection of the Sol NMJs from disintegration, and upregulation of the VAChT and AChE transcripts in the Sol, but not the TA MNs after spinal enrichment with BDNF. We propose that the observed discrepancy in response to BDNF treatment is an effect of difference in the TrkB expression setting BDNF responsiveness, and of BDNF demands in Sol and TA muscles.
Collapse
|
7
|
Fogarty MJ, Khurram OU, Mantilla CB, Sieck GC. Brain derived neurotrophic factor/tropomyosin related kinase B signaling impacts diaphragm neuromuscular transmission in a novel rat chemogenetic model. Front Cell Neurosci 2022; 16:1025463. [PMID: 36385943 PMCID: PMC9650098 DOI: 10.3389/fncel.2022.1025463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/12/2022] [Indexed: 11/29/2022] Open
Abstract
The neuromuscular junction (NMJ) mediates neural control of skeletal muscle fibers. Neurotrophic signaling, specifically brain derived neurotrophic factor (BDNF) acting through its high-affinity tropomyosin related kinase B (TrkB) receptor is known to improve neuromuscular transmission. BDNF/TrkB signaling also maintains the integrity of antero- and retrograde communication between the motor neuron soma, its distal axons and pre-synaptic terminals and influences neuromuscular transmission. In this study, we employed a novel rat chemogenetic mutation (TrkB F616), in which a 1-naphthylmethyl phosphoprotein phosphatase 1 (1NMPP1) sensitive knock-in allele allowed specific, rapid and sustained inhibition of TrkB kinase activity. In adult female and male TrkB F616 rats, treatment with either 1NMPP1 (TrkB kinase inhibition) or DMSO (vehicle) was administered in drinking water for 14 days. To assess the extent of neuromuscular transmission failure (NMTF), diaphragm muscle isometric force evoked by nerve stimulation at 40 Hz (330 ms duration trains repeated each s) was compared to isometric forces evoked by superimposed direct muscle stimulation (every 15 s). Chronic TrkB kinase inhibition (1NMPP1 group) markedly worsened NMTF compared to vehicle controls. Acute BDNF treatment did not rescue NMTF in the 1NMPP1 group. Chronic TrkB kinase inhibition did not affect the apposition of pre-synaptic terminals (labeled with synaptophysin) and post-synaptic endplates (labeled with α-Bungarotoxin) at diaphragm NMJs. We conclude that inhibition of BDNF/TrkB signaling in TrkB F616 rats disrupts diaphragm neuromuscular transmission in a similar manner to TrkB F616A mice, likely via a pre-synaptic mechanism independent of axonal branch point failure.
Collapse
Affiliation(s)
- Matthew J. Fogarty
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Obaid U. Khurram
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Carlos B. Mantilla
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Gary C. Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
8
|
Davis LA, Fogarty MJ, Brown A, Sieck GC. Structure and Function of the Mammalian Neuromuscular Junction. Compr Physiol 2022; 12:3731-3766. [PMID: 35950651 PMCID: PMC10461538 DOI: 10.1002/cphy.c210022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The mammalian neuromuscular junction (NMJ) comprises a presynaptic terminal, a postsynaptic receptor region on the muscle fiber (endplate), and the perisynaptic (terminal) Schwann cell. As with any synapse, the purpose of the NMJ is to transmit signals from the nervous system to muscle fibers. This neural control of muscle fibers is organized as motor units, which display distinct structural and functional phenotypes including differences in pre- and postsynaptic elements of NMJs. Motor units vary considerably in the frequency of their activation (both motor neuron discharge rate and duration/duty cycle), force generation, and susceptibility to fatigue. For earlier and more frequently recruited motor units, the structure and function of the activated NMJs must have high fidelity to ensure consistent activation and continued contractile response to sustain vital motor behaviors (e.g., breathing and postural balance). Similarly, for higher force less frequent behaviors (e.g., coughing and jumping), the structure and function of recruited NMJs must ensure short-term reliable activation but not activation sustained for a prolonged period in which fatigue may occur. The NMJ is highly plastic, changing structurally and functionally throughout the life span from embryonic development to old age. The NMJ also changes under pathological conditions including acute and chronic disease. Such neuroplasticity often varies across motor unit types. © 2022 American Physiological Society. Compr Physiol 12:1-36, 2022.
Collapse
Affiliation(s)
- Leah A. Davis
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew J. Fogarty
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Alyssa Brown
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Gary C. Sieck
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
9
|
Clenbuterol-sensitive delayed outward potassium currents in a cell model of spinal and bulbar muscular atrophy. Pflugers Arch 2021; 473:1213-1227. [PMID: 34021780 DOI: 10.1007/s00424-021-02559-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/09/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease caused by polyglutamine (polyQ) expansions in the androgen receptor (AR) gene. SBMA is characterized by selective dysfunction and degeneration of motor neurons in the brainstem and spinal cord through still unclear mechanisms in which ion channel modulation might play a central role as for other neurodegenerative diseases. The beta2-adrenergic agonist clenbuterol was observed to ameliorate the SBMA phenotype in mice and patient-derived myotubes. However, the underlying molecular mechanism has yet to be clarified. Here, we unveil that ionic current alterations induced by the expression of polyQ-expanded AR in motor neuron-derived MN-1 cells are attenuated by the administration of clenbuterol. Our combined electrophysiological and pharmacological approach allowed us to reveal that clenbuterol modifies delayed outward potassium currents. Overall, we demonstrated that the protection provided by clenbuterol restores the normal function through the modulation of KV2-type outward potassium currents, possibly contributing to the protective effect on motor neuron toxicity in SBMA.
Collapse
|
10
|
Sieck GC, Gransee HM, Zhan WZ, Mantilla CB. Acute intrathecal BDNF enhances functional recovery after cervical spinal cord injury in rats. J Neurophysiol 2021; 125:2158-2165. [PMID: 33949892 DOI: 10.1152/jn.00146.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Unilateral C2 hemisection (C2SH) disrupts descending inspiratory-related drive to phrenic motor neurons and thus, silences rhythmic diaphragm muscle (DIAm) activity. There is gradual recovery of rhythmic DIAm EMG activity over time post-C2SH, consistent with neuroplasticity, which is enhanced by chronic (2 wk) intrathecal BDNF treatment. In the present study, we hypothesized that acute (30 min) intrathecal BDNF treatment also enhances recovery of DIAm EMG activity after C2SH. Rats were implanted with bilateral DIAm EMG electrodes to verify the absence of ipsilateral eupneic DIAm EMG activity at the time of C2SH and at 3 days post-C2SH. In those animals displaying no recovery of DIAm EMG activity after 28 days (n = 7), BDNF was administered intrathecally (450 mcg) at C4. DIAm EMG activity was measured continuously both before and for 30 min after BDNF treatment, during eupnea, hypoxia-hypercapnia, and spontaneous sighs. Acute BDNF treatment restored eupneic DIAm EMG activity in all treated animals to an amplitude that was 78% ± 9% of pre-C2SH root mean square (RMS) (P < 0.001). In addition, acute BDNF treatment increased DIAm RMS EMG amplitude during hypoxia-hypercapnia (P = 0.023) but had no effect on RMS EMG amplitude during sighs. These results support an acute modulatory role of BDNF signaling on excitatory synaptic transmission at phrenic motor neurons after cervical spinal cord injury.NEW & NOTEWORTHY Brain-derived neurotrophic factor (BDNF) plays an important role in promoting neuroplasticity following unilateral C2 spinal hemisection (C2SH). BDNF was administered intrathecally in rats displaying lack of ipsilateral inspiratory-related diaphragm (DIAm) EMG activity after C2SH. Acute BDNF treatment (30 min) restored eupneic DIAm EMG activity in all treated animals to 78% ± 9% of pre-C2SH level. In addition, acute BDNF treatment increased DIAm EMG amplitude during hypoxia-hypercapnia but had no effect on EMG amplitude during sighs.
Collapse
Affiliation(s)
- Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota.,Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Heather M Gransee
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Wen-Zhi Zhan
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Carlos B Mantilla
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota.,Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
11
|
Saini J, Faroni A, Reid AJ, Mouly V, Butler-Browne G, Lightfoot AP, McPhee JS, Degens H, Al-Shanti N. Cross-talk between motor neurons and myotubes via endogenously secreted neural and muscular growth factors. Physiol Rep 2021; 9:e14791. [PMID: 33931983 PMCID: PMC8087923 DOI: 10.14814/phy2.14791] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023] Open
Abstract
Neuromuscular junction (NMJ) research is vital to advance the understanding of neuromuscular patho‐physiology and development of novel therapies for diseases associated with NM dysfunction. In vivo, the micro‐environment surrounding the NMJ has a significant impact on NMJ formation and maintenance via neurotrophic and differentiation factors that are secreted as a result of cross‐talk between muscle fibers and motor neurons. Recently we showed the formation of functional NMJs in vitro in a co‐culture of immortalized human myoblasts and motor neurons from rat‐embryo spinal‐cord explants, using a culture medium free from serum and neurotrophic or growth factors. The aim of this study was to assess how functional NMJs were established in this co‐culture devoid of exogenous neural growth factors. To investigate this, an ELISA‐based microarray was used to compare the composition of soluble endogenously secreted growth factors in this co‐culture with an a‐neural muscle culture. The levels of seven neurotrophic factors brain‐derived neurotrophic factor (BDNF), glial‐cell‐line‐derived neurotrophic factor (GDNF), insulin‐like growth factor‐binding protein‐3 (IGFBP‐3), insulin‐like growth factor‐1 (IGF‐1), neurotrophin‐3 (NT‐3), neurotrophin‐4 (NT‐4), and vascular endothelial growth factor (VEGF) were higher (p < 0.05) in the supernatant of NMJ culture compared to those in the supernatant of the a‐neural muscle culture. This indicates that the cross‐talk between muscle and motor neurons promotes the secretion of soluble growth factors contributing to the local microenvironment thereby providing a favourable regenerative niche for NMJs formation and maturation.
Collapse
Affiliation(s)
- Jasdeep Saini
- Musculoskeletal Science & Sports Medicine Research Centre, Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Alessandro Faroni
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.,Dept. of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Adam J Reid
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.,Dept. of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Vincent Mouly
- Center for Research in Myology, Sorbonne Université-INSERM, Paris, France
| | | | - Adam P Lightfoot
- Musculoskeletal Science & Sports Medicine Research Centre, Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Jamie S McPhee
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, UK
| | - Hans Degens
- Musculoskeletal Science & Sports Medicine Research Centre, Department of Life Sciences, Manchester Metropolitan University, Manchester, UK.,Lithuanian Sports University, Institute of Sport Science and Innovations, Kaunas, Lithuania
| | - Nasser Al-Shanti
- Musculoskeletal Science & Sports Medicine Research Centre, Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
12
|
Just-Borràs L, Cilleros-Mañé V, Hurtado E, Biondi O, Charbonnier F, Tomàs M, Garcia N, Tomàs J, Lanuza MA. Running and Swimming Differently Adapt the BDNF/TrkB Pathway to a Slow Molecular Pattern at the NMJ. Int J Mol Sci 2021; 22:4577. [PMID: 33925507 PMCID: PMC8123836 DOI: 10.3390/ijms22094577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/29/2022] Open
Abstract
Physical exercise improves motor control and related cognitive abilities and reinforces neuroprotective mechanisms in the nervous system. As peripheral nerves interact with skeletal muscles at the neuromuscular junction, modifications of this bidirectional communication by physical activity are positive to preserve this synapse as it increases quantal content and resistance to fatigue, acetylcholine receptors expansion, and myocytes' fast-to-slow functional transition. Here, we provide the intermediate step between physical activity and functional and morphological changes by analyzing the molecular adaptations in the skeletal muscle of the full BDNF/TrkB downstream signaling pathway, directly involved in acetylcholine release and synapse maintenance. After 45 days of training at different intensities, the BDNF/TrkB molecular phenotype of trained muscles from male B6SJLF1/J mice undergo a fast-to-slow transition without affecting motor neuron size. We provide further knowledge to understand how exercise induces muscle molecular adaptations towards a slower phenotype, resistant to prolonged trains of stimulation or activity that can be useful as therapeutic tools.
Collapse
Affiliation(s)
- Laia Just-Borràs
- Unitat d’Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, 43201 Reus, Spain; (L.J.-B.); (V.C.-M.); (E.H.); (M.T.); (N.G.)
| | - Víctor Cilleros-Mañé
- Unitat d’Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, 43201 Reus, Spain; (L.J.-B.); (V.C.-M.); (E.H.); (M.T.); (N.G.)
| | - Erica Hurtado
- Unitat d’Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, 43201 Reus, Spain; (L.J.-B.); (V.C.-M.); (E.H.); (M.T.); (N.G.)
| | - Olivier Biondi
- INSERM UMRS 1124, Université de Paris, CEDEX 06, F-75270 Paris, France; (O.B.); (F.C.)
| | - Frédéric Charbonnier
- INSERM UMRS 1124, Université de Paris, CEDEX 06, F-75270 Paris, France; (O.B.); (F.C.)
| | - Marta Tomàs
- Unitat d’Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, 43201 Reus, Spain; (L.J.-B.); (V.C.-M.); (E.H.); (M.T.); (N.G.)
| | - Neus Garcia
- Unitat d’Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, 43201 Reus, Spain; (L.J.-B.); (V.C.-M.); (E.H.); (M.T.); (N.G.)
| | - Josep Tomàs
- Unitat d’Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, 43201 Reus, Spain; (L.J.-B.); (V.C.-M.); (E.H.); (M.T.); (N.G.)
| | - Maria A. Lanuza
- Unitat d’Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, 43201 Reus, Spain; (L.J.-B.); (V.C.-M.); (E.H.); (M.T.); (N.G.)
| |
Collapse
|
13
|
Pareja-Cajiao M, Gransee HM, Sieck GC, Mantilla CB. TrkB signaling contributes to transdiaphragmatic pressure generation in aged mice. J Neurophysiol 2021; 125:1157-1163. [PMID: 33596726 PMCID: PMC8282218 DOI: 10.1152/jn.00004.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/19/2022] Open
Abstract
Ventilatory deficits are common in old age and may result from neuromuscular dysfunction. Signaling via the tropomyosin-related kinase receptor B (TrkB) regulates neuromuscular transmission and, in young mice, is important for the generation of transdiaphragmatic pressure (Pdi). Loss of TrkB signaling worsened neuromuscular transmission failure and reduced maximal Pdi, and these effects are similar to those observed in old age. Administration of TrkB agonists such as 7,8-dihydroxyflavone (7,8-DHF) improves neuromuscular transmission in young and old mice (18 mo; 75% survival). We hypothesized that TrkB signaling contributes to Pdi generation in old mice, particularly during maximal force behaviors. Old male and female TrkBF616A mice, with a mutation that induces 1NMPP1-mediated TrkB kinase inhibition, were randomly assigned to systemic treatment with vehicle, 7,8-DHF, or 1NMPP1 1 h before experiments. Pdi was measured during eupneic breathing (room air), hypoxia-hypercapnia (10% O2/5% CO2), tracheal occlusion, spontaneous deep breaths ("sighs"), and bilateral phrenic nerve stimulation (Pdimax). There were no differences in the Pdi amplitude across treatments during ventilatory behaviors (eupnea, hypoxia-hypercapnia, occlusion, or sigh). As expected, Pdi increased from eupnea and hypoxia-hypercapnia (∼7 cm H2O) to occlusion and sighs (∼25 cm H2O), with no differences across treatments. Pdimax was ∼50 cm H2O in the vehicle and 7,8-DHF groups and ∼40 cm H2O in the 1NMPP1 group (F8,74 = 2; P = 0.02). Our results indicate that TrkB signaling is necessary for generating maximal forces by the diaphragm muscle in old mice and are consistent with aging effects of TrkB signaling on neuromuscular transmission.NEW & NOTEWORTHY TrkB signaling is necessary for generating maximal forces by the diaphragm muscle. In 19- to 21-mo-old TrkBF616A mice susceptible to 1NMPP1-induced inhibition of TrkB kinase activity, maximal Pdi generated by bilateral phrenic nerve stimulation was ∼20% lower after 1NMPP1 compared with vehicle-treated mice. Treatment with the TrkB agonist 7,8-dihydroxyflavone did not affect Pdi generation when compared with age-matched mice. Inhibition of TrkB kinase activity did not affect the forces generated during lower force behaviors in old age.
Collapse
Affiliation(s)
- Miguel Pareja-Cajiao
- Departments of Anesthesiology and Perioperative Medicine, Mayo Clinic, College of Medicine and Science, Rochester, Minnesota
| | - Heather M Gransee
- Departments of Anesthesiology and Perioperative Medicine, Mayo Clinic, College of Medicine and Science, Rochester, Minnesota
| | - Gary C Sieck
- Departments of Anesthesiology and Perioperative Medicine, Mayo Clinic, College of Medicine and Science, Rochester, Minnesota
- Physiology and Biomedical Engineering, Mayo Clinic, College of Medicine and Science, Rochester, Minnesota
| | - Carlos B Mantilla
- Departments of Anesthesiology and Perioperative Medicine, Mayo Clinic, College of Medicine and Science, Rochester, Minnesota
- Physiology and Biomedical Engineering, Mayo Clinic, College of Medicine and Science, Rochester, Minnesota
| |
Collapse
|
14
|
Just-Borràs L, Hurtado E, Cilleros-Mañé V, Biondi O, Charbonnier F, Tomàs M, Garcia N, Tomàs J, Lanuza MA. Running and swimming prevent the deregulation of the BDNF/TrkB neurotrophic signalling at the neuromuscular junction in mice with amyotrophic lateral sclerosis. Cell Mol Life Sci 2020; 77:3027-3040. [PMID: 31646358 PMCID: PMC11104938 DOI: 10.1007/s00018-019-03337-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/30/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022]
Abstract
Nerve-induced muscle contraction regulates the BDNF/TrkB neurotrophic signalling to retrogradely modulate neurotransmission and protect the neuromuscular junctions and motoneurons. In muscles with amyotrophic lateral sclerosis, this pathway is strongly misbalanced and neuromuscular junctions are destabilized, which may directly cause the motoneuron degeneration and muscular atrophy observed in this disease. Here, we sought to demonstrate (1) that physical exercise, whose recommendation has been controversial in amyotrophic lateral sclerosis, would be a good option for its therapy, because it normalizes and improves the altered neurotrophin pathway and (2) a plausible molecular mechanism underlying its positive effect. SOD1-G93A mice were trained following either running or swimming-based protocols since the beginning of the symptomatic phase (day 70 of age) until day 115. Next, the full BDNF pathway, including receptors, downstream kinases and proteins related with neurotransmission, was characterized and motoneuron survival was analysed. The results establish that amyotrophic lateral sclerosis-induced damaging molecular changes in the BDNF/TrkB pathway are reduced, prevented or even overcompensated by precisely defined exercise protocols that modulate TrkB isoforms and neurotransmission regulatory proteins and reduce motoneuron death. Altogether, the maintenance of the BDNF/TrkB signalling and the downstream pathway, particularly after the swimming protocol, adds new molecular evidence of the benefits of physical exercise to reduce the impact of amyotrophic lateral sclerosis. These results are encouraging since they reveal an improvement even starting the therapy after the onset of the disease.
Collapse
Affiliation(s)
- Laia Just-Borràs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili. Sant Llorenç 21, 43201, Reus, Spain
| | - Erica Hurtado
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili. Sant Llorenç 21, 43201, Reus, Spain
| | - Víctor Cilleros-Mañé
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili. Sant Llorenç 21, 43201, Reus, Spain
| | - Olivier Biondi
- UMR-S1124, INSERM, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Descartes, 45 Rue des Saints-Pères, 75006, Paris, France
| | - Frédéric Charbonnier
- UMR-S1124, INSERM, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Descartes, 45 Rue des Saints-Pères, 75006, Paris, France
| | - Marta Tomàs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili. Sant Llorenç 21, 43201, Reus, Spain
| | - Neus Garcia
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili. Sant Llorenç 21, 43201, Reus, Spain
| | - Josep Tomàs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili. Sant Llorenç 21, 43201, Reus, Spain.
| | - Maria A Lanuza
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili. Sant Llorenç 21, 43201, Reus, Spain.
| |
Collapse
|
15
|
Sleigh JN, Mech AM, Schiavo G. Developmental demands contribute to early neuromuscular degeneration in CMT2D mice. Cell Death Dis 2020; 11:564. [PMID: 32703932 PMCID: PMC7378196 DOI: 10.1038/s41419-020-02798-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022]
Abstract
Dominantly inherited, missense mutations in the widely expressed housekeeping gene, GARS1, cause Charcot-Marie-Tooth type 2D (CMT2D), a peripheral neuropathy characterised by muscle weakness and wasting in limb extremities. Mice modelling CMT2D display early and selective neuromuscular junction (NMJ) pathology, epitomised by disturbed maturation and neurotransmission, leading to denervation. Indeed, the NMJ disruption has been reported in several different muscles; however, a systematic comparison of neuromuscular synapses from distinct body locations has yet to be performed. We therefore analysed NMJ development and degeneration across five different wholemount muscles to identify key synaptic features contributing to the distinct pattern of neurodegeneration in CMT2D mice. Denervation was found to occur along a distal-to-proximal gradient, providing a cellular explanation for the greater weakness observed in mutant Gars hindlimbs compared with forelimbs. Nonetheless, muscles from similar locations and innervated by axons of equivalent length showed significant differences in neuropathology, suggestive of additional factors impacting on site-specific neuromuscular degeneration. Defective NMJ development preceded and associated with degeneration, but was not linked to a delay of wild-type NMJ maturation processes. Correlation analyses indicate that muscle fibre type nor synaptic architecture explain the differential denervation of CMT2D NMJs, rather it is the extent of post-natal synaptic growth that predisposes to neurodegeneration. Together, this work improves our understanding of the mechanisms driving synaptic vulnerability in CMT2D and hints at pertinent pathogenic pathways.
Collapse
Affiliation(s)
- James N Sleigh
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK.
| | - Aleksandra M Mech
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK
- Discoveries Centre for Regenerative and Precision Medicine, University College London Campus, London, WC1N 3BG, UK
| |
Collapse
|
16
|
Bogacheva P, Balezina O. Delayed increase of acetylcholine quantal size induced by the activity-dependent release of endogenous CGRP but not ATP in neuromuscular junctions. Synapse 2020; 74:e22175. [PMID: 32478912 DOI: 10.1002/syn.22175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/07/2020] [Accepted: 05/23/2020] [Indexed: 11/09/2022]
Abstract
In mouse motor synapses tetanic neuromuscular activity (30 Hz, 2 min) led to a delayed posttetanic potentiation of amplitude and duration of spontaneous miniature endplate potentials (MEPPs). Microelectrode recordings of MEPPs before and after nerve stimulation showed an increase in MEPP amplitude and time course by 30% and 15%, respectively, without changes in their frequency. Peak effect was detected 20 min after tetanic activity and progressively faded throughout the next 40 min of recording. The revealed potentiation of MEPPs was fully preserved in preparations from pannexin 1 knockout mice. It means, that myogenic ATP released via pannexin 1 channels from contracting muscle fibers is not likely to participate in the described phenomenon. But posttetanic potentiation of MEPPs was fully prevented by competitive antagonist of calcitonin gene-related peptide (CGRP) receptors CGRP8-37 , ryanodine receptors inhibitor ryanodine and by vesicular acetylcholine transporter inhibitor vesamicol. It is suggested that the combination of intensive synaptic and contractile activity in neuromuscular junctions is required to induce Ca2+ -dependent exocytosis of endogenous CGRP. The accumulation of CGRP in the synaptic cleft and its presynaptic activity may induce posttetanic potentiation of MEPP amplitude due to CGRP-stimulated acetylcholine loading into vesicles and subsequent increase of quantal size.
Collapse
Affiliation(s)
- Polina Bogacheva
- Department of Human and Animal Physiology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Olga Balezina
- Department of Human and Animal Physiology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
17
|
Halievski K, Xu Y, Haddad YW, Tang YP, Yamada S, Katsuno M, Adachi H, Sobue G, Breedlove SM, Jordan CL. Muscle BDNF improves synaptic and contractile muscle strength in Kennedy's disease mice in a muscle-type specific manner. J Physiol 2020; 598:2719-2739. [PMID: 32306402 DOI: 10.1113/jp279208] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS Muscle-derived neurotrophic factors may offer therapeutic promise for treating neuromuscular diseases. We report that a muscle-derived neurotrophic factor, BDNF, rescues synaptic and muscle function in a muscle-type specific manner in mice modelling Kennedy's disease (KD). We also find that BDNF rescues select molecular mechanisms in slow and fast muscle that may underlie the improved cellular function. We also report for the first time that expression of BDNF, but not other members of the neurotrophin family, is perturbed in muscle from patients with KD. Given that muscle BDNF had divergent therapeutic effects that depended on muscle type, a combination of neurotrophic factors may optimally rescue neuromuscular function via effects on both pre- and postsynaptic function, in the face of disease. ABSTRACT Deficits in muscle brain-derived neurotrophic factor (BDNF) correlate with neuromuscular deficits in mouse models of Kennedy's disease (KD), suggesting that restoring muscle BDNF might restore function. To test this possibility, transgenic mice expressing human BDNF in skeletal muscle were crossed with '97Q' KD mice. We found that muscle BDNF slowed disease, doubling the time between symptom onset and endstage. BDNF also improved expression of genes in muscle known to play key roles in neuromuscular function, including counteracting the expression of neonatal isoforms induced by disease. Intriguingly, BDNF's ameliorative effects differed between muscle types: synaptic strength was rescued only in slow-twitch muscle, while contractile strength was improved only in fast-twitch muscle. In sum, muscle BDNF slows disease progression, rescuing select cellular and molecular mechanisms that depend on fibre type. Muscle BDNF expression was also affected in KD patients, reinforcing its translational and therapeutic potential for treating this disorder.
Collapse
Affiliation(s)
- Katherine Halievski
- Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI, 48824-1115, USA.,Program in Neurosciences and Mental Health, The Hospital for Sick Children, 686 Bay St, Toronto, ON, M5G 0A4, Canada
| | - Youfen Xu
- Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI, 48824-1115, USA
| | - Yazeed W Haddad
- Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI, 48824-1115, USA
| | - Yu Ping Tang
- Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI, 48824-1115, USA
| | - Shinichiro Yamada
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Hiroaki Adachi
- Department of Neurology, University of Occupational and Environment Health School of Medicine, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Gen Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - S Marc Breedlove
- Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI, 48824-1115, USA
| | - Cynthia L Jordan
- Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI, 48824-1115, USA.,Physiology Department, Michigan State University, 108 Giltner Hall, East Lansing, MI, 48824-1115, USA
| |
Collapse
|
18
|
Pareja-Cajiao M, Gransee HM, Cole NA, Sieck GC, Mantilla CB. Inhibition of TrkB kinase activity impairs transdiaphragmatic pressure generation. J Appl Physiol (1985) 2020; 128:338-344. [PMID: 31944892 PMCID: PMC7052584 DOI: 10.1152/japplphysiol.00564.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/14/2019] [Accepted: 01/15/2020] [Indexed: 12/18/2022] Open
Abstract
Signaling via the tropomyosin-related kinase receptor subtype B (TrkB) regulates neuromuscular transmission, and inhibition of TrkB kinase activity by 1NMPP1 in TrkBF616A mice worsens neuromuscular transmission failure (NMTF). We hypothesized that acute inhibition of TrkB kinase activity will impair the ability of the diaphragm muscle to produce maximal transdiaphragmatic pressure (Pdi) without impacting the ability to generate forces associated with ventilation, consistent with the greater susceptibility to NMTF in motor units responsible for higher-force nonventilatory behaviors. Adult male and female TrkBF616A mice were injected with 1NMPP1 (n = 8) or vehicle (DMSO; n = 8) 1 h before Pdi measurements during eupneic breathing, hypoxia/hypercapnia (10% O2/5% CO2), tracheal occlusion, spontaneous deep breaths ("sighs") and during maximal activation elicited by bilateral phrenic nerve stimulation. In the vehicle-treated group, Pdi increased from ~10 cmH2O during eupnea and hypoxia/hypercapnia, to ~35 cmH2O during sighs and tracheal occlusion, and to ~65 cm H2O during maximal stimulation. There was no effect of acute 1NMPP1 treatment on Pdi generated during most behaviors, except during maximal stimulation (~30% reduction; P < 0.05). This reduction in maximal Pdi is generally similar to the worsening of NMTF previously reported with TrkB kinase inhibition in rodents. Accordingly, impaired TrkB signaling limits the range of motor behaviors accomplished by the diaphragm muscle and may contribute to neuromuscular dysfunction, primarily by impacting fatigable, higher force-generating motor units.NEW & NOTEWORTHY TrkB signaling plays an important role in maintaining neuromuscular function in the diaphragm muscle and may be necessary to accomplish the various motor behaviors ranging from ventilation to expulsive, behaviors requiring near-maximal forces. This study shows that inhibition of TrkB kinase activity impairs maximal pressure generation by the diaphragm muscle, but the ability to generate the lower pressures required for ventilatory behaviors is not impacted.
Collapse
Affiliation(s)
- Miguel Pareja-Cajiao
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, College of Medicine and Science, Rochester, Minnesota
| | - Heather M Gransee
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, College of Medicine and Science, Rochester, Minnesota
| | - Naomi A Cole
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, College of Medicine and Science, Rochester, Minnesota
| | - Gary C Sieck
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, College of Medicine and Science, Rochester, Minnesota
- Department of Physiology and Biomedical Engineering, Mayo Clinic, College of Medicine and Science, Rochester, Minnesota
| | - Carlos B Mantilla
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, College of Medicine and Science, Rochester, Minnesota
- Department of Physiology and Biomedical Engineering, Mayo Clinic, College of Medicine and Science, Rochester, Minnesota
| |
Collapse
|
19
|
The Impact of Kinases in Amyotrophic Lateral Sclerosis at the Neuromuscular Synapse: Insights into BDNF/TrkB and PKC Signaling. Cells 2019; 8:cells8121578. [PMID: 31817487 PMCID: PMC6953086 DOI: 10.3390/cells8121578] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/19/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) promotes neuron survival in adulthood in the central nervous system. In the peripheral nervous system, BDNF is a contraction-inducible protein that, through its binding to tropomyosin-related kinase B receptor (TrkB), contributes to the retrograde neuroprotective control done by muscles, which is necessary for motor neuron function. BDNF/TrkB triggers downstream presynaptic pathways, involving protein kinase C, essential for synaptic function and maintenance. Undeniably, this reciprocally regulated system exemplifies the tight communication between nerve terminals and myocytes to promote synaptic function and reveals a new view about the complementary and essential role of pre and postsynaptic interplay in keeping the synapse healthy and strong. This signaling at the neuromuscular junction (NMJ) could establish new intervention targets across neuromuscular diseases characterized by deficits in presynaptic activity and muscle contractility and by the interruption of the connection between nervous and muscular tissues, such as amyotrophic lateral sclerosis (ALS). Indeed, exercise and other therapies that modulate kinases are effective at delaying ALS progression, preserving NMJs and maintaining motor function to increase the life quality of patients. Altogether, we review synaptic activity modulation of the BDNF/TrkB/PKC signaling to sustain NMJ function, its and other kinases’ disturbances in ALS and physical and molecular mechanisms to delay disease progression.
Collapse
|
20
|
Regulation of Acetylcholine Quantal Release by Coupled Thrombin/BDNF Signaling in Mouse Motor Synapses. Cells 2019; 8:cells8070762. [PMID: 31336670 PMCID: PMC6678150 DOI: 10.3390/cells8070762] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/13/2019] [Accepted: 07/22/2019] [Indexed: 12/23/2022] Open
Abstract
The aim of this study was to compare the acute effects of thrombin and brain-derived neurotrophic factor (BDNF) on spontaneous miniature endplate potentials (MEPPs) and multiquantal evoked endplate potentials (EPPs) in mouse neuromuscular junctions (NMJs) of m. diaphragma and m. EDL. Intracellular microelectrode recordings of MEPPs and EPPs were used to evaluate the changes in acetylcholine (ACh) release in mature and newly-formed mouse NMJs. Thrombin (1 nM) increased the amplitude of MEPPs and EPPs by 25–30% in mature and newly-formed NMJs. This effect was due to an enhanced loading of synaptic vesicles with ACh and increase of ACh quantal size, since it was fully prevented by blocking of vesicular ACh transporter. It was also prevented by tropomyosin-related kinase B (TrkB) receptors inhibitor ANA12. Exogenous BDNF (1 nM) mimicked thrombin effect and increased the amplitude of MEPPs and EPPs by 25–30%. It required involvement of protein kinase A (PKA) and mitogen-activated protein kinase (MEK1/2)-mediated pathway, but not phospholipase C (PLC). Blocking A2A adenosine receptors by ZM241385 abolished the effect of BDNF, whereas additional stimulation of A2A receptors by CGS21680 increased MEPP amplitudes, which was prevented by MEK1/2 inhibitor U0126. At mature NMJs, BDNF enhanced MEPPs frequency by 30–40%. This effect was selectively prevented by inhibition of PLC, but not PKA or MEK1/2. It is suggested that interrelated effects of thrombin/BDNF in mature and newly-formed NMJs are realized via enhancement of vesicular ACh transport and quantal size increase. BDNF-induced potentiation of synaptic transmission involves the functional coupling between A2A receptor-dependent active PKA and neurotrophin-triggered MAPK pathway, as well as PLC-dependent increase in frequency of MEPPs.
Collapse
|
21
|
Fogarty MJ, Gonzalez Porras MA, Mantilla CB, Sieck GC. Diaphragm neuromuscular transmission failure in aged rats. J Neurophysiol 2019; 122:93-104. [PMID: 31042426 PMCID: PMC6689786 DOI: 10.1152/jn.00061.2019] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 12/16/2022] Open
Abstract
In aging Fischer 344 rats, phrenic motor neuron loss, neuromuscular junction abnormalities, and diaphragm muscle (DIAm) sarcopenia are present by 24 mo of age, with larger fast-twitch fatigue-intermediate (type FInt) and fast-twitch fatigable (type FF) motor units particularly vulnerable. We hypothesize that in old rats, DIAm neuromuscular transmission deficits are specific to type FInt and/or FF units. In phrenic nerve/DIAm preparations from rats at 6 and 24 mo of age, the phrenic nerve was supramaximally stimulated at 10, 40, or 75 Hz. Every 15 s, the DIAm was directly stimulated, and the difference in forces evoked by nerve and muscle stimulation was used to estimate neuromuscular transmission failure. Neuromuscular transmission failure in the DIAm was observed at each stimulation frequency. In the initial stimulus trains, the forces evoked by phrenic nerve stimulation at 40 and 75 Hz were significantly less than those evoked by direct muscle stimulation, and this difference was markedly greater in 24-mo-old rats. During repetitive nerve stimulation, neuromuscular transmission failure at 40 and 75 Hz worsened to a greater extent in 24-mo-old rats compared with younger animals. Because type IIx and/or IIb DIAm fibers (type FInt and/or FF motor units) display greater susceptibility to neuromuscular transmission failure at higher frequencies of stimulation, these data suggest that the age-related loss of larger phrenic motor neurons impacts nerve conduction to muscle at higher frequencies and may contribute to DIAm sarcopenia in old rats. NEW & NOTEWORTHY Diaphragm muscle (DIAm) sarcopenia, phrenic motor neuron loss, and perturbations of neuromuscular junctions (NMJs) are well described in aged rodents and selectively affect FInt and FF motor units. Less attention has been paid to the motor unit-specific aspects of nerve-muscle conduction. In old rats, increased neuromuscular transmission failure occurred at stimulation frequencies where FInt and FF motor units exhibit conduction failures, along with decreased apposition of pre- and postsynaptic domains of DIAm NMJs of these units.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
| | | | - Carlos B Mantilla
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic , Rochester, Minnesota
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic , Rochester, Minnesota
| |
Collapse
|
22
|
Halievski K, Nath SR, Katsuno M, Adachi H, Sobue G, Breedlove SM, Lieberman AP, Jordan CL. Disease Affects Bdnf Expression in Synaptic and Extrasynaptic Regions of Skeletal Muscle of Three SBMA Mouse Models. Int J Mol Sci 2019; 20:ijms20061314. [PMID: 30875922 PMCID: PMC6470984 DOI: 10.3390/ijms20061314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 01/01/2023] Open
Abstract
Spinal bulbar muscular atrophy (SBMA) is a slowly progressive, androgen-dependent neuromuscular disease in men that is characterized by both muscle and synaptic dysfunction. Because gene expression in muscle is heterogeneous, with synaptic myonuclei expressing genes that regulate synaptic function and extrasynaptic myonuclei expressing genes to regulate contractile function, we used quantitative PCR to compare gene expression in these two domains of muscle from three different mouse models of SBMA: the "97Q" model that ubiquitously expresses mutant human androgen receptor (AR), the 113Q knock-in (KI) model that expresses humanized mouse AR with an expanded glutamine tract, and the "myogenic" model that overexpresses wild-type rat AR only in skeletal muscle. We were particularly interested in neurotrophic factors because of their role in maintaining neuromuscular function via effects on both muscle and synaptic function, and their implicated role in SBMA. We confirmed previous reports of the enriched expression of select genes (e.g., the acetylcholine receptor) in the synaptic region of muscle, and are the first to report the synaptic enrichment of others (e.g., glial cell line-derived neurotrophic factor). Interestingly, all three models displayed comparably dysregulated expression of most genes examined in both the synaptic and extrasynaptic domains of muscle, with only modest differences between regions and models. These findings of comprehensive gene dysregulation in muscle support the emerging view that skeletal muscle may be a prime therapeutic target for restoring function of both muscles and motoneurons in SBMA.
Collapse
Affiliation(s)
- Katherine Halievski
- Neuroscience Program, 108 Giltner Hall, Michigan State University, East Lansing, MI 48824-1115, USA.
| | - Samir R Nath
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Hiroaki Adachi
- Department of Neurology, University of Occupational and Environment Health School of Medicine, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu Fukuoka 807-8555, Japan.
| | - Gen Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - S Marc Breedlove
- Neuroscience Program, 108 Giltner Hall, Michigan State University, East Lansing, MI 48824-1115, USA.
| | - Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Cynthia L Jordan
- Neuroscience Program, 108 Giltner Hall, Michigan State University, East Lansing, MI 48824-1115, USA.
- Physiology Department, 108 Giltner Hall, Michigan State University, East Lansing, MI 48824-1115, USA.
| |
Collapse
|
23
|
Gonzalez Porras MA, Sieck GC, Mantilla CB. Impaired Autophagy in Motor Neurons: A Final Common Mechanism of Injury and Death. Physiology (Bethesda) 2019; 33:211-224. [PMID: 29638184 DOI: 10.1152/physiol.00008.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Autophagy is a cellular digestion process that contributes to cellular homeostasis and adaptation by the elimination of proteins and damaged organelles. Evidence suggests that dysregulation of autophagy plays a role in neurodegenerative diseases, including motor neuron disorders. Herein, we review emerging evidence indicating the roles of autophagy in physiological motor neuron processes and its function in specific compartments. Moreover, we discuss the involvement of autophagy in the pathogenesis of motor neuron diseases, including spinal cord injury and aging, and recent developments that offer promising therapeutic approaches to mitigate effects of dysregulated autophagy in health and disease.
Collapse
Affiliation(s)
| | - Gary C Sieck
- Department of Physiology & Biomedical Engineering, Mayo Clinic , Rochester, Minnesota.,Department of Anesthesiology and Perioperative Medicine, Mayo Clinic , Rochester, Minnesota
| | - Carlos B Mantilla
- Department of Physiology & Biomedical Engineering, Mayo Clinic , Rochester, Minnesota.,Department of Anesthesiology and Perioperative Medicine, Mayo Clinic , Rochester, Minnesota
| |
Collapse
|
24
|
Fitzpatrick KR, Cucak A, McLoon LK. Changing muscle function with sustained glial derived neurotrophic factor treatment of rabbit extraocular muscle. PLoS One 2018; 13:e0202861. [PMID: 30142211 PMCID: PMC6108505 DOI: 10.1371/journal.pone.0202861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/10/2018] [Indexed: 01/05/2023] Open
Abstract
Recent microarray and RNAseq experiments provided evidence that glial derived neurotrophic factor (GDNF) levels were decreased in extraocular muscles from human strabismic subjects compared to age-matched controls. We assessed the effect of sustained GDNF treatment of the superior rectus muscles of rabbits on their physiological and morphological characteristics, and these were compared to naïve control muscles. Superior rectus muscles of rabbits were implanted with a sustained release pellet of GDNF to deliver 2μg/day, with the contralateral side receiving a placebo pellet. After one month, the muscles were assessed using in vitro physiological methods. The muscles were examined histologically for alteration in fiber size, myosin expression patterns, neuromuscular junction size, and stem cell numbers and compared to age-matched naïve control muscles. GDNF resulted in decreased force generation, which was also seen on the untreated contralateral superior rectus muscles. Muscle relaxation times were increased in the GDNF treated muscles. Myofiber mean cross-sectional areas were increased after the GDNF treatment, but there was a compensatory increase in expression of developmental, neonatal, and slow tonic myosin heavy chain isoforms. In addition, in the GDNF treated muscles there was a large increase in Pitx2-positive myogenic precursor cells. One month of GDNF resulted in significant extraocular muscle adaptation. These changes are interesting relative to the decreased levels of GDNF in the muscles from subjects with strabismus and preliminary data in infant non-human primates where sustained GDNF treatment produced a strabismus. These data support the view that GDNF has the potential for improving eye alignment in subjects with strabismus.
Collapse
Affiliation(s)
- Krysta R. Fitzpatrick
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Anja Cucak
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Linda K. McLoon
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Ophthalmology and Visual Neurosciences and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
25
|
Simó A, Just-Borràs L, Cilleros-Mañé V, Hurtado E, Nadal L, Tomàs M, Garcia N, Lanuza MA, Tomàs J. BDNF-TrkB Signaling Coupled to nPKCε and cPKCβI Modulate the Phosphorylation of the Exocytotic Protein Munc18-1 During Synaptic Activity at the Neuromuscular Junction. Front Mol Neurosci 2018; 11:207. [PMID: 29946239 PMCID: PMC6007318 DOI: 10.3389/fnmol.2018.00207] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/25/2018] [Indexed: 11/13/2022] Open
Abstract
Munc18-1, a neuron-specific member of the Sec1/Munc18 family, is involved in neurotransmitter release by binding tightly to syntaxin. Munc18-1 is phosphorylated by PKC on Ser-306 and Ser-313 in vitro which reduces the amount of Munc18-1 able to bind syntaxin. We have previously identified that PKC is involved in neurotransmitter release when continuous electrical stimulation imposes a moderate activity on the NMJ and that muscle contraction through TrkB has an important impact on presynaptic PKC isoforms levels, specifically cPKCβI and nPKCε. Therefore, the present study was designed to understand how Munc18-1 phosphorylation is affected by (1) synaptic activity at the neuromuscular junction, (2) nPKCε and cPKCβI isoforms activity, (3) muscle contraction per se, and (4) the BDNF/TrkB signaling in a neuromuscular activity-dependent manner. We performed immunohistochemistry and confocal techniques to evidence the presynaptic location of Munc18-1 in the rat diaphragm muscle. To study synaptic activity, we stimulated the phrenic nerve (1 Hz, 30 min) with or without contraction (abolished by μ-conotoxin GIIIB). Specific inhibitory reagents were used to block nPKCε and cPKCβI activity and to modulate the tropomyosin receptor kinase B (TrkB). Main results obtained from Western blot experiments showed that phosphorylation of Munc18-1 at Ser-313 increases in response to a signaling mechanism initiated by synaptic activity and directly mediated by nPKCε. Otherwise, cPKCβI and TrkB activities work together to prevent this synaptic activity-induced Munc18-1 phosphorylation by a negative regulation of cPKCβI over nPKCε. Therefore, a balance between the activities of these PKC isoforms could be a relevant cue in the regulation of the exocytotic apparatus. The results also demonstrate that muscle contraction prevents the synaptic activity-induced Munc18-1 phosphorylation through a mechanism that opposes the TrkB/cPKCβI/nPKCε signaling.
Collapse
Affiliation(s)
- Anna Simó
- Unitat d'Histologia i Neurobiologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
| | - Laia Just-Borràs
- Unitat d'Histologia i Neurobiologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
| | - Víctor Cilleros-Mañé
- Unitat d'Histologia i Neurobiologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
| | - Erica Hurtado
- Unitat d'Histologia i Neurobiologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
| | - Laura Nadal
- Unitat d'Histologia i Neurobiologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
| | - Marta Tomàs
- Unitat d'Histologia i Neurobiologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
| | - Neus Garcia
- Unitat d'Histologia i Neurobiologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
| | - Maria A Lanuza
- Unitat d'Histologia i Neurobiologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
| | - Josep Tomàs
- Unitat d'Histologia i Neurobiologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus, Spain
| |
Collapse
|
26
|
Local BDNF Delivery to the Injured Cervical Spinal Cord using an Engineered Hydrogel Enhances Diaphragmatic Respiratory Function. J Neurosci 2018; 38:5982-5995. [PMID: 29891731 DOI: 10.1523/jneurosci.3084-17.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 02/07/2023] Open
Abstract
We developed an innovative biomaterial-based approach to repair the critical neural circuitry that controls diaphragm activation by locally delivering brain-derived neurotrophic factor (BDNF) to injured cervical spinal cord. BDNF can be used to restore respiratory function via a number of potential repair mechanisms; however, widespread BDNF biodistribution resulting from delivery methods such as systemic injection or lumbar puncture can lead to inefficient drug delivery and adverse side effects. As a viable alternative, we developed a novel hydrogel-based system loaded with polysaccharide-BDNF particles self-assembled by electrostatic interactions that can be safely implanted in the intrathecal space for achieving local BDNF delivery with controlled dosing and duration. Implantation of BDNF hydrogel after C4/C5 contusion-type spinal cord injury (SCI) in female rats robustly preserved diaphragm function, as assessed by in vivo recordings of compound muscle action potential and electromyography amplitudes. However, BDNF hydrogel did not decrease lesion size or degeneration of cervical motor neuron soma, suggesting that its therapeutic mechanism of action was not neuroprotection within spinal cord. Interestingly, BDNF hydrogel significantly preserved diaphragm innervation by phrenic motor neurons (PhMNs), as assessed by detailed neuromuscular junction morphological analysis and retrograde PhMN labeling from diaphragm using cholera toxin B. Furthermore, BDNF hydrogel enhanced the serotonergic axon innervation of PhMNs that plays an important role in modulating PhMN excitability. Our findings demonstrate that local BDNF hydrogel delivery is a robustly effective and safe strategy to restore diaphragm function after SCI. In addition, we demonstrate novel therapeutic mechanisms by which BDNF can repair respiratory neural circuitry.SIGNIFICANCE STATEMENT Respiratory compromise is a leading cause of morbidity and mortality following traumatic spinal cord injury (SCI). We used an innovative biomaterial-based drug delivery system in the form of a hydrogel that can be safely injected into the intrathecal space for achieving local delivery of brain-derived neurotrophic factor (BDNF) with controlled dosing and duration, while avoiding side effects associated with other delivery methods. In a clinically relevant rat model of cervical contusion-type SCI, BDNF hydrogel robustly and persistently improved diaphragmatic respiratory function by enhancing phrenic motor neuron (PhMN) innervation of the diaphragm neuromuscular junction and by increasing serotonergic innervation of PhMNs in ventral horn of the cervical spinal cord. These exciting findings demonstrate that local BDNF hydrogel delivery is a safe and robustly effective strategy to maintain respiratory function after cervical SCI.
Collapse
|
27
|
Greising SM, Ottenheijm CAC, O'Halloran KD, Barreiro E. Diaphragm plasticity in aging and disease: therapies for muscle weakness go from strength to strength. J Appl Physiol (1985) 2018; 125:243-253. [PMID: 29672230 DOI: 10.1152/japplphysiol.01059.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The diaphragm is the main inspiratory muscle and is required to be highly active throughout the life span. The diaphragm muscle must be able to produce and sustain various behaviors that range from ventilatory to nonventilatory such as those required for airway maintenance and clearance. Throughout the life span various circumstances and conditions may affect the ability of the diaphragm muscle to generate requisite forces, and in turn the diaphragm muscle may undergo significant weakness and dysfunction. For example, hypoxic stress, critical illness, cancer cachexia, chronic obstructive pulmonary disorder, and age-related sarcopenia all represent conditions in which significant diaphragm muscle dysfunction exits. This perspective review article presents several interesting topics involving diaphragm plasticity in aging and disease that were presented at the International Union of Physiological Sciences Conference in 2017. This review seeks to maximize the broad and collective research impact on diaphragm muscle dysfunction in the search for transformative treatment approaches to improve the diaphragm muscle health during aging and disease.
Collapse
Affiliation(s)
- Sarah M Greising
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota.,School of Kinesiology, University of Minnesota , Minneapolis, Minnesota
| | - Coen A C Ottenheijm
- Department of Physiology, VU University Medical Center , Amsterdam , The Netherlands.,Cellular and Molecular Medicine, University of Arizona , Tucson, Arizona
| | - Ken D O'Halloran
- Department of Physiology, University College Cork , Cork , Ireland
| | - Esther Barreiro
- Pulmonology Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona , Spain.,Centro de Investigación en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III , Barcelona , Spain
| |
Collapse
|
28
|
Rando A, Pastor D, Viso-León MC, Martínez A, Manzano R, Navarro X, Osta R, Martínez S. Intramuscular transplantation of bone marrow cells prolongs the lifespan of SOD1 G93A mice and modulates expression of prognosis biomarkers of the disease. Stem Cell Res Ther 2018; 9:90. [PMID: 29625589 PMCID: PMC5889612 DOI: 10.1186/s13287-018-0843-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/28/2018] [Accepted: 03/15/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by progressive muscle weakness, paralysis and death. There is no effective treatment for ALS and stem cell therapy has arisen as a potential therapeutic approach. METHODS SOD1 mutant mice were used to study the potential neurotrophic effect of bone marrow cells grafted into quadriceps femoris muscle. RESULTS Bone marrow intramuscular transplants resulted in increased longevity with improved motor function and decreased motoneuron degeneration in the spinal cord. Moreover, the increment of the glial-derived neurotrophic factor and neurotrophin 4 observed in the grafted muscles suggests that this partial neuroprotective effect is mediated by neurotrophic factor release at the neuromuscular junction level. Finally, certain neurodegeneration and muscle disease-specific markers, which are altered in the SOD1G93A mutant mouse and may serve as molecular biomarkers for the early detection of ALS in patients, have been studied with encouraging results. CONCLUSIONS This work demonstrates that stem cell transplantation in the muscle prolonged the lifespan, increased motoneuron survival and slowed disease progression, which was also assessed by genetic expression analysis.
Collapse
Affiliation(s)
- Amaya Rando
- LAGENBIO-I3A, Facultad de Veterinaria, IIS Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Diego Pastor
- Centro de Investigación Deporte, Universidad Miguel Hernández de Elche, Alicante, Spain
- Instituto de Neurociencias de Alicante, UMH-CSIC, Universidad Miguel Hernández de Elche, Alicante, Spain
| | - Mari Carmen Viso-León
- Instituto de Neurociencias de Alicante, UMH-CSIC, Universidad Miguel Hernández de Elche, Alicante, Spain
| | - Anna Martínez
- Grupo de Neuroplasticidad y Regeneración, Instituto de Neurociencias y Departamento de Biología Celular, Fisiología e Inmunología, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Raquel Manzano
- LAGENBIO-I3A, Facultad de Veterinaria, IIS Aragón, Universidad de Zaragoza, Zaragoza, Spain
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Xavier Navarro
- Grupo de Neuroplasticidad y Regeneración, Instituto de Neurociencias y Departamento de Biología Celular, Fisiología e Inmunología, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Rosario Osta
- LAGENBIO-I3A, Facultad de Veterinaria, IIS Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Salvador Martínez
- Instituto de Neurociencias de Alicante, UMH-CSIC, Universidad Miguel Hernández de Elche, Alicante, Spain
| |
Collapse
|
29
|
Abstract
Age-dependent declines in muscle function are observed across species. The loss of mobility resulting from the decline in muscle function represents an important health issue and a key determinant of quality of life for the elderly. It is believed that changes in the structure and function of the neuromuscular junction are important contributors to the observed declines in motor function with increased age. Numerous studies indicate that the aging muscle is an important contributor to the deterioration of the neuromuscular junction but the cellular and molecular mechanisms driving the degeneration of the synapse remain incompletely described. Importantly, growing data from both animal models and humans indicate that exercise can rejuvenate the neuromuscular junction and improve motor function. In this review we will focus on the role of muscle-derived neurotrophin signaling in the rejuvenation of the aged neuromuscular junction in response to exercise.
Collapse
Affiliation(s)
- Tabita Kreko-Pierce
- Department of Cellular and Integrative Physiology, University of Texas Health Sciences Center at San Antonio, San Antonio, Texas, USA.,Barshoph Institute of Longevity and Aging Studies, University of Texas Health Sciences Center at San Antonio, San Antonio, Texas, USA
| | - Benjamin A Eaton
- Department of Cellular and Integrative Physiology, University of Texas Health Sciences Center at San Antonio, San Antonio, Texas, USA.,Barshoph Institute of Longevity and Aging Studies, University of Texas Health Sciences Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
30
|
Gonzalez Porras MA, Durfee P, Giambini S, Sieck GC, Brinker CJ, Mantilla CB. Uptake and intracellular fate of cholera toxin subunit b-modified mesoporous silica nanoparticle-supported lipid bilayers (aka protocells) in motoneurons. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:661-672. [PMID: 29339186 DOI: 10.1016/j.nano.2018.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/30/2017] [Accepted: 01/02/2018] [Indexed: 02/02/2023]
Abstract
Cholera toxin B (CTB) modified mesoporous silica nanoparticle supported lipid bilayers (CTB-protocells) are a promising, customizable approach for targeting therapeutic cargo to motoneurons. In the present study, the endocytic mechanism and intracellular fate of CTB-protocells in motoneurons were examined to provide information for the development of therapeutic application and cargo delivery. Pharmacological inhibitors elucidated CTB-protocells endocytosis to be dependent on the integrity of lipid rafts and macropinocytosis. Using immunofluorescence techniques, live confocal and transmission electron microscopy, CTB-protocells were primarily found in the cytosol, membrane lipid domains and Golgi. There was no difference in the amount of motoneuron activity dependent uptake of CTB-protocells in neuromuscular junctions, consistent with clathrin activation at the axon terminals during low frequency activity. In conclusion, CTB-protocells uptake is mediated principally by lipid rafts and macropinocytosis. Once internalized, CTB-protocells escape lysosomal degradation, and engage biological pathways that are not readily accessible by untargeted delivery methods.
Collapse
Affiliation(s)
- Maria A Gonzalez Porras
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Paul Durfee
- Center for Micro-Engineered Materials, University of New, Mexico
| | - Sebastian Giambini
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Gary C Sieck
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, United States; Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - C Jeffrey Brinker
- Center for Micro-Engineered Materials, University of New, Mexico; Department of Chemical and Biological Engineering University of New, Mexico; Department of Molecular Genetics and Microbiology University of New, Mexico; Self-Assembled Materials Department, Sandia National Laboratories, Albuquerque, New, Mexico
| | - Carlos B Mantilla
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, United States; Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
31
|
Rizzuto E, Pisu S, Nicoletti C, Del Prete Z, Musarò A. Measuring Neuromuscular Junction Functionality. J Vis Exp 2017. [PMID: 28809841 DOI: 10.3791/55227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Neuromuscular junction (NMJ) functionality plays a pivotal role when studying diseases in which the communication between motor neuron and muscle is impaired, such as aging and amyotrophic lateral sclerosis (ALS). Here we describe an experimental protocol that can be used to measure NMJ functionality by combining two types of electrical stimulation: direct muscle membrane stimulation and the stimulation through the nerve. The comparison of the muscle response to these two different stimulations can help to define, at the functional level, potential alterations in the NMJ that lead to functional decline in muscle. Ex vivo preparations are suited to well-controlled studies. Here we describe an intensive protocol to measure several parameters of muscle and NMJ functionality for the soleus-sciatic nerve preparation and for the diaphragm-phrenic nerve preparation. The protocol lasts approximately 60 min and is conducted uninterruptedly by means of a custom-made software that measures the twitch kinetics properties, the force-frequency relationship for both muscle and nerve stimulations, and two parameters specific to NMJ functionality, i.e. neurotransmission failure and intratetanic fatigue. This methodology was used to detect damages in soleus and diaphragm muscle-nerve preparations by using SOD1G93A transgenic mouse, an experimental model of ALS that ubiquitously overexpresses the mutant antioxidant enzyme superoxide dismutase 1 (SOD1).
Collapse
Affiliation(s)
- Emanuele Rizzuto
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome;
| | - Simona Pisu
- Institute Pasteur Cenci-Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome
| | - Carmine Nicoletti
- Institute Pasteur Cenci-Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome
| | - Zaccaria Del Prete
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome; Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia
| | - Antonio Musarò
- Institute Pasteur Cenci-Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome; Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia;
| |
Collapse
|
32
|
Janjic JM, Gorantla VS. Peripheral Nerve Nanoimaging: Monitoring Treatment and Regeneration. AAPS JOURNAL 2017; 19:1304-1316. [PMID: 28779380 DOI: 10.1208/s12248-017-0129-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/23/2017] [Indexed: 12/18/2022]
Abstract
Accidental and iatrogenic trauma are major causes of peripheral nerve injury. Healing after nerve injury is complex and often incomplete, which can lead to acute or chronic pain and functional impairment. Current assessment methods for nerve regeneration lack sensitivity and objectivity. There is a need for reliable and reproducible, noninvasive strategies with adequate spatial and temporal resolution for longitudinal evaluation of degeneration or regeneration after injury/treatment. Methods for noninvasive monitoring of the efficacy and effectiveness of neurotherapeutics in nerve regeneration or of neuropathic pain are needed to ensure adequacy and responsiveness to management, especially given the large variability in the patient populations, etiologies, and complexity of nerve injuries. Surrogate biomarkers are needed with positive predictive correlation for the dynamics and kinetics of neuroregeneration. They can provide direct real-time insight into the efficacy and mechanisms of individualized therapeutic intervention. Here, we review the state-of-the-art tools, technologies, and therapies in peripheral nerve injury and regeneration as well as provide perspectives for the future. We present compelling evidence that advancements in nanomedicine and innovation in nanotechnology such as nanotheranostics hold groundbreaking potential as paradigm shifts in noninvasive peripheral nerve imaging and drug delivery. Nanotechnology, which revolutionized molecular imaging in cancer and inflammatory disease, can be used to delineate dynamic molecular imaging signatures of neuroinflammation and neuroregeneration while simultaneously monitoring cellular or tissue response to drug therapy. We believe that current clinical successes of nanotechnology can and should be adopted and adapted to the science of peripheral nerve injury and regeneration.
Collapse
Affiliation(s)
- Jelena M Janjic
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, 600 Forbes Avenue, 415 Mellon Hall, Pittsburgh, Pennsylvania, 15282, USA. .,Chronic Pain Research Consortium, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania, 15282, USA. .,McGowan Institute for Regenerative Medicine, University of Pittsburgh, 1602 E. Carson Street, Pittsburgh, Pennsylvania, 15203, USA.
| | - Vijay S Gorantla
- Departments of Surgery, Ophthalmology and Bioengineering, Wake Forest Baptist Medical Center, Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston-Salem, North Carolina, 27101, USA
| |
Collapse
|
33
|
Hurtado E, Cilleros V, Nadal L, Simó A, Obis T, Garcia N, Santafé MM, Tomàs M, Halievski K, Jordan CL, Lanuza MA, Tomàs J. Muscle Contraction Regulates BDNF/TrkB Signaling to Modulate Synaptic Function through Presynaptic cPKCα and cPKCβI. Front Mol Neurosci 2017; 10:147. [PMID: 28572757 PMCID: PMC5436293 DOI: 10.3389/fnmol.2017.00147] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/01/2017] [Indexed: 01/09/2023] Open
Abstract
The neurotrophin brain-derived neurotrophic factor (BDNF) acts via tropomyosin-related kinase B receptor (TrkB) to regulate synapse maintenance and function in the neuromuscular system. The potentiation of acetylcholine (ACh) release by BDNF requires TrkB phosphorylation and Protein Kinase C (PKC) activation. BDNF is secreted in an activity-dependent manner but it is not known if pre- and/or postsynaptic activities enhance BDNF expression in vivo at the neuromuscular junction (NMJ). Here, we investigated whether nerve and muscle cell activities regulate presynaptic conventional PKC (cPKCα and βI) via BDNF/TrkB signaling to modulate synaptic strength at the NMJ. To differentiate the effects of presynaptic activity from that of muscle contraction, we stimulated the phrenic nerve of rat diaphragms (1 Hz, 30 min) with or without contraction (abolished by μ-conotoxin GIIIB). Then, we performed ELISA, Western blotting, qRT-PCR, immunofluorescence and electrophysiological techniques. We found that nerve-induced muscle contraction: (1) increases the levels of mature BDNF protein without affecting pro-BDNF protein or BDNF mRNA levels; (2) downregulates TrkB.T1 without affecting TrkB.FL or p75 neurotrophin receptor (p75) levels; (3) increases presynaptic cPKCα and cPKCβI protein level through TrkB signaling; and (4) enhances phosphorylation of cPKCα and cPKCβI. Furthermore, we demonstrate that cPKCβI, which is exclusively located in the motor nerve terminals, increases activity-induced acetylcholine release. Together, these results show that nerve-induced muscle contraction is a key regulator of BDNF/TrkB signaling pathway, retrogradely activating presynaptic cPKC isoforms (in particular cPKCβI) to modulate synaptic function. These results indicate that a decrease in neuromuscular activity, as occurs in several neuromuscular disorders, could affect the BDNF/TrkB/PKC pathway that links pre- and postsynaptic activity to maintain neuromuscular function.
Collapse
Affiliation(s)
- Erica Hurtado
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Víctor Cilleros
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Laura Nadal
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Anna Simó
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Teresa Obis
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Neus Garcia
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Manel M Santafé
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Marta Tomàs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | | | - Cynthia L Jordan
- Neuroscience Program, Michigan State UniversityMichigan, MI, United States
| | - Maria A Lanuza
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Josep Tomàs
- Unitat d'Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| |
Collapse
|
34
|
Tomàs J, Garcia N, Lanuza MA, Santafé MM, Tomàs M, Nadal L, Hurtado E, Simó A, Cilleros V. Presynaptic Membrane Receptors Modulate ACh Release, Axonal Competition and Synapse Elimination during Neuromuscular Junction Development. Front Mol Neurosci 2017; 10:132. [PMID: 28559796 PMCID: PMC5432534 DOI: 10.3389/fnmol.2017.00132] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/20/2017] [Indexed: 12/17/2022] Open
Abstract
During the histogenesis of the nervous system a lush production of neurons, which establish an excessive number of synapses, is followed by a drop in both neurons and synaptic contacts as maturation proceeds. Hebbian competition between axons with different activities leads to the loss of roughly half of the neurons initially produced so connectivity is refined and specificity gained. The skeletal muscle fibers in the newborn neuromuscular junction (NMJ) are polyinnervated but by the end of the competition, 2 weeks later, the NMJ are innervated by only one axon. This peripheral synapse has long been used as a convenient model for synapse development. In the last few years, we have studied transmitter release and the local involvement of the presynaptic muscarinic acetylcholine autoreceptors (mAChR), adenosine autoreceptors (AR) and trophic factor receptors (TFR, for neurotrophins and trophic cytokines) during the development of NMJ and in the adult. This review article brings together previously published data and proposes a molecular background for developmental axonal competition and loss. At the end of the first week postnatal, these receptors modulate transmitter release in the various nerve terminals on polyinnervated NMJ and contribute to axonal competition and synapse elimination.
Collapse
Affiliation(s)
- Josep Tomàs
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Neus Garcia
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Maria A Lanuza
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Manel M Santafé
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Marta Tomàs
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Laura Nadal
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Erica Hurtado
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Anna Simó
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Víctor Cilleros
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| |
Collapse
|
35
|
Greising SM, Vasdev AK, Zhan WZ, Sieck GC, Mantilla CB. Chronic TrkB agonist treatment in old age does not mitigate diaphragm neuromuscular dysfunction. Physiol Rep 2017; 5:e13103. [PMID: 28082429 PMCID: PMC5256161 DOI: 10.14814/phy2.13103] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 12/11/2022] Open
Abstract
Previously, we found that brain-derived neurotrophic factor (BDNF) signaling through the high-affinity tropomyosin-related kinase receptor subtype B (TrkB) enhances neuromuscular transmission in the diaphragm muscle. However, there is an age-related loss of this effect of BDNF/TrkB signaling that may contribute to diaphragm muscle sarcopenia (atrophy and force loss). We hypothesized that chronic treatment with 7,8-dihydroxyflavone (7,8-DHF), a small molecule BDNF analog and TrkB agonist, will mitigate age-related diaphragm neuromuscular transmission failure and sarcopenia in old mice. Adult male TrkBF616A mice (n = 32) were randomized to the following 6-month treatment groups: vehicle-control, 7,8-DHF, and 7,8-DHF and 1NMPP1 (an inhibitor of TrkB kinase activity in TrkBF616A mice) cotreatment, beginning at 18 months of age. At 24 months of age, diaphragm neuromuscular transmission failure, muscle-specific force, and fiber cross-sectional areas were compared across treatment groups. The results did not support our hypothesis in that chronic 7,8-DHF treatment did not improve diaphragm neuromuscular transmission or mitigate diaphragm muscle sarcopenia. Taken together, these results do not exclude a role for BDNF/TrkB signaling in aging-related changes in the diaphragm muscle, but they do not support the use of 7,8-DHF as a therapeutic agent to mitigate age-related neuromuscular dysfunction.
Collapse
Affiliation(s)
- Sarah M Greising
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Amrit K Vasdev
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Wen-Zhi Zhan
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
- Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Carlos B Mantilla
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
- Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
36
|
Xiang F, Wei D, Yang Y, Chi H, Yang K, Sun Y. Tissue-engineered nerve graft with tetramethylpyrazine for repair of sciatic nerve defects in rats. Neurosci Lett 2016; 638:114-120. [PMID: 27988347 DOI: 10.1016/j.neulet.2016.12.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 12/09/2016] [Accepted: 12/13/2016] [Indexed: 12/16/2022]
Abstract
A tissue-engineered nerve with tetramethylpyrazine (TMP) was repaired for sciatic nerve defects in rats. A total of 55 adult Sprague Dawley (SD) rats were classified into 4 groups, with 15 rats in each of groups A, B, and C as well as 10 rats in group D. About 1.5cm of a sciatic nerve of the right hind limb located 0.5cm below the inferior margin of the piriformis was resected to form the defects. Four types of nerve grafts used for bridging nerve defects in the SD rats corresponded to the 4 groups: tissue-engineered nerves with TMP in group A, tissue-engineered nerves without TMP in group B, acellular nerve grafts (ANGs) in group C, and autologous nerves in group D. Twelve weeks post-surgery, the sciatic functional index, nerve conduction velocity, and gastrocnemius wet weight of groups A and D were higher than those of groups B and C (P<0.05). Results of fluorescence microscopy and histological staining indicated that group A performed better than groups B and C (P<0.05). Similarly, the number of horseradish peroxidase-labeled positive cells was significantly larger in group A than in groups B and C. Regenerative nerve fibers were abundant in group A and consisted mainly of myelinated nerve fibers, which were better than those in groups B and C (P<0.05). The study demonstrated that tissue-engineered nerves constructed by ANGs seeded with neural stem cells and combined with TMP can effectively repair sciatic nerve defects in rats.
Collapse
Affiliation(s)
- Feifan Xiang
- Department of Bone and Joint Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Daiqing Wei
- Department of Bone and Joint Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yunkang Yang
- Department of Bone and Joint Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Haotian Chi
- Department of Bone and Joint Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Kun Yang
- Department of Bone and Joint Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yuanlin Sun
- Department of Bone and Joint Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
37
|
Charsar BA, Urban MW, Lepore AC. Harnessing the power of cell transplantation to target respiratory dysfunction following spinal cord injury. Exp Neurol 2016; 287:268-275. [PMID: 27531634 DOI: 10.1016/j.expneurol.2016.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/29/2016] [Accepted: 08/12/2016] [Indexed: 12/13/2022]
Abstract
The therapeutic benefit of cell transplantation has been assessed in a host of central nervous system (CNS) diseases, including disorders of the spinal cord such as traumatic spinal cord injury (SCI). The promise of cell transplantation to preserve and/or restore normal function can be aimed at a variety of therapeutic mechanisms, including replacement of lost or damaged CNS cell types, promotion of axonal regeneration or sprouting, neuroprotection, immune response modulation, and delivery of gene products such as neurotrophic factors, amongst other possibilities. Despite significant work in the field of transplantation in models of SCI, limited attention has been directed at harnessing the therapeutic potential of cell grafting for preserving respiratory function after SCI, despite the critical role pulmonary compromise plays in patient outcome in this devastating disease. Here, we will review the limited number of studies that have demonstrated the therapeutic potential of intraspinal transplantation of a variety of cell types for addressing respiratory dysfunction in SCI.
Collapse
Affiliation(s)
- Brittany A Charsar
- Department of Neuroscience, Farber Institute for Neurosciences, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, JHN 418, Philadelphia, PA, 19107, United States
| | - Mark W Urban
- Department of Neuroscience, Farber Institute for Neurosciences, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, JHN 418, Philadelphia, PA, 19107, United States
| | - Angelo C Lepore
- Department of Neuroscience, Farber Institute for Neurosciences, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, JHN 418, Philadelphia, PA, 19107, United States.
| |
Collapse
|
38
|
Nadal L, Garcia N, Hurtado E, Simó A, Tomàs M, Lanuza MA, Santafé M, Tomàs J. Presynaptic muscarinic acetylcholine autoreceptors (M1, M2 and M4 subtypes), adenosine receptors (A1 and A2A) and tropomyosin-related kinase B receptor (TrkB) modulate the developmental synapse elimination process at the neuromuscular junction. Mol Brain 2016; 9:67. [PMID: 27339059 PMCID: PMC4917939 DOI: 10.1186/s13041-016-0248-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/15/2016] [Indexed: 01/23/2023] Open
Abstract
Background The development of the nervous system involves an initially exuberant production of neurons that make an excessive number of synaptic contacts. The initial overproduction of synapses promotes connectivity. Hebbian competition between axons with different activities (the least active are punished) leads to the loss of roughly half of the overproduced elements and this refines connectivity and increases specificity. The neuromuscular junction is innervated by a single axon at the end of the synapse elimination process and, because of its relative simplicity, has long been used as a model for studying the general principles of synapse development. The involvement of the presynaptic muscarinic ACh autoreceptors may allow for the direct competitive interaction between nerve endings through differential activity-dependent acetylcholine release in the synaptic cleft. Then, the most active ending may directly punish the less active ones. Our previous results indicate the existence in the weakest axons on the polyinnervated neonatal NMJ of an ACh release inhibition mechanism based on mAChR coupled to protein kinase C and voltage-dependent calcium channels. We suggest that this mechanism plays a role in the elimination of redundant neonatal synapses. Results Here we used confocal microscopy and quantitative morphological analysis to count the number of brightly fluorescent axons per endplate in P7, P9 and P15 transgenic B6.Cg-Tg (Thy1-YFP)16 Jrs/J mice. We investigate the involvement of individual mAChR M1-, M2- and M4-subtypes in the control of axonal elimination after the Levator auris longus muscle had been exposed to agonist and antagonist in vivo. We also analysed the role of adenosine receptor subtypes (A1 and A2A) and the tropomyosin-related kinase B receptor. The data show that postnatal axonal elimination is a regulated multireceptor mechanism that guaranteed the monoinnervation of the neuromuscular synapses. Conclusion The three receptor sets considered (mAChR, AR and TrkB receptors) intervene in modulating the conditions of the competition between nerve endings, possibly helping to determine the winner or the lossers but, thereafter, the final elimination would occur with some autonomy and independently of postsynaptic maturation.
Collapse
Affiliation(s)
- Laura Nadal
- Unitat d'Histologia i Neurobiologia (UHN): Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Carrer St Llorenç num 21, 43201, Reus, Spain
| | - Neus Garcia
- Unitat d'Histologia i Neurobiologia (UHN): Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Carrer St Llorenç num 21, 43201, Reus, Spain.
| | - Erica Hurtado
- Unitat d'Histologia i Neurobiologia (UHN): Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Carrer St Llorenç num 21, 43201, Reus, Spain
| | - Anna Simó
- Unitat d'Histologia i Neurobiologia (UHN): Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Carrer St Llorenç num 21, 43201, Reus, Spain
| | - Marta Tomàs
- Unitat d'Histologia i Neurobiologia (UHN): Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Carrer St Llorenç num 21, 43201, Reus, Spain
| | - Maria A Lanuza
- Unitat d'Histologia i Neurobiologia (UHN): Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Carrer St Llorenç num 21, 43201, Reus, Spain
| | - Manel Santafé
- Unitat d'Histologia i Neurobiologia (UHN): Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Carrer St Llorenç num 21, 43201, Reus, Spain
| | - Josep Tomàs
- Unitat d'Histologia i Neurobiologia (UHN): Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Carrer St Llorenç num 21, 43201, Reus, Spain.
| |
Collapse
|
39
|
Elliott JE, Greising SM, Mantilla CB, Sieck GC. Functional impact of sarcopenia in respiratory muscles. Respir Physiol Neurobiol 2016; 226:137-46. [PMID: 26467183 PMCID: PMC4838572 DOI: 10.1016/j.resp.2015.10.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/06/2015] [Indexed: 01/06/2023]
Abstract
The risk for respiratory complications and infections is substantially increased in old age, which may be due, in part, to sarcopenia (aging-related weakness and atrophy) of the diaphragm muscle (DIAm), reducing its force generating capacity and impairing the ability to perform expulsive non-ventilatory motor behaviors critical for airway clearance. The aging-related reduction in DIAm force generating capacity is due to selective atrophy of higher force generating type IIx and/or IIb muscle fibers, whereas lower force generating type I and IIa muscle fiber sizes are preserved. Fiber type specific DIAm atrophy is also seen following unilateral phrenic nerve denervation and in other neurodegenerative disorders. Accordingly, the effect of aging on DIAm function resembles that of neurodegeneration and suggests possible common mechanisms, such as the involvement of several neurotrophic factors in mediating DIAm sarcopenia. This review will focus on changes in two neurotrophic signaling pathways that represent potential mechanisms underlying the aging-related fiber type specific DIAm atrophy.
Collapse
Affiliation(s)
- Jonathan E Elliott
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Sarah M Greising
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Carlos B Mantilla
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
40
|
Stemple JC, Andreatta RD, Seward TS, Angadi V, Dietrich M, McMullen CA. Enhancement of aging rat laryngeal muscles with endogenous growth factor treatment. Physiol Rep 2016; 4:e12798. [PMID: 27207784 PMCID: PMC4886166 DOI: 10.14814/phy2.12798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/18/2016] [Accepted: 04/23/2016] [Indexed: 01/03/2023] Open
Abstract
Clinical evidence suggests that laryngeal muscle dysfunction is associated with human aging. Studies in animal models have reported morphological changes consistent with denervation in laryngeal muscles with age. Life-long laryngeal muscle activity relies on cytoskeletal integrity and nerve-muscle communication at the neuromuscular junction (NMJ). It is thought that neurotrophins enhance neuromuscular transmission by increasing neurotransmitter release. We hypothesized that treatment with neurotrophin 4 (NTF4) would modify the morphology and functional innervation of aging rat laryngeal muscles. Fifty-six Fischer 344xBrown Norway rats (6- and 30-mo age groups) were used to evaluate to determine if NTF4, given systemically (n = 32) or directly (n = 24), would improve the morphology and functional innervation of aging rat thyroarytenoid muscles. Results demonstrate the ability of rat laryngeal muscles to remodel in response to neurotrophin application. Changes were demonstrated in fiber size, glycolytic capacity, mitochondrial, tyrosine kinase receptors (Trk), NMJ content, and denervation in aging rat thyroarytenoid muscles. This study suggests that growth factors may have therapeutic potential to ameliorate aging-related laryngeal muscle dysfunction.
Collapse
Affiliation(s)
- Joseph C Stemple
- Department of Rehabilitation Sciences, University of Kentucky, Lexington, Kentucky
| | - Richard D Andreatta
- Department of Rehabilitation Sciences, University of Kentucky, Lexington, Kentucky
| | - Tanya S Seward
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Vrushali Angadi
- Department of Rehabilitation Sciences, University of Kentucky, Lexington, Kentucky
| | - Maria Dietrich
- Department of Communication Science and Disorders, University of Missouri, Columbia, Missouri
| | | |
Collapse
|
41
|
Jiménez-Maldonado A, Cerna-Cortés J, Castro-Rodríguez EM, Montero SA, Muñiz J, Rodríguez-Hernández A, Lemus M, De Álvarez-Buylla ER. Effects of moderate- and high-intensity chronic exercise on brain-derived neurotrophic factor expression in fast and slow muscles. Muscle Nerve 2015; 53:446-51. [PMID: 26148339 DOI: 10.1002/mus.24757] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 06/23/2015] [Accepted: 06/30/2015] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Brain-derived neurotrophic factor (BDNF) protein expression is sensitive to cellular activity. In the sedentary state, BDNF expression is affected by the muscle phenotype. METHODS Eighteen Wistar rats were divided into the following 3 groups: sedentary (S); moderate-intensity training (MIT); and high-intensity training (HIT). The training protocol lasted 8 weeks. Forty-eight hours after training, total RNA and protein levels in the soleus and plantaris muscles were obtained. RESULTS In the plantaris, the BDNF protein level was lower in the HIT than in the S group (P < 0.05). A similar effect was found in the soleus (without significant difference). In the soleus, higher Bdnf mRNA levels were found in the HIT group (P < 0.001 vs. S and MIT groups). In the plantaris muscle, similar Bdnf mRNA levels were found in all groups. CONCLUSIONS These results indicate that high-intensity chronic exercise reduces BDNF protein level in fast muscles and increases Bdnf mRNA levels in slow muscles.
Collapse
Affiliation(s)
- Alberto Jiménez-Maldonado
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, 965 Ave. 25 de Julio, Col. Villas San Sebastián, Colima, 28045, México
| | | | - Elena M Castro-Rodríguez
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, 965 Ave. 25 de Julio, Col. Villas San Sebastián, Colima, 28045, México
| | | | - Jesús Muñiz
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, 965 Ave. 25 de Julio, Col. Villas San Sebastián, Colima, 28045, México
| | | | - Mónica Lemus
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, 965 Ave. 25 de Julio, Col. Villas San Sebastián, Colima, 28045, México
| | - Elena Roces De Álvarez-Buylla
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, 965 Ave. 25 de Julio, Col. Villas San Sebastián, Colima, 28045, México
| |
Collapse
|
42
|
Greising SM, Stowe JM, Sieck GC, Mantilla CB. Role of TrkB kinase activity in aging diaphragm neuromuscular junctions. Exp Gerontol 2015; 72:184-91. [PMID: 26517952 DOI: 10.1016/j.exger.2015.10.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 11/30/2022]
Abstract
Brain derived neurotrophic factor (BDNF) acting through the tropomyosin-related kinase receptor B (TrkB) enhances neuromuscular transmission in the diaphragm muscle of adult mice, reflecting presynaptic effects. With aging, BDNF enhancement of neuromuscular transmission is lost. We hypothesize that disrupting BDNF/TrkB signaling in early old age will reveal a period of susceptibility evident by morphological changes at neuromuscular junctions (NMJ). Adult, male TrkB(F616A) mice (n=25) at 6 and 18 months of age, were used to examine the structural properties of diaphragm muscle NMJs (n=1097). Confocal microscopy was used to compare pre- and post-synaptic morphology and denervation following a 7 day treatment with the phosphoprotein phosphatase-1 derivative 1NMPP1, which inhibits TrkB kinase activity in TrkB(F616A) mice vs. vehicle treatment. In early old age (18 months), presynaptic terminal volume decreased compared to 6 month old diaphragm NMJs (~20%). Inhibition of TrkB kinase activity significantly decreased the presynaptic terminal volume (~20%) and motor end-plate 2D planar area (~10%), independent of age group. Inhibition of TrkB kinase activity in early old age significantly reduced overlap of pre- and post-synaptic structures and increased the proportion of denervated NMJs (to ~20%). Collectively these results support a period of susceptibility in early old age when BDNF/TrkB signaling at diaphragm NMJs supports the maintenance of NMJs structure and muscle innervation.
Collapse
Affiliation(s)
- Sarah M Greising
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Jessica M Stowe
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; Department of Anesthesiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Carlos B Mantilla
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; Department of Anesthesiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
43
|
Willoughby CL, Fleuriet J, Walton MM, Mustari MJ, McLoon LK. Adaptation of slow myofibers: the effect of sustained BDNF treatment of extraocular muscles in infant nonhuman primates. Invest Ophthalmol Vis Sci 2015; 56:3467-83. [PMID: 26030102 DOI: 10.1167/iovs.15-16852] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PURPOSE We evaluated promising new treatment options for strabismus. Neurotrophic factors have emerged as a potential treatment for oculomotor disorders because of diverse roles in signaling to muscles and motor neurons. Unilateral treatment with sustained release brain-derived neurotrophic factor (BDNF) to a single lateral rectus muscle in infant monkeys was performed to test the hypothesis that strabismus would develop in correlation with extraocular muscle (EOM) changes during the critical period for development of binocularity. METHODS The lateral rectus muscles of one eye in two infant macaques were treated with sustained delivery of BDNF for 3 months. Eye alignment was assessed using standard photographic methods. Muscle specimens were analyzed to examine the effects of BDNF on the density, morphology, and size of neuromuscular junctions, as well as myofiber size. Counts were compared to age-matched controls. RESULTS No change in eye alignment occurred with BDNF treatment. Compared to control muscle, neuromuscular junctions on myofibers expressing slow myosins had a larger area. Myofibers expressing slow myosin had larger diameters, and the percentage of myofibers expressing slow myosins increased in the proximal end of the muscle. Expression of BDNF was examined in control EOM, and observed to have strongest immunoreactivity outside the endplate zone. CONCLUSIONS We hypothesize that the oculomotor system adapted to sustained BDNF treatment to preserve normal alignment. Our results suggest that BDNF treatment preferentially altered myofibers expressing slow myosins. This implicates BDNF signaling as influencing the slow twitch properties of EOM.
Collapse
Affiliation(s)
- Christy L Willoughby
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States 2Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States
| | - Jérome Fleuriet
- Washington National Primate Research Center, Seattle, Washington, United States 4Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Mark M Walton
- Washington National Primate Research Center, Seattle, Washington, United States
| | - Michael J Mustari
- Washington National Primate Research Center, Seattle, Washington, United States 4Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Linda K McLoon
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States 2Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
44
|
Rizzuto E, Pisu S, Musarò A, Del Prete Z. Measuring Neuromuscular Junction Functionality in the SOD1(G93A) Animal Model of Amyotrophic Lateral Sclerosis. Ann Biomed Eng 2015; 43:2196-206. [PMID: 25631208 PMCID: PMC4516896 DOI: 10.1007/s10439-015-1259-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 01/17/2015] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that leads to motor neuron degeneration, alteration in neuromuscular junctions (NMJs), muscle atrophy, and paralysis. To investigate the NMJ functionality in ALS we tested, in vitro, two innervated muscle types excised from SOD1G93A transgenic mice at the end-stage of the disease: the Soleus, a postural muscle almost completely paralyzed at that stage, and the diaphragm, which, on the contrary, is functional until death. To this aim we employed an experimental protocol that combined two types of electrical stimulation: the direct stimulation and the stimulation through the nerve. The technique we applied allowed us to determine the relevance of NMJ functionality separately from muscle contractile properties in SOD1G93A animal model. Functional measurements revealed that the muscle contractility of transgenic diaphragms is almost unaltered in comparison to control muscles, while transgenic Soleus muscles were severely compromised. In contrast, when stimulated via the nerve, both transgenic muscle types showed a strong decrease of the contraction force, a slowing down of the kinetic parameters, as well as alterations in the neurotransmission failure parameter. All together, these results confirm a severely impaired functionality in the SOD1G93A neuromuscular junctions.
Collapse
Affiliation(s)
- Emanuele Rizzuto
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184, Rome, Italy,
| | | | | | | |
Collapse
|
45
|
Gransee HM, Zhan WZ, Sieck GC, Mantilla CB. Localized delivery of brain-derived neurotrophic factor-expressing mesenchymal stem cells enhances functional recovery following cervical spinal cord injury. J Neurotrauma 2014; 32:185-93. [PMID: 25093762 DOI: 10.1089/neu.2014.3464] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Neurotrophins, such as brain-derived neurotrophic factor (BDNF), are important in modulating neuroplasticity and promoting recovery after spinal cord injury. Intrathecal delivery of BDNF enhances functional recovery following unilateral spinal cord hemisection (SH) at C2, a well-established model of incomplete cervical spinal cord injury. We hypothesized that localized delivery of BDNF-expressing mesenchymal stem cells (BDNF-MSCs) would promote functional recovery of rhythmic diaphragm activity after SH. In adult rats, bilateral diaphragm electromyographic (EMG) activity was chronically monitored to determine evidence of complete SH at 3 days post-injury, and recovery of rhythmic ipsilateral diaphragm EMG activity over time post-SH. Wild-type, bone marrow-derived MSCs (WT-MSCs) or BDNF-MSCs (2×10(5) cells) were injected intraspinally at C2 at the time of injury. At 14 days post-SH, green fluorescent protein (GFP) immunoreactivity confirmed MSCs presence in the cervical spinal cord. Functional recovery in SH animals injected with WT-MSCs was not different from untreated SH controls (n=10; overall, 20% at 7 days and 30% at 14 days). In contrast, functional recovery was observed in 29% and 100% of SH animals injected with BDNF-MSCs at 7 days and 14 days post-SH, respectively (n=7). In BDNF-MSCs treated SH animals at 14 days, root-mean-squared EMG amplitude was 63±16% of the pre-SH value compared with 12±9% in the control/WT-MSCs group. We conclude that localized delivery of BDNF-expressing MSCs enhances functional recovery of diaphragm muscle activity following cervical spinal cord injury. MSCs can be used to facilitate localized delivery of trophic factors such as BDNF in order to promote neuroplasticity following spinal cord injury.
Collapse
Affiliation(s)
- Heather M Gransee
- 1 Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
| | | | | | | |
Collapse
|
46
|
Greising SM, Ermilov LG, Sieck GC, Mantilla CB. Ageing and neurotrophic signalling effects on diaphragm neuromuscular function. J Physiol 2014; 593:431-40. [PMID: 25630263 DOI: 10.1113/jphysiol.2014.282244] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/23/2014] [Indexed: 12/22/2022] Open
Abstract
The age-related mechanisms underlying sarcopenia are largely unknown. We hypothesize that age-related neuromuscular changes depend on brain-derived neurotrophic factor (BDNF) acting through the tropomyosin-related kinase receptor B (TrkB). Maximal specific force and neuromuscular transmission failure were assessed at 6, 18 and 24 months following control, BDNF or phosphoprotein phosphatase 1 derivative (1NMPP1) treatment in male TrkB(F616A) mice. Phosphoprotein phosphatase-1 derivatives such as 1NMPP1 inhibit TrkB kinase activity as a result of this single amino acid mutation in the ATP binding domain. Maximal twitch and isometric tetanic force were reduced at 24 months compared to 6 and 18 months (P < 0.001). Neuromuscular transmission failure significantly increased at 18 and 24 months compared to 6 months (age × treatment interaction: P < 0.001). Neuromuscular transmission was improved following BDNF at 6 and 18 months and was impaired only at 6 months following 1NMPP1 treatment. Age and inhibition of TrkB kinase activity had similar effects on neuromuscular transmission failure, supporting a critical role for BDNF/TrkB signalling on neuromuscular changes in ageing. These results suggest that an age-related loss of endogenous BDNF precedes reductions in TrkB kinase activity in the diaphragm muscle.
Collapse
Affiliation(s)
- Sarah M Greising
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
47
|
Dale EA, Ben Mabrouk F, Mitchell GS. Unexpected benefits of intermittent hypoxia: enhanced respiratory and nonrespiratory motor function. Physiology (Bethesda) 2014; 29:39-48. [PMID: 24382870 DOI: 10.1152/physiol.00012.2013] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Intermittent hypoxia (IH) is most often thought of for its role in morbidity associated with sleep-disordered breathing, including central nervous system pathology. However, recent evidence suggests that the nervous system fights back in an attempt to minimize pathology by increasing the expression of growth/trophic factors that confer neuroprotection and neuroplasticity. For example, even modest ("low dose") IH elicits respiratory motor plasticity, increasing the strength of respiratory contractions and breathing. These low IH doses upregulate hypoxia-sensitive growth/trophic factors within respiratory motoneurons but do not elicit detectable pathologies such as hippocampal cell death, neuroinflammation, or systemic hypertension. Recent advances have been made toward understanding cellular mechanisms giving rise to IH-induced respiratory plasticity, and attempts have been made to harness the benefits of low-dose IH to treat respiratory insufficiency after cervical spinal injury. Our recent realization that IH also upregulates growth/trophic factors in nonrespiratory motoneurons and improves limb (or leg) function after incomplete chronic spinal injuries suggests that IH-induced plasticity is a general feature of motor systems. Collectively, available evidence suggests that low-dose IH may represent a safe and effective treatment to restore lost motor function in diverse clinical disorders that impair motor function.
Collapse
Affiliation(s)
- E A Dale
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin
| | | | | |
Collapse
|
48
|
Mantilla CB, Stowe JM, Sieck DC, Ermilov LG, Greising SM, Zhang C, Shokat KM, Sieck GC. TrkB kinase activity maintains synaptic function and structural integrity at adult neuromuscular junctions. J Appl Physiol (1985) 2014; 117:910-20. [PMID: 25170066 DOI: 10.1152/japplphysiol.01386.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of the tropomyosin-related kinase receptor B (TrkB) by brain-derived neurotrophic factor acutely regulates synaptic transmission at adult neuromuscular junctions (NMJs). The role of TrkB kinase activity in the maintenance of NMJ function and structure at diaphragm muscle NMJs was explored using a chemical-genetic approach that permits reversible inactivation of TrkB kinase activity in TrkB(F616A) mice by 1NMPP1. Inhibiting TrkB kinase activity for 7 days resulted in significant, yet reversible, impairments in neuromuscular transmission at diaphragm NMJs. Neuromuscular transmission failure following 2 min of repetitive phrenic nerve stimulation increased from 42% in control to 59% in 1NMPP1-treated TrkB(F616A) mice (P = 0.010). Recovery of TrkB kinase activity following withdrawal of 1NMPP1 treatment improved neuromuscular transmission (P = 0.006). Electrophysiological measurements at individual diaphragm NMJs documented lack of differences in quantal content in control and 1NMPP1-treated mice (P = 0.845). Morphological changes at diaphragm NMJs were modest following inhibition and recovery of TrkB kinase activity. Three-dimensional reconstructions of diaphragm NMJs revealed no differences in volume at motor end plates (labeled by α-bungarotoxin; P = 0.982) or presynaptic terminals (labeled by synaptophysin; P = 0.515). Inhibition of TrkB kinase activity by 1NMPP1 resulted in more compact NMJs, with increased apposition of presynaptic terminals and motor end plates (P = 0.017) and reduced fragmentation of motor end plates (P = 0.005). Recovery of TrkB kinase activity following withdrawal of 1NMPP1 treatment resulted in postsynaptic remodeling likely reflecting increased gutter depth (P = 0.007), without significant presynaptic changes. These results support an essential role for TrkB kinase activity in maintaining synaptic function and structural integrity at NMJs in the adult mouse diaphragm muscle.
Collapse
Affiliation(s)
- Carlos B Mantilla
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota; Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, Minnesota; and
| | - Jessica M Stowe
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Dylan C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Leonid G Ermilov
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Sarah M Greising
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Chao Zhang
- Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California
| | - Kevan M Shokat
- Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota; Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, Minnesota; and
| |
Collapse
|
49
|
Nascimento F, Pousinha PA, Correia AM, Gomes R, Sebastião AM, Ribeiro JA. Adenosine A2A receptors activation facilitates neuromuscular transmission in the pre-symptomatic phase of the SOD1(G93A) ALS mice, but not in the symptomatic phase. PLoS One 2014; 9:e104081. [PMID: 25093813 PMCID: PMC4122437 DOI: 10.1371/journal.pone.0104081] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/05/2014] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease leading to motor neuron dysfunction resulting in impairment of neuromuscular transmission. A2A adenosine receptors have already been considered as a potential therapeutical target for ALS but their neuromodulatory role at the neuromuscular junction in ALS remains to be clarified. In the present work, we evaluated the effects of A2A receptors on neuromuscular transmission of an animal model of ALS: SOD1(G93A) mice either in the pre-symptomatic (4-6 weeks old) or in the symptomatic (12-14 weeks old) stage. Electrophysiological experiments were performed obtaining intracellular recordings in Mg2+ paralyzed phrenic nerve-hemidiaphragm preparations. Endplate potentials (EPPs), quantal content (q. c.) of EPPs, miniature endplate potentials (MEPPs) and giant miniature endplate potential (GMEPPs) were recorded. In the pre-symptomatic phase of the disease (4-6 weeks old mice), the selective A2A receptor agonist, CGS 21680, significantly enhanced (p<0.05 Unpaired t-test) the mean amplitude and q.c. of EPPs, and the frequency of MEPPs and GMEPPs at SOD1(G93A) neuromuscular junctions, the effect being of higher magnitude (p<0.05, Unpaired t-test) than age-matched control littermates. On the contrary, in symptomatic mice (12-14 weeks old), CGS 21680 was devoid of effect on both the amplitude and q.c. of EPPs and the frequency of MEPPs and GMEPPs (p<0.05 Paired t-test). The results herein reported clearly document that at the neuromuscular junction of SOD1(G93A) mice there is an exacerbation of A2A receptor-mediated excitatory effects at the pre-symptomatic phase, whereas in the symptomatic phase A2A receptor activation is absent. The results thus suggest that A2A receptors function changes with ALS progression.
Collapse
Affiliation(s)
- Filipe Nascimento
- Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- Unit of Neurosciences, Instituto de Medicina Molecular, University of Lisbon, Lisbon, Portugal
| | - Paula A. Pousinha
- Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- Unit of Neurosciences, Instituto de Medicina Molecular, University of Lisbon, Lisbon, Portugal
| | - Alexandra M. Correia
- Unit of Neurosciences, Instituto de Medicina Molecular, University of Lisbon, Lisbon, Portugal
- National Museum of Natural History and Science, University of Lisbon, Lisbon, Portugal
| | - Rui Gomes
- Unit of Neurosciences, Instituto de Medicina Molecular, University of Lisbon, Lisbon, Portugal
- Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Ana M. Sebastião
- Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- Unit of Neurosciences, Instituto de Medicina Molecular, University of Lisbon, Lisbon, Portugal
| | - Joaquim A. Ribeiro
- Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- Unit of Neurosciences, Instituto de Medicina Molecular, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
50
|
Nishimune H, Stanford JA, Mori Y. Role of exercise in maintaining the integrity of the neuromuscular junction. Muscle Nerve 2013; 49:315-24. [PMID: 24122772 DOI: 10.1002/mus.24095] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2013] [Indexed: 01/16/2023]
Abstract
Physical activity plays an important role in preventing chronic disease in adults and the elderly. Exercise has beneficial effects on the nervous system, including at the neuromuscular junction (NMJ). Exercise causes hypertrophy of NMJs and improves recovery from peripheral nerve injuries, whereas decreased physical activity causes degenerative changes in NMJs. Recent studies have begun to elucidate molecular mechanisms underlying the beneficial effects of exercise. These mechanisms involve Bassoon, neuregulin-1, peroxisome proliferator-activated receptor gamma coactivator 1α, insulin-like growth factor-1, glial cell line-derived neurotrophic factor, neurotrophin 4, Homer, and nuclear factor of activated T cells c1. For example, NMJ denervation and active zone decreases have been observed in aged NMJs, but these age-dependent degenerative changes can be ameliorated by exercise. In this review we assess the effects of exercise on the maintenance and regeneration of NMJs and highlight recent insights into the molecular mechanisms underlying these exercise effects.
Collapse
Affiliation(s)
- Hiroshi Nishimune
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, 3901 Rainbow Boulevard, MS 3051, HLSIC Room 2073, Kansas City, Kansas, 66160, USA
| | | | | |
Collapse
|